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Abstract

A model for plasma confinement is developed and applied for describing an electrically confined

thermonuclear plasma. The plasma confinement model includes both an analytical approach that

excludes space charge effects and a classical trajectory Monte Carlo simulation that accounts for

space charge. The plasma consists of reactant ions that form a nonneutral plasma without electrons.

The plasma drifts around a negatively charged electrode. Conditions are predicted for confining

a deuterium-tritium plasma using a 460 kV applied electric potential difference. The ion plasma

would have a 20 keV temperature, a 1020 m−3 peak density, and a 110 keV average kinetic energy

per ion (including drift and thermal portions at a certain point in the plasma). The fusion energy

production rate is predicted to be 10 times larger than the energy loss rate, including contributions

associated with both plasma loss to electrodes and secondary electron emission. However, an

approach for enhancing the fusion power density may have to be employed to realize a practical

use for centrifugal-electrostatic confinement fusion.

a Author to whom correspondence should be addressed: cao@unt.edu.
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I. INTRODUCTION

While it is not possible to produce a three-dimensional electrostatic potential well in vac-

uum, it is possible to use an electrostatic field as part of an ion confinement approach that

includes the presence of a magnetic field and/or electrons. Examples include variations of the

Penning trap,1–4 the electron beam ion trap,5,6 inertial-electrostatic confinement fusion,7,8

electrostatically plugged magnetic cusps,9 Penning fusion,10 the Polywell,11 the Orbitron,12

and boundary confinement of electrons that produce a three-dimensional electrostatic poten-

tial well for confining ions.13–16 There also exist approaches for purely electric confinement

of ions without the presence of a magnetic field or electrons. Examples include electro-

static storage of ion beams,17 and centrifugal-electrostatic traps such as the Kingdon trap

and the Orbitrap.18–22 Various applications have been reported for centrifugal-electrostatic

traps.23–29 Descriptions of the confinement physics associated with centrifugal-electrostatic

traps have been based primarily on classical trajectory simulations and analyses.30–32

Centrifugal-electrostatic confinement is defined here as an approach for trapping charged

particles (including drifting nonneutral plasmas) that requires both an effective centrifugal

force and an electric force. Because a centrifugal force is not a real force, centrifugal-

electrostatic confinement is a type of purely electric confinement. In the work reported

in Ref. 32, a confinement model for centrifugal-electrostatic traps was developed based on

defining an effective centrifugal potential energy and deriving an expression for the fraction

of confined particles that follow a drifting Maxwellian velocity distribution. The derivation

considered a limited range of values for one velocity component. The work presented here is

intended to be self-contained and is an extension of the work presented in Ref. 32. Here, an

understanding of the losses of particles and energy to surrounding structures is developed

using two approaches. In addition, the scientific advances are applied for predicting the

confinement of a thermonuclear plasma. It should be noted that the normalized effective

potential energy and thermal speed have different definitions here than in Ref. 32. Also, the

term “plasma” is used here without regard to the relative value of the Debye length.

Figure 1 shows an example of an axisymmetric configuration that may serve for providing

centrifugal-electrostatic confinement of a nonneutral plasma. The illustration shows four

electrodes and plasma. The plasma would be confined within a toroidal confinement volume

and would experience a net drift around a section of the inner electrode, which has the
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appearance of a wire in the figure. The outer electrode has the appearance of a hollow

cylinder. There are also two endcap electrodes, which serve to provide axial confinement of

the plasma.

2r₀rₛ

V

r₁

V₂V₂

FIG. 1. Illustration showing the cross section of an axisymmetric electrode system (black) for

confining a nonneutral plasma (blue). The electrodes consist of an inner electrode with radius r0

and zero electrostatic potential, an outer electrode with inner radius r1 and electrostatic potential

V , and two endcap electrodes that each have electrostatic potential V2. The plasma consists of

particles that pass radially back and forth through the radius rs. Normalized parameters are used

including ρ1 = r1/r0, ρs = rs/r0, and ν = qV/T , where T is the plasma temperature in energy

units, and q is the charge of a plasma particle. The figure is not to scale.

Section II provides a discussion of considerations and basic assumptions used to develop

the description of centrifugal-electrostatic plasma confinement reported here. Sections III

and IV provide an analytical approach for describing centrifugal-electrostatic confinement

within a system qualitatively similar to that shown in Fig. 1. The analytical approach

includes some integrals that are evaluated numerically. The collisionless and low-density
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limits are taken in Sec. III, while collisions are considered in Sec. IV. The confinement

model in Secs. III and IV is applied in Sec. V for describing the confinement of a fusion

plasma in the low-density limit. Section VI provides a computational approach for describing

radial plasma confinement accounting for the effect of space charge. The computational

approach incorporates a classical trajectory Monte Carlo simulation. The confinement model

in Secs. IV and VI is applied in Sec. VII for describing the confinement of a fusion plasma,

including the effect of space charge. Section VIII provides a discussion of the results found.

Concluding remarks are in Sec. IX.

II. CONFINEMENT MODEL DEVELOPMENT CONSIDERATIONS

A. Radial Particle Confinement

Equations that govern the radial motion of a particle in a centrifugal-electrostatic plasma

trap are considered here in Subsec. II A. The plasma confinement system is treated as being

axisymmetric and as consisting of a coaxial pair of cylindrical electrodes of infinite length.

Axial confinement is not treated, with the assumption that the axial motion of a particle is

decoupled from motion in the other dimensions. A cylindrical coordinate system is defined

with coordinates (r, θ, z), and with associated unit vectors (r̂, θ̂, ẑ). The z axis of the

coordinate system is located along the axis of symmetry of the system. A plasma particle

in the system is treated classically as a point charge that represents a positive ion. Unless

noted otherwise, the particle is considered to be affected only by a static and axisymmetric

electric field produced by the electrodes and by the space charge of a quiescent plasma.

The acceleration of a particle in the system as a function of time t is

a(t) =
[

r′′(t)− r(t) θ′(t)2
]

r̂(t) + [r(t) θ′′(t) + 2 r′(t) θ′(t)] θ̂(t). (1)

An absence of force and acceleration in the azimuthal direction is satisfied by a constant

angular momentum about the z axis, L = mr2θ′, where m is the mass of the particle.

Substituting θ′ = L/(mr2) into the centripetal acceleration term and applying Newton’s

second law yields an equation of motion,

mr′′(t) =
L2

mr(t)3
− qV

r(t) ln(r1/r0)
+ qEp [r(t)] . (2)
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Here, q is the particle’s charge and V is the difference in electric potential between the outer

electrode having an inner radius r1 and the inner electrode having an outer radius r0. The

first term on the right with an r−3 dependence is a short-range outward centrifugal force.

The second term on the right with an r−1 dependence is a longer-range inward electric force

that would be due to the radial electric field produced by the electrodes without plasma

present. In the last term on the right, the function Ep(r) is defined such that the last two

terms on the right together provide an electric force that accounts for a confined plasma’s

space charge.

The centrifugal force, FC(r) = L2/(mr3)r̂, can be treated as a conservative force, because

its curl is zero, ∇ × FC = 0. A centrifugal potential energy UC(r) is defined such that

FC(r) = −∇UC(r). The centrifugal potential energy can be written as UC(r) = UC0 +

L2/(2mr2), where UC0 is an arbitrary constant. Let φ(r) denote the electric potential, let

U(r) = qφ(r) + UC(r) be defined as the effective potential energy of the particle, and let

Kr =
1
2
mv2r be referred to as the radial kinetic energy of the particle, where vr = r′(t). The

effective energy for radial motion is defined as the sum of radial kinetic energy and effective

potential energy, Eeff = Kr + U . A particle is considered to be lost from confinement if it

reaches either the inner electrode at r = r0 or the outer electrode at r = r1. The effective

energy Eeff is a conserved quantity. Therefore, a particle in the system will remain confined,

so long as the particle’s effective energy remains smaller than the effective potential energy

at each electrode, Eeff < U(r0) and Eeff < U(r1).

Suppose that a confined plasma particle passes radially back and forth through a radial

coordinate denoted rs. If only the effects considered here in Subsec. II A are present, the

particle’s radial kinetic energy is the same at the time of each pass, Kr(rs) = Eeff − U(rs).

The two conditions for confinement of the particle can be expressed asKr(rs) < U(r0)−U(rs)

and Kr(rs) < U(r1)−U(rs). If both conditions are satisfied by the particle, both conditions

will continue to be satisfied indefinitely, if additional effects (e.g., the effects of collisions)

are not present.

B. Assumptions

In the work presented here, it is assumed that axial motion is not coupled to motion

in the other dimensions. When the effects of collisions are accounted for, it is assumed

5

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
6
1
5
3
6



that the collisional mean-free-path is large compared to plasma dimensions. With an ef-

fective potential energy well providing radial particle confinement and an electric potential

energy well providing axial particle confinement, it is assumed that collisions tend to cause

a confined plasma to approach a drifting Maxwellian velocity distribution at a certain radial

point r = rs in the plasma, and that nearly all confined plasma particles pass back and

forth through the radial coordinate rs. No assumptions are made regarding a phase-space

distribution that would describe a confined plasma, and such a distribution has not been

found. Effects that can cause a decrease of the angular momentum of the system of confined

particles are not considered here.

