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A B S T R A C T   

The prevalence of mobile devices and the ubiquity of network connectivity have generated a 
massive amount of temporally- and spatially-stamped data. A key characteristic of this mobile 
data is the prevalence of sparsity—for every recorded user, there is a significant amount of 
missing data. Sparsity leads to bias in the inferred mobility patterns and thus, correcting bias by 
imputing the missing data potentially creates opportunities for directly using the corrected mobile 
trajectory data for large-scale simulations in various applications. We propose a multi-task 
Gaussian process regression model to correct missingness in mobile data. Gaussian processes 
(GPs) allow for flexible modeling of diverse (i.e., non-linear, locally periodic) data patterns and 
quantify prediction uncertainty in an interpretable manner. We develop a methodological 
framework for applying GPs to mobile data. In doing so, we consider the correlations between 
users’ coordinates (latitudes and longitudes) through multi-task learning and adjust for 
individual-level differences in data characteristics through parameter initialization and optimi-
zation. We introduce and demonstrate the use of smooth (i.e., rational quadratic) and periodic 
kernels in modeling human mobility data. Relatedly, we analyze our model’s parameters and 
imputation accuracy with respect to different types of trips (e.g. slower vs faster trips). We also 
demonstrate our model’s performance in two experiments with real app-based data, in which it 
outperforms alternative imputation methods. Our implementation is open-source at https:// 
github.com/ekinugurel/GPSImpute.   

1. Introduction 

The past two decades have brought a range of technological advancements that have made it easy to gather large sets of time- and 
location-stamped mobile data. Coupled with the ubiquity of network connectivity, this has led to a massive increase in individual trace 
sightings. Those datasets include sightings generated by Global Positioning Systems (GPS) or other position-signaling devices, geo- 
tagged posts from social media platforms, and call detail records (CDRs) derived from triangulation of cellular tower positions. 
Human mobility patterns inferred from such datasets have been used for many applications, including for example, to quantify urban 
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vitality (Sulis et al., 2018), understand commuting patterns (Frias-Martinez et al., 2012), and predict pandemic spreading (Hao et al., 
2020). 

Unlike household travel surveys, which design and implement a set of pre-defined questions to answer (thus called “actively- 
solicited data”), mobile data is passively-generated as a byproduct of processes that have little to do with answering research questions 
(Chen et al., 2016). As a result, while mobile data offers sample sizes orders of magnitudes greater than traditional travel surveys, there 
exist many issues relating to its representativeness. Chief among these issues is sparsity—for a substantial portion of users, there is a 
significant amount of missing data. In other words, sparsity occurs when the observation frequency of a device is low. 

The observation frequency of mobile data varies greatly across users, periods, and geographies for various reasons. Users commonly 
have the choice of only allowing location transmissions while apps are in use (rather than continuously in the background). Perceived 
benefits in network externalities (e.g., increased accuracy for Google Maps travel time estimation) have been linked to greater will-
ingness to provide personal information, such as location data (Kim et al., 2019). Therefore, third-party apps that do not provide any 
perceived benefits to the data-solicited user may receive limited access to location data. Certain versions of the Android operating 
system (OS) have also been found to aggressively shut down apps running in the background, preventing continuous data collection 
(Zhou et al., 2020). In addition to stochastic events like battery drain, user- and OS-based decisions are likely to lead to long obser-
vation gaps for users, ranging anywhere from a few hours to multiple days or weeks. 

Additionally, app-based datasets have large variations in their intra- and inter-day sparsity—observations tend to cluster tempo-
rally, resulting in frequency ‘peaks’ and ‘valleys’. Ban et al. (2018) offer two insights regarding the temporal distribution of obser-
vations in app-based datasets: First, during weekdays, observations peak in the morning (7–9 AM) and in the evening (4–6 PM), while 
during weekends there is only one mid-day peak (12–3 PM). There are also significantly fewer observations overnight than during the 
day. Second, weekdays have more observations than weekends—Fridays tend to have the most observations, while Sundays tend to 
have the fewest, with the exception to the rule being holidays. This clustering tendency can be caused by users’ mobile device usage 
patterns or the update frequency of the data provider. The problem is further shrouded by the opaqueness of those providers in 
disclosing neither the source of the data nor the reason for its generation. 

Finally, missingness may also be caused by a range of geographical factors. Shorter gaps in continuity are often the result of 
temporary signal loss, which may occur in dense urban areas, while traveling through tunnels and other enclosed infrastructure, or due 
to the “cold-start problem”—when signals are dropped due to a lack of clear line of sight from GPS satellites. Additionally, the “urban 
canyon effect” describes the tendency of receivers in Global Navigation Satellite Systems (GNSS) to output erroneous location esti-
mations while operating in areas with a high density of tall buildings, which block the satellite’s direct line of sight to the receiving 
device (Ben-Moshe et al., 2011). 

When a mobile dataset has missing data, derived mobility patterns are vulnerable to bias, meaning that they may misrepresent 
individuals’ actual movements. Several outputs may be altered due to missing data, such as the duration of the inferred stays (Ban 
et al., 2018), the extent of one’s travel (McCool et al., 2022), and users’ interactions with the built environment (e.g., the types of 
locations visited; Merrill et al., 2020). While short and infrequent observation gaps have minimal influence on derived mobility 
metrics, longer and more frequent gaps will result in a downward bias (McCool et al., 2022). On the other hand, improvements in data 
quality, such as decreases in rates of missingness or increases in location data accuracy (i.e., the closeness of observation to the real 
location), have been linked to more accurate calculations of related mobility metrics, such as home census tracts and trip rates (Ban 
et al., 2018). Correcting missingness in mobile data is thus important to researchers and practitioners alike. 

Before prescribing a method, we briefly outline some of the challenges that are present while modeling individual mobile data. In 
general, people tend to use various modes of transportation to get around. Different modes have different underlying physics (i.e., 
average velocity, acceleration behavior), meaning that they possess varying data-generating mechanisms. Additionally, people tend to 
change modes, either within the same trip or between different trips. These realities suggest that any method to correct missingness 
needs to be flexible enough to capture different data-generating mechanisms and the transition between these states. 

A further complexity involves individuals’ heterogeneous travel behavior. Previous works have explored the predictability of 
human mobility, proposing various models and outlining their properties (Barbosa et al., 2018; González et al., 2008; Song et al., 
2010a). In general, however, no single model has outperformed every other model in every context—in contrast, each model has had 
success in a specific domain application. Thus, a key takeaway is that there may not exist universal “laws” of human mobi-
lity—different people have different tendencies to explore and exploit their environments and therefore the distributions of their data 
are different. Oftentimes, the data distribution depends heavily on context and time (Hills et al., 2015). For example, an individual who 
has recently moved to a new city may be more interested in trying out a range of restaurants, since they have had no prior experience to 
guide their preferences. On the other hand, a 15-year resident of a neighborhood may have only one or two restaurants they regularly 
visit. Clearly, the reverse can also be true. 

These individual-level complexities suggest that making rigid assumptions about the shape or form of the underlying distribution of 
an individual’s mobile data may not be a successful approach. Rather, a non-parametric data-driven approach may be a promising 
one—such models are less restrictive, can accommodate complex patterns, and can better capture underlying relationships in the data, 
which may involve both temporal and spatial correlations. One example of a family of non-parametric methods includes Gaussian 
processes (GP). GPs can be understood as a generalization of multivariate Gaussian distributions to infinitely many variables. Two 
components define a GP—the mean function specifies the mean at any point in the input space, and the covariance function (or kernel) 
embeds a measure of similarity between any pair of points in a multi-dimensional space. In practice, specifying a kernel that can 
accurately capture relationships in the data is a rather difficult task. Simultaneously, a fitting kernel can seamlessly capture complex 
dependencies in mobile data. 

In the context of mobile phone trajectory data, which often exhibits highly non-linear and context-dependent human mobility 
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patterns, Gaussian Processes (GPs) offer an appropriate framework for capturing these complexities. For instance, various travel modes 
exhibit distinct underlying physics—cars move faster than bikes, and whereas a walker can move freely in any direction in a park, a car 
is limited to paved roads. GPs can manage these differences with kernel functions, facilitating context-dependent modeling of mobile 
data points. Moreover, GPs provide not only point estimates but also uncertainty estimates, which are invaluable for downstream 
analysis. The precision of the mobility patterns derived from trajectory data can be significantly influenced by these uncertainty 
measures. Additionally, there is an increasing necessity to integrate diverse data types, such as categorical, continuous, or even textual 
data, and GPs are well-equipped to handle this complexity effectively. 

In this study, we propose a generalizable multi-task GP framework to correct missingness in mobile data at the individual level. Our 
framework imputes a user’s latitudes and longitudes simultaneously based on a set of predictor variables (primarily time), hence the 
word “multi-task” (the modeling of latitudes and longitudes as two tasks). We train the framework’s parameters on longitudinal 
trajectory data. We use the word “generalizable” to refer to two of our framework’s properties: (1) its ability to accurately correct 
varying levels of missingness (i.e. short and long gaps), (2) its propensity to capture changing data-generating mechanisms (i.e. due to 
mode changes). Both properties are achieved through the specification of an appropriate covariance function and the ensuing 
parameter optimization process. In this way, the model is kept general enough to apply to any user and unique enough to be accurate. 

