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Abstract

A model for plasma confinement is developed and applied for describing an electrically confined
thermonuclear plasma. The plasma confinement model includes both an analytical approach that
excludes space charge effects and a classical trajectory Monte Carlo simulation that accounts for
space charge. The plasma consists of reactant ions that form a nonneutral plasma without electrons.
The plasma drifts around a negatively charged electrode. Conditions are predicted for confining
a deuterium-tritium plasma using a 460 kV applied electric potential difference. The ion plasma
would have a 20 keV temperature, a 1029 m~3 peak density, and a 110 keV average kinetic energy
per ion (including drift and thermal portions at a certain point in the plasma). The fusion energy
production rate is predicted to be 10 times larger than the energy loss rate, including contributions
associated with both plasma loss to electrodes and secondary electron emission. However, an
approach for enhancing the fusion power density may have to be employed to realize a practical

use for centrifugal-electrostatic confinement fusion.
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I. INTRODUCTION

While it is not possible to produce a three-dimensional electrostatic potential well in vac-
uum, it is possible to use an electrostatic field as part of an ion confinement approach that
includes the presence of a magnetic field and/or electrons. Examples include variations of the

Penning trap,'™ the electron beam ion trap,>S inertial-electrostatic confinement fusion,”®

electrostatically plugged magnetic cusps,” Penning fusion,'® the Polywell,'* the Orbitron,'?
and boundary confinement of electrons that produce a three-dimensional electrostatic poten-
tial well for confining ions.!*'6 There also exist approaches for purely electric confinement
of ions without the presence of a magnetic field or electrons. Examples include electro-
static storage of ion beams,!” and centrifugal-electrostatic traps such as the Kingdon trap
and the Orbitrap.!8?? Various applications have been reported for centrifugal-electrostatic
traps. 22 Descriptions of the confinement physics associated with centrifugal-electrostatic
traps have been based primarily on classical trajectory simulations and analyses.3032
Centrifugal-electrostatic confinement is defined here as an approach for trapping charged
particles (including drifting nonneutral plasmas) that requires both an effective centrifugal
force and an electric force. Because a centrifugal force is not a real force, centrifugal-
electrostatic confinement is a type of purely electric confinement. In the work reported
in Ref. 32, a confinement model for centrifugal-electrostatic traps was developed based on
defining an effective centrifugal potential energy and deriving an expression for the fraction
of confined particles that follow a drifting Maxwellian velocity distribution. The derivation
considered a limited range of values for one velocity component. The work presented here is
intended to be self-contained and is an extension of the work presented in Ref. 32. Here, an
understanding of the losses of particles and energy to surrounding structures is developed
using two approaches. In addition, the scientific advances are applied for predicting the
confinement of a thermonuclear plasma. It should be noted that the normalized effective
potential energy and thermal speed have different definitions here than in Ref. 32. Also, the

term “plasma” is used here without regard to the relative value of the Debye length.

Figure 1 shows an example of an axisymmetric configuration that may serve for providing
centrifugal-electrostatic confinement of a nonneutral plasma. The illustration shows four
electrodes and plasma. The plasma would be confined within a toroidal confinement volume

and would experience a net drift around a section of the inner electrode, which has the



appearance of a wire in the figure. The outer electrode has the appearance of a hollow
cylinder. There are also two endcap electrodes, which serve to provide axial confinement of

the plasma.

FIG. 1. Illustration showing the cross section of an axisymmetric electrode system (black) for
confining a nonneutral plasma (blue). The electrodes consist of an inner electrode with radius 7o
and zero electrostatic potential, an outer electrode with inner radius r; and electrostatic potential
V', and two endcap electrodes that each have electrostatic potential V5. The plasma consists of
particles that pass radially back and forth through the radius r;. Normalized parameters are used
including p1 = r1/ro, ps = rs/ro, and v = ¢qV/T, where T is the plasma temperature in energy

units, and ¢ is the charge of a plasma particle. The figure is not to scale.

Section II provides a discussion of considerations and basic assumptions used to develop
the description of centrifugal-electrostatic plasma confinement reported here. Sections I1I
and IV provide an analytical approach for describing centrifugal-electrostatic confinement
within a system qualitatively similar to that shown in Fig. 1. The analytical approach

includes some integrals that are evaluated numerically. The collisionless and low-density
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limits are taken in Sec. III, while collisions are considered in Sec. IV. The confinement
model in Secs. III and IV is applied in Sec. V for describing the confinement of a fusion
plasma in the low-density limit. Section VI provides a computational approach for describing
radial plasma confinement accounting for the effect of space charge. The computational
approach incorporates a classical trajectory Monte Carlo simulation. The confinement model
in Secs. IV and VI is applied in Sec. VII for describing the confinement of a fusion plasma,
including the effect of space charge. Section VIII provides a discussion of the results found.

Concluding remarks are in Sec. IX.

II. CONFINEMENT MODEL DEVELOPMENT CONSIDERATIONS
A. Radial Particle Confinement

Equations that govern the radial motion of a particle in a centrifugal-electrostatic plasma
trap are considered here in Subsec. ITA. The plasma confinement system is treated as being
axisymmetric and as consisting of a coaxial pair of cylindrical electrodes of infinite length.
Axial confinement is not treated, with the assumption that the axial motion of a particle is
decoupled from motion in the other dimensions. A cylindrical coordinate system is defined
with coordinates (r,6,z), and with associated unit vectors (F,é,ﬁ). The z axis of the
coordinate system is located along the axis of symmetry of the system. A plasma particle
in the system is treated classically as a point charge that represents a positive ion. Unless
noted otherwise, the particle is considered to be affected only by a static and axisymmetric
electric field produced by the electrodes and by the space charge of a quiescent plasma.

The acceleration of a particle in the system as a function of time ¢ is
alt) = [1"(t) = r()) 0 (0)2] 7(1) + [r(8) 0"(6) + 20 (1) 0/ (1) O(). &

An absence of force and acceleration in the azimuthal direction is satisfied by a constant
angular momentum about the z axis, L = mr?¢’, where m is the mass of the particle.
Substituting ¢ = L/(mr?) into the centripetal acceleration term and applying Newton’s

second law yields an equation of motion,

P qv .
mr”(t) = @ T (o) +qB, [r(t)]. (2)
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Here, ¢ is the particle’s charge and V' is the difference in electric potential between the outer
electrode having an inner radius 7 and the inner electrode having an outer radius ry. The
first term on the right with an 7~ dependence is a short-range outward centrifugal force.
The second term on the right with an r~! dependence is a longer-range inward electric force
that would be due to the radial electric field produced by the electrodes without plasma
present. In the last term on the right, the function E,(r) is defined such that the last two
terms on the right together provide an electric force that accounts for a confined plasma’s
space charge.

The centrifugal force, Fo(r) = L?/(mr3)#, can be treated as a conservative force, because
its curl is zero, V x Fo = 0. A centrifugal potential energy Uq(r) is defined such that
Fo(r) = —VUc(r). The centrifugal potential energy can be written as Uq(r) = Uco +
L?/(2mr?), where Uco is an arbitrary constant. Let ¢(r) denote the electric potential, let
U(r) = qé(r) + Uc(r) be defined as the effective potential energy of the particle, and let
K, = %mvf be referred to as the radial kinetic energy of the particle, where v, = r/(¢). The
effective energy for radial motion is defined as the sum of radial kinetic energy and effective
potential energy, E.g = K, + U. A particle is considered to be lost from confinement if it
reaches either the inner electrode at r = rg or the outer electrode at » = r;. The effective
energy Feg is a conserved quantity. Therefore, a particle in the system will remain confined,
so long as the particle’s effective energy remains smaller than the effective potential energy
at each electrode, Eog < U(rg) and Eeg < U(r1).