A process for efficiently loading a plasma into a centrifugal-electrostatic trap is not de-

veloped in the present work. However, a brief discussion of a possible process is provided

in this paragraph. It is assumed that previously reported methods, such as those described

in Refs. 19, 21, 22, 24, and 28, provide a suitable basis for developing new methods, as

needed, for loading a plasma (e.g., a fusion plasma) into a centrifugal-electrostatic trap. It

is speculated that a focused ion beam could be used to inject ions through a hole in the

outer electrode, while the applied electric potential difference V between the outer and inner

electrodes is increasing. At the point of entry, the injected ions would have a sufficiently

small radial kinetic energy Kr(r1) to be captured by the changing applied potential. The

azimuthal velocity component would be chosen such that each ion has a desired angular

momentum L at the point of entry. The axial velocity component at the point of entry

would be chosen with the expectation that axially counterstreaming ions will activate the

two-stream instability, which, together with collisions, converts kinetic energy associated

with axial motion into thermal energy. The plasma would initially be loaded in a high or-

bit, with nearly all particles passing back and forth through a radial coordinate rs. Radial

compression by increasing the applied potential difference V would then be used to change

the value of rs to a desired value.

C. Comparisons With Magnetic Plasma Confinement

Consider a confined plasma with an ion mean-free-path that is large compared to the

plasma’s dimensions. For a quasineutral plasma that is confined only magnetically, collisions

that cause a change of a plasma ion’s orbit in configuration space may lead to the loss of
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the ion. In contrast, for a nonneutral ion plasma that is confined only electrically, with such

confinement treated as a square potential energy well, collisions that cause a change of a

plasma ion’s velocity may lead to the loss of the ion. The ion loss rate may be modeled as

collision-based diffusion in configuration space for one case and collision-based diffusion in

velocity space for the other case.

In a quasineutral plasma that is confined only magnetically, the presence of electrons may

provide a number of important energy loss mechanisms, including synchrotron radiation,

bremsstrahlung radiation, and cross-magnetic-field energy transport that may occur at a

rate that is larger than that due to collisions alone. Such energy loss mechanisms are

negligible or absent in a nonneutral ion plasma that is electrically confined.

Variations of the Penning trap employ both a magnetic field and an electric field for

confining nonneutral plasmas.1,2 With such traps, low temperature antimatter is routinely

confined using superconducting magnets for days or even years.3 In Penning traps, a plasma

state referred to as global thermal equilibrium is possible that is characterized by sheer-free

rotation associated with a cross-magnetic-field drift.2 In contrast, the same equilibrium does

not occur without the presence of a magnetic field. A rotating-wall technique can be used to

maintain the rotational drift in Penning traps.2 It is not clear if a technique for maintaining

a rotational drift is possible for a nonneutral plasma confined without the presence of a

magnetic field.

A Penning trap could potentially confine a nonneutral fusion plasma without electrons.

However, a density limit, which is named after Brillouin33, would severely limit the fusion

power density. For example, the Brillouin density limit for 2.5 amu ions in a 20 T magnetic

field is 4.3×1017 m−3, which may be considered too small for the fusion power density to be

of practical use. The Brillouin density limit is a disciplinary issue, specific to Penning traps.

The approach considered here for confining a nonneutral fusion plasma is not subject to the

Brillouin density limit. However, there exist a number of interdisciplinary issues associated

with generating a fully nonneutral fusion plasma.34
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III. CONFINEMENT IN THE COLLISIONLESS AND LOW-DENSITY LIMITS

A. Confinement Configuration

An axisymmetric plasma confinement system is considered to consist of a cylindrical inner

electrode located within a hollow cylindrical outer electrode, with both electrodes much

longer than the radius of the outer electrode. A drifting nonneutral plasma is considered to

be located between the electrodes. A model describing the confinement of such a plasma is

developed for a region far from the axial ends of the electrodes.

A cylindrical coordinate system with radial, azimuthal, and axial coordinates, (r, θ, z), is

defined in configuration space, with the z axis coincident with the axis of symmetry of the

plasma confinement system. An imaginary cylindrical surface is defined that is located at

radial coordinate r = rs and that has a finite axial length. The imaginary surface is much

farther from each axial end than the radius of the outer electrode and is much longer than

axial plasma variations.

The plasma confinement model presented here applies to plasma particles that orbit the

inner electrode in one azimuthal direction and that pass radially back and forth through the

imaginary surface. The region of applicability is treated as being axisymmetric, i.e., no θ

dependence, and without axial variations, i.e., no z dependence. Thus, only one cylindrical

coordinate, the radial coordinate r, is used. For convenience, plasma confinement is referred

to as occurring for particles that pass radially back and forth through a single point r = rs,

with the single point representing the imaginary surface.

B. Drifting Maxwellian Velocity Distribution

A Cartesian coordinate system is defined in velocity space for describing the velocities of

confined particles as they pass through the single point rs, which has a fixed value. Such

plasma particles are considered to nearly follow a drifting Maxwellian velocity distribution

at rs. The drifting Maxwellian velocity distribution normalized to one is written as

fv(vr, vθ, vz) =
1

(
√
πvth)3

exp

[

−v2r + (vθ − vd)
2 + v2z

v2th

]

. (3)

Here, vr, vθ, vz are radial, azimuthal, and axial velocity components, which form a Cartesian

set of coordinates in velocity space, vd is the azimuthal drift velocity, vth =
√

2T/m is the
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thermal speed, T is the plasma temperature in energy units, and m is the mass of a plasma

particle. Hereafter, the symbol w denotes velocity normalized by the thermal speed. For

example, wz = vz/vth. The drifting Maxwellian normalized-velocity distribution is

fw(wr, wθ, wz) = π−3/2e−[w
2
r+(wθ−wd)

2+w2
z]. (4)

Confined particles are considered to have limited ranges of normalized-velocity component

values specified by wz,max, wr,max, wθ,min and wθ,max. Particles are not considered to be

confined for which any of the following inequalities are satisfied: |wz| > wz,max, |wr| > wr,max,

wθ < wθ,min, or wθ > wθ,max. The fraction of particles that follow the drifting Maxwellian

normalized-velocity distribution is evaluated as

fp =
∫ wθ,max

wθ,min

∫ wr,max

−wr,max

∫ wz,max

−wz,max

fw(wr, wθ, wz)dwzdwrdwθ. (5)

The distribution fw(wr, wθ, wz) is normalized, such that fp = 1 if the limits wz,max → ∞,

wr,max → ∞, wθ,min → −∞, and wθ,max → ∞ are taken. Integration over two normalized

velocity components yields,

fp = π−1/2
∫ wθ,max

wθ,min

e−(wθ−wd)
2

erf (wz,max) erf (wr,max) dwθ, (6)

where erf is the error function. Expressions for wz,max, wd, wr,max, wθ,min, and wθ,max are now

obtained.

C. Normalized Velocity Expressions

The electric potential between the inner and outer cylindrical electrodes can be written

as

φ(ρ) = φ0 +
V ln(ρ)

ln(ρ1)
. (7)

Here, ρ = r/r0 is the radial coordinate normalized by r0, the radius of the inner electrode’s

outer surface, ρ1 = r1/r0 is the normalized radius of the outer electrode’s inner surface,

which has radius r1, φ0 is an arbitrary additive constant, and V = φ(ρ1) − φ(1) is the

difference in electric potential between the outer and inner cylindrical electrodes. Hereafter,

φ0 = φ(1) = 0 is used, by defining the electric potential to be zero at the inner electrode.

Axial confinement is treated by assuming that a particle located at a normalized radial

coordinate ρs = rs/r0, where the electric potential is φ(ρs), is not confined if the particle can
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travel axially to reach an endcap electrode. The endcap electrodes are considered to be held

at an electric potential equal to V2. Axial motion is considered to be decoupled from motion

in the other two dimensions, and a particle at ρs with a z component of velocity larger in

magnitude than vz,max is assumed to not be confined axially, where 1
2
mv2z,max = qV2−qφ(ρs),

or equivalently,

wz,max =

√

√

√

√ν

(

V2

V
− ln(ρs)

ln(ρ1)

)

. (8)

Here, ν = qV/T , and q is the charge of a confined particle.

The effective centrifugal potential energy of a particle between the inner and outer cylin-

drical electrodes can be written as UC(ρ) = UC0 + L2/(2mr20ρ
2). Here, UC0 is an arbitrary

additive constant, and L is the particle’s angular momentum about the z axis. The effective

centrifugal potential energy is defined to be zero at the inner electrode, which requires the

additive constant to be UC0 = −L2/(2mr20). The total effective potential energy of the par-

ticle is U(ρ) = qφ(ρ) + UC(ρ). With this, a normalized effective potential energy is written

as

u(ρ) =
ν ln(ρ)

ln(ρ1)
− ℓ2

(

1− 1

ρ2

)

, (9)

where u = U/T and ℓ =
√

L2/(2mr20T ). Figure 2 shows three plots of u(ρ)/ν with ρ1 = 100

and with ℓ2/ν = 0.5, 1.0, 1.5. Each plot shows how an effective potential energy well can

form.

