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ABSTRACT
Federated Learning (FL) is increasingly vulnerable to model poi-
soning attacks, where malicious clients degrade the global model’s
accuracy with manipulated updates. Unfortunately, most existing
defenses struggle to handle the scenarios when multiple adversaries
exist, and often rely on historical or validation data, rendering them
ill-suited for the dynamic and diverse nature of real-world FL envi-
ronments. Exacerbating these limitations is the fact that most exist-
ing defenses also fail to account for the distinctive contributions of
Deep Neural Network (DNN) layers in detecting malicious activity,
leading to the unnecessary rejection of benign updates. To bridge
these gaps, we introduce F��R�L�, a cutting-edge similarity-based
defense method optimized for FL. Speci�cally, F��R�L� leverages
global model parameters and client updates independently, mov-
ing away from reliance on historical or validation data. It features
a unique layer-based aggregation with dynamic layer selection,
enhancing threat detection, and includes a dynamic probability
method for balanced security and model performance. Through
comprehensive evaluations using di�erent DNN models and real-
world datasets, F��R�L� demonstrates substantial improvements
over the status quo approaches in global model accuracy, achieving
up to 4% enhancement in terms of accuracy, reducing false positives
to 6.4%, and securing an 92.8% true positive rate.

CCS CONCEPTS
• Security and privacy! Trust frameworks; Domain-speci�c se-
curity and privacy architectures; • Computing methodologies!
Distributed algorithms; Classi�cation and regression trees.
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Robust Federated Learning, Defense, Model Poisoning Attacks, Co-
sine Similarity, Layer-based Algorithm

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’24, August 25–29, 2024, Barcelona, Spain.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0490-1/24/08
https://doi.org/10.1145/3637528.3671906

ACM Reference Format:
Gang Yan, Hao Wang, Xu Yuan, and Jian Li. 2024. F��R�L�: Robust Feder-
ated Learning Against Model Poisoning via Layer-based Aggregation. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’24), August 25–29, 2024, Barcelona, Spain. ACM,
Barcelona, Spain, 12 pages. https://doi.org/10.1145/3637528.3671906

1 INTRODUCTION
Federated Learning (FL) [15, 25, 34, 42, 44] represents a ground-
breaking advancement in distributed learning. It allows numerous
clients to collaboratively train a Deep Neural Network (DNN), re-
ferred to as the global model. A key bene�t of FL is the preservation
of data privacy, as individual datasets remain with the clients. This
aspect is especially crucial in today’s context, where privacy con-
cerns are heightened due to emerging regulations like the General
Data Protection Regulation (GDPR) [36]. The FL process involves a
central server that aggregates local updates from clients using a de-
�ned rule, which progressively re�nes the global model throughout
the FL training cycles.

Despite its innovative approach, FL is susceptible to a range of
model poisoning attacks. These attacks fall into two main cate-
gories: targeted [2, 4, 35, 47], which aim to compromise the model’s
performance on speci�c test inputs, and untargeted [3, 5, 12, 13, 24,
31, 32, 41, 43], which seek to broadly degrade the overall accuracy
of the global model. The untargeted attacks are particularly dam-
aging as they diminish the model’s accuracy across all test inputs.
Advanced instances of untargeted attacks, such as Fang [13] and
Min-Max/Min-Sum [31], have proven capable of circumventing
current Byzantine-robust aggregation techniques like Krum [5] and
Trimmed-mean [40, 45]. This situation underscores the urgent need
for developing more resilient defense mechanisms in FL to counter
these evolving threats e�ectively.

Current defense strategies primarily revolve around Byzantine-
robust aggregation rules. While these strategies o�er some degree
of e�ectiveness, they are hindered by several notable limitations
[5, 6, 11, 40, 43, 45, 46]. One of the key limitations is their dimin-
ished e�cacy in scenarios with a larger number of malicious clients,
which often the case in practice. Additionally, existing defense
mechanisms often rely on historical update data for detecting anom-
alies, or necessitating access to representative validation datasets
that closely align with the overall training data distribution. This re-
quirement poses a signi�cant challenge, particularly in diverse and
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evolving data environments since such clean validation datasets
are often not available. Another critical issue in existing defenses is
the high false positive rate generated, which can lead to the unwar-
ranted exclusion of benign clients. Furthermore, current strategies
tend to overlook the nuanced importance of di�erent DNN layers
in FL, raising questions about their reliability and comprehensive
e�ectiveness, especially those with substantial impact [4, 13].

In response to the urgent need for more adaptable and e�cient
defense mechanisms in FL, we develop F��R�L� (Robust Layer-
based Aggregation for FL), a novel similarity-based defense method
that harnesses the structural nuances of DNNs leveraged in FL train-
ing. F��R�L� is distinct in its approach, as it operates without the
need for representative benign data at the server, leveraging global
model parameters and client updates for analysis. This design en-
ables it to function e�ectively regardless of the number of malicious
clients in a given communication round and eliminates reliance
on historical client data. Comprehensive experimental evaluations
show that F��R�L� markedly improves global model accuracy by
up to 4%, surpassing existing defenses in the literature. In addition,
F��R�L� substantially reduces the false positive rate to about 6.4%,
a signi�cant improvement from the 33.4% average in contemporary
methods, and achieves a true positive rate of 92.8%, considerably
higher than the average 67.3% found in current defense methods.
These enhancements position F��R�L� as an e�cient defensemech-
anism against advanced FL security threats.

In summary, this work makes the following contributions.
• We propose F��R�L�, which incorporates a layer-based ag-
gregation that utilizes similarity metrics, coupled with dy-
namic layer selection. This novel approach facilitates more
precise threat detection and signi�cantly reduces false posi-
tive rates.