No model is perfect and GPs are no exception. One notable trade-off of using GPs is its demand on computational resources: though 
GPs have become more scalable, they can still be computationally demanding for extensive datasets. Our implementation addresses 
this challenge by leveraging GPyTorch (Gardner et al., 2018), an efficient GP implementation that reduces the asymptotic complexity 
of exact GP inference from O (n3) to O (n2). Another trade-off involves model complexity. Setting up GPs requires meticulous attention 
to kernel functions and hyperparameters, contributing to their perceived complexity. Our study demonstrates that kernel choices are 
directly related to the underlying behavioral patterns and the estimated hyperparameters exhibit systematic patterns that can be 
explained by human mobility behaviors (Sections 3.3 and 6.1). Additionally, compared to parametric regression methods, GPs are 
often seen as “black-box” models compared to parametric models, which might limit the interpretability of the results for some users. 
However, GPs are considered less of a black-box in comparison to deep neural networks, as choices of basic kernels are based on the 
nature of the phenomenon of interest (in this context, human mobility patterns) and their hyperparameters such as lengthscale are 
explainable (they directly tell us the periodicity of the underlying function, which characterizes the periodicity of individual mobility 
patterns). Additionally, in our context which is imputing missing data in the raw mobility trajectories, interpretability is not a primary 
concern. This is because the outputs we seek to obtain are repaired trajectories with the missingness filled; those repaired trajectories 
still need further processing to obtain meaningful mobility metrics such as the number of stays. 

We summarize our contributions below:  

• We develop a methodological framework to correct missingness in heterogeneous mobile data using a multi-task GP model. The 
resulting (repaired) data can be used for many transportation and mobility applications downstream. Our model considers the 
correlations between users’ coordinates and adjusts for individual-level differences in data characteristics;  

• We analyze our model’s key hyperparameters (e.g., lengthscale parameters) and imputation accuracy concerning different types of 
trips (e.g. slower vs faster trips). Specifically, we show the linkage between trip types and lengthscale parameters; 

• We introduce and demonstrate the combined use of smooth kernels (i.e., the rational quadratic kernel) and kernels with period-
icities (i.e., the periodic kernel) in modeling human mobility data; and  

• We benchmark our model against other missing data imputation methods, demonstrating its effectiveness under a range of 
missingness scenarios (short and long gaps). 

The rest of the paper is organized as follows. Section 2 summarizes related work on missing mobile data imputation. Section 3 
outlines our methodology. Section 4 presents our implementation while Section 5 describes the dataset we used in our experiments. 
Section 6 shows our results. We discuss the implications of our work in Section 7. 

2. Related work 

2.1. Methods for imputing missingness in the data 

In general, missing data imputation methods for mobile data fall into one of three categories: (1) using time-series smoothing and 
interpolation methods, (2) leveraging external data sources to facilitate co-learning or (3) employing machine learning methods such 
as kernels or deep learning architectures. The first approach uses existing methods for smoothing and time-series interpolation to 
impute missing data points. These range from simpler methods like linear interpolation to more complex ones like seasonal auto- 
regressive integrated moving averages (SARIMAX). These models have a long history of being used to impute missing data in a 
range of contexts (i.e., in hydrology, finance, etc.) and therefore are more mature (Cipra et al., 1995; Huo et al., 2010; Kohn and Ansley, 
2012; McCool et al., 2022). Though these methods are relatively interpretable, their interpretability depends on the validity of their 
assumptions, which tend to relate to the regularity of the data (i.e., seasonality or trend), linear dependence over time, and inde-
pendent noises. Relatedly, the drawback of these models is that they are often not flexible enough to handle the non-linear nature of 
individual-level trajectory data. 

The second approach leverages external data sources to make inferences about the original dataset. This is an especially prevalent 
approach when dealing with call detail records—CDRs tend to provide limited spatial and temporal resolution, making it challenging 
to capture detailed and nuanced mobility patterns. Common external datasets include real-time video feeds, transit agency-issued 
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smart cards, and even aggregated credit card purchase histories. For example, Zheng et al. (2012) fused vehicle video feeds with smart 
card and mobile data to develop an algorithm to explore human mobility patterns. Similarly, Gong et al. (2020) developed two in-
dicators to measure the similarity of spatiotemporal trajectories across multiple data streams. The biggest drawback of such ap-
proaches is the difficulty of obtaining additional datasets—for many applications, external sources (a) may not overlap spatially or 
temporally, (b) may be expensive to acquire, or (c) may have privacy limitations. Data acquisition and pre-processing for multiple data 
sources can also be time-consuming. 

Finally, kernel- and deep architecture-based learning methods have also gained traction in the context of missing data. These 
methods often boil down to one of two approaches. The first involves using kernels or activation functions to predict the similarity 
between two spatial trajectories, then using the more complete trajectory to fill in gaps in the sparser trajectory. For example, Wang 
et al. (2020) utilize the head-direction information of trajectories together with the displacement attributed to an attention mechanism 
to learn from past trajectory points with different priorities. Similarly, Liu and Onnela (2021) bidirectionally sample discrete dis-
placements for missing segments based on similar trajectories in linear time complexity. The drawback of this approach is that even if 
two trips have the same ground-truth trajectory, varying data sampling rates (due to the data provider) may distort the shape of the 
trajectory observed in the data. This could lead one to conclude that these two trips are not similar. Unless access to consistently high- 
sampling rate training data is available, using trajectory shapes as a measure of similarity is liable to produce errors. 

The third approach involves using recurrent neural nets (RNN), attention mechanisms, or other related methods to capture long- 
and short-term temporal dependencies in users’ locations. This is the approach we take in this paper, but rather than using time- and 
resource-intensive deep neural networks, we opt for multi-task GPs. We review two examples of the deep neural network approach. 
Sun et al. (2021) propose a model that captures complex location transition patterns with graph neural networks and uses two 
attention mechanisms to capture the multi-level and shifting periodicity of human mobility. However, this model is less adept at fine- 
grained trajectory recovery, which involves accurately tracking and predicting very specific, detailed movements at a high temporal 
resolution. On the other hand, Ren et al. (2021) propose a framework that can recover and map match the fine-grained points in 
trajectories from coarse-grained GPS data. It uses a multi-task sequence-to-sequence learning model to capture the spatial and tem-
poral dependencies of trajectories. However, their model requires knowledge of the underlying street network, which may not be 
available in a lot of scenarios (relating to the above paragraph on external data sources). 

2.2. GPs in transportation and mobility applications 

The use of Gaussian processes in transportation and mobility applications is not new. As early as 2009 (a few years after Rasmussen 
& Williams (2006) released their pivotal book on Gaussian Processes), GPs were being proposed to predict travel times for arbitrary 
origin–destination pairs (Idé and Kato, 2009). Since then, GPs have been leveraged in a variety of domains, including in traffic op-
erations and forecasting (Xie et al., 2010), transportation system estimation (Liu et al., 2022), and pedestrian behavior modeling 
(Nasernejad et al., 2021). 

Within the field of traffic operations and forecasting, Gaussian Processes (GPs) have emerged as a powerful tool for modeling and 
predicting traffic dynamics. Yuan et al. (2021) proposed a physics-regularized GP framework, pushing the boundaries of macroscopic 
traffic flow modeling. Beyond macroscopic flows, GPs have been used to predict fine-grained traffic speeds, as demonstrated by Le 
et al. (2017). Similar to the method of our paper, Rodrigues et al. (2019) leveraged multi-task GPs to impute missing traffic speeds 
while considering the spatial dependencies with nearby road segments. They found that using GPs to capture spatial correlations with 
nearby road segments led to substantial improvements in imputation performance over the benchmark methods. 

Concurrently, GPs have demonstrated efficacy in handling uncertainties within transportation systems. Storm et al. (2022), for 
example, introduced an efficient method for evaluating stochastic traffic flow models using GP-based approximations. This not only 
enhanced computational efficiency but also refined the accuracy of stochastic traffic models. Expanding on uncertainty management, 
Steentoft et al. (2023) utilized GPs to provide uncertainty estimates for mobility flows derived from large-scale taxi data. Their 
approach enhanced the reliability of mobility flow predictions in addition to addressing the critical issue of variable selection in 
complex transportation datasets. 

GPs have also found their use in shared mobility and city-scale travel demand modeling. In addressing the challenges of micro- 
mobility planning, Gammelli et al. (2020) focused on improving demand forecasting accuracy with censored data, which inher-
ently contains a biased representation of the true demand due to supply constraints. They employed Gaussian Processes (GPs) to 
replace the traditional linear functional form in specifying the likelihood of data being censored. This approach enables the model to 
avoid bias due to censoring and improve the accuracy of demand predictions. On the other hand, Batista et al. (2022) employed GPs for 
estimating city-scale Origin-Destination (OD) matrices, focusing on supply-related characteristics of urban networks. Their method-
ology provides an efficient alternative to Monte Carlo simulations, offering computational efficiency through iterative OD pair se-
lection and shortest trip determination. Significantly, their method creates smaller synthetic sets, substantially reducing computational 
demands. 

In our study, we also leverage Gaussian Processes, extending their application to a different facet of travel demand modeling 
—specifically, addressing missing data in mobile trajectory datasets. There is a thematic resonance between our work and that of 
Batista et al., particularly in the use of GPs to handle complex urban mobility data. Both studies underscore the flexibility of GPs in 
urban mobility contexts, whether it be in handling synthesizing trip sets or managing missing trajectory data. Uniquely, our method 
introduces multi-task learning to exploit correlations in user coordinates while also incorporating a distance-based compression al-
gorithm to reduce the size of our training data, acknowledging the bounded nature of individual mobility patterns as suggested by 
González et al. (2008). Furthermore, our model utilizes a unique kernel designed to align with the characteristics of our dataset as well 
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as findings from the human mobility literature, which suggest varying levels of regularity in individual travel behavior patterns 
(Kitamura and Van Der Hoorn, 1987; Song et al., 2010b; Teixeira et al., 2021). This tailored kernel selection echoes the importance of 
kernel choice in GP models, as also highlighted by Batista et al. in their work. 

3. Methodological framework 

Our imputation workflow has three modules: Data Preprocessing, Model Development, and Gap Imputation, described in detail in 
Fig. 1. The first module filters out erroneous and noisy data points, compresses a user’s trajectory using a pairwise distance-based 
algorithm, and normalizes a user’s coordinates. Model Development identifies appropriate kernel functions and learns related pa-
rameters based on the marginal log-likelihood (the loss function) concerning the training data. Given a set of missing time inputs, Gap 
Imputation predicts the most likely location for those inputs. 

