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Abstract
A storage code on a graphG is a set of assignments of symbols to the vertices such that
every vertex can recover its value by looking at its neighbors.We consider the question
of constructing large-size storage codes on triangle-free graphs constructed as coset
graphs of binary linear codes. Previously it was shown that there are infinite families
of binary storage codes on coset graphs with rate converging to 3/4. Here we show that
codes on such graphs can attain rate asymptotically approaching 1. Equivalently, this
question can be phrased as a version of hat-guessing games on graphs (e.g., Cameron
et al., in: Electron J Combin 23(1):48, 2016). In this language, we construct triangle-
free graphs with success probability of the players approaching one as the number of
vertices tends to infinity. Furthermore, finding linear index codes of rate approaching
zero is also an equivalent problem.
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1 Introduction

Suppose we are given a connected graph G(V , E) on N vertices. Denote by N (v)

the neighborhood of v in G, i.e., the set of vertices of G adjacent to v, and let Fq be a
finite field of size q. A storage code forG is a setC of vectors c = (cv)v∈V ∈ F

N
q such

that for every c ∈ C and v ∈ V the value of the coordinate cv is uniquely determined
by the values of cw,w ∈ N (v). More formally, suppose that for every vertex v there
is a function fv : FN

q → Fq such that for every c ∈ C and every v ∈ V we have
cv = fv((cw)w∈N (v)), where we assume some implicit fixed ordering of the vertices.

The concept of storage codes was introduced around 2014 in [17, 21] and studied
in subsequent papers [4, 18]. In coding theory literature, this concept was motivated
by a more general notion of codes with locality [12], which has enjoyed considerable
attention during the last decade [19].

The main problem associated with storage codes is constructing codes of large size,
expressed as a function of the parameters of the graph. To make the comparison easier,
define the code rate Rq(C ,G) := logq(|C |)/N , and let Rq(G) = maxC Rq(C ,G).
The first observation is that for dense graphs it is easy to construct codes of large
size or rate: for instance, if the graph is complete, G = KN , then the condition
of vertex recovery from its neighbors will be satisfied if the codevectors satisfy a
global parity check, i.e.,

∑
v∈V cv = 0 for every c ∈ C . In this case |C | = qN−1 and

R(C ) = Rq(KN ) = N−1
N for any q. A variant of this idea clearly applies ifG contains

many cliques or large cliques, and therefore it makes sense to focus on the case of
graphs with no cliques at all, i.e., triangle-free graphs. This case received considerable
attention in the literature regarding both storage codes and guessing games on graphs
which we discuss next.

The following version of guessing games on graphs, introduced in [20], turns out to
be equivalent to the construction problem of storage codes. The vertices are assigned
colors out of a finite set Q of size q, and each vertex attempts to guess its color based
on the colors of its neighbors. The game is won if all the vertices correctly guess
their colors. The strategy may be agreed upon before the start of the game, but no
communication between the vertices is allowed once the colors have been assigned.
Suppose that the assignment x ∈ QN is chosen randomly from the available options,
and the goal of the game is to minimize the probability of failure. The following
strategy connects this game with storage codes. Let C be a q-ary storage code for the
graph. Every vertex v assumes that the assignment is a codeword in C and guesses
its color from its neighbors, then the probability of success is Ps(C ,G) = |C |

qN . This
quantity is sometimes expressed via the guessing number of G, defined as gnq(G) =
N + logq max Ps(C ,G) [5], so in our notation 1

N (gnq(G)) = Rq(G).
It was soon realized that the problem of finding storage codes is also equivalent to

constructing procedures for linear index coding with side information graph G. We
refer to the introduction of [4] for a brief overview of the known results on storage
codes as well as the connections to guessing and linear index coding, and to [2] for a
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more detailed presentation. In particular, as shown in [1, 17]

1 − Iq(G) ≤ Rq(G) ≤ 1 − Iq(G) + N−1 logq(N ln q),

where Iq(G) is the rate of the linear index code on G.
This paper further develops the work started in [4], and it shares with it the general

approach to the construction of storage codes. In particular, as in [4], we confine
ourselves to linear binary codes and we assume that the repair function of a vertex
fv is simply a parity check. In other words, cv = ∑

w∈N (v) cw holds for all c ∈ C
and all v ∈ V , where the sum is computed modulo 2. This repair rule involves an
implicit assumption that vertex recovery relies on the full parity, i.e., all the neighbors
contribute to the recovery (the general definition does not include this stipulation).
Thus, the parities of the vertices are given by the corresponding rows of the matrix
A + I , where A = A(G) is the adjacency matrix of G and I is the identity (in other
words, we are adding a self-loop to every v ∈ V ). For a given graph G define the
augmented adjacency matrix Ã(G) := A(G) + I . The dimension of the code C
equals dim(C ) = N − rk Ã(G), and thus we are interested in constructing graphs for
which Ã(G) has the smallest possible rank given the number of vertices N .