• We develop a dynamic probability method within F��R�L�
to maintain an optimal balance between the model’s perfor-
mance and its security. This feature is particularly e�ective
in scenarios with minimal malicious activities without com-
promising the model’s e�ciency.

• We conduct extensive evaluations, including AlexNet on
Fashion MNIST, VGG-11 on CIFAR-10, ResNet-18 on CIFAR-
100, LSTM on the Shakespeare dataset, and DNN on the HAR-
BOx dataset. Our comparative analysis against seven status
quo defenses, including recent advancements like FLAIR
[1], cosDefense [11], and FLTrust [6], demonstrates that
F��R�L� consistently delivers robust performance across
di�erent settings and scenarios.

The remainder of this paper provides a detailed exploration of
F��R�L�’s framework and e�ectiveness. In Section 2, we outline
the state-of-the-art defense and attacks, and highlight the vulnera-
bilities in current defense methods. Section 3 is dedicated to pre-
senting the design and architecture of F��R�L�. Section 4 presents
the comprehensive evaluations and discussions on the performance
F��R�L�. Additional experimental details and results are provided
in the appendix.

2 BACKGROUND AND RELATEDWORK
This section provides an overview of pertinent defense methods
and fundamental concepts in federated learning.

2.1 Federated Learning
In Federated Learning (FL), a set of clients, denoted asN = {1, · · · ,# },
collaborates to train a model using decentralized data, guided by a
central server. The primary objective of FL is to address the follow-
ing optimization problem:

min
w2R3

L(w,D) :=
’
82N

|D8 |
|D| · L8 (w,D8 ), (1)

where w denotes the model parameters, D8 is the local dataset
of client 8 2 N , the entire training dataset is D = [82ND8 , and
L8 (w,D8 ) is the local loss function of client 8 . The �rst state-of-
the-art method to this optimization problem is FedAvg [25], which
initializes with a random model w(0) and iterates the following
steps between clients within each communication round C :

• Local training. The central server sends the goal model
w(C�1) to a randomly selected subset of clients N (C ) ⇢ N .
Each client 8 2 N (C ) performs local training using D8 :

w(C )
8 (:)  w(C )

8 (: � 1) � [rL8 (w(C )
8 (: � 1),D8 ), (2)

where [ is the learning rate, : is the index of local iterations
and initialize w(C )

8 (0) = w(C�1) .
• Global aggregation. The central server obtains a new global
modelw(C ) byweighted-averaging the localmodels collected
from the selected clients in round C :

w(C )  
’

82N(C )

|D8 |
| [82N(C ) D8 |

w(C )
8 . (3)

FedAvg is a fundamental aggregationmethod in FL, yet it lacks ro-
bustness against attacks. To address this, various Byzantine-robust
aggregation methods have been developed, each o�ering unique
strengths to safeguard FL’s integrity against adversarial threats. For
example, FLDetector [46] focuses on identifying malicious clients
through the alignment of their updates with server predictions
based on historical data. However, its reliance on extensive his-
torical records limits its practicality in scenarios with infrequent
malicious activities. FLTrust [6] uses a validation dataset to assign
trust scores to client updates, facing challenges in environments
where accessing an untainted validation dataset is problematic. Its
e�ectiveness is also reduced by malicious updates that mimic be-
nign inputs, a common tactic like Min-Max [31]. Similarly, AFA [27]
and Multi-krum [5] struggle with high false discovery rates. The
Trimmed-mean method [40, 45] aggregates gradients but often fails
to e�ectively distinguish between benign and malicious updates.
The more recent cosDefense [11] and FLAIR [1] methods show
advancements in detecting malicious updates, yet they too face
challenges with high false positive rates and reliance on prede�ned
thresholds of malicious client participation, respectively.

To address these issues, in this paper, we introduce an adaptive,
layer-speci�c defense method named F��R�L�, which is partially
inspired by observations in [11, 27]. From a high-level perspective,
our F��R�L� utilizes a granular analysis of each layer in a DNN
utilized for FL training, and employs cosine similarity to enhance
the detection of malicious clients. F��R�L� aims to strike a balance
between accurately detecting attacks andminimizing false positives,
and therefore addresses the common trade-o�s in current models
between security and model e�cacy.
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3.3 Design Details
The work�ow of F��R�L� is outlined in Algorithm 1, which utilizes
the principle of similarity to safeguard FL models against malicious
clients. The FL model architecture is typically composed of ! lay-
ers, and instead of directly removing detected possible malicious
updates, F��R�L� operates through a two-phase process within
these layers to mitigate malicious impact.

Initially, F��R�L� employs a discount factor, labeled as ⇡ 5 02 ,
to mitigate the in�uence of potentially malicious updates (lines 18
and 21). This discount factor is designed to gradually converge to 1
as F��R�L� progresses. This factor is crucial because it reduces the
impact of malicious updates at an early stage when the probability-
based method may not be fully optimized for accuracy.

As F��R�L� evolves, it shifts its focus to rely more on proba-
bility measures, de�ned by U8 and V8 , for identifying and manag-
ing potentially malicious clients. The discount factor, de�ned as
⇡ 5 02 = 2

1+4�X⇥C � 1, plays an instrumental role in the process of
getting suitable {U8 , V8 }82 [# ] . Notably, this formula resembles the
Tanh activation function. In our experiments, we set X = 0.1. The
impact of this discount factor is meticulously evaluated in Section 4.
This analysis aims to validate the e�ciency of our defense method
in real-world scenarios, emphasizing its capability to detect and
neutralize malicious activities within FL systems.