A confined particle that does not interact with other particles would have an angular

momentum and associated value of ℓ that are conserved quantities. The conserved quantity

ℓ can be written in terms of the normalized azimuthal velocity component, wθ, for a particle

located at the normalized radial coordinate, ρ = ρs, as

ℓ = ρswθ. (10)

All confined particles are considered to orbit the inner electrode by traveling in the same

direction, with wθ > 0 for each particle. As a particle moves radially, the value of wθ varies

with ρ, such that ℓ remains constant. However, in the approach used here, the value of

wθ is that for a particle as it passes through a single fixed point, ρs, with 1 < ρs < ρ1.

A distribution of wθ values is associated with many particles that have a distribution of

velocities, as each particle passes through the normalized radial coordinate, ρs.

10
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1 5 10 50 100

-1.0

-0.5

0.0

0.5

ρ

u(ρ)



FIG. 2. Plots of u(ρ)/ν with ρ1 = 100 and with ℓ2/ν = 0.5 (top blue line), ℓ2/ν = 1.0 (middle

yellow line), and ℓ2/ν = 1.5 (bottom green line).

The normalized drift velocity is specified as wd = αdwc, where αd is a chosen constant,

and wc is the value of wθ at which a particle with wr = wz = 0 experiences a circular orbit of

normalized radius ρs. A circular orbit occurs when there is a radial balance of electric and

effective centrifugal forces, which occurs at a minimum value of u(ρ). Setting wc = wθ = ℓ/ρs

under the condition, u′(ρ)|ρ=ρs = 0, yields

wc =

√

ν

2 ln(ρ1)
. (11)

The differences, u(1) − u(ρs) and u(ρ1) − u(ρs), represent normalized effective potential

energy barriers that might keep a particle at ρs from reaching the inner electrode and outer

electrode, respectively. If u(1) 6= u(ρ1), one of the two barriers will be smaller than the

other. Setting wθδ = wθ = ℓ/ρs under the condition, u(1) = u(ρ1), gives

wθδ =

√

ν

[1− (1/ρ21)] ρ
2
s

. (12)

If wθ < wθδ then u(1) − u(ρs) < u(ρ1) − u(ρs), and particles with a normalized radial

velocity component larger in magnitude than wr,max,0 =
√

u(1)− u(ρs) are assumed to not

11
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be confined radially. Alternatively, if wθ > wθδ then u(1) − u(ρs) > u(ρ1) − u(ρs), and

particles with a normalized radial velocity component larger in magnitude than wr,max,1 =
√

u(ρ1)− u(ρs) are assumed to not be confined radially. The two expressions for wr,max are

equivalently written as

wr,max,0 = wr,max,0(wθ) =

√

√

√

√(ρ2s − 1)w2
θ −

ν ln(ρs)

ln(ρ1)
(13)

for wθ < wθδ, and

wr,max,1 = wr,max,1(wθ) =

√

√

√

√

(

ρ2s
ρ21

− 1

)

w2
θ + ν

[

1− ln(ρs)

ln(ρ1)

]

(14)

for wθ > wθδ.

A normalized effective potential energy barrier only exists in the radially inward direction

for a particle passing through ρs if u(1) > u(ρs). Setting wθ,min = wθ = ℓ/ρs under the

condition, u(1) = u(ρs), requires

wθ,min =

√

√

√

√

ν ln(ρs)

(ρ2s − 1) ln(ρ1)
. (15)

In a similar way, a normalized effective potential energy barrier only exists in the radially

outward direction for a particle passing through ρs if u(ρ1) > u(ρs). Setting wθ,max = wθ =

ℓ/ρs under the condition, u(ρ1) = u(ρs), requires

wθ,max =

√

√

√

√

ν

1− (ρ2s/ρ
2
1)

(

1− ln(ρs)

ln(ρ1)

)

. (16)

D. Normalized Average Loss Kinetic Energy

Diffusion in velocity space due to the cumulative effect of many Coulomb collisions is

considered to cause particle velocities to gradually change until particles barely escape con-

finement by being able to reach the top of an effective potential energy barrier located at an

electrode. Three expressions for the normalized average loss kinetic energy are obtained for

particles that barely escape confinement in the radially inward direction (by reaching the in-

ner electrode), in the radially outward direction (by reaching the outer electrode), and in an

axial direction (by reaching an endcap electrode), respectively. For each of the three cases,

a particle at ρs would barely escape confinement if |wr| = wr,max,0(wθ), |wr| = wr,max,1(wθ),

12
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or |wz| = wz,max, respectively. The kinetic energy of a particle that reaches a loss boundary

is equal to the kinetic energy at ρs plus the difference between the electric potential energies

at ρs and at the boundary. For each of the three cases, the kinetic energy of a particle that

reaches a loss boundary is

K0 =
1

2
mv2r,max,0 +

1

2
mv2θ +

1

2
mv2z + qφ(ρs)− qφ(1), (17)

K1 =
1

2
mv2r,max,1 +

1

2
mv2θ +

1

2
mv2z + qφ(ρs)− qφ(ρ1), (18)

or

K2 =
1

2
mv2r +

1

2
mv2θ +

1

2
mv2z,max + qφ(ρs)− qV2, (19)

respectively. The three normalized averages are defined as κ0 = 〈K0〉0 /T , κ1 = 〈K1〉1 /T ,
and κ2 = 〈K2〉2 /T , where 〈 〉i is an average taken in velocity space. The subscripts 0, 1, and

2 on the averages serve to indicate that there are different restrictions on velocity values.

For example, wr,max has been separated into two parts, wr,max,0(wθ) and wr,max,1(wθ), which

are applicable for wθ,min < wθ < wθδ and wθδ < wθ < wθ,max, respectively. Each of the three

normalized averages, κ0, κ1, or κ2, is obtained for the fraction of particles at ρs that follow

the drifting Maxwellian normalized-velocity distribution, except with |wr| = wr,max,0(wθ),

|wr| = wr,max,1(wθ), or |wz| = wz,max, respectively.

For a particle that has barely reached the inner electrode by travelling radially inward,

the average loss kinetic energy is evaluated as

〈K0〉0 =
∫ wθδ

wθ,min

∫ wz,max

−wz,max
K0e

−[(wθ−wd)
2+w2

z]dwzdwθ
∫ wθδ

wθ,min

∫ wz,max

−wz,max
e−[(wθ−wd)2+w2

z ]dwzdwθ

. (20)

The normalized average loss kinetic energy is

κ0 =
〈

ρ2sw
2
θ + w2

z

〉

0
=

1

2
+ ρ2s

(

1

2
+ w2

d + η0

)

− wz,maxe
−w2

z,max

√
πerf (wz,max)

, (21)

where

η0 =
(wd + wθ,min) e

−(wd−wθ,min)
2

− (wd + wθ,δ) e
−(wd−wθ,δ)

2

√
π [erf (wd − wθ,min)− erf (wd − wθ,δ)]

. (22)

The inner electrode is now considered to be negatively charged, and a charged particle

that reaches the inner electrode is now considered to be a positive ion. Each time an ion

reaches the inner electrode, the emission of secondary electrons may occur. Let δ denote

the secondary electron emission coefficient, which is defined here as the average number

13
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of electrons emitted from the inner electrode per incident ion. Electrons emitted from the

inner electrode are accelerated radially outward and can be expected to reach the outer

electrode with a kinetic energy approximately equal to eφ(ρ1) = qV/Z = νT/Z, where e

is the magnitude of an electron’s charge, and Z is an ion’s atomic number. It is assumed

for the present work that every ion has the same atomic number and is fully ionized. To

account for the loss of energy associated with secondary electron emission, the expression

for κ0 is modified to be

κ0 =
1

2
+ ρ2s

(

1

2
+ w2

d + η0

)

− wz,maxe
−w2

z,max

√
πerf (wz,max)

+
νδ

Z
, (23)

For a particle that has barely reached the outer electrode by travelling radially outward,

the average loss kinetic energy is evaluated as

〈K1〉1 =
∫ wθ,max

wθδ

∫ wz,max

−wz,max
K1e

−[(wθ−wd)
2+w2

z]dwzdwθ
∫ wθ,max

wθδ

∫ wz,max

−wz,max
e−[(wθ−wd)2+w2

z ]dwzdwθ

. (24)

The normalized average loss kinetic energy is

κ1 =

〈

ρ2sw
2
θ

ρ21
+ w2

z

〉

1

=
1

2
+

ρ2s
ρ21

(

1

2
+ w2

d + η1

)

− wz,maxe
−w2

z,max

√
πerf (wz,max)