The assumption of using full parities is essential for our results. To explain the
reasons, recall first that an N × N matrix M is said to fit a graph G(V , E) if Mu,v = 0
whenever the vertices u and v with u �= v are not adjacent, and Mu,u �= 0 for all
u ∈ V . The minimum rank of G over Fq is defined as minrkq(G) = min{rkFq (M) |
M ∈ F

N×N
q , M fits G}. It is clear that the matrix M can be used to define a storage

code on G: as long as there are no rows with just one nonzero element, we can take
M instead of Ã as the parity-check matrix. This implies that

Rq(G) ≥ 1 − minrkq(G)/N ,

and it is also known that Iq(G) ≤ minrkq(G)/N [3]. The minimum rank of graphs
was introduced by Haemers [13] in his work on Shannon capacity of graphs, and
it was used later in studies of linear index codes [16] and complexity of arithmetic
circuits [7]. In their recent work on a conjecture from [7], Golovnev and Haviv [10]
estimated the minimum rank of generalized Kneser graphs (recall that the vertices of
K<(n, s,m) are all s-subsets of [n] and two sets are adjacent if they intersect on at
most m elements). The next theorem combines Lemma 19 and Theorem 22 from [10]
(see also [14]) and is rephrased to match our notation and terminology ([10] did not
make a connection to either storage codes or index codes or guessing games).

Theorem 1 ([10]) Let r be a multiple of 6. Then the graph K<(r , r
2 ,

r
6 ) contains no

triangles, and its minimum rank over F2 is at most 2rh(1/3) < 20.92r , where h(x) =
−x log2 x − (1 − x) log2(1 − x) is the entropy function. Consequently, there exists a
sequence of storage codes Cr of length N = ( r

r/2

)
and rate R(Cr ) ≥ 1− 1√

πr
2−0.08r .

The result of [10] is in fact more general than stated above in several respects. Namely,
the Kneser graphs K<(r , r

2 ,m) with m ≤ n/(2l) do not contain odd cycles of any
length up to l, the estimate of their minimum rank is valid for all finite fields, and by
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considering subgraphs of K< one can extend themain claim to code lengths other than
those in the theorem. Related to this, it has been shown in [11] that the minimum rank
of general random graphs from the Erdős–Rényi ensemble behaves as �(N/ log N ),

i.e., is sublinear in N over any fixed finite field.
We now return to the main topic of this paper. For a d-regular graph it is easy to

construct a code of rate 1/2. This is a folklore result accomplished by placing bits
on the edges and assigning to every vertex the d-vector of bits written on the edges
incident to it. The rate of the obtained code over the alphabet of size 2d is readily seen
to be 1/2. Several codes of higher rates were constructed in [5]. Namely, its authors
observed that each of the following (regular, triangle-free) graphs: the Clebsch graph
on 16 vertices, the Hoffman-Singleton graph on 50 vertices, the Gewirtz graph on 56
vertices, and the Higman-Sims graph on 100 vertices yield storage codes of rate above
1/2; the highest rate of 0.77 attained by the last of these. See [5, Prop. 9] for details.

In their search of higher-rate codes, the authors of [4] studied triangle-free graphs
formed as coset graphs of linear codes (see Sect. 2 for their definition). They con-
structed an infinite family of graphs Gr with |V (Gr )| = 2r+1 vertices, r ≥ 4, that
admit storage codes of rate R = 3

4 − 2−r . Moreover, [4] also gave an example of a
triangle-free graph on N = 216 vertices with rk( Ã) = 11818/65536, i.e., code rate
slightly above 0.8196. The authors of [4] speculated that there may exist families of
triangle-free graphs that admit storage codes of rate approaching one. Without the
assumption of full parities, an affirmative answer follows already from Theorem 1. As
our main result, we show that this is also true if the code is constructed from the full
adjacency matrix of its graph.

Theorem 2 There exists an infinite family of connected triangle-free graphs (Gm)m
on N = N (m) vertices such that 1

N rk( Ã(Gm)) → 0 as m → ∞. In other words,

lim
m→∞ R2(Gm) = 1

and

gn2(Gm) = N (1 − o(1)).

If we let R2(N ) = max R2(GN ) to be the largest code rate over all triangle-free
graphs on N vertices, then this theorem implies that lim supN→∞ R2(N ) = 1. Since
Rq(N ) ≥ R2(N ) for all alphabets with q ≥ 2 a power of a prime, this claim is also
true for all such q. Moreover, in the context of guessing games it has been shown that
the storage capacity Rq(G) is almost monotone in q. Namely, the following is true.