Suppose that a confined plasma particle passes radially back and forth through a radial
coordinate denoted r,. If only the effects considered here in Subsec. IT A are present, the
particle’s radial kinetic energy is the same at the time of each pass, K,(rs) = Eeg — U(r5).
The two conditions for confinement of the particle can be expressed as K, (rs) < U(ro)—U(rs)
and K, (rs) < U(r1) —U(rs). If both conditions are satisfied by the particle, both conditions
will continue to be satisfied indefinitely, if additional effects (e.g., the effects of collisions)

are not present.

B. Assumptions

In the work presented here, it is assumed that axial motion is not coupled to motion

in the other dimensions. When the effects of collisions are accounted for, it is assumed
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that the collisional mean-free-path is large compared to plasma dimensions. With an ef-
fective potential energy well providing radial particle confinement and an electric potential
energy well providing axial particle confinement, it is assumed that collisions tend to cause
a confined plasma to approach a drifting Maxwellian velocity distribution at a certain radial
point 7 = r¢ in the plasma, and that nearly all confined plasma particles pass back and
forth through the radial coordinate r,. No assumptions are made regarding a phase-space
distribution that would describe a confined plasma, and such a distribution has not been
found. Effects that can cause a decrease of the angular momentum of the system of confined
particles are not considered here.

A process for efficiently loading a plasma into a centrifugal-electrostatic trap is not de-
veloped in the present work. However, a brief discussion of a possible process is provided
in this paragraph. It is assumed that previously reported methods, such as those described
in Refs. 19, 21, 22, 24, and 28, provide a suitable basis for developing new methods, as
needed, for loading a plasma (e.g., a fusion plasma) into a centrifugal-electrostatic trap. It
is speculated that a focused ion beam could be used to inject ions through a hole in the
outer electrode, while the applied electric potential difference V' between the outer and inner
electrodes is increasing. At the point of entry, the injected ions would have a sufficiently
small radial kinetic energy K, (r1) to be captured by the changing applied potential. The
azimuthal velocity component would be chosen such that each ion has a desired angular
momentum L at the point of entry. The axial velocity component at the point of entry
would be chosen with the expectation that axially counterstreaming ions will activate the
two-stream instability, which, together with collisions, converts kinetic energy associated
with axial motion into thermal energy. The plasma would initially be loaded in a high or-
bit, with nearly all particles passing back and forth through a radial coordinate r. Radial
compression by increasing the applied potential difference V' would then be used to change

the value of r, to a desired value.

C. Comparisons With Magnetic Plasma Confinement

Consider a confined plasma with an ion mean-free-path that is large compared to the
plasma’s dimensions. For a quasineutral plasma that is confined only magnetically, collisions

that cause a change of a plasma ion’s orbit in configuration space may lead to the loss of
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the ion. In contrast, for a nonneutral ion plasma that is confined only electrically, with such
confinement treated as a square potential energy well, collisions that cause a change of a
plasma ion’s velocity may lead to the loss of the ion. The ion loss rate may be modeled as
collision-based diffusion in configuration space for one case and collision-based diffusion in

velocity space for the other case.

In a quasineutral plasma that is confined only magnetically, the presence of electrons may
provide a number of important energy loss mechanisms, including synchrotron radiation,
bremsstrahlung radiation, and cross-magnetic-field energy transport that may occur at a
rate that is larger than that due to collisions alone. Such energy loss mechanisms are

negligible or absent in a nonneutral ion plasma that is electrically confined.

Variations of the Penning trap employ both a magnetic field and an electric field for
confining nonneutral plasmas.’?> With such traps, low temperature antimatter is routinely
confined using superconducting magnets for days or even years.? In Penning traps, a plasma
state referred to as global thermal equilibrium is possible that is characterized by sheer-free
rotation associated with a cross-magnetic-field drift.? In contrast, the same equilibrium does
not occur without the presence of a magnetic field. A rotating-wall technique can be used to
maintain the rotational drift in Penning traps.? It is not clear if a technique for maintaining
a rotational drift is possible for a nonneutral plasma confined without the presence of a

magnetic field.

A Penning trap could potentially confine a nonneutral fusion plasma without electrons.

However, a density limit, which is named after Brillouin®

, would severely limit the fusion
power density. For example, the Brillouin density limit for 2.5 amu ions in a 20 T magnetic
field is 4.3 x 10'7 m~3, which may be considered too small for the fusion power density to be
of practical use. The Brillouin density limit is a disciplinary issue, specific to Penning traps.
The approach considered here for confining a nonneutral fusion plasma is not subject to the

Brillouin density limit. However, there exist a number of interdisciplinary issues associated

with generating a fully nonneutral fusion plasma.?
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IIT. CONFINEMENT IN THE COLLISIONLESS AND LOW-DENSITY LIMITS

A. Confinement Configuration

An axisymmetric plasma confinement system is considered to consist of a cylindrical inner
electrode located within a hollow cylindrical outer electrode, with both electrodes much
longer than the radius of the outer electrode. A drifting nonneutral plasma is considered to
be located between the electrodes. A model describing the confinement of such a plasma is
developed for a region far from the axial ends of the electrodes.

A cylindrical coordinate system with radial, azimuthal, and axial coordinates, (r, 0, z), is
defined in configuration space, with the z axis coincident with the axis of symmetry of the
plasma confinement system. An imaginary cylindrical surface is defined that is located at
radial coordinate r = r, and that has a finite axial length. The imaginary surface is much
farther from each axial end than the radius of the outer electrode and is much longer than
axial plasma variations.

The plasma confinement model presented here applies to plasma particles that orbit the
inner electrode in one azimuthal direction and that pass radially back and forth through the
imaginary surface. The region of applicability is treated as being axisymmetric, i.e., no 6
dependence, and without axial variations, i.e., no z dependence. Thus, only one cylindrical
coordinate, the radial coordinate r, is used. For convenience, plasma confinement is referred
to as occurring for particles that pass radially back and forth through a single point r = 7y,

with the single point representing the imaginary surface.

B. Drifting Maxwellian Velocity Distribution

A Cartesian coordinate system is defined in velocity space for describing the velocities of
confined particles as they pass through the single point rg, which has a fixed value. Such
plasma particles are considered to nearly follow a drifting Maxwellian velocity distribution

at rg. The drifting Maxwellian velocity distribution normalized to one is written as

2 N2 2
exp 7+ (vp — va) +’UZ:|.

1
fv(q)r‘/v977)Z) - (ﬁvthf vgh (3)

Here, v,., vg, v, are radial, azimuthal, and axial velocity components, which form a Cartesian

set of coordinates in velocity space, v, is the azimuthal drift velocity, vy, = /27 /m is the

8
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thermal speed, T is the plasma temperature in energy units, and m is the mass of a plasma
particle. Hereafter, the symbol w denotes velocity normalized by the thermal speed. For

example, w, = v,/vy,. The drifting Maxwellian normalized-velocity distribution is

fw(wra wy, wz) _ 7T73/267[wf+(w9fwd)2+wf] ) (4)

Confined particles are considered to have limited ranges of normalized-velocity component
values specified by W, max, Wrmax; Womin a0d W max. Particles are not considered to be
confined for which any of the following inequalities are satisfied: [w,| > W, max, [Wr] > Wr.max,
Wy < W min, OF Wy > Womax. Lhe fraction of particles that follow the drifting Maxwellian

normalized-velocity distribution is evaluated as

W, max Wr,max Wz, max
fp = / fw(wh we, wz)dwzdwrdw<9~ (5)

WH min —Wr,max Wz, max
The distribution f,,(w,,wy, w,) is normalized, such that f, = 1 if the limits w, max — 00,
Wy max — 00, Womin — —00, and Wy max — 00 are taken. Integration over two normalized
velocity components yields,
"W, max
—1/2 » — . 2
fp=m / / e~ (Wo—wa)® o f (W2, max) €rf (Wrmax) dwe, (6)
Wg,min

where erf is the error function. Expressions for w, max, W, Wrmax; Wo,min, a0d Wp max are NOw

obtained.