3.1. Spatiotemporal modeling of human mobility with Multi-Task GP learning 

We adopt a multi-task GP framework to capture the correlations between two highly correlated tasks in mobile data: predicting 

latitudes (ϕ) and longitudes (λ). Given a set X of n inputs x1,⋯,xn, we define Y =
[ yϕ

yλ

]T
=
[

y1ϕ,⋯, ynϕ
y1λ,⋯, ynλ

]T
, where yij is the response for 

the jth task at ith observation, and j refers to either latitudes ϕ or longitudes λ. 
We assume the underlying data generation process for yij as follows: 

yij = fj(xi)+ ∊ij (1)  

where fj is the latent function mapping inputs xi to outputs yij and ∊ij is a white noise process associated with the jth task and ∊ij ∼ N (0,
δ2

j ) are independent random variables. yij is assumed to be normally distributed, or yij ∼ N (fj(xi),δ2
j ). 

In multi-task Gaussian process learning, a multivariate normal distribution is used as the prior for modeling multiple outputs (in our 
case, there are two: latitudes and longitudes). In this setting, we can consider both the temporal correlation within a task but also the 
correlation between tasks. Thus, we denote the covariance matrix for all n observations and all m tasks as K, which can be expressed as 
follows: 

K = Kf (yϕ, yλ
)
⨂Kx(X,X) (2)  

where ⨂ is the Kronecker product, Kx is the covariance matrix of the training data for temporal correlations (n by n), Kf is the inter- 
task covariance matrix (Bonilla et al., 2008). In our context where m = 2, the resulting covariance matrix K is 2n by 2n. The 
hyperparameters associated with Kx and Kf can be estimated by minimizing the negative marginal log-likelihood of the dataset (see 
Section 3.4). 

In inference, for a new input x*, the predictive distribution of the output y* is also Gaussian and can be computed as1 

y*
⃒⃒
x*,X, Y ∼ N

(μ*, σ2
*
)

(3)  

where 

μ* = (kf
j ⨂k*)

(Kf ⨂Kx + D⨂I)−1vec(Y), (4)  

σ2
* =

(kf
j ⨂k**

)
−
(kf

j ⨂k*
)(Kf ⨂Kx + D⨂I)−1(kf

j ⨂k*
)
.

Here, kf
j selects the jth column of Kf , k* = k(x*,X) is the covariance vector between the test point and the training inputs, k** = k(x*, x*)

is the auto-covariance of the test point, D is a 2 × 2 diagonal matrix with the variances of the noise processes for latitude and longitude, 
and I is the identity matrix. 

3.2. Using kernels to model human mobility 

Human mobility observations at nearby time inputs tend to be spatially close to one another. This is an expanded application of 
Tobler’s first law of geography—that near things are more related than distant things. To model this phenomenon, we use the rational 
quadratic kernel: 

kRQ(x, x′) = Ω2
(

1 + (x − x′)2

2αl 2

)−α

(5) 

1 For more background on the derivation of these equations, refer to Section 2.2 on Rasmussen and Williams (2006). 
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where x and x′ are two inputs, Ω is a scale parameter, determining the average distance of the function away from its mean, α > 0 is the 
scale mixture parameter, determining the relative weighting of large-scale and small-scale variations in the data, and l > 0 is the 
lengthscale, specifying the smoothness of the function (i.e., the frequency of the gradient of the function to change sign). The 
lengthscale is commonly interpreted as the maximum distance the model can extrapolate beyond the training data without reverting to 
the mean. Note that as x and x′ approach each other, the term with the exponent −α goes to 1, signifying the increasing likelihood of 
nearby points to covary. 

This works fine for smooth trajectories with relatively low levels of sparsity. For prediction regions in which we have little-to-no 
observations, data from other days, weeks, and months for the same individual can be leveraged to improve model performance. This is 
possible because human mobility data exhibit patterns of periodicity. Previous literature suggests that people’s mobility patterns 
exhibit history dependency, meaning that where one is at time t depends upon their location at t−1 (Kitamura and Kermanshah, 
1983). More specifically, activity locations center around frequently- and recently-visited locations such as home and work (Barbosa 
et al., 2015; Song et al., 2010a; Teixeira et al., 2021). There are rhythms of activity and travel patterns—people usually go to their 
workplaces and return home every day, inducing correlations between the days of the week. Other behavior like grocery shopping, 
going out with friends, or attending family gatherings happens less frequently, and hence has longer intervals between consecutive 
instances. These activities tend to be correlated between the weeks of the month and sometimes even the months of the year (i.e., 
Christmas, Thanksgiving, etc.). 

To reflect these patterns, we incorporate categorical variables like days and weeks by representing them as sets of binary variables, 
using a one-of-k encoding. For example, as the days of the week xd can take one of seven values, xd ∈ {M,Tu,W,Th, F, Sa, Su}, then a 
one-of-k encoding of xd will correspond to seven binary inputs and one-of-k (Tu) = [0,1, 0, 0,0, 0,0]. One approach to embed multiple 
inputs in a GP framework is to multiply kernels defined on each individual input. This family of kernels is called Automatic Relevance 
Determination (or ARD), so named due to the existence of a different lengthscale parameter for each input dimension d (Duvenaud, 
2014). In this case, the kernel function KRQ in Equation (5) becomes (for notational simplicity we drop the subscript i in xi): 

kRQ−ARD(x, x′) =
∏S

s=1
Ω2

s

(
1 +

(
xs − x′

s
)2

2αl 2
s

)−α

(6)  

where l s is the lengthscale parameter for input dimension s. Thus, if the optimal lengthscale for a given categorical variable (i.e., day of 
the week) is small, the model has determined relatively low correlation between data in that category. On the other hand, categorical 
input dimensions with large lengthscales imply relatively little variation (in other words, high correlation) along those dimensions in 
the output variable (i.e., locations). 

In addition to a one-of-k encoding strategy, we also use periodic kernels, which allow GPs to model functions that repeat them-
selves: 

kPER(x, x′) = Ω2exp
(
− 2sin2(π|x − x′|/p)

l 2

)
(7)  

where the period length p determines the distance between repetitions of the function and the lengthscale l works in the same way as 

Fig. 1. Overview of imputation workflow for passively-generated mobile data with varying levels of missingness (long and short gaps). Data 
Preprocessing reduces the computational complexity of the imputation task while also improving the accuracy of training points. Model Devel-
opment specifies the kernel and mean functions and learns the kernel parameters through marginal log-likelihood maximization. Gap Imputation 
“corrects” the raw data by imputing the missing locations. 
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in the RQ kernel. The incorporation of the periodic kernel captures the various rhythmic patterns revealed by human mobility (people 
tend to conduct different activities and trips at varying frequencies). We note that the periodic kernel works best for continuous input 
dimensions that are unbounded in the input space. 

3.3. Kernel and mean function selection 

Before prescribing a covariance function, we give some intuition on algebraic operations with kernels. The set of positive semi- 
definite kernels is closed under sum and product operations.2 Multiplying two kernels can be interpreted as an AND operation 
while adding two kernels can be interpreted as an OR operation (Duvenaud, 2014). Let k1 and k2 be kernels each of which depends on a 
single input vector, x and y, respectively. The product of k1 and k2 will result in a prior over functions that vary across both x and y and 
hence the function value f(xi, yi) is only expected to be similar to some other function value f(xg, yg) if xi is close to xg AND yi is close to 
yg . On the other hand, the sum k1 +k2 will result in a prior over functions which are the sum of one-dimensional functions, and hence 
the function f(x, y) = fx(x) + fy(y). 

We design a composite kernel that is the sum of two nonlinear product kernels. We multiply the RQ-ARD kernel (introduced earlier) 
with a periodic kernel and then add a second identical component: 

K(x, x′) = η1(KRQ−ARD × KPER)+η2(KRQ−ARD × KPER) (8)  

where η = Ω2 denotes the weight of a kernel component. 
As described by Duvenaud (2014), the product of a smooth kernel (like the RQ kernel) and the periodic kernel results in functions 

that are periodic but can slowly vary over the input space—that is, the shape of the repeating part of the function can change. This is an 
appropriate kernel to use as human mobility (as expressed in the way one’s latitude and longitude changes over time) tends to be 
periodic (i.e., home-work-home routine), but with slight variations over time (Kitamura and Van Der Hoorn, 1987; Song et al., 2010b; 
Teixeira et al., 2021). 

The two identical product terms in Equation (8) are to capture periodic patterns with different scales: the first periodic kernel is 
initialized with p = 24 hours (aiming to capture the home-to-work-to-home mobility pattern), while the second is initialized with p = 7 
days (aiming to capture the weekly ebbs and flows of mobility). η1 and η2 are weights associated with the two product terms, 
respectively. When η1 = η2, the model places equal emphasis on the daily and weekly components. When η1 ≫ η2, the model identifies 
that the daily pattern is much more pronounced one than the weekly one and vice versa for η1 ≪ η2. We constrain the weights such that 
their sum is always equal to one. We initialize the two components with different period lengths. In estimation, these two weights are 
treated as hyperparameters, like the lengthscale of a kernel component. Therefore, they are estimated in the same optimization 
procedure as described in the Appendix (Initialization Strategy & Parameter Optimization). 

Furthermore, we use a constant mean function, for which the baseline value is set as the median value of the training set. The 
median latitude and longitude tend to correspond to (or are close to) a person’s home location, as one’s activity pattern tends to evolve 
around home. Thus, that becomes our model’s baseline prediction in the absence of any information captured in the covariance 
function. Compared to other mean functions (e.g., linear, multivariate orthogonal polynomial), the constant mean is a safe choice for 
data-driven models—in intra-trip inference, a majority of the prediction task is related to points temporally close to the training set and 
hence the covariance function explains most of the variation in the predictions. Our experiments with other mean functions showed 
that they tend to produce irrational predictions once the distance between the testing and training sets exceeds a certain threshold. 

3.4. Model training 

In training our model, the goal is to optimally determine the set of hyperparameters ϑ that minimize error with respect to the 
training data. The most straightforward method is to do so by minimizing the negative marginal log-likelihood (Rasmussen and 
Williams, 2006). 