Since we develop LASI in (4) and PCSI in (5) for computing
similarity-based indices, we call the corresponding F��R�L� de-
fense methods as F��R�L�-LASI and F��R�L�-PCSI, respectively.
As discussed above regarding the nature of LASI and PCSI indices,
F��R�L�-LASI prioritizes computational e�ciency but o�ers mod-
est performance, whereas F��R�L�-PCSI, though requiring more
computational resources, yields signi�cantly better performance .

Here we also evaluate the importance of each layer ; 2 [!],
operating under the common assumption that less than half of the
total participants are malicious [1, 3, 5, 6, 13, 27, 31, 40, 45, 46]. If a
layer �ags more than 50% of participants as malicious, or none at
all, we modify the values of U; and V; (lines 8-11). This recalibration
of selection probabilities is crucial for identifying layers that are
particularly robust against model poisoning attacks, a strategy we
refer to as Layer Selection (line 4), depicted in Figure 1.

Based on the similarity-based index value, Layer-based Detection
is implemented as shown in Algorithm 2, based on the presumption
that malicious clients comprise less than 50% of the total. A higher
percentage would likely lead to an increase in false positive rates,
undermining the reliability of the detection process. The criterion
⇡C⌘A  0 is used to indicate the likely absence of further malicious
clients. This is based on the observed trend where malicious entities
tend to demonstrate consistently higher and positive similarity
index values. The initial detection threshold, set at ⇡C⌘A = 0.9, is
determined based on the patterns observed in Figures 2 and 3.

For each client 8 2 [# ], increment V8 following a detection of ma-
licious, or U8 otherwise (lines 17 and 20). The probabilities derived
from U8 and V8 (line 24) aid in mitigating the e�ect of malicious
updates. This ensures that malicious clients are assigned lower
probabilities than benign ones, based on a lower false positive rate.
In scenarios devoid of attacks, all clients will possess comparable
probabilities, thereby preventing performance decline due to the
absence of enough updates.

Algorithm 2 Layer-based Detection
Input: Index values {�8,; }82NC ,;2S!

1: Initialize the detection threshold ⇡C⌘A = 0.9 which is based on
previous observations, and BC,; = ;

2: while BC,; = ; and ⇡C⌘A > 0 do
3: for 8 2 N (C ) do
4: if �8,; � ⇡C⌘A then
5: BC ,; = BC,; [ {8}
6: end if
7: end for
8: if |BC,; |/|N (C ) | � 0.5 then
9: BC,; = ;
10: end if
11: if BC ,; = ; then
12: ⇡C⌘A = ⇡C⌘A � 0.1
13: end if
14: end while
15: Return layer malicious clients BC,;

Algorithm 3 Layer-based Vote
Input: Detection results B0C

1: Initialize vote threshold + C⌘A = |S! | and BC = ;, note that
B0C = {BC ,; };2S!

2: for 8 2 NC do
3: Initialize + C⌘A

8 = 0
4: for ; 2 S! do
5: if 8 2 BC,; then
6: + C⌘A

8 = + C⌘A
8 + 1

7: end if
8: end for
9: end for
10: while BC = ; and + C⌘A > 0 do
11: for 8 2 NC do
12: if + C⌘A

8 � + C⌘A then
13: BC = BC [ {8}
14: end if
15: end for
16: if BC = ; then
17: + C⌘A = + C⌘A � 1
18: end if
19: end while
20: Return �nal malicious clients BC

The Layer-based Vote, outlined in Algorithm 3, employs a me-
thodical approach to identify malicious updates. Initially, an update
is deemed malicious if �agged in every layer. If no malicious up-
dates are detected for a client 8 (indicated by an empty BC set), the
algorithm reduces the detection threshold by one unit and recom-
mences the voting process. This iterative approach helps re�ne the
detection accuracy. Should the detection threshold reach zero, it
implies that, as per this algorithm, there are no obvious malicious
updates in the current evaluation round, thereby ensuring a careful
balance between accuracy and false detection.
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4 EXPERIMENTS
4.1 Experimental Setup
Tasks and datasets. In this work, we address three distinct tasks:
(i) image classi�cation using CIFAR-10, CIFAR-100 [19] and Fashion-
MNIST [21] datasets; (ii) NLP for next-character prediction on the
dataset of The CompleteWorks ofWilliam Shakespeare (Shakespeare)
[25]; and (iii) human activity recognition of HARBox [8], which is
collected from the smartphones of 121 users using a crowdsourcing
approach. To facilitate our experiments, we simulate a heteroge-
neous partition of # clients by randomly sampling p8 ⇠ Dir# (U),
with U representing the parameter of the Dirichlet distribution. We
set U = 0.5 as the default parameter in our experiments, in line with
prior works [7, 9, 10, 13, 17, 28, 37, 38].
Machine learning models. We consider several representative
models: VGG-11 [33], ResNet-18 [14], AlexNet [20], LSTM [18, 25],
and fully connected DNN [22, 23]. In particular, we use VGG-11 as
the global model architecture for CIFAR-10, ResNet-18 for CIFAR-
100, AlexNet for Fashion-MNIST, LSTM for Shakespeare, DNN for
HARBox, respectively.
Baselines. To comprehensively evaluate our F��R�L�, we bench-
mark against several state-of-the-art defense mechanisms: FLAIR
[1], cosDefense [11], FLDetector [46], FLTrust [6], AFA [27], Multi-
krum [5] and Trimmed-mean [40, 45]. Interestingly, Median [40, 45]
often yields similar performance to Trimmed-mean, consistent with
the experimental results in FLTrust [6]. Therefore, in this work,
we focus solely on utilizing Trimmed-mean. Additionally, we also
assess our approach against �ve of the most robust model poisoning
attacks: Fang [13], LIE [3], Min-Sum andMin-Max [31], MPHM [32].
In line with previous research [3, 13, 31], we consider two adver-
sary knowledge scenarios: (a) Full, where the adversary has access
to benign clients’ gradients, and (b) Partial, where the adversary
lacks knowledge of gradient updates from benign clients.
Parameter settings.We utilize PyTorch [30] on Python 3, lever-
aging three NVIDIA RTX A6000 GPUs to implement defenses and
poisoning attacks in a FL context. Each experiment is conducted
across four independent trials, employing distinct random seeds to
ensure variability and robustness in our �ndings.