C. Normalized Velocity Expressions

The electric potential between the inner and outer cylindrical electrodes can be written

as
Vin(p)

() ™

Here, p = r/rq is the radial coordinate normalized by rg, the radius of the inner electrode’s

?(p) = ¢o +

outer surface, p; = r1/ro is the normalized radius of the outer electrode’s inner surface,
which has radius 71, ¢o is an arbitrary additive constant, and V' = ¢(p1) — ¢(1) is the
difference in electric potential between the outer and inner cylindrical electrodes. Hereafter,
¢o = ¢(1) = 0 is used, by defining the electric potential to be zero at the inner electrode.
Axial confinement is treated by assuming that a particle located at a normalized radial

coordinate p, = r/rg, where the electric potential is ¢(p;), is not confined if the particle can

9
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travel axially to reach an endcap electrode. The endcap electrodes are considered to be held
at an electric potential equal to V5. Axial motion is considered to be decoupled from motion
in the other two dimensions, and a particle at ps with a z component of velocity larger in
magnitude than v, .y is assumed to not be confined axially, where %mvimax = qVa—qo(ps),

or equivalently,

e D)

Here, v = qV/T, and ¢ is the charge of a confined particle.

The effective centrifugal potential energy of a particle between the inner and outer cylin-
drical electrodes can be written as Ug(p) = Uco + L?/(2mr2p?®). Here, Ucp is an arbitrary
additive constant, and L is the particle’s angular momentum about the z axis. The effective
centrifugal potential energy is defined to be zero at the inner electrode, which requires the
additive constant to be Ugg = —L?/(2mr?). The total effective potential energy of the par-
ticle is U(p) = q¢(p) + Uc(p). With this, a normalized effective potential energy is written

o) (1
e =T ¢ <1?>’ ©)

as

where uw = U/T and ¢ = /L2/(2mr3T). Figure 2 shows three plots of u(p)/v with p; = 100
and with ¢2/v = 0.5,1.0,1.5. Each plot shows how an effective potential energy well can
form.

A confined particle that does not interact with other particles would have an angular
momentum and associated value of ¢ that are conserved quantities. The conserved quantity
{ can be written in terms of the normalized azimuthal velocity component, wy, for a particle

located at the normalized radial coordinate, p = p;, as
= pswy. (10)

All confined particles are considered to orbit the inner electrode by traveling in the same
direction, with wy > 0 for each particle. As a particle moves radially, the value of wy varies
with p, such that ¢ remains constant. However, in the approach used here, the value of
wy is that for a particle as it passes through a single fixed point, ps, with 1 < ps; < p;.
A distribution of wy values is associated with many particles that have a distribution of

velocities, as each particle passes through the normalized radial coordinate, ps.

10
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FIG. 2. Plots of u(p)/v with p; = 100 and with ¢2/v = 0.5 (top blue line), £2/v = 1.0 (middle

yellow line), and ¢2/v = 1.5 (bottom green line).

The normalized drift velocity is specified as wy = agw., where ay is a chosen constant,
and w,. is the value of wy at which a particle with w, = w, = 0 experiences a circular orbit of
normalized radius ps. A circular orbit occurs when there is a radial balance of electric and
effective centrifugal forces, which occurs at a minimum value of u(p). Setting w, = wy = {/p;
under the condition, u'(p)

|p=p, = 0, yields

14
2In(p1)”

The differences, u(1) — u(ps) and u(p;) — u(ps), represent normalized effective potential

(11)

We =

energy barriers that might keep a particle at p, from reaching the inner electrode and outer
electrode, respectively. If u(1) # u(p;), one of the two barriers will be smaller than the

other. Setting wgs = wy = ¢/p, under the condition, u(1) = u(py), gives

T "

If wy < wps then u(l) — u(ps) < u(p1) — u(ps), and particles with a normalized radial

velocity component larger in magnitude than w, maxo = /(1) — u(ps) are assumed to not

11
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be confined radially. Alternatively, if wy > wgs then u(1) — u(ps) > u(p1) — u(ps), and
particles with a normalized radial velocity component larger in magnitude than w, ax1 =
u(p1) — u(ps) are assumed to not be confined radially. The two expressions for w; max are

equivalently written as

0

vn(p)
rmax,0 — Wrmax = 2-1 3 1
Wr, ,0 W, ,O(wt‘)) J (ps )U] 111(p1) ( 3)

for wy < wys, and

2 1 )
Wy max,1 = Wy max,1(Wp) = J <% — 1) w3 +v {1 _ n(Pa)} (14)

for wy > wes.
A normalized effective potential energy barrier only exists in the radially inward direction
for a particle passing through ps if u(1) > u(ps). Setting wymn = wy = €/ps under the

condition, u(1) = u(ps), requires

TS
vemin =\ G = D (o) )

In a similar way, a normalized effective potential energy barrier only exists in the radially
outward direction for a particle passing through pg if u(p1) > u(ps). Setting wp max = Wy =

£/ps under the condition, u(p;) = u(ps), requires

- Py B In(ps)
e $ L= (p2/%) (1 1n<p1>>' "

D. Normalized Average Loss Kinetic Energy

Diffusion in velocity space due to the cumulative effect of many Coulomb collisions is
considered to cause particle velocities to gradually change until particles barely escape con-
finement by being able to reach the top of an effective potential energy barrier located at an
electrode. Three expressions for the normalized average loss kinetic energy are obtained for
particles that barely escape confinement in the radially inward direction (by reaching the in-
ner electrode), in the radially outward direction (by reaching the outer electrode), and in an
axial direction (by reaching an endcap electrode), respectively. For each of the three cases,

a particle at p; would barely escape confinement if |w,| = Wy max0(We), |Wr| = Wy max.1(wWp),

12
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or |w,| = W, max, respectively. The kinetic energy of a particle that reaches a loss boundary
is equal to the kinetic energy at p, plus the difference between the electric potential energies
at ps and at the boundary. For each of the three cases, the kinetic energy of a particle that

reaches a loss boundary is

1 1 1
Ky = §7n1)37max’0 + imvg + 57111)3 + qp(ps) — qp(1), (17)
Lo, 1 5,1 4
Kl = imvr,max,l + §mv6 + imvz + q¢(p5) - q¢(p1)7 (18)
or
I 5,1 5 1 5
Ky = Jmur + 3 + 5V max +qp(ps) — qVa, (19)

respectively. The three normalized averages are defined as kg = (Ko), /T, k1 = (K1), /T,
and Ky = (K3), /T, where ( ), is an average taken in velocity space. The subscripts 0, 1, and
2 on the averages serve to indicate that there are different restrictions on velocity values.
For example, W, max has been separated into two parts, Wy, max,0(ws) and Wy max,1(wy), which
are applicable for Wy min < Wy < wps and wys < Wy < Wo,max, respectively. Each of the three
normalized averages, kg, K1, Or Ko, is obtained for the fraction of particles at ps that follow
the drifting Maxwellian normalized-velocity distribution, except with |w,| = Wy max,0(we),
|w,| = Wy max1(We), OF |w,| = W, max, respectively.