−log p(Y|X,ϑ) = −1
2vec(Y)TΣ−1vec(Y) − 1

2 log|Σ| − nlog(2π), (9)  

where ϑ is the set of model parameters and Σ = Kf ⨂Kx + D⨂I and |Σ| is the determinant of the covariance matrix. Equation (9) 
provides a target function for kernel learning. The first component here estimates the model fit, while the second and third terms act as 
the regularization (Rasmussen and Ghahramani, 2000). Practically, the inverse term in the first component of this equation may pose a 
computational barrier when the size of the training data (and hence the kernel matrix) becomes too large. Traditional exact GP 
inference scales in O (n3), while newer implementations take advantage of batched linear conjugate gradients to reduce this to O (n2)
(Gardner et al., 2018). 

Various approximation methods have been proposed to overcome the computational limits of GPs on large datasets. Sparse 
Gaussian Processes (SGPs), for example, ease the computational burden by employing a subset of the training data (“inducing points”) 
to reduce the dimensionality of the covariance matrix (Titsias, 2009). The key to the success of these methods is the careful selection of 

2 For details on why this is the case, we refer the reader to Section 4.2.4 of Rasmussen and Williams (2006). 
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inducing points, which must be informative enough to explain most of the variation in the training data. Popular SGP methods use 
gradient-based optimization algorithms to choose optimal inducing points—these approaches run into problems when considering a 
large inducing point set size and/or high dimensional input spaces (Snelson and Ghahramani, 2005). 

For passively-generated mobile data, most of the variation is generated from users’ taking trips that differ from each other in a 
number of dimensions. Specifically, destination and mode choice, as well as departure time, are the three primary dimensions in which 
individuals’ travel patterns vary. A wide range of literature has proposed parametric models to estimate these variables (Abkowitz, 
1981; Daisy et al., 2018; Kitamura, 1988). In our model, we relate the variance of these variables to changes in a high-dimensional time 
matrix through the covariance function. However, we also do not need each available data point while training the model—many 
observations are close to each other in space, particularly if the sampling rate for a given period is high.  

ALGORITHM 1: TRAJECTORY DATA COMPRESSION 

Input: Raw trajectory data of one or multiple users; spatial radius parameter r 
Output: Compressed trajectory data 
LenTraj ←Count the total number of observations in the raw trajectory 
Sorting: Sort by ‘User ID’ and ‘Datetime’ 
Initialization: Create lists [ϕ] and [λ], initializing them with ϕi and λi . Initialize i = 0 and j = 1 
for (i < LenTraj) do // Read each observation in the raw trajectory  

for (j < LenTraj + 1) do   
dij← Measure Haversine distance between (ϕi, λi) and (ϕj, λj)
if dij > r do    

break // End current for loop   
Add ϕj and λj to lists [ϕ] and [λ]
j + = 1  

(ϕ, λ)← np.median ([ϕ] ), np.median ([λ]) // Replace each point in [ϕ] and [λ] with the median point of each list  
i← i + j;  
j← i+1 // Update indices so that the compressed points are skipped in next iteration 

Return Output // The compressed trajectory data  

We reduce the size of trajectory data through a batched compression algorithm that aims to generate an approximated trajectory 
largely retaining the shape of the original trajectory. This algorithm is a variation of the well-known Douglas-Peucker algorithm 
(Douglas and Peucker, 1973), though instead of specifying an error requirement, we specify a Haversine distance—if multiple points 
are within a certain distance of one another, we replace them using the median of those points. We chose this variation as it was faster 
to implement and used a more interpretable parameter based on distance. Algorithm 1 describes the full algorithm, which achieves the 
same outcome as a gradient-based optimization algorithm that carefully chooses training points which capture most of the variability. 
This reduces the computational burden of our model. 

4. Implementation 

We implement our algorithm and data analysis in Python. Specifically, we leverage GPyTorch, an efficient and modular imple-
mentation of GPs, as well as scikit-mobility, a data processing framework for GPS traces in the context of human mobility (Gardner 
et al., 2018; Pappalardo et al., 2022). The entire library of functions and classes we develop can be found at https://github.com/ 
ekinugurel/GPSImpute. The “requirements.txt” file in the repository lists the required packages and their versions to run our program. 

4.1. Data Preprocessing: Oscillation Correction, noise Filtering, and coordinate normalization 

We begin by preprocessing raw GPS traces to remove noisy data points—specifically, we filter by maximum velocity, using 200 km/ 
h as the upper limit. Because segment velocities are calculated “as the crow flies” in our analysis (and hence expected to be smaller than 
the true value), a more conservative limit was appropriate (we provide more thoughts on this choice in the Appendix - Max Speed 
Threshold Sensitivity Analysis). This erases many of the oscillations or physically infeasible jumps that may be observed in mobile data 
due to the urban canyon effect. We then remove noisy points from the raw data by excluding observations more than 300 m in 
precision (this is the location radius for which the data provider has 95% confidence). In practice, the potential of these noisy points to 
provide previously unobserved location information is shadowed by the problems they cause for model calibration, disrupting the 
continuity of smooth trajectories. Finally, prior to training the model, we normalize each user’s training coordinates such that they 
have a mean of 0 and a variance of 1. 

4.2. Gap Imputation: Input specification 

As described under Section 3.2, we represent time in multiple ways to encode the complexities of human mobility patterns (e.g., 
history dependency, periodicity) into the multi-task GP model. We use a combination of continuous, categorical, and binary variables. 
The continuous variables include a monotonically-increasing Unix time, normalized to be 0 at users’ first data point, as well as the 
number of seconds elapsed after midnight in a given day. Furthermore, we represent the days of the week using a one-of-k encoding as 
previously described, and they make up our categorical variables. Finally, we use binary variables to denote whether the given day is a 
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public holiday, whether it is a weekend, and whether it is included in the AM or PM peaks (defined as 7-10am and 3–6 pm, respec-
tively). Table 1 summarizes the temporal dimensions used in our experiments. 

With these in mind, we briefly remark on the previously-introduced kernel function (in Equation (8)). The RQ-ARD kernels are 
specified to fit every input dimension (i.e., produce a unique lengthscale for each input vector), while the PER kernels fit only a 
monotonically-increasing Unix time variable tu, the only continuous and unbounded input in our input space. Also note that the PER 
kernels are multiplied by the RQ-ARD kernels—this can be loosely thought of as an AND operation, rather than an OR operation (which 
corresponds to addition). Therefore, the periodic kernels are only meant to supplement the hidden structures captured through the 
specification of additional temporal variables, not replace them. 

5. Dataset 

We employ privacy-protected, passively-generated mobile data from Spectus, a U.S.-based data solution provider specializing in 
geospatial analytics. The dataset contains time-stamped location traces of 2,000 anonymous, opted-in individuals in the Greater Seattle 
Area between December 2019 and July 2020. More specifically, the data includes timestamps, unique device identifiers, latitude and 
longitude coordinates, and a measure of data precision (i.e., a location radius for which we have 95 % confidence). The dataset does not 
include any demographic or socioeconomic information. Locational data is sent to Spectus servers in encrypted form, via an HTTPS 
protocol through three options: an Application Protocol Interface (API), through a publisher that has licensed Spectus’ software 
development kit, or via direct server-to-server integration (Spectus, 2022a). 

Spectus enhances users’ privacy through two methods. First, they remove data from locations that do not meet privacy standards 
determined by their Sensitive Points of Interest (SPOI) policy. Though not an exhaustive list, the following is an example of data 
Spectus does not use for attribution: health-related, locations with vulnerable populations, sensitive lawful businesses, military- 
related, locations with first responders, correctional facilities, locations with firearms, churches/religious facilities, Native Amer-
ican reservations, sexual orientation-related, adult-oriented entertainment, and social demonstrations (Spectus, 2022b). Second, 
Spectus anonymizes data in around home locations using patent-pending technology. What this means is that traces near identified 
home locations are replaced by points at the centroid of the address’ census block group (CBG), thereby not revealing one’s actual 
residence. CBGs are the second smallest geographical unit for which the U.S. Census Bureau publishes sample data, and they contain a 
nationwide average of 51 blocks. 

5.1. Defining Missingness: Temporal occupancy 

Because Spectus’ datasets are passively-generated, the gaps between any two adjacent observations are rarely equal in length. Thus, 
we need a convention to mathematically denote varying levels of missingness in mobile data. We discretize a user’s total available data 
time T into P intervals of length τ, which we refer to as the “temporal resolution.” The choice of τ is important—it decides the 
sparseness of a user’s observed trajectory, in which each interval is assigned an indicator variable 

Ip =
{

1 if p has at least one observation
0 otherwise  

We thus define temporal occupancy (or the inverse of sparsity) as 

qτ =
1
P
∑P

p=1
Ip (10) 

Note that 0 ≤ qτ ≤ 1. A period with high q has fewer gaps in data and vice versa. For example, a period with q30 = 0.9 suggests that 
there exists at least one observation in 90 % of the 30-minute intervals. 

5.2. Descriptive Analysis: Quantifying missingness 

We provide some brief statistics on variables in the Spectus data, shown on Fig. 2. Most data points are highly precise—95 percent 
of all traces are within a 65-meter radius of their true location (top left). This is a significant change from a 2018 study looking at a 

Table 1 
Temporal dimensions used in the robustness experiments.  

Variable Notation Type Model Inputs Code Notation 

Unix Time (normalized) tu Continuous [0, 1,…, n] unix_min 

Second of the Day Sine tss Continuous [0, …, 1] sam_sin 

Second of the Day Cosine tsc Continuous [0, …, 1] sam_cos 

Day of Week td Categorical [0, 1, 2, 3, 4, 5, 6] dow 

Public Holiday th Binary [0, 1] holiday 

Weekend twe Binary [0, 1] weekend 

AM Peak tam Binary [0, 1] am_peak 

PM Peak tpm Binary [0, 1] pm_peak  
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similar dataset, in which about 7 percent of all observations had a precision less than 1,000 m (Ban et al., 2018). In terms of the 
distribution of observations throughout the day (top right), our findings are consistent with that of Ban et al. (2018) . We observe two 
peaks on weekdays, one in the morning (around 7am) and one in the evening (around 6 pm). For weekends, there is one mid-day peak. 
For every day, there is a positive trend on the number of observations as the hours progress. 