The FL experiments simulate a network of # = 128 clients in
total. In each training round, the central server randomly selects
= = 32 clients to participate in updating the global model. Out of
these," = 32 clients are under adversarial control. The selection
of malicious clients within these controlled clients is randomized
by the server in each round, aligning with realistic scenarios of
adversarial behavior in FL environments. Detailed con�gurations
and hyperparameters for these experiments are outlined in Table 1.

Parameters CIFAR-10 CIFAR-100 Fashion
MNIST Shakespeare HARBox

Model VGG-11 ResNet-18 AlexNet LSTM DNN
Local Epochs 3 3 3 2 2
Batch Size 16 128 16 128 16

Learning Rate 0.01 0.01 0.01 0.1 0.0001
Momentum 0.9 0.9 0.9 0.9 0.9
Weight Decay 1e-5 1e-5 1e-5 0 1e-5

Table 1: Details of the hyperparameters.

Dataset
(Model)

Aggregation
Algorithm LIE Fang Min-Max Min-Sum MHPM

CIFAR-10
(VGG-11)

Multi-krum 58.07±0.36 57.40±0.58 56.17±0.58 56.70±0.61 56.94±0.64
Trimmed-mean 56.94±0.46 55.18±0.62 54.14±0.68 54.79±0.63 54.24±0.65

AFA 58.81±0.35 59.26±0.48 59.32±0.52 58.95±0.37 58.39±0.33
FLTrust 59.88±0.49 59.95±0.59 59.75±0.68 59.57±0.35 59.10±0.64

FLDetector 59.95±0.39 59.04±0.32 58.16±0.49 57.86±0.46 58.61±0.48
FLAIR 54.84±0.70 55.54±0.52 53.13±0.63 54.28±0.57 54.89±0.63

cosDefense 55.73±0.31 53.56±0.67 54.55±0.59 55.66±0.66 53.28±0.27
F��R�L�-LASI 60.67±0.24 59.80±0.27 60.64±0.24 60.55±0.27 60.09±0.30
F��R�L�-PCSI 60.57±0.33 60.39±0.42 61.02±0.36 61.01±0.23 60.64±0.25

CIFAR-100
(ResNet-18)

Multi-krum 27.59±0.42 26.74±0.64 27.13±0.70 26.31±0.70 25.65±0.59
Trimmed-mean 28.95±0.19 28.91±0.53 29.14±0.68 28.33±0.54 27.39±0.69

AFA 28.32±0.27 28.46±0.27 28.60±0.34 27.75±0.26 27.57±0.35
FLTrust 28.81±0.30 28.08±0.29 28.66±0.32 28.63±0.29 28.25±0.41

FLDetector 28.27±0.17 28.15±0.37 28.24±0.54 27.59±0.28 27.35±0.41
FLAIR 28.11±0.14 27.95±0.15 27.45±0.15 26.20±0.17 25.54±0.18

cosDefense 27.65±0.24 24.99±0.60 26.36±0.38 25.89±0.53 24.25±0.66
F��R�L�-LASI 29.69±0.17 30.21±0.33 30.38±0.34 29.81±0.23 29.34±0.23
F��R�L�-PCSI 29.72±0.18 30.01±0.23 30.53±0.26 29.82±0.26 29.60±0.15

Fashion
MNIST

(AlexNet)

Multi-krum 83.28±0.32 82.34±0.24 81.52±0.34 80.75±0.64 81.07±0.40
Trimmed-mean 83.07±0.24 81.77±0.24 81.91±0.36 83.65±0.24 81.37±0.26

AFA 85.23±0.33 85.19±0.40 85.57±0.33 86.01±0.39 84.93±0.71
FLTrust 86.01±0.67 86.55±0.49 86.14±0.57 85.98±0.67 86.55±0.53

FLDetector 86.20±0.37 85.81±0.29 86.18±0.17 85.30±0.30 84.80±0.31
FLAIR 84.25±0.44 84.27±0.68 84.55±0.39 84.36±0.38 83.35±0.64

cosDefense 82.20±0.22 81.84±0.74 83.31±0.50 82.39±0.23 81.27±0.61
F��R�L�-LASI 87.50±0.15 86.39±0.22 87.27±0.21 86.66±0.20 86.36±0.31
F��R�L�-PCSI 87.29±0.30 87.22±0.26 87.64±0.26 86.74±0.21 87.64±0.22

Shakespeare
(LSTM)

Multi-krum 44.24±0.61 43.55±0.62 42.52±0.61 42.59±0.63 42.85±0.61
Trimmed-mean 44.38±0.62 43.49±0.59 43.23±0.56 43.24±0.66 43.51±0.73

AFA 46.95±0.70 46.90±0.60 46.38±0.65 46.65±0.65 47.44±0.70
FLTrust 46.51±0.61 46.80±0.67 45.27±0.62 45.62±0.69 45.97±0.66