For a particle that has barely reached the inner electrode by travelling radially inward,

the average loss kinetic energy is evaluated as

Wos fil/z,max Koef[(wgfwd)ZerZ]d,wzdwo

Wz,max

_ Jwgmin
(Koo = Zpis oo+ g (20)
The normalized average loss kinetic energy is
o = (phuh + w?) 5 (1+w2+%)‘w (21)
B O ARV Vet (1, )’
where
2 2
= (Wat Womin) e~ (wamwomn)” (1, + wp5) e~ (wa—v0s) (22)

VT erf (wg — Wo min) — erf (wg — wos)]

The inner electrode is now considered to be negatively charged, and a charged particle
that reaches the inner electrode is now considered to be a positive ion. Each time an ion
reaches the inner electrode, the emission of secondary electrons may occur. Let ¢ denote

the secondary electron emission coefficient, which is defined here as the average number

13
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of electrons emitted from the inner electrode per incident ion. Electrons emitted from the
inner electrode are accelerated radially outward and can be expected to reach the outer
electrode with a kinetic energy approximately equal to e¢(p;) = ¢V/Z = vT/Z, where e
is the magnitude of an electron’s charge, and Z is an ion’s atomic number. It is assumed
for the present work that every ion has the same atomic number and is fully ionized. To
account for the loss of energy associated with secondary electron emission, the expression
for k¢ is modified to be

1 4 2 <1 4 2 4 > wz,maxe_wz‘max + 129 (23)
Ko = — — w _ o0 —
0T 5T a0 vrerf (Womax) 2

For a particle that has barely reached the outer electrode by travelling radially outward,

the average loss kinetic energy is evaluated as

f“@,max Wz, max Klef[(wgfwd)zﬁﬂﬂﬂdwzdwa

_ Jwgs —Wz,max
<K1>1 - f;ﬁ"“‘“ iﬂ;:";’;x e~ l(wo—wa)*+w] . dwy (24)
The normalized average loss kinetic energy is
2,2 2 —w?
PsWh 9 1 pZ <1 9 > Wy maxe ™ Uemax
Ky = tw?) =+ B (S ) - A 25
< p% >1 2 p% 2 d ﬁcrf(wz,max) ( )
where )
m = (1w + was) e~ 470" — (g + Wp ) € (41~ 00me) (26)

ﬁ [erf (wd — ’w95) —erf (wd - w&,max)]

For a particle that has barely reached an endcap electrode by travelling axially, the

average loss kinetic energy is evaluated as

fU)G,lnax “Wr,max(We) K2€*[(w9*wd)2+wﬂdw dw‘9
-

W min ) —Wr max(wp)
(Ka)y = = : T (27)
2 fuzj}eo!:‘a‘x ff’;:ﬂ:’;fzﬁl) e*[(wo*wd)2+wﬁ]dwrdlU9
The normalized average loss kinetic energy is
Ko = <wf + w§>2 = <wf> + <w§> = Ky + Ky, (28)

where the normalized average particle kinetic energies associated with radial motion and

azimuthal motion at p, are

. _ _ 2 _ —an2
jwﬂ,maxe (ws—wa) {%erf(whmax) -7 1/2wr,maxe W max dw&

We min
ﬁfp/erf (wz,max)

(29)

Ry =

and 2
f'lUS,max wge*(“w*wd) erf (wr,max) dw9

WY, min
VL et (0 ) 7

14
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respectively. Each of the two numerators has an integral over wy that is evaluated by dividing
the integral into two parts. For the first part, w; max = Wy max0(ws), and the integration limits
are We min t0 wes. For the second part, Wy max = Wymax,1(we), and the integration limits are
wys tO Womax- The integral associated with f, is also divided into two parts, as shown in
the next subsection.

The normalized average particle kinetic energy associated with axial motion motion at

ps 18
Wz, max 2 —w? —w?
o <w2>  JelewieTEdw, 1wy paye” Veme (31)
z — 2/ — Wz max _ _qu2 - 5 .
L €T Wi dw, 2 merf(w, max)
The normalized average particle kinetic energy associated with full motion at p; is
K=Ky + Ko+ K. (32)

E. Confinement Fractions

The fraction of particles that follow the drifting Maxwellian normalized-velocity distri-
bution, being confined by both a radial effective potential energy well and an axial potential

energy well, is

f Z,max wos _ _
fr= %</ e 070D orf [ty a0 (w)] duvy
W, min

+ / " e womwa et [, o (wp)] dw9> . (33)

wes

This fraction, f,, is used to obtain expressions for three other fractions, denoted fy, f1, and
f2, to develop separate descriptions of particle confinement in the radially inward, radially
outward, and axial directions, respectively. The three fractions, fy, fi, and fy, are each
defined as the fraction of particles that follow the drifting Maxwellian normalized-velocity
distribution excluding only particles that would not be confined either radially inward, or
radially outward, or axially, respectively. Taking the limits w, max — 00, Wy max,1 — 00, and

Wo,max — 00, yields

fo= % [1+ erf (wg — wos)]

1 wos 2
+ﬁ/ e~ W00l orf (10, max.0(we)] duw. (34)
We, min
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Taking the limits w, max — 00, Wymax,0 — 00, and Wy min — —00, yields

1
fi= §erfc (wq — wes)

1 [Womas
+ﬁ/ ’ e~ (womwa)® o [Wr max,1 (wp)] dwg. (35)
wes

Here, erfc is the complementary error function. Taking the limits w; max0 — 00, Wy max,1 —

00, WY min — —00, and Wy max — 00, yields
fo = erf (W; max) - (36)

For each fraction, a value of one corresponds to perfect confinement of the thermal distribu-
tion at p,, while a value of zero corresponds to no confinement. Assuming that particles are
not confined for which |w,| > Wy max0(We), |Wr| > Wy max1(Wp), OF |W,| > W, max, the fraction
fp of particles that follow the drifting Maxwellian normalized-velocity distribution is related
to those of f; by f, = fo(fo+ f1 —1).

Particles that are lost in the radially inward direction (by reaching the inner electrode)
have wy < wys, while particles that are lost in the radially outward direction (by reaching
the outer electrode) have wy > wys. The fractional portions of f, associated with wy < wes

and wy > wys are

CI'f wz max wos —(wp—wgq)?
o= ) ™ vt @
Ip Jwe, min
and
erf (wz,max) W6, max —(wp—wq)?
o = ) [ e e ) ()
P Wos

respectively. The sum of the two fractions is equal to one, f.o + fr1 = 1.