As expected, a mobile dataset’s level of “missingness” depends on the temporal resolution one chooses. The bottom right figure in 
Fig. 2 shows a boxplot of individual temporal occupancies of 2,000 users from the Spectus dataset for three different temporal res-
olutions. As the temporal interval τ increases, so does the average temporal occupancy. The bottom left figure in Fig. 2 shows that the 
gaps are not always short either—roughly 40 percent of all users recorded in Spectus data have at least one week that is continuously 
missing (i.e., there are no observations for a whole week). Meanwhile, 96 percent of all users have at least one day of missingness, and 
99 percent have at least one six-hour period of missingness. Thus, we anticipate the need to prescribe a method to correct missingness 
in the general sense, whether the gaps are short or long. 

6. Experiments 

We do two sets of experiments to showcase our model. The first set (lengthscale analysis) explores the parameter space of multi-task 
GPs in the context of human mobility. Our goal here is to understand what model parameters work well for mobile data with certain 
characteristics (i.e., highway drives vs. urban walks), a benefit of which is developing a greater intuition on how to initialize GP model 
parameters in different contexts. The second set of experiments (robustness checks) benchmarks our model against alternative missing 
data imputation methods, including simple exponential smoothing, exponential smoothing (Huo et al., 2010), Holt-Winters (Cipra 
et al., 1995), ARIMA and SARIMAX (Kohn and Ansley, 2012), as well as a multi-task GP using the standard RBF-ARD kernel on each 
input dimension (Duvenaud, 2014). 

For the first set of experiments (Section 6.1), we first preprocess raw GPS traces to obtain two datasets for 10 randomly chosen users 
(1920 trips total): (1) a set showing all trip-related data points for a user, and (2) a set containing various trip information, including 
average velocity, total distance, total duration, among other metrics. We fit GPs to trip-related data points to predict missing locations. 
Then, we relate the optimized model parameter values with respect to the compressed trip information, which allows us to infer the 
type of trip (i.e., highway drive or a walk). For the second set (Section 6.2), we randomly select a subset of 50 users with at least 10,000 
observations and at least 3 months of data (from the first data point until the last). Within the selected 50, we only retain data from 
January and February 2020 to reduce the number of data points. We use this longitudinal data to train the model and make predictions 

Fig. 2. Descriptive analysis of Spectus data for all 2,000 users. (Top Left) Cumulative distribution of location accuracy. (Top Right) Distribution of 
observations within each day of the week. (Bottom Left) Histogram of gaps categorized by size. (Bottom Right) Boxplots of temporal occupancy with 
three temporal resolutions. 
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on varying gap lengths. 

6.1. Lengthscale analysis 

In this experiment, we determine well-fitting model parameters (i.e., ones that minimize the loss function) and relate them to a 
range of data characteristics, including average speed, total distance, and trip duration among other metrics. Identifying optimal 
kernel parameters is important for model accuracy. Fig. 3 illustrates how a suboptimal lengthscale can deteriorate model fit. The left 
subplot shows a trip with noisy training data and a lengthscale value that is too low. The prediction’s mean reverts to the constant 
mean (likely near zero) only a few seconds after a training observation. 

Furthermore, the optimization process deduces high levels of noise, producing uncertainty even on training inputs. Both processes 
result in low prediction accuracy as the prediction mean remains distant from the testing set. The right subplot, on the other hand, 
shows a model with low levels of noise and an appropriate lengthscale for the same trip. The prediction mean shifts smoothly between 
the different trip segments and the confidence interval is narrow near training points. 

Using preprocessed Spectus data, we leverage k-means clustering to group together similar trips using trip characteristics (shown in 
the columns of Table 2). We filter a subset of mobile data based on three criteria, which help avoid anomalies like airplane-based travel 
and out-of-state roadtrips: average velocity does not exceed 80 mph, total travel time does not exceed 6 hours, and the number of 
observations (in a trip) is greater than 4. Using the elbow method, we identify three clusters from the filtered data as sufficient to 
explain most of the variation in trip-level data. Table 2 summarizes the average mobility metrics associated with the trips in the 
different clusters. The heading change rate shows the ratio of consecutive data points where a user changes direction with an angle 
exceeding a threshold (we use 0.33rad). The velocity change rate shows the ratio of consecutive data points where the user exceeds a 
speed variation threshold (we use 26%). Finally, the stop rate represents the ratio of data points with an inferred velocity lower than a 
threshold (we use 0.89m/s). These threshold values are chosen in accordance with findings from Zheng et al. (2008)3 and are meant to 
discriminate between moving and being stationary. 

We only used local data (i.e., observations from the same trip) in fitting GP models for these trips and thus our only input is tu 
(normalized Unix time). Accordingly, we use the RBF kernel, a simpler form of the earlier-defined RQ kernel: 

kRBF(x, x′) = Ω2exp
(
−(x − x′)2

2l 2

)
(11)  

Fig. 4a reveals that slower and shorter trips exhibit the lowest average RMSE, indicating higher prediction accuracy, whereas fast, 
distant trips present the highest RMSE. Correspondingly, Fig. 4b’s boxplot of optimized lengthscale parameters for each trip cluster 
indicates that faster trips, likely associated with highway drives, necessitate larger lengthscales, reflecting less frequent changes in 
mobility patterns. In contrast, slower to medium-speed trips generally require shorter lengthscales, suggestive of more variable and 
less predictable movements. Notably, medium-speed trips display the widest range of lengthscales, underscoring a significant vari-
ability in temporal correlation. This can be ascribed to the heterogeneity of those trips, which often involve a combination of trans-
portation modes, each with distinct velocities and movement patterns. Such diversity introduces numerous non-smooth transitions, or 
’kinks,’ into the data, which the Gaussian Process (GP) must adeptly capture. 

The variability in lengthscales observed for slower and shorter trips may be attributed to the wide spectrum of moving behaviors 
that may involve a range of transportation modes used from walking to bicycling and driving. On one end, they may reflect walking 
behavior that may be taken with a clear destination in mind or just wandering. On the other end, they likely reflect driving on urban 
streets, frequently encountering stops due to congestion or traffic signals. This dichotomy is corroborated by the high heading change 
and stop rates as detailed in Table 2. Despite the complexities introduced by such diverse activities, the slower to medium-speed trips 
achieve lower median RMSE values, suggesting that the GP model is effectively modeling these trip types. This indicates that the GP 
framework is robust enough to handle the stochasticity inherent in a wide range of trips, accurately reflecting the nuanced shifts in 
mobility without a significant loss in predictive performance. 

6.2. Robustness Checks: Gap imputation 

The goal of this experiment is to assess the performance of our model against other imputation methods in a variety of missingness 
conditions. In doing so, we conduct a robustness analysis on the gap length. Our benchmark methods include simple exponential 
smoothing (SES), exponential smoothing (ES), the Holt-Winters (Holt) method, ARIMA, SARIMAX, and an RBF-ARD kernel. The first 
three (ES, SES, and Holt) work similarly—they weigh the average of past observations in producing forecasts, giving exponentially 
lower weights as the time gap increases. SES is most suitable for forecasting data with no clear trend or seasonal pattern, while ES 
allows for forecasting with a trend. The Holt-Winters method uses three types of exponential smoothing to model the level (the typical 
value), the trend (the slope), and the seasonality (repeating patterns) of data. ARIMA and SARIMAX are both linear regression models 
fit for forecasting univariate time series data. While ARIMA can handle data with a trend, its extension SARIMAX can also handle 
exogenous variables and seasonal components. Each of these methods is regarded as a reliable, well-studied alternative commonly 

3 See “Parameter Selection” on Zheng et al. (2008). 
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used to impute missing values in time series, and therefore make a useful comparison. The inclusion of the RBF-ARD kernel is to 
demonstrate that an off-the-shelf kernel implementation does not perform as well as our composite formulation. Table A1 in the 
Appendix describes and quantifies the parameters of each method. 

Our results demonstrate that our model outperforms existing methods in all scenarios with varying levels of missingness. Specif-
ically, we simulate gaps in the selected 50 users by reserving a subset of their data for testing, and we choose this subset such that the 
temporal occupancy of their training data meets a lower target temporal occupancy (i.e., a decimal between 0 and the current temporal 
occupancy) according to the temporal resolution being tested. We test six different temporal resolutions (τ): one week, one day, six 
hours, one hour, thirty minutes, and fifteen minutes. Algorithm 2 describes the full process to remove points from users’ data.4 

Fig. 3. Examples of trips fit with an underestimated lengthscale (left) and appropriate lengthscale (right).  

Table 2 
Summary of trip clusters.  

Cluster Avg. Vel. [m/ 
s] 

Distance 
[m] 

Duration 
[s] 

Heading Change 
Rate 

Velocity Change 
Rate 

Observations Stop 
Rate 

Slower, shorter trips  9.29 8,088 1,062  0.0019  0.0024  22.79  0.0007 
Medium speed/ distance 

trips  
13.94 29,693 2,362  0.0007  0.0008  49.86  0.0002 

Fast, distant trips  17.86 59,299 3,449  0.0005  0.0006  141.8  0.0001  

Fig. 4. (a) Boxplot of total RMSE for trips in different mobility metric clusters (b) Boxplot of optimized lengthscales for each trip cluster.  