FLDetector 46.42±0.68 45.73±0.59 46.12±0.62 46.45±0.63 46.30±0.69
FLAIR 44.69±0.76 44.60±0.62 44.82±0.60 44.76±0.69 44.99±0.68

cosDefense 44.76±0.72 42.54±0.68 44.07±0.72 44.75±0.68 42.77±0.64
F��R�L�-LASI 48.03±0.70 46.38±0.68 47.78±0.58 47.91±0.66 46.93±0.70
F��R�L�-PCSI 48.06±0.68 47.42±0.70 47.80±0.61 47.98±0.61 47.92±0.65

HARBox
(DNN)

Multi-krum 39.76±0.26 38.26±0.48 35.44±0.58 35.18±0.41 36.84±0.28
Trimmed-mean 33.43±0.20 32.32±0.29 30.61±0.38 31.40±0.23 31.57±0.30

AFA 39.48±0.63 40.76±0.58 39.87±0.59 39.01±0.68 39.14±0.19
FLTrust 43.12±0.70 42.47±0.59 41.59±0.67 42.14±0.62 41.78±0.52

FLDetector 40.83±0.53 39.99±0.33 39.96±0.17 39.65±0.64 40.47±0.37
FLAIR 39.24±0.15 38.57±0.24 37.47±0.24 36.50±0.14 36.17±0.50

cosDefense 37.20±0.19 36.11±0.72 36.76±0.42 37.78±0.61 35.63±0.19
F��R�L�-LASI 43.34±0.76 41.85±0.18 41.54±0.55 41.10±0.45 42.78±0.53
F��R�L�-PCSI 42.99±0.60 43.26±0.30 44.29±0.44 44.01±0.56 45.01±0.60

Table 2: Comparisons of �nal test accuracy.

4.2 Main Results
In this section, we primarily report the results under the Partial
Knowledge scenario, as it represents a more realistic setting for ad-
versarial attacks in FL. We relegate the results under Full Knowledge
to Appendix A.3 due to space constraints.
Final Test Accuracy. Table 2 summarizes the �nal test accuracy
obtained from various combinations of defense mechanisms and
attack strategies. Notably, F��R�L� demonstrates a remarkable ca-
pability to enhance �nal accuracy by up to 4% compared to the best
existing state-of-the-art defense, particularly evident in the HAR-
Box dataset. The analysis reveals that both variants of F��R�L�,
namely F��R�L�-LASI and F��R�L�-PCSI, generally outperform
other defenses, e�ectively mitigating the impact of malicious client
updates. Intriguingly, in scenarios where the LIE attack targets
datasets like CIFAR-10, Fashion MNIST, and HARBox, F��R�L�-
LASI shows superior e�cacy compared to F��R�L�-PCSI. This
observation suggests that F��R�L�-LASI may be more advanta-
geous in certain attack contexts. However, the performance of
F��R�L�-LASI varies depending on the dataset and attack type.
For instance, under Fang, Min-Max, and Min-Sum attacks on the
HARBox dataset, FLTrust outperforms F��R�L�-LASI. While F��
�R�L�-PCSI consistently demonstrates robust defense capabilities
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Dataset
(Model) Type Index LIE Fang Min-Max Min-Sum MPHM

CIFAR-10
(VGG-11)

Original LASI 60.67±0.24 59.80±0.27 60.64±0.24 60.55±0.27 60.09±0.30
PCSI 60.57±0.33 60.39±0.42 61.02±0.36 61.01±0.23 60.64±0.25

Variation LASI 60.23±0.33 59.48±0.31 59.27±0.31 60.09±0.28 57.85±0.28
PCSI 60.52±0.28 60.28±0.28 61.13±0.28 60.20±0.28 60.62±0.28

CIFAR-100
(ResNet-18)

Original LASI 29.69±0.17 30.21±0.33 30.38±0.34 29.81±0.23 29.34±0.23
PCSI 29.72±0.18 30.01±0.23 30.53±0.26 29.82±0.26 29.60±0.15

Variation LASI 28.22±0.27 28.88±0.28 29.33±0.29 29.11±0.29 28.72±0.27
PCSI 29.87±0.32 30.24±0.27 30.17±0.25 29.95±0.25 29.49±0.20

Fashion
MNIST

(AlexNet)

Original LASI 87.50±0.15 86.39±0.22 87.27±0.21 86.66±0.20 86.36±0.31
PCSI 87.29±0.30 87.22±0.26 87.64±0.26 86.74±0.21 87.64±0.22

Variation LASI 87.05±0.34 86.02±0.30 86.58±0.32 86.12±0.32 85.33±0.35
PCSI 87.38±0.34 86.70±0.31 87.34±0.29 86.27±0.33 86.37±0.30

Shakespeare
(LSTM)

Original LASI 48.03±0.70 46.38±0.68 47.78±0.58 47.91±0.66 46.93±0.70
PCSI 48.06±0.68 47.42±0.70 47.80±0.61 47.98±0.61 47.92±0.65

Variation LASI 47.75±0.57 44.80±0.54 43.83±0.64 45.51±0.58 44.04±0.60
PCSI 48.19±0.65 46.46±0.59 47.32±0.66 47.73±0.63 47.60±0.67

HARBox
(DNN)

Original LASI 43.34±0.76 41.85±0.18 41.54±0.55 41.10±0.45 42.78±0.53
PCSI 42.99±0.60 43.26±0.30 44.29±0.44 44.01±0.56 45.01±0.60

Variation LASI 41.45±0.35 39.60±0.28 39.73±0.40 41.06±0.39 40.01±0.30
PCSI 43.59±0.39 41.02±0.27 42.24±0.31 42.50±0.47 43.08±0.28

Table 4: Comparisons of �nal test accuracy between original
F��R�L� and variation F��R�L�.

are presented in Table 4. We observe that F��R�L� maintains its
e�ectiveness when treating the entire model as a single layer. How-
ever, we note that there are additional challenges, particularly with
F��R�L�-LASI. These challenges arise due to ine�ciencies in spe-
ci�c layers and an increased risk of false positives from an inactive
layer-based voting mechanism.