Theorem 3 ([5, 6, 9]) For any graph G, alphabet size q, and ε > 0 there exists
q0(G, q, ε) such that for all q ′ > q0

Rq ′(G) ≥ Rq(G) − ε.

Graphs in the family (Gm)m are constructed as coset graphs of binary linear codes.
Their explicit description will be given in Sect. 5 after we develop the tools for ana-
lyzing the rank of adjacency matrices of coset graphs. Along the way we illustrate
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the usefulness of our approach by giving simple proofs of some of the earlier results
concerning storage codes on coset graphs.

2 The Construction of [4] and Our Approach

To remind the reader the definition of coset graphs, suppose we are given a binary
linear code C ⊂ Fn with an r × n parity-check matrix H , where F = F2. This means
that C = ker(H) and dim(C) ≥ n − r; in other words, H is allowed to contain
dependent rows. Denote by S the set of columns of H . Now consider the Cayley graph
G = Cay(Fr , S) on the group (Fr )+ with generators in S, where r is the number
of rows of H . The vertex set of G is V (G) = Fr , and a pair of vertices v, v′ are
connected if there is a column (generator) h ∈ S such that v = v′ +h. Since the group
is Abelian, the graphG is undirected. The vertices ofG can be also viewed as cosets in
F
n
2/C , with two cosets connected if and only if the Hamming distance between them

(as subsets) is one. It is clear that G is triangle-free once the minimum distance of the
code C is at least four. We will assume this throughout and note that in particular, this
implies that the columns in H are distinct.

Having constructed G from C , we consider the code C = ker( Ã(G)). Clearly, C
is a storage code for G. Below, to distinguish between the seed codes C and storage
codes C , we call the former small codes and the latter big codes. Generally, finding
the parameters of C from the parameters of C is a nonobvious task, and even if the
small code is simply a repetition code, computing the rank of Ã is not immediate. This
problem in fact was considered earlier in the context of constructing quantum codes
[8], and we refer to [4] for a brief discussion of this connection. The family of storage
codes in [4] is constructed starting with the parity-check matrix Hr obtained from
the parity-check matrix of the extended Hamming code of length 2r−1 (see Sect. 5
for more details). Below we often find it convenient to include 0r (the all-zero vector
of length r ) in the set S, and then the adjacency matrix A(G) includes ones on the
diagonal. Accordingly, in such cases we do not use the notation Ã and write A instead.

The approach taken in [4] relies on detailed analysis of the action of the adjacency
operator A on the space of functions f : Fr → F . While it indeed yields the value
of the rank for the graphs G obtained from Hr , extending it to other families of
codes looks difficult. The approach taken here relies on the following observations.
Generators h ∈ S act on Fr as permutations σh , and clearly σ 2

h (v) = v for every
v ∈ Fr . Therefore for a given h �= 0, σh can be written as a product of disjoint
transpositions (cycles of length 2), σh = (v0, v1)(v2, v3) . . . (v2r−2, v2r−1), where
v2i + v2i+1 = h for all i ≥ 0 (note that the labeling of the vectors depends on h). For
any vector v ∈ Fr , not necessarily a generator, the action of σv can be written as a
2r ×2r permutation matrix, which we denote below by �v . For every v, u, w ∈ Fr we
have (�v)u,w = 1(v = u+w), i.e., every row contains a single 1 in the column u+v.
In particular, �0 = I . Denote by Mr = {�v | v ∈ Fr } the collection of matrices
�v and note that it forms a multiplicative group (Mr )× ∼= (Fr )+; thus, �2

v = I and
�v�w = �w�v for all v,w.

Our approach has a number of common features with [4], but it is phrased entirely
in terms of permutation matrices and their combinations, which supplant actions of
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the generators of the group. This view enables us to isolate subblocks of the adjacency
matrix, and to manipulate those subblocks to rearrange the matrix so that it becomes
possible to control the rank.

3 Properties of PermutationMatrices

In this section, we formulate some results about combinations (products and sums)
of the matrices �v , where the computations are performed modulo 2. Throughout we
assume some fixed order of the vectors in Fr . Our first lemma expresses the following
obvious fact: acting on Fr first by u and then by v is the same as acting by u + v.

Lemma 4 For any v,w ∈ Fr , �v�w = �v+w.