4 We also provide a step-by-step breakdown of this algorithm in the Appendix. 
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ALGORITHM 2: GAP SIMULATION IN TRAJECTORY DATA  

Input: Trajectory data; Bin length τ  
Output: Trajectory data with gaps; New qτ  
bins←Create an array of integers spanning from tu,1 to tu,N with step size τ  
bins_dict ←Use dictionary comprehension to map each data point to the relevant bin  
non_empty_bins_dict ←Make a similar dictionary with only the non-empty bins  
target_ocp ←np.random.uniform (0, qcurr) // Take decimal floor of randomly chosen value between 0 and the current temporal occupancy as the target occupancy  
while (qτ > target_ocp) do // Until temporal occupancy falls below the target level   

np.random.choice(non_empty_bins_dict.keys())←Randomly choose a bin to remove and remove all values in this bin from original data   
bins_dict ←Update the original dictionary   
non_empty_bins_dict ←Update the non-empty bins dictionary  

new_ocp ←Calculate the new temporal occupancy with the gapped data  
Return Output // The gapped trajectory data as well as the new qτ  

In the context of plotting and analyzing the results of various models with differing levels of data sparsity, we utilized Dynamic Time 
Warping (DTW) as an ancillary metric. DTW, a method established by Müller (2007), is suitable for measuring the similarity between 
two temporal sequences, accommodating variations in speed and timing. DTW values give us an indication of the dissimilarity between 
sequences; a lower DTW value indicates a closer match, whereas a higher value suggests a greater disparity between the compared 
sequences. 

From the analysis depicted in Fig. 5, we discern an inverse-linear relationship between temporal occupancy and DTW values, 
indicating that as temporal occupancy diminishes, DTW values — reflecting the disparity between testing set outcomes and model 
predictions — correspondingly escalate. This trend illustrates a progressive, rather than precipitous, decline in the model’s predictive 
accuracy with sparser datasets. Notably, this inverse-linear relationship appears less distinct at smaller gap lengths, as illustrated when 
comparing Fig. 5a for τ = 1 week and Fig. 5d for τ = 5 minutes, suggesting a more stable model performance within these intervals. 
Despite the non-linear trends at the extremities of the temporal occupancies, potentially stemming from limited sample sizes, we do not 
observe a specific threshold beyond which the model’s performance deteriorates drastically. Instead, the model’s accuracy gradually 
tapers off with reduced temporal occupancy. This analysis emphasizes the model’s consistent performance across different scenarios 
while indicating that ensuring a minimum level of temporal occupancy—adjusted according to the specific temporal resolution of the 
data—is crucial for achieving the best predictive accuracy from the model. 

For the benchmark algorithms, we used only the monotonically increasing tu as input since they do not have a straightforward way 
to deal with categorical or binary variables. For each individual, we trained an optimal benchmark model by maximum likelihood 
estimation (MLE) whenever applicable. In cases when we could not use MLE (i.e., determining the order parameters for ARIMA and 
SARIMAX), we used the grid search method to identify the optimal parameters (see Table A2 in Appendix). 

We analyzed the accuracy of derived mobility metrics after the imputation of gapped training data compared to before simulating 
any gaps. Table 3 presents the median error results in each bin length. The boxplots of these error results can be found in the Appendix 
(Figs. A1-A7). The same 50 users’ data was evaluated across the different gap lengths, allowing for an apples-to-apples comparison. In 
all tests, our model outperformed the other models: The average error was always the lowest, and the 5th and 95th percentile bounds 
tended to be closer. The metrics we compared across the different methods included the number of distinct locations, the radius of 
gyration, the straight-line distance traveled, real entropy, random entropy, and uncorrelated entropy. The number of distinct locations 
simply counted how many unique combinations of coordinate pairs existed in the imputed and original datasets. The straight-line 
travel distance traveled by an individual is computed as the sum of the distances traveled (Williams et al., 2015) and can be 
computed as 

dSL =
∑m

j=2
dist(rj−1, rj) (12)  

The radius of gyration indicates the characteristic travel distance of a user during a period (Song et al., 2010b) and is given by the 
equation 

rg =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ri − rcm)2

√

, (13)  

where ri represents the i = 1,⋯, n locations recorded for the user and rcm = 1
n
∑n

i=1ri is the center of mass of the period’s trajectory. 
Finally, the concept of entropy is used to assess a user’s predictability. The real entropy of is given by the equation (Song et al., 2010b) 

Ereal = −
∑

T
P(T ’)log2[P(T ’)] (14)  

where P(T′) is the probability of finding a particular time-ordered subsequence T′ in the trajectory T. Therefore, the real entropy 
depends not only on the frequency of visitation, but also the order in which the locations were visited, and the time spent at each 
location, thus capturing the entire spatiotemporal order present in a user’s mobility. The random entropy captures a user’s degree of 
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predictability if each of their distinct locations were visited with equal probability. The (temporal) uncorrelated entropy characterizes 
the heterogeneity of a user’s visitation patterns (Eagle and Pentland, 2009). The two are given by the equations 

Erand = log2[L] (15)  

Eunc = −
∑L

j=1
P(j)log2[P(j)] (16)  

where L is the number of distinct locations a user visits, P(j) is the historical probability that a location was visited by the user. 
We see that, on average, our model outperforms the rest of the benchmarks by a significant margin in estimating the number of 

locations visited, the radius of gyration, the straight-line travel distance, real entropy, random entropy, and uncorrelated entropy. 
Moreover, on these metrics, the distance between our model and the second-best model is significant. The standard RBF kernel 
multiplied across all input dimensions does not capture the variability of trips in sparse regions, performing worse than simpler 
smoothing algorithms even in low sparsity regimes. This highlights the importance of using appropriate kernel specifications while 
dealing with high-dimensional, mixed-type datasets. 

Fig. 6 offers some perspective on the results presented here. In this example, a perfect predictor would have the red points align 
exactly with the blue points. The MTGP method (with the proposed kernel) better captures the variability of a user’s location over time 
than Exponential Smoothing—hence why it is more accurate in metrics like straight-line travel distance (Equation (12)) and radius of 
gyration (Equation (13)). We also note that, in general, MTGP seems less accurate in capturing route choice of users, but more accurate 
in learning destination choice. This is what we attribute to the performance we see on metrics like real and uncorrelated entropy 
(Equations (14) and (16), respectively). 

7. Discussion 

The use of passively-generated mobile data for transportation applications and decision-making is an irreversible trend. And yet, 
such data exhibits significant and varying levels of missingness compared to actively solicited data such as household travel surveys 

Fig. 5. Scatterplots of DTW and temporal occupancy for various gap lengths. (a) τ = 1 week, (b) τ = 1 day, (c) τ = 6 hours, (d) τ = 5 minutes.  
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Table 3 
Median error with respect to the testing sets.  

Time 
Gap 

Method Number of 
Locations 

Radius of 
Gyration 

Straight-Line Travel 
Distance 

Random 
Entropy 

Real 
Entropy 

Uncorrelated 
Entropy 

1 week MTGP 26  ¡0.07  205.029  0.045  0.278  0.153 
RBF −801  −0.835  −888.441  −9.647  −9.323  −9.527 
SES −801  −0.835  −888.441  −9.574  −9.323  −9.527 
Holt −801  −0.835  −888.441  −9.574  −9.323  −9.527 
ES −778  −0.621  −643.909  −4.989  −7.726  −4.955 
ARIMA −801  −0.835  −888.441  −9.276  −9.323  −9.527 
SARIMAX −801  −0.835  −888.441  −9.647  −9.323  −9.527 

1 day MTGP 33.5  ¡0.245  236.805  0.036  0.227  0.117 
RBF −1050  −0.909  −1303.06  −10.038  −9.612  −9.806 
SES −1050  −0.871  −1303.06  −9.309  −9.612  −9.806 
Holt −1050  −0.846  −1303.06  −9.223  −9.61  −9.803 
ES −1027  −0.718  −768.678  −4.878  −7.907  −5.225 
ARIMA −1050  −0.834  −1303.06  −8.506  −9.609  −9.803 
SARIMAX −1050  −0.909  −1303.06  −10.038  −9.612  −9.806 

6 h MTGP 34  ¡0.187  ¡13.641  0.042  0.237  0.155 
RBF −956.5  −0.645  −1223.47  −9.809  −9.493  −9.751 
SES −954  −0.645  −1177.23  −9.139  −9.493  −9.608 
Holt −952  −0.645  −1171.79  −8.893  −9.493  −9.533 
ES −929  −0.4  −768.56  −4.895  −7.869  −5.066 
ARIMA −952  −0.645  −1178.65  −8.317  −9.493  −9.608 
SARIMAX −956.5  −0.645  −1223.47  −9.901  −9.493  −9.751 

1 h MTGP 38.5  ¡0.074  389.308  0.053  0.29  0.157 
RBF −902  −0.94  −1319.47  −9.818  −9.548  −9.761 
SES −901.5  −0.761  −1262.95  −7.989  −9.546  −9.642 
Holt −901.5  −0.761  −1262.95  −7.041  −9.543  −9.642 
ES −878.5  −0.627  −711.119  −4.8  −7.816  −5.174 
ARIMA −898.5  −0.761  −1262.76  −6.801  −9.545  −9.613 
SARIMAX −830.5  −0.644  −1161.14  −6.435  −9.455  −9.449 

30 min MTGP 21  ¡0.435  123.606  0.048  0.314  0.166 
RBF −624.5  −1.36  −1043.86  −9.052  −8.954  −9.161 
SES −614  −1.175  −1025.83  −7.405  −8.954  −9.006 
Holt −614  −1.167  −1025.83  −6.872  −8.953  −8.952 
ES −591  −1.145  −707.361  −4.099  −7.07  −4.445 
ARIMA −614  −1.214  −1027.68  −6.282  −8.949  −8.952 
SARIMAX −624.5  −1.36  −1043.86  −9.277  −8.954  −9.161 

15 min MTGP 22  ¡0.299  ¡7.116  0.048  0.323  0.161 
RBF −670  −2.15  −1112.56  −8.925  −8.871  −9.125 
SES −660  −1.71  −1162.11  −7.34  −8.871  −8.994 
Holt −660  −2.099  −1162.07  −6.435  −8.871  −8.849 
ES −637  −2.056  −513.035  −3.96  −6.771  −4.497 
ARIMA −659  −1.931  −1168.42  −6.048  −8.871  −8.851 
SARIMAX −670  −2.15  −1199.07  −9.39  −8.871  −9.146 