, (25)

where

η1 =
(wd + wθδ) e

−(wd−wθδ)
2 − (wd + wθ,max) e

−(wd−wθ,max)
2

√
π [erf (wd − wθδ)− erf (wd − wθ,max)]

. (26)

For a particle that has barely reached an endcap electrode by travelling axially, the

average loss kinetic energy is evaluated as

〈K2〉2 =
∫ wθ,max

wθ,min

∫ wr,max(wθ)
−wr,max(wθ)

K2e
−[(wθ−wd)

2+w2
r]dwrdwθ

∫ wθ,max

wθ,min

∫ wr,max(wθ)
−wr,max(wθ)

e−[(wθ−wd)2+w2
r ]dwrdwθ

. (27)

The normalized average loss kinetic energy is

κ2 =
〈

w2
r + w2

θ

〉

2
=
〈

w2
r

〉

+
〈

w2
θ

〉

= κr + κθ, (28)

where the normalized average particle kinetic energies associated with radial motion and

azimuthal motion at ρs are

κr =

∫ wθ,max

wθ,min
e−(wθ−wd)

2
[

1
2
erf (wr,max)− π−1/2wr,maxe

−w2
r,max

]

dwθ√
πfp/erf (wz,max)

(29)

and

κθ =

∫ wθ,max

wθ,min
w2

θe
−(wθ−wd)

2

erf (wr,max) dwθ√
πfp/erf (wz,max)

, (30)
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respectively. Each of the two numerators has an integral over wθ that is evaluated by dividing

the integral into two parts. For the first part, wr,max = wr,max,0(wθ), and the integration limits

are wθ,min to wθδ. For the second part, wr,max = wr,max,1(wθ), and the integration limits are

wθδ to wθ,max. The integral associated with fp is also divided into two parts, as shown in

the next subsection.

The normalized average particle kinetic energy associated with axial motion motion at

ρs is

κz =
〈

w2
z

〉

=

∫ wz,max

−wz,max
w2

ze
−w2

zdwz
∫ wz,max

−wz,max
e−w2

zdwz

=
1

2
− wz,maxe

−w2
z,max

√
πerf(wz,max)

. (31)

The normalized average particle kinetic energy associated with full motion at ρs is

κ = κr + κθ + κz. (32)

E. Confinement Fractions

The fraction of particles that follow the drifting Maxwellian normalized-velocity distri-

bution, being confined by both a radial effective potential energy well and an axial potential

energy well, is

fp =
erf (wz,max)√

π

(

∫ wθδ

wθ,min

e−(wθ−wd)
2

erf [wr,max,0(wθ)] dwθ

+
∫ wθ,max

wθδ

e−(wθ−wd)
2

erf [wr,max,1(wθ)] dwθ

)

. (33)

This fraction, fp, is used to obtain expressions for three other fractions, denoted f0, f1, and

f2, to develop separate descriptions of particle confinement in the radially inward, radially

outward, and axial directions, respectively. The three fractions, f0, f1, and f2, are each

defined as the fraction of particles that follow the drifting Maxwellian normalized-velocity

distribution excluding only particles that would not be confined either radially inward, or

radially outward, or axially, respectively. Taking the limits wz,max → ∞, wr,max,1 → ∞, and

wθ,max → ∞, yields

f0 =
1

2
[1 + erf (wd − wθδ)]

+
1√
π

∫ wθδ

wθ,min

e−(wθ−wd)
2

erf [wr,max,0(wθ)] dwθ. (34)
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Taking the limits wz,max → ∞, wr,max,0 → ∞, and wθ,min → −∞, yields

f1 =
1

2
erfc (wd − wθδ)

+
1√
π

∫ wθ,max

wθδ

e−(wθ−wd)
2

erf [wr,max,1(wθ)] dwθ. (35)

Here, erfc is the complementary error function. Taking the limits wr,max,0 → ∞, wr,max,1 →
∞, wθ,min → −∞, and wθ,max → ∞, yields

f2 = erf (wz,max) . (36)

For each fraction, a value of one corresponds to perfect confinement of the thermal distribu-

tion at ρs, while a value of zero corresponds to no confinement. Assuming that particles are

not confined for which |wr| > wr,max,0(wθ), |wr| > wr,max,1(wθ), or |wz| > wz,max, the fraction

fp of particles that follow the drifting Maxwellian normalized-velocity distribution is related

to those of fi by fp = f2(f0 + f1 − 1).

Particles that are lost in the radially inward direction (by reaching the inner electrode)

have wθ < wθδ, while particles that are lost in the radially outward direction (by reaching

the outer electrode) have wθ > wθδ. The fractional portions of fp associated with wθ < wθδ

and wθ > wθδ are

fr0 =
erf (wz,max)

fp
√
π

∫ wθδ

wθ,min

e−(wθ−wd)
2

erf [wr,max,0(wθ)] dwθ (37)

and

fr1 =
erf (wz,max)

fp
√
π

∫ wθ,max

wθδ

e−(wθ−wd)
2

erf [wr,max,1(wθ)] dwθ, (38)

respectively. The sum of the two fractions is equal to one, fr0 + fr1 = 1.

IV. COLLISIONS

The rate at which the plasma density changes is evaluated by using Eq. (13) from Ref. 35,

which applies for plasma confinement in the presence of a magnetic mirror and a square

potential energy well in one dimension. The expression is 12% larger in magnitude than

the corresponding equation in Ref. 36 for a mirror ratio of one and for confined ions. The

expression is repeated here with the mirror ratio set equal to one, without a negative sign

used to indicate particle loss, and with an integral evaluated in analytical form:

dn

dt
=

4n√
πc2τ0

√

1

1 + c2
e−ωi

ln (4c−2 + 2)

1

ωi

(

1 +

√
πeωierfc(

√
ωi)

2
√
ωi

)

. (39)
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Here, ωi is the height of a particle-confining potential energy barrier normalized by the

plasma temperature, τ0 =
√
mT 3/(

√
2πnk2

Ce
4λ) for singly charged particles, c =

√
2 for

ions, λ is the Coloumb logarithm, kC = 1/(4πǫ0) is the Coulomb force constant in SI units,

and ǫ0 is the vacuum permittivity. The value of ωi is directly related to the fraction fi of

particles that follow a Maxwellian velocity distribution, excluding particles not confined by

the square potential energy well,

ωi = ωi(fi) =
[

erf−1 (fi)
]2
. (40)

Equations (39) and (40) are used here for separate descriptions of particle losses in the

radially inward, radially outward, and axial directions. The magnitude of the rate at which

the plasma density decreases due to particle losses associated with collisional scattering is

evaluated as

ṅℓ =
2
∑

i=0

fri
dn

dt

∣

∣

∣

∣

∣

ωi=ωi(fi)

. (41)

Here, fr0 and fr1 represent the fractional portions of particles that can only be lost in

the radially inward direction or outward direction, respectively. There is no corresponding

restriction for particle loss in the axial direction, and the definition, fr2 = 1, is made for

use in the summation. Also, fi is the fraction of particles that follow a drifting Maxwellian

velocity distribution, excluding particles not confined in the radially inward direction (i = 0),

radially outward direction (i = 1), or an axial direction (i = 2).

The magnitude of the rate at which energy is incident on electrodes due to particle losses

associated with collisional scattering is evaluated as

Pℓ =
2
∑

i=0

Pi =
2
∑

i=0

κiTfri
dn

dt

∣

∣

∣

∣

∣

ωi=ωi(fi)

. (42)

Here, κi is the normalized average loss kinetic energy for a particle that has barely reached

the top of an effective potential energy barrier by reaching the inner electrode (i = 0), the

outer electrode (i = 1), or an endcap electrode (i = 2).

V. APPLICATION OF ANALYTICAL MODEL IN THE LOW-DENSITY LIMIT

Confinement of a T = 20 keV deuterium-tritium plasma is now considered (with m = 2.5

amu and Z = q/e = 1) in the low-density limit. Let Q denote the ratio of the fusion power

17
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density to the energy loss power density,

Q =
Pf

Pℓ

. (43)

Here, Pℓ is given by Eq. (42). The fusion power density is evaluated as

Pf =
1

4
Efn

2 〈σv〉f , (44)

where Ef = 17.6 MeV is the energy released per deuterium-tritium fusion reaction, 〈σv〉f =

4.33×10−22 m3 /s is the fusion reactivity,37 and n is the ion density (including both ion species

with equal densities). For obtaining the value of 〈σv〉f , the plasma velocity distribution is

approximated as Maxwellian in the plasma’s rest frame, by requiring that the fraction of

particles that follow a drifting Maxwellian velocity distribution be close in value to one

(fp ≈ 1). The confinement model is expected to decrease in accuracy with smaller values of

fp. The condition fp > 0.9 is satisfied for all applicable results reported here, unless noted

otherwise. The Coulomb logarithm is approximated as having a constant value of λ = 20,

and Q becomes independent of the ion density n. The value, αd = 1 is chosen, so that the

drift velocity is equal to the particle speed for a circular orbit.