4.4 Similarity-based Attack
Our proposed F��R�L� marks a notable progression in detecting
malicious updates, surpassing other leadingmethods. To thoroughly
test F��R�L�’s robustness and motivated by the design of F��R�L�
using similarity-based indices, we further develop a heuristic attack
method named SimAttack by leveraging similarity. Most existing
attack methods, easily identi�ed by Byzantine-robust algorithms
due to their reliance on abrupt changes to the update vector, are less
e�ective, as observed from our experimental results discussed above.
In contrast, our advanced attack leverages cosine similarity, subtly
manipulating updates to mimic legitimate ones. This approach
adaptively alters critical aspects of the update, maximizing damage
while maintaining a benign appearance to avoid detection.

Besides accuracy, the e�ectiveness of an attack could be gauged
by FPR and TPR. The data in Table 5 highlight that SimAttack, while
having a lower FPR compared to benchmark standards, signi�cantly
reduces the TPR across multiple scenarios. This indicates that while
SimAttack is stealthier, it is less e�ective in incorrectly being iden-
ti�ed. Despite this, SimAttack surpasses other attack methods in
e�ectiveness, underscoring the necessity for more sophisticated
attack strategies to rigorously test and challenge the resilience of
F��R�L�. A comprehensive analysis and detailed methodology of
SimAttack provided in Appendix B. Future research will focus on
developing more potent attack strategies, with SimAttack serving
as a key starting point for this exploration.

5 CONCLUSION
In this work, we introduced F��R�L�, a novel and e�cient algo-
rithm designed for the robust defense of FL systems against model
poisoning attacks. By eschewing reliance on historical data and

Dataset
(Model)

Aggregation
Algorithm

Accuracy FPR/TPR
SOTA SimAttack SOTA SimAttack

CIFAR-10
(VGG-11)

Multi-krum 56.17±0.58 55.60±0.63 0.43/0.44 0.31/0.41
Trimmed-mean 54.14±0.68 53.30±0.69 - -

AFA 58.39±0.33 58.12±0.44 0.24/0.50 0.17/0.46
FLTrust 59.10±0.64 58.30±0.62 0.23/0.61 0.23/0.48

FLDetector 57.86±0.46 57.43±0.64 0.16/0.54 0.05/0.51
FLAIR 53.13±0.63 52.42±0.72 0.47/0.67 0.42/0.48

cosDefense 53.28±0.27 52.47±0.71 0.85/0.50 0.62/0.39
F��R�L�-LASI 59.80±0.27 58.42±0.56 0.14/0.90 0.06/0.59
F��R�L�-PCSI 60.39±0.42 59.17±0.35 0.03/0.97 0.04/0.71

CIFAR-100
(ResNet-18)

Multi-krum 25.65±0.59 25.15±0.59 0.54/0.24 0.54/0.22
Trimmed-mean 27.39±0.69 26.59±0.52 - -

AFA 27.57±0.35 26.96±0.39 0.17/0.55 0.18/0.26
FLTrust 28.08±0.29 28.03±0.22 0.17/0.59 0.14/0.30

FLDetector 27.35±0.41 26.56±0.39 0.13/0.51 0.11/0.24
FLAIR 25.54±0.18 25.06±0.15 0.03/0.50 0.03/0.24

cosDefense 24.25±0.66 23.76±0.31 0.87/0.50 0.63/0.38
F��R�L�-LASI 29.34±0.23 28.66±0.30 0.19/0.90 0.15/0.47
F��R�L�-PCSI 29.60±0.15 28.92±0.26 0.05/0.91 0.04/0.52

Fashion
MNIST

(AlexNet)

Multi-krum 80.75±0.64 80.11±0.34 0.43/0.41 0.27/0.35
Trimmed-mean 81.37±0.26 80.28±0.43 - -

AFA 84.93±0.71 84.21±0.40 0.24/0.50 0.15/0.43
FLTrust 85.98±0.67 84.92±0.62 0.22/0.51 0.20/0.49

FLDetector 84.80±0.31 84.32±0.23 0.18/0.53 0.07/0.52
FLAIR 83.35±0.64 82.33±0.42 0.49/0.59 0.44/0.44

cosDefense 81.27±0.61 81.02±0.34 0.87/0.52 0.73/0.46
F��R�L�-LASI 86.36±0.31 85.02±0.44 0.15/0.92 0.09/0.69
F��R�L�-PCSI 86.74±0.21 85.32±0.41 0.03/0.96 0.03/0.71

Shakespeare
(LSTM)

Multi-krum 42.52±0.61 41.75±0.65 0.43/0.40 0.40/0.39
Trimmed-mean 43.23±0.56 42.85±0.66 - -

AFA 46.38±0.65 45.48±0.76 0.22/0.80 0.19/0.46
FLTrust 45.27±0.62 44.72±0.67 0.22/0.51 0.20/0.43

FLDetector 45.73±0.59 44.67±0.72 0.25/0.51 0.09/0.43
FLAIR 44.60±0.62 44.32±0.69 0.39/0.86 0.42/0.48

cosDefense 42.54±0.68 41.35±0.57 0.80/0.51 0.64/0.42
F��R�L�-LASI 46.38±0.68 45.94±0.64 0.17/0.92 0.08/0.63
F��R�L�-PCSI 47.42±0.70 46.53±0.69 0.03/0.93 0.05/0.78

HARBox
(DNN)

Multi-krum 35.18±0.41 34.62±0.53 0.37/0.46 0.03/0.45
Trimmed-mean 30.61±0.38 30.18±0.30 - -