IV. COLLISIONS

The rate at which the plasma density changes is evaluated by using Eq. (13) from Ref. 35,
which applies for plasma confinement in the presence of a magnetic mirror and a square
potential energy well in one dimension. The expression is 12% larger in magnitude than
the corresponding equation in Ref. 36 for a mirror ratio of one and for confined ions. The
expression is repeated here with the mirror ratio set equal to one, without a negative sign

used to indicate particle loss, and with an integral evaluated in analytical form:

dn 4n 1 ewi 1 Vmeierfe(/w;)
— = — — 14+ "] (39)
dt /A V142 In(4e?+2) w; 2\/w;
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Here, w; is the height of a particle-confining potential energy barrier normalized by the
plasma temperature, 7, = vVmT3/(v/2mnk%e*)) for singly charged particles, ¢ = v/2 for
ions, A is the Coloumb logarithm, ke = 1/(4mep) is the Coulomb force constant in SI units,
and €y is the vacuum permittivity. The value of w; is directly related to the fraction f; of
particles that follow a Maxwellian velocity distribution, excluding particles not confined by

the square potential energy well,
-~ 2
wi = wi(fi) = [exf 1 (£)] (40)

Equations (39) and (40) are used here for separate descriptions of particle losses in the
radially inward, radially outward, and axial directions. The magnitude of the rate at which
the plasma density decreases due to particle losses associated with collisional scattering is

evaluated as

2
d
fog = Zf,,.,-d—? . (41)
par wimen(fi)

Here, f.o and f,; represent the fractional portions of particles that can only be lost in
the radially inward direction or outward direction, respectively. There is no corresponding
restriction for particle loss in the axial direction, and the definition, f.» = 1, is made for
use in the summation. Also, f; is the fraction of particles that follow a drifting Maxwellian
velocity distribution, excluding particles not confined in the radially inward direction (i = 0),
radially outward direction (¢ = 1), or an axial direction (i = 2).

The magnitude of the rate at which energy is incident on electrodes due to particle losses

associated with collisional scattering is evaluated as
2 2 dn
i=0 i=0 wi=w;(fi)
Here, k; is the normalized average loss kinetic energy for a particle that has barely reached

the top of an effective potential energy barrier by reaching the inner electrode (i = 0), the

outer electrode (i = 1), or an endcap electrode (i = 2).

V. APPLICATION OF ANALYTICAL MODEL IN THE LOW-DENSITY LIMIT

Confinement of a T' = 20 keV deuterium-tritium plasma is now considered (with m = 2.5

amu and Z = ¢g/e = 1) in the low-density limit. Let @ denote the ratio of the fusion power
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density to the energy loss power density,

by
= 43
Q- (43)
Here, Py is given by Eq. (42). The fusion power density is evaluated as
1 2
Py = ZEfn (ov);, (44)

where Ef = 17.6 MeV is the energy released per deuterium-tritium fusion reaction, (ov) =
4.33x1072 m? /s is the fusion reactivity,®” and n is the ion density (including both ion species
with equal densities). For obtaining the value of (ov) P the plasma velocity distribution is
approximated as Maxwellian in the plasma’s rest frame, by requiring that the fraction of
particles that follow a drifting Maxwellian velocity distribution be close in value to one
(fp &= 1). The confinement model is expected to decrease in accuracy with smaller values of
fp- The condition f, > 0.9 is satisfied for all applicable results reported here, unless noted
otherwise. The Coulomb logarithm is approximated as having a constant value of A = 20,
and @) becomes independent of the ion density n. The value, oy = 1 is chosen, so that the
drift velocity is equal to the particle speed for a circular orbit.

With fixed plasma parameters, @) is a function of five parameters consisting of py, ps,
V, 6, and V5. Table I shows the results of an optimization procedure with the secondary
electron emission coefficient taken to be § = 1, and the electric potential at each endcap
electrode taken to be the same as that at the outer electrode, Vo = V. For each value of py,
the value of p, is found to two significant figures such that ) has a maximum value, and
simultaneously, the value of V' is adjusted to equal Vig. Vig is defined to be the smallest
value of V' to two significant figures for which ¢ > 10 is predicted.

Parameter values are chosen for a base case consisting of p; = 60, ps = 10, V' = 460
kV, 0 = 1, and V5, = V. For the base case, the ratio of the fusion power density to the
energy loss power density is predicted to be @ = 10.3 in the low-density limit. Other
predictions include the following: the confinement fractions, fy = 0.968, f1 = 0.978, fy =
1.00, f, = 0.946, f.o = 0.0139, and f,; = 0.986; the average energy loss per ion that
reaches the inner electrode, (Ky), = 831 keV, the outer electrode, (Ki); = 11.8 keV,
and an endcap electrode, (K»), = 74.6 keV; and the average ion kinetic energy associated
with radial motion, (K,) = 9.75 keV, azimuthal motion, (Kj) = 64.8 keV, axial motion,
(K.) = 10.0 keV, and full motion, (K) = 84.6 keV. The average energy loss per ion that
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TABLE I. Results from an optimization procedure, with a secondary electron emission coefficient,
0 = 1, and with an electric potential at each endcap electrode equal to that at the outer electrode,
Vo = V. Here, p1 = 11/r¢ and ps = 75/r9, where 71 is the inner radius of the outer electrode, rq is
the outer radius of the inner electrode, and 7, is a radius where the plasma approximately follows
a drifting Maxwellian velocity distribution. Also, Vig is the smallest electric potential at the outer
electrode (with the inner electrode at zero potential) for the confinement model to predict @ > 10.
@ is the ratio of the fusion power density to the energy loss power density. Confinement of a 7' = 20
keV deuterium-tritium plasma is considered.

o ps Vo (kV) Sy

125 4.1 820  0.98

25 6.3 590  0.96

50 9.5 480  0.95

100 14 410 0.93
200 21 360 0.92
1000 48 290 0.88

reaches the inner electrode is predicted to be much larger than that associated with reaching
the outer or endcap electrodes, because of a number of contributions. Recall that part of the
energy loss is defined to be associated with the release of secondary electrons from the inner
electrode. An average of 6 = 1 secondary electron is assumed to be released per incident
ion and to gain an energy, eV = 460 keV, before reaching the outer electrode. The energy,
0eV = 460 keV, is the largest contribution. The second largest contribution is the energy,
ed(ps) = eV In(ps)/In(p1) = 259 keV, that each ion gains traveling from p = p, to the inner
electrode at p = 1. The remaining contributions consist of the kinetic energy associated with
radial motion at p, that barely leads to ion loss and the average kinetic energies associated

with azimuthal and axial motion at p;.

Figures 3 to 7 show the value of @ as a function of one parameter, while setting the other
four parameters equal to their base case values. Figure 3 shows that ) has a maximum at
approximately p; = 60, with other parameters set equal to their base case values. At p;
values less than 60, the distance between plasma at ps and the outer electrode is reduced.

As a result, increased losses to the outer electrode cause ) to decrease. Similarly, at p;
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values greater than about 60, increased losses to the inner electrode cause () to decrease.

Figure 4 shows that ) has a maximum at approximately p, = 10 with other parameters
set equal to their base case values. At ps values less than 10, the separation between p,; and
the inner electrode is reduced. As a result, increased losses to the inner electrode cause ) to
decrease. Similarly, at ps values greater than about 10, the separation between p; and the

outer electrode is reduced, and increased losses to the outer electrode cause @ to decrease.

Figure 5 shows the dependence that () has on the applied electric potential difference
V. Figure 5 shows that @) increases with V, with base case values used for the other
four parameters. Figure 6 indicates that ) has a weak dependence on the endcap electric
potential when V5 > 0.8V. Figure 7 shows that secondary electron emission at the inner
electrode causes () to decrease as § increases, and that Q > 15 is predicted in the limit,

6 — 0.

0 50 60 70 80 90 100
P1

FIG. 3. Plot of @ versus p; with p; =10, V =460 kV, 6 =1, and Vo = V.
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FIG. 4. Plot of @ versus ps with p; =60, V =460 kV, § =1, and Vo = V.