Proof First, (�v�w)u,u′ = 1 if and only if (�v)u,z = 1 and (�w)z,u′ = 1, i.e., v = u+z
and w = z + u′ for some z ∈ Fr , or v + w = u + u′. On the other hand, by definition
(�v+w)u,u′ = 1 if and only if v + w = u + u′. �


For any u, w ∈ Fr there exists exactly one v ∈ Fr such that (�v)u,w �= 0, and
thus

∑
v �v = 12r×2r (the 2r × 2r all-ones matrix). Thus, if a binary matrix A can be

written as a sum of permutations, this representation is unique (up to an even number
of repeated summands). Therefore, if AV := ∑

v∈V �v , where V ⊆ Fr is some
subset, is a sum of permutation matrices, the quantity s(AV ) := |V | is well defined.
LetPr := {AV | V ⊆ Fr } be the set of all sums of the permutation matrices. Below
we usually suppress the subscript V from the notation.

Proposition 5 The setPr with operations “+ " and “ · " forms a commutative matrix
ring with identity.

Proof By definition, the matrices in Pr form a commutative additive group. The
remaining properties of the ring follow immediately from Lemma 4 which reduces
sums of products of �’s to simply sums. �


As above, the rank in the next lemma is computed over F2.

Lemma 6 Let A, B ∈ Pr .

(1) If s(A) is odd, then A2 = I and hence rk(A) = 2r .
(2) If both s(A) and s(B) are odd, then s(AB) is odd.
(3) If s(A) is odd, then there is C ∈ Pr such that AC = CA = B.
(4) For any � ∈ Mr , rk(A) = rk(A�).

Proof (1) For odd � let A = ∑�
i=1 �vi such that �vi ∈ Mr . Thus,

A2 =
( �∑

i=1

�vi

)2

=
�∑

i=1

�2
vi

+
∑

i �= j

�vi+v j .

The last sum has every term appearing twice, so it vanishes mod 2, and the first is
formed of an odd number of identities I , so it equals I . Thus, A is nonsingular.
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(2) For � andm odd, let A = ∑�
i=1 �vi , B = ∑m

j=1 �w j ∈ Pr such that�vi , �w j ∈
Mr . Therefore,

AB =
�∑

i=1

�vi ·
m∑

j=1

�w j =
�∑

i=1

m∑

j=1

�vi+w j .

Since � and m are odd, the number of terms in this sum is odd. If some of them are
repeated, they cancel in pairs, without affecting the parity.

(3) Let C = AB. Since Pr is closed under multiplication, C ∈ Pr . Next, CA =
AC = A2B = B.

(4) This is obvious since multiplying by a permutation matrix over any field pre-
serves the rank.

�

The next lemma establishes another simple property of the matrices inPr .

Lemma 7 For t ≥ 2, Let A1, A2, . . . , At and B be matrices in Pr and suppose
that s(B) is odd. Let D = (A1|A2| . . . |At ) and D′ = (A1B|A2B| . . . |At B), then
RowSpan(D) = RowSpan(D′).

Proof Observe that

D′ = (A1B|A2B| . . . |At B) = (BA1|BA2| . . . |BAt ) = BD,

D = (A1|A2| . . . |At ) = (BA1B|BA2B| . . . |BAt B) = BD′.

The first of these relations implies that RowSpan(D′) ⊆ RowSpan(D), and the second
implies the reverse inclusion. �

Lemma 8 The action ofMr on the setPr partitions this set into equivalence classes.

Proof Transitivity follows by the remark before Lemma 4 (or from the lemma itself):
if A1 = �u A2 and A2 = �vA3 then A1 = �wA3 for w = u + v. �


Denote by [A] the equivalence class of A ∈ Pr and note that, since the action of
Mr is faithful, |[A]| = |Mr | = 2r .

Lemma 9 Let Di , i = 1, . . . , t and A be matrices from Pr and let D =
(D1|D2| . . . |Dt ). If Di ∈ [A], i = 1, . . . , t then rk(A) = rk(D).

Proof For simplicity, let t = 2 and let D1 = A�u and D2 = A�v for some u, v ∈ Fr .
Clearly rk(A�u |A�v) = rk(A�u |A�u) since A�u and A�v share the same column
set. Next, we have

rk(D) = rk(D1|D2) = rk(A�u |A�v)

= rk(A�u |A�u) = rk(�u A|�u A) = rk(�u(A|A)) = rk(A).

�
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4 Partitioning the AdjacencyMatrix

Suppose we are given a small code C ⊂ Fn , and let S = {h1, . . . , hn} be the set of
columns of its parity-check matrix. We begin with an obvious claim, stated in the next
lemma.

Lemma 10 Let A be the adjacency matrix of the graph G = Cay(Fr , S), where S may
or may not include 0, then

A = �h1 + �h2 + · · · + �hn .