With fixed plasma parameters, Q is a function of five parameters consisting of ρ1, ρs,

V , δ, and V2. Table I shows the results of an optimization procedure with the secondary

electron emission coefficient taken to be δ = 1, and the electric potential at each endcap

electrode taken to be the same as that at the outer electrode, V2 = V . For each value of ρ1,

the value of ρs is found to two significant figures such that Q has a maximum value, and

simultaneously, the value of V is adjusted to equal V10. V10 is defined to be the smallest

value of V to two significant figures for which Q > 10 is predicted.

Parameter values are chosen for a base case consisting of ρ1 = 60, ρs = 10, V = 460

kV, δ = 1, and V2 = V . For the base case, the ratio of the fusion power density to the

energy loss power density is predicted to be Q = 10.3 in the low-density limit. Other

predictions include the following: the confinement fractions, f0 = 0.968, f1 = 0.978, f2 =

1.00, fp = 0.946, fr0 = 0.0139, and fr1 = 0.986; the average energy loss per ion that

reaches the inner electrode, 〈K0〉0 = 831 keV, the outer electrode, 〈K1〉1 = 11.8 keV,

and an endcap electrode, 〈K2〉2 = 74.6 keV; and the average ion kinetic energy associated

with radial motion, 〈Kr〉 = 9.75 keV, azimuthal motion, 〈Kθ〉 = 64.8 keV, axial motion,

〈Kz〉 = 10.0 keV, and full motion, 〈K〉 = 84.6 keV. The average energy loss per ion that
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TABLE I. Results from an optimization procedure, with a secondary electron emission coefficient,

δ = 1, and with an electric potential at each endcap electrode equal to that at the outer electrode,

V2 = V . Here, ρ1 = r1/r0 and ρs = rs/r0, where r1 is the inner radius of the outer electrode, r0 is

the outer radius of the inner electrode, and rs is a radius where the plasma approximately follows

a drifting Maxwellian velocity distribution. Also, V10 is the smallest electric potential at the outer

electrode (with the inner electrode at zero potential) for the confinement model to predict Q > 10.

Q is the ratio of the fusion power density to the energy loss power density. Confinement of a T = 20

keV deuterium-tritium plasma is considered.

ρ1 ρs V10 (kV) fp

12.5 4.1 820 0.98

25 6.3 590 0.96

50 9.5 480 0.95

100 14 410 0.93

200 21 360 0.92

1000 48 290 0.88

reaches the inner electrode is predicted to be much larger than that associated with reaching

the outer or endcap electrodes, because of a number of contributions. Recall that part of the

energy loss is defined to be associated with the release of secondary electrons from the inner

electrode. An average of δ = 1 secondary electron is assumed to be released per incident

ion and to gain an energy, δeV = 460 keV, before reaching the outer electrode. The energy,

δeV = 460 keV, is the largest contribution. The second largest contribution is the energy,

eφ(ρs) = eV ln(ρs)/ ln(ρ1) = 259 keV, that each ion gains traveling from ρ = ρs to the inner

electrode at ρ = 1. The remaining contributions consist of the kinetic energy associated with

radial motion at ρs that barely leads to ion loss and the average kinetic energies associated

with azimuthal and axial motion at ρs.

Figures 3 to 7 show the value of Q as a function of one parameter, while setting the other

four parameters equal to their base case values. Figure 3 shows that Q has a maximum at

approximately ρ1 = 60, with other parameters set equal to their base case values. At ρ1

values less than 60, the distance between plasma at ρs and the outer electrode is reduced.

As a result, increased losses to the outer electrode cause Q to decrease. Similarly, at ρ1
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values greater than about 60, increased losses to the inner electrode cause Q to decrease.

Figure 4 shows that Q has a maximum at approximately ρs = 10 with other parameters

set equal to their base case values. At ρs values less than 10, the separation between ρs and

the inner electrode is reduced. As a result, increased losses to the inner electrode cause Q to

decrease. Similarly, at ρs values greater than about 10, the separation between ρs and the

outer electrode is reduced, and increased losses to the outer electrode cause Q to decrease.

Figure 5 shows the dependence that Q has on the applied electric potential difference

V . Figure 5 shows that Q increases with V , with base case values used for the other

four parameters. Figure 6 indicates that Q has a weak dependence on the endcap electric

potential when V2 > 0.8V . Figure 7 shows that secondary electron emission at the inner

electrode causes Q to decrease as δ increases, and that Q > 15 is predicted in the limit,

δ → 0.

40 50 60 70 80 90 100
0

2

4

6

8

10

ρ1

Q

FIG. 3. Plot of Q versus ρ1 with ρs = 10, V = 460 kV, δ = 1, and V2 = V .
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FIG. 4. Plot of Q versus ρs with ρ1 = 60, V = 460 kV, δ = 1, and V2 = V .

VI. CLASSICAL TRAJECTORY MONTE CARLO SIMULATION

A. Initial Conditions

Equation (2) is numerically solved to simulate the radial motion of one particle at a time

without accounting for collisions. An iterative technique is described below that is used to

obtain Ep(r), such that the results apply even at higher plasma densities. Each simulated

trajectory starts at time t = 0 at a radial coordinate, r(0) = rs. The initial velocity

components of each particle are sampled from a drifting Maxwellian velocity distribution,

f(vrs, vθs) =
m

2πT
exp

(

−m[v2rs + (vθs − vd)
2]

2T

)

, (45)

which is normalized to one as written. Here, r′(0) = vrs is the initial radial velocity compo-

nent, vθs is the initial azimuthal velocity component, vd is the azimuthal drift velocity of the

plasma, and T is the plasma temperature in energy units. The initial velocity components,

vrs and vθs, are Cartesian coordinates in velocity space, each with a value between −∞
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FIG. 5. Plot of Q versus V with ρ1 = 60, ρs = 10, δ = 1, and V2 = V .

and ∞. Computationally, each of the two velocity components is sampled from a normal

distribution with a standard deviation equal to
√

T/m and with a mean equal to zero for

the radial component or with a mean equal to vd for the azimuthal component. The angular

momentum of each particle is calculated using L = mrsvθs.

B. Ending Conditions

Each trajectory simulation ends at a time tmax, which is defined to occur at the earliest

time for which any of the following three conditions is satisfied: (1) The particle reaches

the inner electrode, r(tmax) = r0. (2) The particle reaches the outer electrode, r(tmax) = r1.

(3) The particle reaches the starting coordinate, r(tmax) = rs, for a third time (which

requires passing through the starting coordinate exactly one time). The simulated particle

is considered to be lost in the first two cases and to be confined in the third case. For

the third case, a particle starts at r = rs traveling in one radial direction, reaches a radial
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FIG. 6. Plot of Q versus V2/V with ρ1 = 60, ρs = 10, V = 460 kV, and δ = 1.

turning point, returns to r = rs a second time and passes through, reaches a second radial

turning point, and returns to r = rs a third time. A confined particle would continue to

repeat such radial oscillations if the simulation is not ended.

C. Distribution of Confined Particles

For each confinement trajectory (which ends at time tmax at the starting coordinate rs),

Nn time values are randomly selected using tn = Rntmax. Here, Rn denotes a random number

that is equally likely to have any value between zero and one. A radial coordinate rn = r(tn)

is recorded for each value of tn. For a set of confinement trajectories, the associated set of

all generated rn values represents a distribution of radial coordinates for confined particles.

The region between electrodes is divided into Nb bins of radial width, wb = (r1 − r0)/Nb.

Let Nk denote the number of rn values within a bin labeled k that is bounded by imaginary
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FIG. 7. Plot of Q versus δ with ρ1 = 60, ρs = 10, V = 460 kV, and V2 = V .

cylindrical surfaces at r0+(k− 1)wb and at r0+kwb, with 1 ≤ k ≤ Nb. The radial midpoint

location of the kth bin is rk = r0 + (k− 0.5)wb. The points (rk, Nk) represent the simulated

radial distribution of confined particles. While it is possible to generate a set of Nk values

with Nn = 1, a larger value for Nn tends to make smoother the simulated radial distribution

of confined particles.

D. Plasma Density Profile

The simulated radial particle distribution Nk is used to obtain a radial plasma density

profile. A constant denoted cn is defined such that the product cnNk represents the number

of plasma particles per unit length associated with plasma in the kth bin. The plasma

density nk within each bin is approximated as constant and given by cnNk = nkνk, where
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the volume per unit length of the kth bin is

νk = πwb [2r0 + (2k − 1)wb] . (46)

A value for the constant cn is determined by choosing the maximum value for nk:

cn = πwb [2r0 + (2kmax − 1)wb]nmax/Nmax. (47)

Here, nmax and Nmax are the maximum values of nk and Nk, respectively, and kmax is the

value of k for which Nk = Nmax. Solving for the plasma density in the kth bin gives,

nk =
[2r0 + (2kmax − 1)wb]nmaxNk

[2r0 + (2k − 1)wb]Nmax

. (48)

With the kth bin centered at radial coordinate rk, the points (rk, nk) represent the simulated

radial plasma density profile for confined particles.