VI. CLASSICAL TRAJECTORY MONTE CARLO SIMULATION
A. Initial Conditions

Equation (2) is numerically solved to simulate the radial motion of one particle at a time
without accounting for collisions. An iterative technique is described below that is used to
obtain E,(r), such that the results apply even at higher plasma densities. Each simulated
trajectory starts at time ¢ = 0 at a radial coordinate, r(0) = 7. The initial velocity

components of each particle are sampled from a drifting Maxwellian velocity distribution,

(0 oy M mvy, + (vos — va)’]
f (Urs> UGS) - owmT €xXp ( oT )

(45)

which is normalized to one as written. Here, r'(0) = v, is the initial radial velocity compo-
nent, vgs is the initial azimuthal velocity component, vy is the azimuthal drift velocity of the
plasma, and T is the plasma temperature in energy units. The initial velocity components,

vrs and vy, are Cartesian coordinates in velocity space, each with a value between —oo
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FIG. 5. Plot of @ versus V with p; =60, ps =10, =1, and Vo = V.

and oco. Computationally, each of the two velocity components is sampled from a normal
distribution with a standard deviation equal to /T/m and with a mean equal to zero for
the radial component or with a mean equal to v, for the azimuthal component. The angular

momentum of each particle is calculated using L = mr,vgs.

B. Ending Conditions

Each trajectory simulation ends at a time t,,.,, which is defined to occur at the earliest
time for which any of the following three conditions is satisfied: (1) The particle reaches
the inner electrode, 7 (tmax) = 70. (2) The particle reaches the outer electrode, r(tmax) = 71
(3) The particle reaches the starting coordinate, 7(tmax) = 75, for a third time (which
requires passing through the starting coordinate exactly one time). The simulated particle
is considered to be lost in the first two cases and to be confined in the third case. For

the third case, a particle starts at r = r traveling in one radial direction, reaches a radial
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FIG. 6. Plot of Q versus V2/V with p; = 60, ps = 10, V =460 kV, and § = 1.

turning point, returns to r = ry a second time and passes through, reaches a second radial
turning point, and returns to r = rg a third time. A confined particle would continue to

repeat such radial oscillations if the simulation is not ended.

C. Distribution of Confined Particles

For each confinement trajectory (which ends at time t,,.x at the starting coordinate r;),
N, time values are randomly selected using t,, = R, tn.x. Here, R, denotes a random number
that is equally likely to have any value between zero and one. A radial coordinate r, = r(t,)
is recorded for each value of t,. For a set of confinement trajectories, the associated set of
all generated r, values represents a distribution of radial coordinates for confined particles.

The region between electrodes is divided into N, bins of radial width, w, = (r1 — r9)/Np.

Let N denote the number of 7, values within a bin labeled £ that is bounded by imaginary

23



20 . . .
15

Q 10

FIG. 7. Plot of @ versus § with p; = 60, p; = 10, V =460 kV, and Vo = V.

cylindrical surfaces at 7o + (k — 1)wy, and at 79 + kwy, with 1 < k < N,. The radial midpoint
location of the kth bin is ry = rg + (k — 0.5)w,. The points (7, Ni) represent the simulated
radial distribution of confined particles. While it is possible to generate a set of N, values
with N,, = 1, a larger value for N,, tends to make smoother the simulated radial distribution

of confined particles.

D. Plasma Density Profile

The simulated radial particle distribution NN is used to obtain a radial plasma density
profile. A constant denoted ¢, is defined such that the product ¢, N, represents the number
of plasma particles per unit length associated with plasma in the kth bin. The plasma

density nj within each bin is approximated as constant and given by ¢, Ny = ngvg, where
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the volume per unit length of the kth bin is
v, = mwy [2rg + (2k — 1)wy) . (46)
A value for the constant ¢, is determined by choosing the maximum value for ny:
Cn = Wy [270 + (2kmax — 1) W) Mmax/ Nmax- (47)

Here, npax and Nyay are the maximum values of n, and Vi, respectively, and kya.y is the
value of k for which N = Npax. Solving for the plasma density in the kth bin gives,

Ny — [2’/‘0 + (zkmax — 1)10;,] nmaxNk
T 2ro + 2k — Dwy] N

(48)

With the kth bin centered at radial coordinate 7, the points (r, ny,) represent the simulated

radial plasma density profile for confined particles.

E. Self-Consistent Electric Field

According to Gauss’ law, the electric field at radial coordinate r between the inner and

outer electrodes is
_ )\0 + )\r (’/‘)

E,
(r) 2mwegr

(49)

Here, )\ is the charge per unit length on the inner electrode, A, is the charge per unit
length of plasma located between ¢ and r, and ¢j is the permittivity of free space. Defining

the electric potential to be zero at the inner electrode, the electric potential at the outer

V=— /T: E.(r)dr = —27160 [/\0 In (;—;) + /n:l /\Ty)dr} . (50)

Solving for A\g gives

electrode is

1 1\ ()
No = —Ay — / dr, 51
0 In(ri/ro) Jro T (5)
where
\ _ _2meV (52)

v In(ry /7o)

is the magnitude of the charge per unit length on the inner electrode that would occur in
vacuum without plasma present. Substitution into Eq. (49) gives an equation for the radial
electric field in terms of V' instead of Ag:

Vv

BTV

+ E;i(r), (53)

25



ing

AIP
Publishi

s

£

where

Ei(r) = - <A,.(7~)71n(1 /0 M”m). (54)

~ 2ner r1/70) r
Equation (53) is the radial electric field used in Eq. (2), except with E,(r) used in Eq. (2)
in place of E;(r) in Eq. (53).
The plasma’s charge per unit length within the kth bin is Ay = Zengvg, where ny is
given by Eq. (48) and vy, is given by Eq. (46). The charge per unit length of plasma located
between 7y and a bin boundary at radial coordinate, r; = 1o + jw, with 1 < j < Ny, is

J TZ ewWyNmax J
N=3 M= Ni” 279 + (2kmax — Dwy) Y Ny (55)
k=1 max k=1

A boundary condition at r; = ry is also defined as \j—o = 0. The discrete distribution given
by (r;,A;) for 0 < j < N, is fit with an interpolating function, which is used as A.(r) in
Eq. (54) to numerically evaluate E;(r).

A self-consistent electric field is considered to be simulated when the functional depen-
dence of E,(r) used in Eq. (2) is numerically close to the resulting function FE;(r) evaluated
using Eq. (54). An iterative technique is applied for finding a suitable function for E,(r).
Hereafter, let F;(r) denote the function obtained during the ith iteration. Each iteration
begins by using

Ep(r) = wEi(r) + (1 — w)Ei(r) (56)

in Eq. (2) for running Ny trajectory simulations. Here, E;_;(r) and FE;_»(r) are functions
found using Eq. (54) in the preceding two iterations, and w is a chosen constant. However, for
the first iteration, E;_1(r) = E;_s(r) = 0 is used, and for the second iteration, E; »(r) =0
is used. A value of w is chosen for which, % < w < 1, with larger values expected to result
in faster convergence and smaller values expected to result in slower but eventually closer
convergence. The convergence closeness is characterized at the end of the last iteration by
calculating,

N, 2 —1/2

Ci= (Z [Ep(r;) — Ei(?’j)}z) (Z [Ep(w)f) : (57)

j=1 j=1
Equation (57) gives the root-mean-square difference between the values of E, and E; at the
bin boundaries divided by the root-mean-square value of £, at the bin boundaries. Perfect
convergence to a self-consistent electric field occurs in the limits C; — 0 and Ny, — oo.

With a finite value for Ny, the value of C; is not expected to continue to decrease in value
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beyond a certain number of iterations. The chosen number of iterations is denoted iyax
hereafter. The value of C; is less than 0.05 for all simulation results reported here for which

Imax > 1.