AFA 39.01±0.68 38.19±0.64 0.27/0.50 0.18/0.48
FLTrust 41.59±0.67 39.78±0.30 0.35/0.57 0.33/0.52

FLDetector 39.65±0.64 39.18±0.24 0.15/0.53 0.03/0.52
FLAIR 36.17±0.50 34.70±0.38 0.50/0.53 0.45/0.49

cosDefense 35.63±0.19 35.27±0.43 0.81/0.52 0.59/0.50
F��R�L�-LASI 41.10±0.45 39.70±0.42 0.13/0.90 0.07/0.67
F��R�L�-PCSI 42.99±0.60 41.24±0.62 0.05/0.92 0.06/0.69

Table 5: The performance of SimAttack.

validation datasets, F��R�L� innovatively employs global model
parameters and client updates, focusing on the unique attributes of
deep neural network architectures. This results in signi�cant en-
hancements in FL security, evidenced by substantial improvements
in model accuracy, a marked reduction in false positives, and an im-
pressive true positive rate. Our comprehensive evaluations across
diverse models and datasets validate F��R�L�’s e�ectiveness. The
future direction includes exploring more sophisticated attacks like
SimAttack, further strengthening FL attacks.
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A APPENDIX: ADDITIONAL RESULTS
A.1 Datasets
We explore three tasks across various datasets and models:

• Image Classi�cation: CIFAR-10 and CIFAR-100 [19], each
with 60,000 color images (32⇥32 pixels) in 10 and 100 classes,
split into 50,000 training and 10,000 test images. The Fashion-
MNIST dataset [21] is also used, comprising 60,000 training
and 10,000 test 28 ⇥ 28 grayscale images in 10 classes.

• Natural Language Processing (NLP): For next-character
prediction, utilize “The Complete Works of William Shake-
speare” dataset [25], containing 734,057 training and 70,657
test data points over 74 characters.

• Human Activity Recognition (HARBox): This task uses
the HARBox dataset [29], featuring 9-axis IMU data from
smartphones of 121 users.

For classi�cation tasks, we deploy several models accordingly:
ResNet-18 [14], VGG-11 [33], and AlexNet [20]. For NLP’s next-
character prediction, use an LSTM language model, following the
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Dataset
(Model)

Aggregation
Algorithm LIE Fang Min-Max Min-Sum MHPM

CIFAR-10
(VGG-11)

Multi-krum 0.40/0.64 0.43/0.35 0.43/0.72 0.40/0.54 0.41/0.34
AFA 0.23/0.80 0.04/0.38 0.15/0.68 0.16/0.88 0.15/0.38

FLTrust 0.21/0.87 0.22/0.89 0.23/0.89 0.21/0.88 0.22/0.48
FLDetector 0.05/0.76 0.03/0.72 0.13/0.87 0.14/0.85 0.04/0.34
FLAIR 0.38/0.37 0.37/0.88 0.46/0.88 0.46/0.69 0.48/0.37

cosDefense 0.43/0.88 0.83/0.85 0.40/0.55 0.43/0.88 0.71/0.35
F��R�L�-LASI 0.15/0.93 0.13/0.96 0.06/0.87 0.08/0.90 0.04/0.83
F��R�L�-PCSI 0.03/0.98 0.05/0.98 0.04/0.92 0.02/0.98 0.03/0.88

CIFAR-100
(ResNet-18)

Multi-krum 0.51/0.60 0.54/0.56 0.54/0.58 0.51/0.19 0.48/0.19
AFA 0.05/0.71 0.04/0.89 0.05/0.89 0.16/0.88 0.05/0.57

FLTrust 0.18/0.59 0.13/0.83 0.13/0.89 0.14/0.89 0.12/0.59
FLDetector 0.12/0.67 0.12/0.81 0.13/0.64 0.10/0.83 0.07/0.62
FLAIR 0.03/0.60 0.03/0.58 0.02/0.32 0.03/0.56 0.02/0.31

cosDefense 0.42/0.72 0.78/0.83 0.47/0.50 0.43/0.75 0.84/0.33
F��R�L�-LASI 0.03/0.91 0.19/0.90 0.15/0.92 0.15/0.92 0.06/0.81
F��R�L�-PCSI 0.03/0.95 0.05/0.94 0.04/0.96 0.03/0.95 0.03/0.85

Fashion
MNIST

(AlexNet)

Multi-krum 0.40/0.60 0.43/0.57 0.42/0.49 0.40/0.33 0.41/0.32
AFA 0.23/0.38 0.14/0.62 0.17/0.59 0.20/0.50 0.17/0.38

FLTrust 0.21/0.40 0.20/0.88 0.20/0.67 0.21/0.88 0.21/0.39
FLDetector 0.23/0.61 0.12/0.72 0.08/0.36 0.11/0.89 0.03/0.36
FLAIR 0.38/0.89 0.37/0.61 0.47/0.88 0.47/0.63 0.46/0.39

cosDefense 0.53/0.89 0.89/0.85 0.57/0.39 0.43/0.89 0.85/0.39
F��R�L�-LASI 0.13/0.93 0.12/0.90 0.08/0.92 0.07/0.91 0.05/0.81
F��R�L�-PCSI 0.03/0.98 0.05/0.91 0.03/0.98 0.04/0.95 0.05/0.88

Shakespeare
(LSTM)

Multi-krum 0.43/0.72 0.43/0.69 0.43/0.31 0.43/0.44 0.40/0.30
AFA 0.25/0.51 0.09/0.79 0.19/0.88 0.17/0.53 0.17/0.51