Our aim at this point is to operate on submatrices of A, transforming it to a more
convenient form while preserving the rank. With this in mind, we will define permu-
tations derived from the matrix H but acting on subspaces of Fr .

For integers s, t, 1 ≤ s ≤ t ≤ r and a vector x = (x1, . . . , xr ) ∈ Fr let x (s,t) =
(xs, xs+1, . . . , xt ). Given � ≤ r and a vector u ∈ F�, let Su be the set of suffixes of
the columns whose prefix is u:

Su = {h(�+1,r) | h ∈ S, h(1,�) = u}. (1)

Finally, consider permutations �v, v ∈ Fr−� acting on Fr−� by adding vectors from
Su . For a given u define the matrix

Du =
∑

v∈Su
�v. (2)

Assume by definition that if Su = ∅ then Du = 02r−�×2r−� .
To give an example, let r = 3, � = 1, and take

H =
⎡

⎣
0 1 0 1
0 0 1 1
0 0 0 1

⎤

⎦ ,

then S0 = {00, 10}, S1 = {00, 11} and

D0 = I +

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦ , D1 = I +

⎡

⎢
⎢
⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥
⎥
⎦ ,

where we assumed that the rows and columns of the matrices are indexed by F2 in
lexicographical order.

Now let us look at how the matrices defined in (2) relate to the adjacency matrix
of the graph G. For � ∈ {1, 2, . . . , r}, let F� = {v0, v1, . . . , v2�−1} where the vectors
are ordered lexicographically. Starting with a small code C with a fixed parity-check
matrix H , let us form the matrices Dv0 , Dv1 , . . . , Dv2�−1

.
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Lemma 11 For any 0 ≤ � ≤ r the matrix A can be written in the formm

A =

v0 v1 . . . v2�−1

v0
⎛

⎜
⎜
⎜
⎜
⎜
⎝

Dv0+v0 Dv0+v1 . . . Dv0+v2�−1

Dv1+v0 Dv1+v1 . . . Dv1+v2�−1

...
... · · · ...

Dv2�−1+v0 Dv2�−1+v1 . . . Dv2�−1+v2�−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

v1

...

v2�−1

,

where the 2r−� × 2r−� blocks Dvi+v j are defined in (2).

Proof Given x, y ∈ Fr , we have Ax,y = ∑
h∈S 1(x + h = y). Let vi = x (1,�)

and v j = y(1,�) be the �-prefixes of x and y and let Dvi ,v j be the block in A at the
intersection of the stripes vi and v j . Our goal is to show that Dvi ,v j = Dvi+v j .

Let Svi+v j be the set defined in (1). Given t, u ∈ Fr−�, the element

(Dvi ,v j )t,u = 1(t + h′ = u),

where h′ ∈ Svi+v j is an (� − r) tail vector. Rephrasing and using (2),

Dvi ,v j =
∑

h′∈Svi+v j

�h′ = Dvi+v j .

�


4.1 Zero-Codeword-Only Codes and Repetition Codes

As an example of using the above approach, consider the adjacency matrices of coset
graphs of the zero-codeword-only codes and repetition codes. Their ranks are known
[4, 8], but we rederive them using the tools developed in the previous sections. Let
J = �1r be the matrix defined as Ju,v = 1(u + v = 1r ), where 1r denotes the
all-ones vector of length r . Since we assumed that the vectors in Fr are ordered
lexicographically, J is antidiagonal.

Proposition 12 [8, Prop.9] Let C = {0r } be the zero-codeword code with S given
by the standard basis ei , i = 1, . . . , r . The adjacency matrix Ar of the coset graph
Cay(Fr , S) has rank 2r if r is even and 2r−1 if r is odd.

Proof If r is odd, then Ar = ∑r
i=1 �ei has full rank by Lemma 6(1). Let us consider

the case of r even, writing the matrix C as in Lemma 11. Let � = 1 and note that
D0 = Ar−1 and D1 = Ir−1, both of rank r − 1. Then

Ar =
(
Ar−1 I

I Ar−1

)

.
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Since s(Ar−1) is odd, Lemma 7 implies that we can multiply the upper stripe by Ar−1
block-by-block without affecting the row space in this part, thus with no effect on the
rank. Upon multiplying, we obtain

(
I Ar−1

I Ar−1

)

,

which obviously is of rank 2r−1. �


We could of course simply eliminate all the entries in one of the submatrices Ar−1 by
row operations, but the above procedure models our approach in other constructions.
We next exemplify it in a more complicated case of repetition codes. Let C ′ be the
repetition code of length r + 1 and redundancy r defined by the parity-check matrix
H ′ = [I |1r ], where I is the identity matrix of order r . Form the matrix Hr = [H ′|0r ]
and consider the code C of length r + 2 for which Hr is a parity-check matrix. In the
next lemma, we compute the rank of the adjacency matrix of the coset graph of C .