VII. APPLICATION OF SIMULATION

A. Parameter Values

Parameter values have been chosen for three simulations, and the results of the three
simulations are in Table II. The computational parameter values consist of the number of
simulated trajectories, Ny, = 5000, the number of randomly sampled time values for each
confinement trajectory, N,, = 10, the number of bins, IV, = 101, the convergence parameter,
w = 0.9, and the number of iterations, iy.x, which is varied. The parameter values chosen
for representing a deuterium-tritium fusion plasma consist of the ion mass, m = 2.5 amu,
the ion charge state, Z = 1, the plasma temperature, " = 20 keV, and the maximum plasma
density, Nmax = 102 m~2. The plasma’s drift velocity is specified as vg = aqv., Where oy is
varied, and v, is the azimuthal speed for circular motion by a particle at radial coordinate

r =rs. Setting r(t) =0, r(t) = rs, and L = mrsv, in Eq. (2) and solving for v, gives

b= {Z— (# - E())} - (59)

m r1/7o)

The value of v, given by Eq. (58) is not the same as that given by Eq. (11), except when
Imax = 1 (with E, = 0) is used. Other parameter values are for representing the trap. The
electric potential applied to the outer electrode (with the inner electrode at zero potential)
is chosen to be V' = 460 kV. The radial coordinate where the plasma is simulated as having
a drifting Maxwellian velocity distribution is specified as rs = psro, where p; is varied. The
inner radius of the outer electrode is specified as r; = p179, where p; = 60 is a chosen value.
A numerical value is required for the inner electrode radius, and 7y = 0.02 mm is chosen.
The energy loss associated with secondary electron emission is included in the simulation,
and the value § = 1 is chosen for the secondary electron emission coefficient. The average
kinetic energy associated with motion in the z dimension is included in each simulation with
the value, (K,) = 10 keV, although such motion is not simulated. Each simulation provides

values for confinement fractions and average loss kinetic energies that are used in Eq. (42),
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TABLE II. Results from three simulations and results from the analytical model. See the text for

details.
Analytical Sim 1 Sim 2 Sim 3
Ps 10 10 10 6
aq 1 1 1 1.2
imax - 1 3 3
Q 10.3 106  6.64 102
fo 0.968  0.969 0.971 0.981
fi 0.978  0.982 0.952 0.973
f 0.946  0.952 0.924 0.954
fro 0.0139  0.0154 0.0126 0.0241
fr1 0.986  0.985 0.987 0.976
(K;) (keV) 9.75 9.47 947 10.0
(Kp) (keV) 64.8 63.7 623  90.0
(K) (keV) 84.6 83.2 8L7 110
(KoY (keV) 831. 878.  877.  820.
(K1), (keV) 11.8 11.8  11.8 109
Pt ave (kW /m?) - 33.7 356 16.0
Ey (GV/m) - 6.38 644 6.09

which together with Eqgs. (43) and (44), provide a value for Q.

Table II shows results from three classical trajectory Monte Carlo simulations and the
results from the analytical model as described in Sec. V for the base case. The first simu-
lation, labeled Sim 1, has parameter values ps = 10, ag = 1, and iy = 1. The parameter
values for Sim 1 are intended to correspond to those of the base case used for applying the
analytical model. The analytical model includes axial losses, which are controlled by the
value of V5. The simulations do not include axial losses. However, as can be seen in Fig. 6,
the effect of plasma axial losses on @) as indicated by the effect of varying V5 on @ is not
significant when V5 has a value near that of V. Also, the effect of the plasma’s space charge
is excluded from the simulation when i,,« = 1, because £, = 0 is used. The analytical

results apply in the low-density limit, which is defined to occur when plasma space charge
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effects are negligible. The value, @ = 10.6, from Sim 1 is less than 3% different than the
value, @) = 10.3, from the analytical model.

The second simulation, labeled Sim 2, is the same as the first, except that i,., = 3 is
used to obtain a self-consistent electric field. The effect of the plasma’s space charge is found
to be significant, with @ decreasing by 37% from @ = 10.6 to Q = 6.64.

The third simulation, labeled Sim 3, also obtains a self-consistent electric field, with
Imax = 3, but with parameter values p; = 6 and oy = 1.2. A process to find these values
starts with evaluating @) using the values 10, 8, 6, and 4 for p, using the analytical model.
For each value of ps, the value of a4 is found to two significant figures such that @) has a
maximum value. For the four values of ps, the overall maximum value of @) occurs with
ps = 6 and oy = 1.3 according to the analytical model. Next, simulations that obtain a
self-consistent electric field are run with iy, = 3 and ps = 6. The value oy = 1.2 is found

to two significant figures to maximize Q.

B. Radial Plasma Density Profile

Figure 8 shows a plot of the radial plasma density profile for Sim 3. Shown is a plot of
plasma density n;, versus radial coordinate ;. The region is divided into bins labeled k, and
ny, is the density in the kth bin, while 7, is the radial coordinate of the radial center of the
kth bin.

As discussed later, it is desirable for the plasma to have a narrow density profile. The
plasma density profile reported here is expected to have the narrowest density profile possible
for confinement of a plasma with a drifting Maxwellian velocity distribution and for the
specified Sim 3 parameter values. Recall that all confined particles pass back and forth
through the radial coordinate r = rs. If plasma particles are also confined without passing
through r = r,, the plasma density profile would tend to be radially broader with 7.y

smaller for the same total space charge.

C. Sample Proportions

Let Ny, Ny, and N, denote the number of trajectories that end at the inner electrode,

the number of trajectories that end at the outer electrode, and the number of confinement
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FIG. 8. Radial plasma density profile for Sim 3.

trajectories (which end at the starting coordinate), respectively. Also, let N, and N,
denote the number of confinement trajectories with vgs < vgs and vgs > vgs, respectively.
Here, vys is the initial azimuthal velocity component, and vgs = wgsvyn, where the expression
for wes given by Eq. (12) is used, because the expression applies even with plasma space
charge present.

In Table II, the values for the five confinement fractions, fo, fi, fp, fro, and f1, are
evaluated as sample proportions by each simulation. The sample proportion of the number
of trajectories that do not end at the inner electrode is evaluated as fo = (Nios — No)/Nio-
The sample proportion of the number of trajectories that do not end at the outer electrode
is evaluated as fi; = (Niot — N1)/Niot- The sample proportion of the number of confinement
trajectories is evaluated as f, = N,/Nio. The sample proportion of the number of confine-
ment trajectories with vgs < wvgs is evaluated as fr.g = Ny /Np. The sample proportion of
the number of confinement trajectories with vg, > vgs is evaluated as f.; = Ny1/N,.