E. Self-Consistent Electric Field

According to Gauss’ law, the electric field at radial coordinate r between the inner and

outer electrodes is

Er(r) =
λ0 + λr(r)

2πǫ0r
. (49)

Here, λ0 is the charge per unit length on the inner electrode, λr is the charge per unit

length of plasma located between r0 and r, and ǫ0 is the permittivity of free space. Defining

the electric potential to be zero at the inner electrode, the electric potential at the outer

electrode is

V = −
∫ r1

r0
Er(r)dr = − 1

2πǫ0

[

λ0 ln
(

r1
r0

)

+
∫ r1

r0

λr(r)

r
dr

]

. (50)

Solving for λ0 gives

λ0 = −λv −
1

ln(r1/r0)

∫ r1

r0

λr(r)

r
dr, (51)

where

λv =
2πǫ0V

ln(r1/r0)
(52)

is the magnitude of the charge per unit length on the inner electrode that would occur in

vacuum without plasma present. Substitution into Eq. (49) gives an equation for the radial

electric field in terms of V instead of λ0:

Er(r) = − V

r ln(r1/r0)
+ Ei(r), (53)
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where

Ei(r) =
1

2πǫ0r

(

λr(r)−
1

ln(r1/r0)

∫ r1

r0

λr(r)

r
dr

)

. (54)

Equation (53) is the radial electric field used in Eq. (2), except with Ep(r) used in Eq. (2)

in place of Ei(r) in Eq. (53).

The plasma’s charge per unit length within the kth bin is λk = Zenkνk, where nk is

given by Eq. (48) and νk is given by Eq. (46). The charge per unit length of plasma located

between r0 and a bin boundary at radial coordinate, rj = r0 + jwb with 1 ≤ j ≤ Nb, is

λj =
j
∑

k=1

λk =
πZewbnmax

Nmax

[2r0 + (2kmax − 1)wb]
j
∑

k=1

Nk. (55)

A boundary condition at rj = r0 is also defined as λj=0 = 0. The discrete distribution given

by (rj, λj) for 0 ≤ j ≤ Nb is fit with an interpolating function, which is used as λr(r) in

Eq. (54) to numerically evaluate Ei(r).

A self-consistent electric field is considered to be simulated when the functional depen-

dence of Ep(r) used in Eq. (2) is numerically close to the resulting function Ei(r) evaluated

using Eq. (54). An iterative technique is applied for finding a suitable function for Ep(r).

Hereafter, let Ei(r) denote the function obtained during the ith iteration. Each iteration

begins by using

Ep(r) = ωEi−1(r) + (1− ω)Ei−2(r) (56)

in Eq. (2) for running Ntot trajectory simulations. Here, Ei−1(r) and Ei−2(r) are functions

found using Eq. (54) in the preceding two iterations, and ω is a chosen constant. However, for

the first iteration, Ei−1(r) = Ei−2(r) = 0 is used, and for the second iteration, Ei−2(r) = 0

is used. A value of ω is chosen for which, 1
2
< ω < 1, with larger values expected to result

in faster convergence and smaller values expected to result in slower but eventually closer

convergence. The convergence closeness is characterized at the end of the last iteration by

calculating,

Ci =





Nb
∑

j=1

[Ep(rj)− Ei(rj)]
2





1/2



Nb
∑

j=1

[Ep(rj)]
2





−1/2

. (57)

Equation (57) gives the root-mean-square difference between the values of Ep and Ei at the

bin boundaries divided by the root-mean-square value of Ep at the bin boundaries. Perfect

convergence to a self-consistent electric field occurs in the limits Ci → 0 and Ntot → ∞.

With a finite value for Ntot, the value of Ci is not expected to continue to decrease in value
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beyond a certain number of iterations. The chosen number of iterations is denoted imax

hereafter. The value of Ci is less than 0.05 for all simulation results reported here for which

imax > 1.

VII. APPLICATION OF SIMULATION

A. Parameter Values

Parameter values have been chosen for three simulations, and the results of the three

simulations are in Table II. The computational parameter values consist of the number of

simulated trajectories, Ntot = 5000, the number of randomly sampled time values for each

confinement trajectory, Nn = 10, the number of bins, Nb = 101, the convergence parameter,

ω = 0.9, and the number of iterations, imax, which is varied. The parameter values chosen

for representing a deuterium-tritium fusion plasma consist of the ion mass, m = 2.5 amu,

the ion charge state, Z = 1, the plasma temperature, T = 20 keV, and the maximum plasma

density, nmax = 1020 m−3. The plasma’s drift velocity is specified as vd = αdvc, where αd is

varied, and vc is the azimuthal speed for circular motion by a particle at radial coordinate

r = rs. Setting r′′(t) = 0, r(t) = rs, and L = mrsvc in Eq. (2) and solving for vc gives

vc =

[

Ze

m

(

V

ln(r1/r0)
− rsEp(rs)

)]1/2

. (58)

The value of vc given by Eq. (58) is not the same as that given by Eq. (11), except when

imax = 1 (with Ep = 0) is used. Other parameter values are for representing the trap. The

electric potential applied to the outer electrode (with the inner electrode at zero potential)

is chosen to be V = 460 kV. The radial coordinate where the plasma is simulated as having

a drifting Maxwellian velocity distribution is specified as rs = ρsr0, where ρs is varied. The

inner radius of the outer electrode is specified as r1 = ρ1r0, where ρ1 = 60 is a chosen value.

A numerical value is required for the inner electrode radius, and r0 = 0.02 mm is chosen.

The energy loss associated with secondary electron emission is included in the simulation,

and the value δ = 1 is chosen for the secondary electron emission coefficient. The average

kinetic energy associated with motion in the z dimension is included in each simulation with

the value, 〈Kz〉 = 10 keV, although such motion is not simulated. Each simulation provides

values for confinement fractions and average loss kinetic energies that are used in Eq. (42),
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TABLE II. Results from three simulations and results from the analytical model. See the text for

details.

Analytical Sim 1 Sim 2 Sim 3

ρs 10 10 10 6

αd 1 1 1 1.2

imax - 1 3 3

Q 10.3 10.6 6.64 10.2

f0 0.968 0.969 0.971 0.981

f1 0.978 0.982 0.952 0.973

fp 0.946 0.952 0.924 0.954

fr0 0.0139 0.0154 0.0126 0.0241

fr1 0.986 0.985 0.987 0.976

〈Kr〉 (keV) 9.75 9.47 9.47 10.0

〈Kθ〉 (keV) 64.8 63.7 62.3 90.0

〈K〉 (keV) 84.6 83.2 81.7 110.

〈K0〉0 (keV) 831. 878. 877. 820.

〈K1〉1 (keV) 11.8 11.8 11.8 10.9

Pf,avg (kW/m3) - 33.7 35.6 16.0

E0 (GV/m) - 6.38 6.44 6.09

which together with Eqs. (43) and (44), provide a value for Q.

Table II shows results from three classical trajectory Monte Carlo simulations and the

results from the analytical model as described in Sec. V for the base case. The first simu-

lation, labeled Sim 1, has parameter values ρs = 10, αd = 1, and imax = 1. The parameter

values for Sim 1 are intended to correspond to those of the base case used for applying the

analytical model. The analytical model includes axial losses, which are controlled by the

value of V2. The simulations do not include axial losses. However, as can be seen in Fig. 6,

the effect of plasma axial losses on Q as indicated by the effect of varying V2 on Q is not

significant when V2 has a value near that of V . Also, the effect of the plasma’s space charge

is excluded from the simulation when imax = 1, because Ep = 0 is used. The analytical

results apply in the low-density limit, which is defined to occur when plasma space charge
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effects are negligible. The value, Q = 10.6, from Sim 1 is less than 3% different than the

value, Q = 10.3, from the analytical model.

The second simulation, labeled Sim 2, is the same as the first, except that imax = 3 is

used to obtain a self-consistent electric field. The effect of the plasma’s space charge is found

to be significant, with Q decreasing by 37% from Q = 10.6 to Q = 6.64.

The third simulation, labeled Sim 3, also obtains a self-consistent electric field, with

imax = 3, but with parameter values ρs = 6 and αd = 1.2. A process to find these values

starts with evaluating Q using the values 10, 8, 6, and 4 for ρs using the analytical model.

For each value of ρs, the value of αd is found to two significant figures such that Q has a

maximum value. For the four values of ρs, the overall maximum value of Q occurs with

ρs = 6 and αd = 1.3 according to the analytical model. Next, simulations that obtain a

self-consistent electric field are run with imax = 3 and ρs = 6. The value αd = 1.2 is found

to two significant figures to maximize Q.

B. Radial Plasma Density Profile

Figure 8 shows a plot of the radial plasma density profile for Sim 3. Shown is a plot of

plasma density nk versus radial coordinate rk. The region is divided into bins labeled k, and

nk is the density in the kth bin, while rk is the radial coordinate of the radial center of the

kth bin.