Proposition 13 Let S = {e1, . . . , er , 1r , 0r }. The adjacency matrix Ar of the coset
graph Cay(Fr , S) satisfies

rk(Ar ) =
{
2r if r is odd
1
2 (2

r − 2
r
2 ) if r is even.

Proof If r is odd then s(Ar ) is odd, and by Lemma 6(1) Ar is a full-rank matrix,
i.e., rk(Ar ) = 2r . For even r we prove the result by induction on r . Take r = 2,

then H2 =
[

1 0 1 0
0 1 1 0

]
. Since S = F2, the matrix A2 is an all-ones matrix of rank 1,

verifying the base case.

Let us assume that rk(Ar−2) = 1
2 (2

r−2 − 2
r−2
2 ) and let us consider the matrix Ar .

We decompose it into blocks taking � = 2 in the construction of Lemma 11. Observe
that

D(0,0) = Ar−2 + J , D(0,1) = I , D(1,0) = I and D(1,1) = J .

By Lemma 11 we obtain

Ar =

⎛

⎜
⎜
⎝

Ar−2 + J I I J
I Ar−2 + J J I
I J Ar−2 + J I
J I I Ar−2 + J

⎞

⎟
⎟
⎠ .
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Next multiply the top horizontal stripe by Ar−2 + J and the bottom one by J , then
we obtain the following matrix:

⎛

⎜
⎜
⎝

I Ar−2 + J Ar−2 + J Ar−2 J + I
I Ar−2 + J J I
I J Ar−2 + J I
I J J Ar−2 J + I

⎞

⎟
⎟
⎠ .

Since s(Ar−2 + J ) is odd, by Lemma 7 this has no effect on the rank. Next, let us
eliminate the bottom stripe adding to it the first three stripes row-by-row, and after
that cancel two matrices in each of the two middle stripes. Overall we obtain

⎛

⎜
⎜
⎝

I Ar−2 + J Ar−2 + J Ar−2 J + I
0 0 Ar−2 Ar−2 J
0 Ar−2 Ar−2 0
0 0 0 0

⎞

⎟
⎟
⎠ .

Let D1 = (Ar−2|Ar−2 J ) and D2 = (Ar−2|Ar−2). By Lemma 9, rk(D1) = rk(D2) =
rk(Ar−2). Therefore, considering the first three stripes independently, we obtain

rk(Ar ) = 1

4
· 2r + 1

2
· (2r−2 − 2

r−2
2 ) + 1

2
· (2r−2 − 2

r−2
2 )

= 1

2
·
(
2r − 2

r
2

)
.

�


5 A New Code Family

The starting point of the construction is the binaryHamming code of length 2r −1, r ≥
2. Let Hr denote its parity-check matrix written in the standard form in which all the
r -columns are ordered lexicographically with 0r−1|1 on the left and 1r on the right.
Since Hr contains all the nonzero columns, its coset graph is a complete graph K2r .

Lemma 14 Consider the matrix
(
H

ᵀ
r |0(2r−1)×m

)ᵀ
,m ≥ 1 and let S be the set of its

columns. Let G = Cay(Fr+m, S), then rk( Ã(G)) = 2m.

Proof We give two proofs, of which the second paves the way for later results in this
section.

There are 2r vertices v ∈ Fr+m that share a common m-suffix. They form a clique
K2r , which is a connected component of the graph G. Thus Ã(G) is a 2m × 2m

block-diagonal matrix with each block of rank 1, and so its rank is 2m .
Alternatively, with Lemma 11 in mind, let � = r and note that for any fixed r -prefix

u the set Su = {0m}. Thus the matrix Ã(G) can be written as a 2r × 2r block matrix
with each block equal to I2m , confirming again that its rank is 2m . �
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The approach taken in [4], as well as in our work, is to add rows and columns to
Hr in order to remove the codewords of weight 3 in the small code, while keeping the
rank rk( Ã) low. The parity-check matrix Hs of the small code is formed of s rows at
the top and some combinations of the matrices Hr underneath them. The resulting big
codes are denoted by Cs,r . The construction is recursive, starting with s = 2 (the base
case) and adding one extra row to the top part in each step.

5.1 The Case of s = 2

Consider the following (r + 2) × (2r + 2) parity-check matrix of the small code:

H2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0 1 1
0 1 1 . . . 1 0 1
0 0 0
... Hr

...
...