FLTrust 0.20/0.83 0.18/0.51 0.18/0.89 0.18/0.77 0.16/0.50
FLDetector 0.28/0.51 0.16/0.44 0.09/0.51 0.10/0.85 0.03/0.43
FLAIR 0.37/0.87 0.37/0.89 0.39/0.86 0.39/0.88 0.41/0.49

cosDefense 0.49/0.55 0.79/0.51 0.37/0.88 0.39/0.51 0.80/0.51
F��R�L�-LASI 0.14/0.91 0.16/0.93 0.07/0.92 0.05/0.87 0.06/0.77
F��R�L�-PCSI 0.03/0.98 0.05/0.96 0.03/0.93 0.03/0.98 0.04/0.86

HARBox
(DNN)

Multi-krum 0.38/0.80 0.38/0.27 0.30/0.78 0.28/0.40 0.36/0.27
AFA 0.23/0.79 0.27/0.80 0.19/0.29 0.23/0.52 0.24/0.29

FLTrust 0.35/0.89 0.33/0.87 0.33/0.89 0.35/0.63 0.35/0.40
FLDetector 0.15/0.83 0.16/0.84 0.03/0.55 0.03/0.31 0.03/0.31
FLAIR 0.46/0.80 0.45/0.81 0.45/0.61 0.48/0.33 0.48/0.33

cosDefense 0.57/0.89 0.85/0.51 0.47/0.67 0.47/0.88 0.83/0.27
F��R�L�-LASI 0.11/0.95 0.15/0.94 0.06/0.92 0.04/0.85 0.03/0.74
F��R�L�-PCSI 0.06/0.94 0.05/0.96 0.04/0.96 0.05/0.93 0.05/0.84

Table 7: Comparisons of FPR and TPR with full knowledge.

by establishing a safe zone indicative of benign activity and then
excluding any substantial deviations from this zone as threats.

B.1 Design Details
To e�ectively breach these security measures, we propose an attack
method that closely imitates the properties of legitimate updates.
This advanced attack leverages the nuances of cosine similarity,
manipulating the updates in a discreet and selective manner. By
doing so, it preserves a close resemblance to benign updates while
strategically altering key components to in�ict maximum damage
without raising suspicion. Algorithm 4 delineates our innovative
SimAttack, a meticulously crafted strategy targeting FL systems.
In this context, K(C ) represents the knowledge about updates col-
lected by the attacker. The optimization of this method begins with
determining the initial value of the parameter _ in Algorithm 4. For
this purpose, we introduce the following lemma:

Lemma 1. Suppose that _ is the changing direction to craft gradients
of< malicious clients based on the cosine similarity. For any given
attack threshold g , the value of _ satis�es

_ =
�I �

p
I2 � 4G~
2G

, (9)

where G = (g̃(C )| · s̃(C))2 � g2kg̃(C ) k2ks̃(C)k2, ~ = (1 � g2)kg̃(C ) k4,
and I = 2(g2 � 1)kg̃(C ) k2g̃(C )| · s̃(C).

This lemma ensures that our modi�cations are subtle enough
to avoid detection while challenging the defenses. Implementing

Algorithm 4 SimAttack Algorithm

Input: Knowledge w(C )
8 , 88 2 K(C )

1: for C = 1, · · · ,) do
2: Based on the received real global updates g(C�1) and esti-

mated global update ĝ(C�1) at last round, implement algo-
rithm 5 to dynamically adjust attack ratio @ 2 (0, 1]

3: Perform local model updatesw(C )
8 on all participants and get

local update as w(C )
8 �w(C�1)

4: Use g(C )8 = w(C )
8 � w(C�1) ,88 2 K(C ) to estimate global

update g̃(C ) and update direction s(C) = sgn(g̃(C ) )
5: Based on updates g̃(C ) , selectively choose only a portion @

of elements from s(C) to form s̃(C)
6: Modify the global update as ĝ(C ) = g̃(C ) � _s̃(C)
7: if Find suitable _ then
8: Utilize Lemma 1 to �nd the maximum value of _0 that

guarantees cosine(ĝ(C), g̃(C)) > 0
9: Based on the gathered information, calculate the cosine

similarities {B8, 9 }8, 92K(C )

10: Determine the �rst 5% percentile value of {B8, 9 }8, 92K(C )

and denote it as &5.
11: Use _0 as initial value and employ the grid search method,

�nd a suitable _ that satis�es:

argmax_ min
82K(C )

cosine(ĝ(C ) , g(C )8 ) � &5, (7)

where ĝ(C ) = g̃(C ) � _s̃(C).
12: end if
13: Get the global malicious as w̃(C ) := w(C�1) + ĝ(C ) . Then

clients’ local models are modi�ed as follows:

w̃(C )
8 = w(C )

8 � [s̃(C) = 0] + w̃(C ) � [s̃(C) < 0] . (8)

14: end for

Algorithm 5 Adjustment of @ in SimAttack

Input: s(C � 1), ĝ(C�1) , g(C�1)
1: Get similarity B between ĝ(C�1) and g(C�1)
2: if B > 0 then
3: @ = @ + 0.1
4: else
5: @ = @ � 0.1
6: end if
7: Limitation: @ 2 (0, 1]
8: Return @

Lemma 1 is crucial for determining an initial value for _, a key pa-
rameter in our attack algorithm. Setting g = 0.01 provides a precise
threshold, ensuring that deceptive updates, though minimal, are
signi�cant enough to subtly steer the global model in the adver-
sary’s favor. Our strategy, summarized in Algorithm 5, introduces
how adjust attack ratio @ dynamically. If malicious updates oppose
real global updates, indicating easy detection, we decrease @. If they
are not inverse and harder to detect, we increase @ to compromise
more parameters without raising suspicion.
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