As discussed later, it is desirable for the plasma to have a narrow density profile. The

plasma density profile reported here is expected to have the narrowest density profile possible

for confinement of a plasma with a drifting Maxwellian velocity distribution and for the

specified Sim 3 parameter values. Recall that all confined particles pass back and forth

through the radial coordinate r = rs. If plasma particles are also confined without passing

through r = rs, the plasma density profile would tend to be radially broader with nmax

smaller for the same total space charge.

C. Sample Proportions

Let N0, N1, and Np denote the number of trajectories that end at the inner electrode,

the number of trajectories that end at the outer electrode, and the number of confinement
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FIG. 8. Radial plasma density profile for Sim 3.

trajectories (which end at the starting coordinate), respectively. Also, let Nr0 and Nr1

denote the number of confinement trajectories with vθs ≤ vθδ and vθs > vθδ, respectively.

Here, vθs is the initial azimuthal velocity component, and vθδ = wθδvth, where the expression

for wθδ given by Eq. (12) is used, because the expression applies even with plasma space

charge present.

In Table II, the values for the five confinement fractions, f0, f1, fp, fr0, and fr1, are

evaluated as sample proportions by each simulation. The sample proportion of the number

of trajectories that do not end at the inner electrode is evaluated as f0 = (Ntot −N0)/Ntot.

The sample proportion of the number of trajectories that do not end at the outer electrode

is evaluated as f1 = (Ntot −N1)/Ntot. The sample proportion of the number of confinement

trajectories is evaluated as fp = Np/Ntot. The sample proportion of the number of confine-

ment trajectories with vθs ≤ vθδ is evaluated as fr0 = Nr0/Np. The sample proportion of

the number of confinement trajectories with vθs > vθδ is evaluated as fr1 = Nr1/Np.

For the five sample proportions, there are five corresponding population proportions that

occur in the limits, Ntot → ∞ and Np → ∞. A confidence interval is calculated for each

population proportion using f±(∆g+∆h), where ∆g is associated with using a finite sample
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size and ∆h is introduced to account for imposing an upper limit on the simulated time each

trajectory is computed. For a finite sample size, the expression ∆g = z∗
√

[f(1− f)]/Nu is

used, where Nu is replaced by Ntot for f0, f1, and fp, and Nu is replaced by Np for fr0

and fr1. (See, for example, Ref. 38 for information about the statistics.) Here, z∗ = 1.96

is used for a 95% confidence level, assuming sample proportions are normally distributed

about the corresponding population proportion. The upper limit imposed on each trajectory

simulation time is chosen to be tm = 8r1/vc for all simulations, and all simulated trajectories

that end at time tm are excluded from the sample size. To account for an upper limit imposed

on each trajectory simulation time, the expression ∆h = Nm/Nu is used. Here, Nm is the

number of trajectories excluded from the sample size, which is reset to Ntot = N0+N1+Np.

The value of each confinement faction, f0, f1, fp, fr0, and fr1, predicted by the an-

alytical model falls within each corresponding confidence interval for Sim 1. For Sim 1,

the corresponding confidence intervals are 0.969±0.00558, 0.982±0.00447, 0.952±0.00675,

0.0154±0.00440, and 0.985±0.00440. For Sim 2, the confidence intervals are 0.971±0.00504,

0.952 ± 0.00630, 0.924 ± 0.00777, 0.0126 ± 0.00376, and 0.987 ± 0.00376. For Sim 3, the

confidence intervals are 0.981± 0.00517, 0.973± 0.00593, 0.954± 0.00723, 0.0241± 0.00590,

and 0.976± 0.00590.

D. Kinetic Energy Averages

Values for initial radial and azimuthal velocity components, vrs and vθs, are sampled

for each simulated trajectory. The associated average kinetic energy values in Table II

are evaluated for confinement trajectories (that end at the starting coordinate) as 〈Kr〉 =
1
2
m 〈v2rs〉 and 〈Kθ〉 = 1

2
m 〈v2θs〉, respectively. A velocity component for the axial dimension is

not sampled. Instead, the associated average kinetic energy value is taken to be 〈Kz〉 = 1
2
T .

The average kinetic energy at rs for confinement trajectories is calculated as 〈K〉 = 〈Kr〉+
〈Kθ〉+ 〈Kz〉.

Consider a particle that is barely able to reach an electrode, because the particle’s effective

energy for radial motion is just barely larger than the particle’s effective potential energy

at the electrode. The radial kinetic energy of such a particle is approximated as being

zero upon reaching the electrode, Kr(ri) = 0, where i = 0 for the inner electrode and

i = 1 for the outer electrode. Such an approximation is used here based on considering
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diffusion in velocity space to be due to the cumulative effect of many Coulomb collisions

and particle loss to be due to particles overcoming an effective potential energy barrier

located at an electrode. A particle’s kinetic energy upon reaching an electrode is then

K(ri) = Kθ(ri) +Kz(ri), where Kz would be the portion of kinetic energy associated with

axial motion. The assumption is made that axial motion is decoupled from motion in other

dimensions, and Kz(ri) = Kz(rs). The assumption of conservation of angular momentum

provides, Kθ(ri) = (rs/ri)
2Kθ(rs). The average kinetic energy of a particle incident on an

electrode is then, 〈K(ri)〉i = (rs/ri)
2 〈Kθ(rs)〉i + 〈Kz(rs)〉. The subscript i on an average is

incorporated to indicate that the average only considers trajectories that can end at electrode

i. The associated values for the average loss kinetic energies in Table II are evaluated by

each simulation as 〈K0〉0 = ρ2s 〈Kθ〉0 + 〈Kz〉+ eV δ and 〈K1〉1 = (ρs/ρ1)
2 〈Kθ〉1 + 〈Kz〉.

The simulation does not conserve energy. As indicated in Subsec. II A, the radial kinetic

energy Kr for a particle that returns to r = rs at the end of a confinement trajectory must

be unchanged from when the particle started at r = rs. The average difference serves as an

indication of numerical inaccuracy and is less than 0.02% for trajectories that end at the

starting coordinate for simulations reported here.

E. Volume Averaged Fusion Power Density

Equation (44) is used to write the fusion power density profile as

Pk =
1

4
Efn

2
k 〈σv〉f . (59)

The volume averaged fusion power density in Table II is estimated as

Pf,avg =
1

πr21

Nb
∑

k=1

Pkνk =
wb

r21

Nb
∑

k=1

Pk [2r0 + (2k − 1)wb] . (60)

For the same total space charge, a temporal or spatial variation of plasma density tends to

increase the root-mean-square value of the plasma density relative to a spatially flat and tem-

porally constant density profile. It may be possible to increase the time- and space-averaged

fusion power density by increasing the root-mean-square value of the plasma density without

increasing the plasma’s total space charge. One possibility is to drive time-dependent non-

uniformities to large amplitudes. Another possibility is illustrated with the plasma density

profile found here for Sim 3. The volume averaged plasma density is estimated for Sim 3 as
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navg = λr(r1)/(Zeπr
2
1) = 1.56× 1018 m−3. The associated fusion power density is calculated

using Eq. (59), except with the replacement nk → navg. The result is Pu = 738 W/m3,

which is the power density that would occur for Sim 3 if the plasma had a spatially uniform

density profile for r < r1 with the total space charge unchanged. The ratio Pf,avg/Pu = 22

has a value larger than one, which indicates that the plasma’s nonuniform density causes

the fusion power to be a factor of 22 larger than that for a uniform density with the same

total space charge for Sim 3.

F. Volume Averaged Loss Power Density Associated With Field Emission

A large electric field strength E0 at the inner electrode can cause a significant rate of

electron field emission. Each emitted electron would experience an increase in kinetic energy

by an amount eV as a result of traveling unimpeded to the outer electrode. Let Ie denote the

magnitude of the field emission current, and let Je = Ie/(2πr0ℓ) denote the corresponding

field emission current density at the surface of the inner electrode. Here, ℓ denotes the axial

length of the system. The energy loss rate associated with field emission is IeV = 2πr0ℓJeV .

The volume averaged loss power density associated with field emission is estimated as

Pe,avg =
2πr0ℓJeV

πr21ℓ
=

2r0V Je
r21

. (61)

Equation (7) from Ref. 39 is used to evaluate the current density Je for cold field emission. In

the cold electrode limit, Eq. (7) from Ref. 39 indicates that field emission is a function of the

work function and the surface electric field. Assuming that surface impurities and surface

roughness tend to enhance field emission, the ideal inner electrode may be an atomically

smooth and clean wire with the highest work function possible.

High work function values that have been reported include experimental values, such as

7.42 eV,40 and predicted values, such as 7.78 eV,41 7.87 eV,42 and 9.2 eV.43 Some pure metals

have work function values reported to be between 5 eV and 6 eV including palladium (5.55

eV), platinum (5.84 eV), and gold (5.22 eV).44 Figure 9 shows a plot of E0 versus work

function W for a volume averaged loss power density associated with field emission equal

to 1 kW/m3 for Sim 3. The value 1 kW/m3 is 6.3% of the volume averaged fusion power

density for Sim 3 and is considered here as a reasonable loss rate. Figure 9 is considered

here to provide an upper limit for the possible values of E0 for Sim 3. A value, E0 > 5
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GV/m, is not ruled out here as a long-term possibility. Nevertheless, it is concluded that an

additional enhancement of the time- and space-averaged fusion power density may be called

for, such as by intentionally driving time-dependent non-uniformities to large amplitudes.