0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3)

By inspection, any three columns of this matrix not including the first column are
linearly independent, so the coset graph of the code ker (H2) is triangle-free. The
family of big codes C2,r obtained from H2 was originally discovered in [4] (up to a
minor difference that is not essential for the results). As shown there, the rate of the
storage code is R(C2,r ) = 3/4−2−r for all r ≥ 4. While the argument in [4] is some-
what complicated, here we give a straightforward proof based on the decomposition
of Lemma 11 with � = 2.

Proposition 15 Let S be the set of columns of the matrix H2 and let G2 := Cay(Fr , S)

be the coset graph of the code ker (H2). Then rk(A(G2)) ≤ 2r+2/4 + 4.

Proof Let P be the adjacency matrix of K2r . We partition the adjacency matrix of G2
into blocks of order 2r according to the 2-prefix of the generator. The result can be
written in the form

A(G2) =

⎛

⎜
⎜
⎝

I P + I I I
P + I I I I
I I I P + I
I I P + I I

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

I I I I
I I I I
I I I I
I I I I

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

0 P 0 0
P 0 0 0
0 0 0 P
0 0 P 0

⎞

⎟
⎟
⎠ ,

where the locations of P correspond to D01; see (2) and Lemma 11. Since rk(P) = 1,
the result follows. �

Corollary 16 The rate of the storage code is

R(C2,r ) ≥ 1 − rk(A)/2r+2 = 3

4
− 2−r → 3

4

as r → ∞.

Next we increase the dimensions of the matrix. We show this procedure in detail
for s = 3 and then state and prove the general claim.
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5.2 The Case of s = 3

Form the matrix (H2|H2) and

(1) add a new row 02r+212r+2 at the top of this matrix.

We obtain an (r + 3) × (2r+1 + 4) matrix of the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0 0 0
0 0 0 . . . 0 1 1
0 1 1 . . . 1 0 1
0 0 0
... Hr

...
...

0 0 0

1 1 1 . . . 1 1 1
0 0 0 . . . 0 1 1
0 1 1 . . . 1 0 1
0 0 0
... Hr

...
...

0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4)

This matrix contains linearly dependent triples that do not include the first column.
To take care of them,

(2) add r rows of zeros at the bottom,
(3) replicate the column 1|02r+2 immediately to the right of the vertical divider 2r −1

times,
(4) replace the r × (2r −1) matrix of zeros at the bottom of the new columns withHr .

The resulting (2r + 3) × (3 · 2r + 2) matrix H3 is shown below in Eq. (5), with boxes
around the rows and columns formed in steps (2)–(4).

(5)

In the next proposition, we establish simple properties of the matrix H3. Denote by
S the set of its columns.

Proposition 17 The graph G3 = Cay(F2r+3, S) is connected and triangle-free.

Proof Let Si , i = 1, 2, 3 be the sets of columns that contain the first, second, and
third Hamming matrices, respectively, and let S4 be the remaining set of 4 nonzero
columns. Let 0 ∈ F2r+3 and x ∈ F2r+3, x �= 0 be two group elements. To prove the
first claim, it suffices to show that there is a path in G3 that connects them. Suppose
x = (x1, x2, x3, x4, . . . , x2r+3). Since S4 contains a basis of F3, any assignment
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x1x2x3 of the first three coordinates in x can be reached independently of the remaining
coordinates. Since the Hamming matrices contain all the nonzero columns, it is also
possible to reach any vector of the form (000, x4, . . . , x2r+3).

For the second claim, we need to show that all triples of columns that do not include
the zero column are linearly independent. This is shown by a straightforward case
study. Let h1, h2, h3 ∈ S\{0} be three such columns and let b = |{h1, h2, h3} ∩ S4|.
If b ∈ {1, 2, 3} then the claim is obvious. If b = 0, then h1, h2, h3 can be chosen to
intersect one, two, or all three of the Hamming matrices. In each of these cases, direct
inspection shows that the triples cannot add to zero. �

Proposition 18 rk(A(G3)) ≤ 22r + 3

2 · 2r+3.

Proof Let P1 be the adjacency matrix of the Cayley graph in F2r whose generators
are the columns of the matrix (H

ᵀ
r |0(2r−1)×r )

ᵀ and 02r , and let P2 be the same for the
matrix (0(2r−1)×r |Hᵀ

r )ᵀ and 02r . We arrange the matrix A(G3) in block form, where
the blocks are indexed by binary 3-vectors (prefixes) ordered lexicographically. Using
Lemma 11 for the matrix H3, we obtain

A(G3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I P1 + I I I P2 + I P1 + I I I
P1 + I I I I P1 + I P2 + I I I