5 min MTGP 21  −0.824  47.301  0.056  0.301  0.156 
RBF −896  −1.396  −1441.06  −9.791  −9.302  −9.571 
SES −896  −1.274  −1391.03  −6.757  −9.302  −9.571 
Holt −893  −1.012  −1391.03  −6.555  −9.302  −9.394 
ES −872  ¡0.744  −666.535  −4.313  −6.643  −4.984 
ARIMA −896  −1.339  −1391.03  −6.754  −9.302  −9.495 
SARIMAX −896  −1.396  −1441.06  −9.809  −9.302  −9.571  
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with GPS loggers or smartphone data collection components. Left untreated, the resulting mobility metrics are biased (McCool et al., 
2022). To correct missingness in the mobile data, we have developed a novel framework using multi-task Gaussian processes. More 
specifically, our framework leveraged the correlations between users’ coordinates (thus multi-task), and allowed individual-level 
differences in data characteristics resulting from fundamentally different trip generation processes (e.g., different modes of trans-
portation used). We introduced and demonstrated the effectiveness of RQ and PER kernels in the context of mobile data for human 
mobility modeling, and highlighted the ARD extension of these kernels for fitting high-dimensional data (whether continuous or bi-
nary). Our experiments highlighted the importance of specifying a fitting composite kernel for our domain, as using the generic RBF 
kernel resulted in sub-optimal predictions due to not being able to capture multi-level periodicities. In the results, we showed that trips 
of different types (e.g., slower to faster trips) are associated with different, optimally estimated kernel parameters (i.e., the lengthscale) 
and provided guidelines on different parameter initializations for different kinds of trips. More importantly, we showed that our model 
outperformed six existing methods for correcting missingness in mobile data and assessed the temporal sensitivity of our model, 
confirming that our model achieves enhanced predictive performance when trained on a diverse temporal dataset. 

While the current study is motivated by the need to directly address the significant sparsity issue exhibited in passively-generated 
mobile data (McCool et al., 2022), the implications of this work can be significant in several aspects. For one, it directly addresses the 
bias issue induced by data sparsity and the resulting, corrected trajectory data can be viewed as pseudo-ground truth from which 
mobility metrics can be derived. In another, it opens us the opportunity to create city-wide simulations of human mobility patterns 
using the generated mobile data directly. This is in contrast with the current process where parametric models are first estimated using 
the household travel survey data (which often represents less than 1% of a region’s population5) and then those models are extrap-
olated to a synthetic population. As noted earlier, the latter method is not scalable as travel surveys must be frequently collected and 
models must be updated. An added disadvantage is that those models do a poor job of capturing the nonlinearities embedded in the 
data. 

Transportation behaviors, whether they refer to individual travel behaviors as studied in this paper or community- or region-level 
traffic phenomena, are highly complex and non-linear. Thus, expecting a universal model to capture all is likely unrealistic. Instead, 
context-dependent modeling is much needed for the field of transportation. Context-dependent modeling requires the development of 
flexible modeling frameworks that can capture not only heterogeneity but also adapt to changing contexts. We demonstrate that GP- 
based methods are one suitable framework for this purpose in the context of modeling individual mobility patterns. 

Our work underscores the critical role of kernel specification in capturing the nuances exhibited by individual mobility patterns. In 
our study, we used a domain-based approach, i.e., using our domain knowledge in the travel behavior literature to guide the selection 
and the composition of the kernels. Through our experiments, we show that standard, off-the-shelf kernels, such as the Radial Basis 
Function (RBF) kernel, frequently underperform in comparison to more complex kernels across a range of imputation scenarios. The 
process of specifying kernels is akin to a traditional, parametric modeling process where one would have to start with a hypothesized 
model structure. One may argue that even in data-driven modeling, one would still have to start with a modeling framework or ar-
chitecture that define how input data are taken in and evolves over different layers, and whether there are feedback loops or not. Just 
as these models often require rigorous cross-validation to determine the most suitable hyperparameters, Gaussian Processes similarly 
benefit from a structured approach to kernel selection. Addressing this issue, notable advancements have been made in the devel-
opment of automated methods for kernel determination. Duvenaud et al. (2013) have proposed a method for automating the con-
struction of kernel expressions, thereby facilitating the identification of suitable kernel structures directly from the data. In a similar 
vein, Wilson and Adams (2013) introduced a framework that learns expressive covariance functions for GPs through spectral mixture 
kernels capable of automatically adapting to the structure of the data. These innovations are significant steps forward in simplifying 
the kernel selection process, thereby enhancing both the performance and the broader applicability of the model across various 
domains. 

Fig. 6. Predictions (red) and ground truth test data (blue) for a user tested at τ = 6 hours. MTGP with the proposed kernel (left) outperforms 
exponential smoothing (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

5 In urban regions, the sampling rate is typically less than 0.1%. 
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Nevertheless, our study also recognizes certain limitations. One limitation is the challenge in selecting kernels that accurately 
emulate the data’s inherent features, which is compounded by the issue of model interpretability. Although our model offers improved 
interpretability over deep learning (DL) models, which are often criticized for their ’black box’ nature, it lacks the transparency of 
traditional statistical methods. The inherent complexity of Gaussian processes, particularly when employing sophisticated kernels such 
as Rational Quadratic (RQ) and Periodic (PER), introduces significant challenges in terms of interpretability. While model inter-
pretability is not of paramount significance to our study (since the study objective is simply fixing missingness in raw mobile tra-
jectories), potential applications of GPs in other transportation applications (such as those reviewed earlier in Section 2 for forecasting 
travel demand or traffic flows) would require higher levels of model interpretability. Thus, balancing model complexity with inter-
pretability is an essential area for future research that involve GPs or other big data methods. 

Another future direction of this work is to tackle computational complexity—the time it takes to train a model scales cubically with 
the size of the covariance matrix, which is a function of the size of the data. We outline a few ideas to explore this front. One is to 
accelerate the process of GP parameter optimization through CUDA (Compute Unified Device Architecture), a parallel computing 
platform and API created by NVIDIA that allows the software to use certain types of graphical processing units (GPUs) for general- 
purpose processing. Doing so would allow future models to add additional layers in a GP framework (i.e., deep GPs), predicting 
covariates like velocity and bearing before producing a location output. We can also pre-process the input data to drastically reduce the 
number of times we have to re-evaluate Equation (9) above. An example is provided by Lee et al. (2018). 

There is also the need to incorporate the underlying built environment including multi-modal road networks into the model, such 
that bodies of water, buildings, or locations of different types can be recognized. Methods like map-matching may be employed to post- 
process model results such that the predictions can only be made within allowable regions. However, this approach would have a 
trade-off with computational complexity—though scalable map-matching algorithms have been proposed in recent years (Fiedler 
et al., 2019; Zeidan et al., 2020), convenient implementations are not yet widely available. Alternatively, one may also explore 
additional selection and identification of composite kernels (like Equation (8)) to potentially account for those contextual effects. 

There are numerous applications of passively-generated mobile data in the existing literature, which are exclusively based on 
uncorrected trajectory data. It would thus be interesting to see whether the existing findings still stand if the corrected trajectory data is 
used. In a previous paper by one of the authors, we showed that not removing the oscillation phenomenon in the data leads to the non- 
negligible overestimation of the regularity of individuals’ mobility (Wang and Chen, 2018). We similarly expect improvements in 
accuracy for downstream studies that use sparsity-corrected passively-generated mobile data. Future efforts could also be made to 
unify existing literature on applications of GPs to transportation problems, such as the works of Batista et al. (2022) and Gammelli et al. 
(2020), highlighting shared model properties, cautioning on common modeling mistakes, and establishing standards of benchmarking. 
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Appendix 

Initialization Strategy & Parameter Optimization 

The optimization problem of a GP is non-convex. Therefore, kernel parameter initialization can help avoid bad local optima, 
leading to better model estimation and more accurate prediction results. We achieve this in two ways. First, if the gap is short enough, 
we take advantage of training points near the gap to infer trip characteristics. These include metrics like average velocity, total distance 
traveled, trip duration, and stop rate, among others. Our first set of experiments suggest that trips with differing characteristics tend to 
land at different optimal parameters. Therefore, we suggest initializing the lengthscale parameter of continuous temporal dimensions 
(Unix time in our case) according to the characteristics of the trip with missing data. 

If using a monotonically-increasing temporal dimension as an input, one alternative we have identified is to initialize the 
lengthscale parameter with the average length of gap between observations in the training data. Ak et al. (2018) employed this strategy 
without any optimization. We however do further optimize the parameter beyond this initial heuristic using the Adaptive Moment 
Estimation algorithm (Kingma and Ba, 2017), a preferred choice among various machine learning frameworks due to its computational 
efficiency and ability to manage sparse gradients on noisy data. 
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We initialize binary variables (i.e., one-of-k encoded categorical variables) with a lengthscale of 1. This is largely done to avoid 
model misspecification during the optimization stage as lengthscale parameters are constrained to be nonnegative. In our imple-
mentation, a small amount of noise (called jitter) is added to the diagonal of the covariance matrix. This is done to ensure numerical 
stability when performing matrix operations like inversion and decomposition. Simultaneously, however, jitter can lead to parameter 
values dipping below 0 at the very first iteration of the optimization algorithm.6 

Algorithm to determine training data for experiments in Section 6.2 

To choose the training dataset in Section 6.2, we used Algorithm 2, which simulates gaps in trajectory data based on the current 
temporal occupancy with respect to the bin length being tested. The following is a step-by-step breakdown of that algorithm:  

1. Binning the Trajectory Data: The algorithm starts by creating an array of integers called bins that span from t(u,1) to t(u,N) with a 
specified step size τ. This step is effectively dividing the entire temporal range of the trajectory data into bins of equal length.  