5 6 7 8 9 10 11
0

1

2

3

4

5

6

W (eV)

E
0
(G
V
/m

)

FIG. 9. Electric field at the surface of the inner electrode versus work function for a volume

averaged loss power density associated with field emission equal to 1 kW/m3 for Sim 3.

G. Energy Analysis

The volume averaged electrostatic energy density of the system is evaluated as

εe,avg =
1

π(r21 − r20)

∫ r1

r0

1

2
ǫ0Er(r)

22πrdr =
ǫ0

r21 − r20

∫ r1

r0
Er(r)

2 r dr, (62)

where the radial electric field Er(r) is given by Eq. (53). To obtain a value without plasma,

Ei(r) = 0 is used, and the result for Sim 3 is εe,avg = 317.9 kJ/m3. To obtain a value with

plasma present, Ei(r) given by Eq. (54) is used, and the result for Sim 3 is εe,avg = 319.6
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kJ/m3. The difference between the two values, ∆εe,avg = 1.7 kJ/m3, represents the volume

averaged electrostatic energy density that would be associated with loading the system to

obtain the plasma density profile shown in Fig. 8. Here, loading the system is defined

as adding charged particles to the system, including negative charge added to the inner

electrode in excess of the amount that would be added without adding plasma. The energy

associated with particle motion is not included in ∆εe,avg. The volume averaged plasma

kinetic energy density (including drift and thermal portions) is estimated for Sim 3 as

εp,avg = 〈K〉navg = 27 kJ/m3. The volume averaged energy associated with loading the

system for Sim 3 is εs,avg = ∆εe,avg+ εp,avg = 28.7 kJ/m3, which is predominantly associated

with kinetic energy.

The available fusion energy is defined here as the energy that would be produced if all

plasma ions undergo fusion reactions. The volume averaged available fusion energy density

of a deuterium-tritium plasma is estimated for Sim 3 as εf,max =
1
2
Efnavg = 2.2 MJ/m3. Let

Qmax denote the ratio of the available fusion energy to the energy associated with loading

the system. For Sim 3, Qmax = εf,max/εs,avg = 77.

For Sim 3, Q = Pf/Pℓ = 10.2, where the fusion power density Pf and the energy loss

power density Pℓ are each proportional to the square of the plasma density, in the way each

is evaluated here. Consequently, Q also represents the ratio of the volume averaged fusion

power density to the volume averaged energy loss power density.

Equations (15) and (16) of Ref. 45 define scientific gain, Qsci = Pf/Pext, and fuel gain,

Qfuel = Pf/Pabs, in terms of fusion power Pf , externally applied power Pext, and absorbed

power Pabs = ηabsPext, where ηabs is the absorption efficiency. Scientific gain and fuel gain

are related by Qsci = ηabsQfuel.
45 The work presented here does not provide information

that can be used to estimate a value for either ηabs or Qsci, and only a value for Qfuel is

estimated for Sim 3. For applying the definition of Qfuel to Sim 3, the associated terms are

considered here to be volume averaged quantities. It is assumed here that a centrifugal-

electrostatic confinement fusion reactor would operate using a repeating cycle consisting of

a plasma loading stage, a plasma holding stage, and a plasma release stage. The absorbed

power Pabs would be predominantly associated with the plasma loading stage, and the fusion

power would be predominantly associated with the plasma holding stage. To obtain a value

for Qfuel, each plasma particle is treated as if it is loaded immediately before being lost,

such that Pabs = Pℓ, assuming that the number of particles that undergo fusion reactions is
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negligibly small compared to the number of particles that are lost. With such a treatment,

Qfuel = Q = 10.2 for Sim 3.

VIII. DISCUSSION

Confinement of a near-Maxwellian, drifting deuterium-tritium plasma is considered here,

with a plasma temperature of 20 keV. The plasma consists of ions and no electrons, with each

ion approximated as having a mass of 2.5 amu and with a Coulomb logarithm approximated

as 20. The work presented here predicts Q = 10 (which is a fusion energy production rate

that is 10 times larger than the rate at which energy is lost to surrounding structures) for

the parameter values associated with Sim 3.

The value of the secondary electron emission coefficient δ is material-dependent and

sensitive to surface conditions.46 The value δ = 1 is chosen here, by considering the data

compendium reported by Ref. 46. A specific design for the endcap electrodes is not consid-

ered, and it is assumed that V2 = V is possible with a suitable design that keeps axial motion

decoupled from radial and azimuthal motion. Axial motion that is decoupled from radial

and azimuthal motion may also be necessary for keeping axial reflections from broadening

the radial density profile (e.g., at the axial midplane).

The magnitude of the electric field at the surface of the inner electrode (E0) cannot be

too large. Too large a value of E0 can be expected to cause significant issues associated

with field emission of electrons. An upper limit for the value of E0 can be expected to be

material-dependent, sensitive to surface conditions, and affected by how high a vacuum is

present. The value E0 = 6.1 GV/m occurs in Sim 3. Such a value is not ruled out here as a

possibility, by considering that, in Ref. 47, the electric field for a cathode spot unipolar arc is

reported to be 10 GV/m. However, significant uncertainty exists with considering E0 = 6.1

GV/m as a possibility. With E0 ≪ 10 GV/m, the present work predicts that Pf,avg may

be too small to be of practical use. The fusion power density values for future magnetic

confinement fusion reactors include 600 kW/m3 for ITER and 7 MW/m3 for SPARC.48,49

Such values may be significantly larger than what is possible with centrifugal-electrostatic

confinement fusion.

To mitigate issues with field emission, it may be necessary to operate under conditions of

ultrahigh vacuum and with special materials selected or developed for the inner electrode. It
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should also be noted that if the electrode configuration illustrated in Fig. 1 is used, the elec-

tric field at the surface of the inner electrode will be larger under the endcap electrodes than

at the axial midplane. For example, if the endcap electrodes are chosen to have a normalized

inner radius equal to ρs, the electric field will increase by a factor of ln(ρ1)/ ln(ρs) = 2.3 for

Sim 3 parameter values, under endcap electrodes that are sufficiently wide axially.

The energy flux associated with ions incident on the inner electrode is evaluated using

δ = 0 as

R0 =
r21Pf,avgP0

2r0QPℓ

. (63)

Here, Pf,avg/Q gives the volume averaged energy-loss power density, r21/(2r0) is the ratio

of the volume associated with r < r1 to the inner-electrode surface area associated with

r = r0, and P0/Pℓ is the fraction of energy incident on the inner electrode as calculated

using Eq. (42). For Sim 3 parameter values, except with δ = 0, the energy flux incident on

the inner electrode is found to be R0 = 12 W/m2. The energy flux associated with blackbody

radiation is evaluated using the Stefan-Boltzmann law, R = σT 4, where σ = 5.67 × 10−8

W/(m2 K4) is the Stefan-Boltzmann constant. The blackbody-radiation energy flux from

an inner electrode at approximately room temperature (300 K) is calculated to be R = 459

W/m2. It is concluded for Sim 3 parameter values that the inner electrode will not heat up

to a temperature significantly higher than the temperature of surrounding structures at or

above room temperature, as a result of the energy flux associated with plasma ions incident

on the inner electrode.

The results reported here for Sim 3 parameter values are interpreted to indicate that the

volume averaged fusion power density may be too small to be of practical use, even while

the fusion energy production rate is much larger than the energy loss rate to the electrodes.

However, it may be possible to realize a practical use for centrifugal-electrostatic confinement

fusion, if an approach can be employed for enhancing the time and space averaged fusion

power density. For example, time-dependent non-uniformities that are intentionally driven

to large amplitudes may increase the root-mean-square value of the plasma density and

increase the time and space averaged fusion power density, without also increasing the mean

value of the plasma density and the total plasma space charge.
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IX. CONCLUSION

Two approaches consisting of an analytical approach and a computational approach have

been developed and applied for describing an electrically confined nonneutral plasma that

orbits a cylindrical electrode. The analytical approach takes the low density limit, for which

the effect of space charge is negligible. The computational approach incorporates a classical

trajectory Monte Carlo simulation and accounts for space charge effects. Both approaches

were applied for describing confinement and loss characteristics associated with a drifting

deuterium-tritium plasma that has a 20 keV temperature and a near-Maxwellian velocity

distribution at one radial location. Conditions were predicted for confining a plasma using

a 460 kV applied electric potential difference, such that the fusion energy production rate

would exceed the energy loss rate to electrodes by a factor of 10. However, the study also

indicated that the volume averaged fusion power density may be too small to be of practical

use. Therefore, an approach for enhancing the volume averaged fusion power density may

have to be employed to realize a practical use for centrifugal-electrostatic confinement fusion.
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