I I I P1 + I I I P2 + I P1 + I
I I P1 + I I I I P1 + I P2 + I

P2 + I P1 + I I I I P1 + I I I
P1 + I P2 + I I I P1 + I I I I

I I P2 + I P1 + I I I I P1 + I
I I P1 + I P2 + I I I P1 + I I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The dimensions of this matrix are N × N , with N = 22r+3, and each of the blocks is
a square matrix of order 22r . We can write A(G3) as a sum of three matrices,

A(G3) = A(1) + A(2) + A(3), (6)

where A(1) = (I )8×8 is the matrix formed of identity blocks, A(2) =
(
B|B
B|B

)

, and

B =

⎛

⎜
⎜
⎝

0 P1 0 0
P1 0 0 0
0 0 0 P1
0 0 P1 0

⎞

⎟
⎟
⎠ , A(3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 P2 0 0 0
0 0 0 0 0 P2 0 0
0 0 0 0 0 0 P2 0
0 0 0 0 0 0 0 P2
P2 0 0 0 0 0 0 0
0 P2 0 0 0 0 0 0
0 0 P2 0 0 0 0 0
0 0 0 P2 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7)

Now, Lemma 14 says that rk(P1) = rk(P2) = 2r , and thus from (6), (7), the rank of
A(G3) is at most
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rk(A(G3)) ≤ 22r + 4 · 2r + 8 · 2r = 22r + 3

2
· 2r+3.

�

For obvious reasons, below we call matrices of the form A(3) block permutation
matrices.

Corollary 19 The rate of the storage code C3,r = ker(A(G3)) is

R(C3,r ) ≥ 1 − 22r + 3
2 · 2r+3

22r+3 = 7

8
− 3

2
· 2−r .

The general induction step is not different from the transition from s = 2 to 3.
Namely, we form the matrix Hs by performing steps (1)-(4) described above on the
matrix Hs−1. Aswewill show shortly, this results in storage codes of rate (2s−1)/2s−
o(1).

Following the construction procedure, we find that the matrix Hs is formed of s
horizontal stripes, s−1 of which contain zero matrices and several Hammingmatrices
Hr . The set of columns is formed of 2s−1 − 1 vertical stripes each of which contains
one Hamming matrix and 2s−1+1 other columns counting the all-zeros column. Thus
the dimensions of Hs are

((s − 1)r + s) × ((2s−1 − 1)(2r − 1) + 2s−1 + 1).

Accordingly, the vertex set of the graph Gs is of size N = 2(s−1)r+s . The N × N
matrix A(Gs) can be written as a 2s ×2s block matrix with each block of size 2(s−1)r .
The structure of the matrix is similar to A(G2) and A(G3): namely, it is a sum of
several 2s × 2s block matrices, one of which is formed of identity matrices only. The
remaining matrices are block permutation matrices similar to the third term in (6),
where in each of them, the block in question is the (augmented) adjacency matrix of
the Cayley graph of the kind given in Lemma 14. Namely, the set of generators of this
Cayley graph is the set of columns of the matrix

Mj := [
0(2r−1)×( jr) | Hᵀ

r | 0(2r−1)×((s−2− j)r)
]ᵀ

,

for some j = 0, 1, . . . , s − 2 (thus overall the matrices Mj are of dimensions ((s −
1)r)×(2r −1) ). Lemma 14 implies that for each of these Cayley graphs, the adjacency
matrix is of rank 2(s−2)r . Let us write the N × N matrix A(Gs) as a sum similar to
(6),

A(Gs) =
s∑

j=1

A( j),

where A(1) = (I )2s×2s is a matrix formed of identity blocks and A(s) is a block
permutation matrix. Further, rk(A(s)) = 2(s−2)r+s , and for each of the matrices
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As− j , j = 1, 2, . . . , s − 2, the rank rk(A(s− j)) = 1
2 rk(A

(s− j+1)). Combining these
data, we find that

rk(A(Gs)) ≤ 2(s−1)r +
(
1 + 1

2
+ · · · + 1

2s−2

)
2(s−2)r+s

≤ 2(s−1)r + 2(s−2)r+s+1

= N (2−s + 2−r+1). (8)

We obtain the following result.

Theorem 20 For any s ≥ 2 there exists a sequence of storage codes Cs,r on triangle-
free graphs on N = 2(s−1)r+s vertices, r = 4, 5, . . . of rate

R(Cs,r ) ≥ 1 − 2−s − 2−r+1. (9)

Proof Since R = 1 − rk(A(Gs))/N , the claim about the rate follows from (8). �


We have constructed an infinite family of code sequences Cs,r , r = 4, 5, . . . ; s =
2, 3, . . . whose rates are given by (9). Taking s, r → ∞, we obtain a sequence of
codes of length N = N (s, r) whose rate converges to one. This proves Theorem 2.
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