2. Mapping Data Points to Bins: The bins_dict is then created using dictionary comprehension to map each data point to the relevant 
bin. This means that each data point in the trajectory is associated with a specific bin based on its timestamp.  

3. Selecting Non-Empty Bins: Another dictionary, non_empty_bins_dict, is created to store only the non-empty bins. This step 
involves filtering out bins that have data points associated with them.  

4. Setting Target Occupancy: The algorithm then sets a target occupancy level (target_ocp) by randomly selecting a value between 
0 and the current temporal occupancy (q_curr). The selected value is used to determine the desired temporal occupancy.  

5. Gap Simulation Loop: The algorithm enters a loop to simulate gaps in the trajectory data until the temporal occupancy falls below 
the target level (target_ocp). Within this loop:  
o It randomly chooses a bin from the non-empty bins using np.random.choice.  
o All data points associated with the chosen bin are removed from the original data, and the bins_dict and non_empty_bins_dict 

are updated accordingly.  
6. Calculating New Temporal Occupancy: After the loop, the algorithm calculates the new temporal occupancy (new_ocp) with the 

gapped data.  
7. Return Output: Finally, the algorithm returns the gapped trajectory data, as well as the new temporal occupancy (q_τ). 

Detailed imputation accuracy metrics for robustness experiments 

Mobility metrics 

Figs. A1–A7 

Fig. A1. Mobility error metrics for τ = 1 week   

6 If the learning rate is small, the first iteration of the optimization algorithm may result in a value that is very close to 0, and the associated jitter 
may cause the parameter to flip signs. 
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Fig. A2. Mobility error metrics for τ = 1 day   

Fig. A3. Mobility error metrics for τ = 6 hours   
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Fig. A4. Mobility error metrics for τ = 1 hour   

Fig. A5. Mobility error metrics for τ = 30 minutes   
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Fig. A6. Mobility error metrics for τ = 15 minutes   

Fig. A7. Mobility error metrics for τ = 5 minutes  
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Classical error metrics 

Fig. A8. Classical error metrics for τ = 1 week   

Fig. A9. Classical error metrics for τ = 1 day   

Fig. A10. Classical error metrics for τ = 6 hours   
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Fig. A11. Classical error metrics for τ = 1 hour   

Fig. A12. Classical error metrics for τ = 30 minutes   

Fig. A13. Classical error metrics for τ = 15 minutes   
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Fig. A14. Classical error metrics for τ = 5 minutes  

Benchmark methods and model parameters  

Table A1 
Parameters of benchmark methods.  

Method Parameter 
Count 

Parameters Notes 

SES 1 α Controls the weight given to the most recent observation when estimating the baseline of the time series 
Holt- 

Winters 
3 α 

βs Determines the weight given to the recent change in the level of the data 
βd Determines the dampening of the trend. 

ES 4 α Same as above 
β Determines the weight given to the recent change in the level of the data 
γ Controls the weight assigned to the seasonal component 
m Represents the length of the seasonal cycle (i.e., the number of seasonal periods to model) 

ARIMA 5–10 p Represents the number of lagged (past) observations used to model the current value of the time series 
d Determines the number of differencing operations applied to the time series data to make it stationary 
q Controls the number of lagged forecast errors (residuals) used to model the current value of the time series 

SARIMAX 8–20 p, d,q Same as above 
P Represents the number of seasonal autoregressive terms in the model 
D Refers to the number of seasonal differences applied to the time series data to make it stationary 
Q Controls the number of seasonal moving average terms in the model 
s Determines periodicity (number of periods in season) 

MTGP-RBF 16 l Controls how far the model can extrapolate beyond the training data (using Euclidian distance). We assign a 
separate lengthscale for each input dimension (14 total). 

η The weight of a kernel component (output variance) 
ε Homoscedastic Gaussian noise 

MTGP 
(ours) 

21 l ,η, ε Same as above (2 × η) 
p Determines the distance between repetitions of the function (2 total) 
α Controls the relative weighting of large-scale and small-scale variations (2 total)   

Table A2 
Parameters used during robustness experiments.  

Method Parameter Value 

Preprocessing Max Speed (km/h) 200 
Spatial Radius for Compression (km) 0.3 
Uncertainty Filter (m) 100 

Adam Learning Rate for Adam 0.3 
Max Number of Training Iterations 150 

Periodic Kernels Initial Period Length for KPER,1 1440 
Initial Period Length for KPER,2 10080 

Rational Quadratic 
Kernels 

Initial Lengthscale for tu 1
2N
∑N

i=1
tu,i −tu,i−1 

Initial Lengthscale for [tss,⋯, tpm] 1 
Search Range for 

ARIMA 
Order of the AR,p [0,3]
Order of the differencing,d [0,2]
Order of the MA,q [0,3]

(continued on next page) 
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Table A2 (continued ) 

Method Parameter Value 

Search Range for 
SARIMAX 

Order of the AR,p [0,3]
Order of the differencing,d [0,2]
Order of the MA,q [0,3]
Order of the seasonal AR,P [0,3]
Order of the seasonal differencing,D [0,2]
Order of the seasonal MA,Q [0,3]
Order of the periodicity,s 24  

Max speed threshold sensitivity analysis 

To determine the optimal choice for a max speed threshold during the data preprocessing stage, we created a kernel density 
estimation (KDE) plot (Fig. A15) to visualize the number of observations eliminated by different speed limits. The KDE plot shows that 
the 200 km/h speed limit captures all of the points that the 300 km/h speed limit captures and some more. Because the speeds we 
calculate are based on “as the crow flies” distances, it is better to be more conservative in this limit—therefore, the additional points 
captured by the 200 km/h limit are most likely erroneous and have actual speeds much higher than 200 km/h (which is already high). 
This suggests that the 200 km/h speed limit is a better limit for eliminating outliers and reducing noise in the dataset. The 100 km/h 
speed limit, on the other hand, eliminates too many observations and reduces the data quality. Therefore, we chose the 200 km/h speed 
limit as the optimal threshold for our model (Fig. A15). 

Fig. A15. The number of observations eliminated by varying speed limits across the 50 users’ data analyzed in Section 6.2.  
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Ak, Ç., Ergönül, Ö., Gönen, M., 2018. Structured Gaussian Processes with Twin Multiple Kernel Learning, in: Proceedings of The 10th Asian Conference on Machine 

Learning. Presented at the Asian Conference on Machine Learning, PMLR, pp. 65–80. 
Ban, X. (Jeff), Chen, C., Wang, F., Wang, J., Zhang, Y., United States. Federal Highway Administration, 2018. Promises of Data from Emerging Technologies for 

Transportation Applications: Puget Sound Region Case Study (No. FHWA-HEP-19-026). 
Barbosa, H., de Lima-Neto, F.B., Evsukoff, A., Menezes, R., 2015. The effect of recency to human mobility. EPJ Data Sci. 4, 21. https://doi.org/10.1140/epjds/s13688- 

015-0059-8. 
Barbosa, H., Barthelemy, M., Ghoshal, G., James, C.R., Lenormand, M., Louail, T., Menezes, R., Ramasco, J.J., Simini, F., Tomasini, M., 2018. Human mobility: Models 

and applications. Phys. Rep. 734, 1–74. https://doi.org/10.1016/j.physrep.2018.01.001. 
Batista, S.F.A., Cantelmo, G., Menéndez, M., Antoniou, C., 2022. A Gaussian sampling heuristic estimation model for developing synthetic trip sets. Comput.-Aided 

Civ. Infrastruct. Eng. 37, 93–109. https://doi.org/10.1111/mice.12697. 
Ben-Moshe, B., Elkin, E., Levi, H., Weissman, A., 2011. Improving Accuracy of GNSS Devices in Urban Canyons 6. 
Bonilla, E.V., Chai, K.M., Williams, C., 2008. Multi-task Gaussian Process Prediction 8. 
Chen, C., Ma, J., Susilo, Y., Liu, Y., Wang, M., 2016. The promises of big data and small data for travel behavior (aka human mobility) analysis. Transp. Res. Part C 

Emerg. Technol. 68, 285–299. https://doi.org/10.1016/j.trc.2016.04.005. 
Cipra, T., Trujillo, J., Robio, A., 1995. Holt-Winters Method with Missing Observations. Manag. Sci. 41, 174–178. https://doi.org/10.1287/mnsc.41.1.174. 
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Steentoft, A., Lee, B.-S., Schläpfer, M., 2023. Quantifying the uncertainty of mobility flow predictions using Gaussian processes. Transportation. https://doi.org/ 

10.1007/s11116-023-10406-z. 
Storm, P.J., Mandjes, M., van Arem, B., 2022. Efficient evaluation of stochastic traffic flow models using Gaussian process approximation. Transp. Res. Part B 

Methodol. 164, 126–144. https://doi.org/10.1016/j.trb.2022.08.003. 
Sulis, P., Manley, E., Zhong, C., Batty, M., 2018. Using mobility data as proxy for measuring urban vitality. J. Spat. Inf. Sci. 2018, 137–162. https://doi.org/10.5311/ 

JOSIS.2018.16.384. 
Sun, H., Yang, C., Deng, L., Zhou, F., Huang, F., Zheng, K., 2021. In: Virtual Event Queensland Australia, pp. 1734–1743. https://doi.org/10.1145/3459637.3482284. 
Teixeira, D. do C., Almeida, J.M., Viana, A.C., 2021. On estimating the predictability of human mobility: the role of routine. EPJ Data Sci. 10, 49. https://doi.org/ 

10.1140/epjds/s13688-021-00304-8. 
Titsias, M., 2009. Variational Learning of Inducing Variables in Sparse Gaussian Processes, in. In: Proceedings of the Twelth International Conference on Artificial 

Intelligence and Statistics. Presented at the Artificial Intelligence and Statistics, pp. 567–574. 
Wang, F., Chen, C., 2018. On data processing required to derive mobility patterns from passively-generated mobile phone data. Transp. Res. Part C Emerg. Technol. 

87, 58–74. https://doi.org/10.1016/j.trc.2017.12.003. 
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