For the five sample proportions, there are five corresponding population proportions that

occur in the limits, Ny — oo and N, — co. A confidence interval is calculated for each

population proportion using f=4(Ag+Ah), where Ag is associated with using a finite sample
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size and Ah is introduced to account for imposing an upper limit on the simulated time each
trajectory is computed. For a finite sample size, the expression Ag = z*/[f(1 — f)]/Ny is
used, where N, is replaced by Ny for fo, fi, and f,, and N, is replaced by N, for f,o
and f,1. (See, for example, Ref. 38 for information about the statistics.) Here, z* = 1.96
is used for a 95% confidence level, assuming sample proportions are normally distributed
about the corresponding population proportion. The upper limit imposed on each trajectory
simulation time is chosen to be t,, = 8r /v, for all simulations, and all simulated trajectories
that end at time t,,, are excluded from the sample size. To account for an upper limit imposed
on each trajectory simulation time, the expression Ah = N, /N, is used. Here, N,, is the
number of trajectories excluded from the sample size, which is reset to Not = No+ N1+ N,

The value of each confinement faction, fo, fi, fp, fro, and f1, predicted by the an-
alytical model falls within each corresponding confidence interval for Sim 1. For Sim 1,
the corresponding confidence intervals are 0.969 + 0.00558, 0.982 4 0.00447, 0.952 + 0.00675,
0.0154+0.00440, and 0.985+0.00440. For Sim 2, the confidence intervals are 0.97140.00504,
0.952 £ 0.00630, 0.924 £ 0.00777, 0.0126 £ 0.00376, and 0.987 £ 0.00376. For Sim 3, the
confidence intervals are 0.981 £ 0.00517, 0.973 £ 0.00593, 0.954 4 0.00723, 0.0241 + 0.00590,
and 0.976 &= 0.00590.

D. Kinetic Energy Averages

Values for initial radial and azimuthal velocity components, v,; and vy, are sampled
for each simulated trajectory. The associated average kinetic energy values in Table II
are evaluated for confinement trajectories (that end at the starting coordinate) as (K,) =
im (vZ) and (Kp) = sm (v3,), respectively. A velocity component for the axial dimension is
not sampled. Instead, the associated average kinetic energy value is taken to be (K,) = %T.
The average kinetic energy at r, for confinement trajectories is calculated as (K) = (K,) +
(Ko) + (K).

Consider a particle that is barely able to reach an electrode, because the particle’s effective
energy for radial motion is just barely larger than the particle’s effective potential energy
at the electrode. The radial kinetic energy of such a particle is approximated as being

zero upon reaching the electrode, K,.(r;) = 0, where i« = 0 for the inner electrode and

i = 1 for the outer electrode. Such an approximation is used here based on considering
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diffusion in velocity space to be due to the cumulative effect of many Coulomb collisions
and particle loss to be due to particles overcoming an effective potential energy barrier
located at an electrode. A particle’s kinetic energy upon reaching an electrode is then
K(r;) = Ky(r;) + K.(r;), where K, would be the portion of kinetic energy associated with
axial motion. The assumption is made that axial motion is decoupled from motion in other
dimensions, and K,(r;) = K,(rs). The assumption of conservation of angular momentum
provides, Ky(r;) = (rs/1:)>Ky(rs). The average kinetic energy of a particle incident on an
electrode is then, (K (r;)); = (rs/m:)* (Ko(rs)); + (K.(rs)). The subscript ¢ on an average is
incorporated to indicate that the average only considers trajectories that can end at electrode
i. The associated values for the average loss kinetic energies in Table II are evaluated by
each simulation as (Ko), = p2 (Ko), + (K.) + eV and (K1), = (ps/p1)? (Ko), + (K.).

The simulation does not conserve energy. As indicated in Subsec. IT A, the radial kinetic
energy K, for a particle that returns to r = r, at the end of a confinement trajectory must
be unchanged from when the particle started at r = r,. The average difference serves as an
indication of numerical inaccuracy and is less than 0.02% for trajectories that end at the

starting coordinate for simulations reported here.

E. Volume Averaged Fusion Power Density

Equation (44) is used to write the fusion power density profile as

1
P, = ZEfni <O”U>f. (59)
The volume averaged fusion power density in Table II is estimated as
1 X wy Ny
Pf.avg = jzpkl/k = TZPIC [2T0+(2]€- 1)wb} (60)
T = (g}

For the same total space charge, a temporal or spatial variation of plasma density tends to
increase the root-mean-square value of the plasma density relative to a spatially flat and tem-
porally constant density profile. It may be possible to increase the time- and space-averaged
fusion power density by increasing the root-mean-square value of the plasma density without
increasing the plasma’s total space charge. One possibility is to drive time-dependent non-
uniformities to large amplitudes. Another possibility is illustrated with the plasma density

profile found here for Sim 3. The volume averaged plasma density is estimated for Sim 3 as
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Navg = Ar(11)/(Zemr?) = 1.56 x 10" m~3. The associated fusion power density is calculated
using Eq. (59), except with the replacement ny — nay. The result is P, = 738 W/m?,
which is the power density that would occur for Sim 3 if the plasma had a spatially uniform
density profile for 7 < r; with the total space charge unchanged. The ratio Py aye/P, = 22
has a value larger than one, which indicates that the plasma’s nonuniform density causes
the fusion power to be a factor of 22 larger than that for a uniform density with the same

total space charge for Sim 3.

F. Volume Averaged Loss Power Density Associated With Field Emission

A large electric field strength Ej at the inner electrode can cause a significant rate of
electron field emission. Each emitted electron would experience an increase in kinetic energy
by an amount eV as a result of traveling unimpeded to the outer electrode. Let I. denote the
magnitude of the field emission current, and let J, = I./(27ryf) denote the corresponding
field emission current density at the surface of the inner electrode. Here, ¢ denotes the axial
length of the system. The energy loss rate associated with field emission is I.V = 2mrolJ. V.

The volume averaged loss power density associated with field emission is estimated as

2ol SV 2V J,

= 1
il r? (61)

Pe,avg =

Equation (7) from Ref. 39 is used to evaluate the current density J, for cold field emission. In
the cold electrode limit, Eq. (7) from Ref. 39 indicates that field emission is a function of the
work function and the surface electric field. Assuming that surface impurities and surface
roughness tend to enhance field emission, the ideal inner electrode may be an atomically
smooth and clean wire with the highest work function possible.

High work function values that have been reported include experimental values, such as
7.42 eV %0 and predicted values, such as 7.78 eV,*! 7.87 eV,*? and 9.2 eV.** Some pure metals
have work function values reported to be between 5 eV and 6 eV including palladium (5.55
eV), platinum (5.84 eV), and gold (5.22 eV).** Figure 9 shows a plot of Ey versus work
function W for a volume averaged loss power density associated with field emission equal
to 1 kW/m? for Sim 3. The value 1 kW/m? is 6.3% of the volume averaged fusion power
density for Sim 3 and is considered here as a reasonable loss rate. Figure 9 is considered

here to provide an upper limit for the possible values of Ey for Sim 3. A value, Fy > 5
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GV/m, is not ruled out here as a long-term possibility. Nevertheless, it is concluded that an
additional enhancement of the time- and space-averaged fusion power density may be called

for, such as by intentionally driving time-dependent non-uniformities to large amplitudes.

W (eV)

FIG. 9. Electric field at the surface of the inner electrode versus work function for a volume

averaged loss power density associated with field emission equal to 1 kW /m? for Sim 3.

G. Energy Analysis

The volume averaged electrostatic energy density of the system is evaluated as

1 11 3 T .
Eeavg = 7/ ' EegEr(r)QQW‘dr = — 0 / ' E,.(r)*rdr, (62)

w(ry —13) Jro i =15 Jro

where the radial electric field E,.(r) is given by Eq. (53). To obtain a value without plasma,
E;(r) = 0 is used, and the result for Sim 3 is & 4y = 317.9 kJ/m3. To obtain a value with

plasma present, E;(r) given by Eq. (54) is used, and the result for Sim 3 is €. vy = 319.6
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kJ/m?. The difference between the two values, Ae, 4y, = 1.7 kJ/m?, represents the volume
averaged electrostatic energy density that would be associated with loading the system to
obtain the plasma density profile shown in Fig. 8. Here, loading the system is defined
as adding charged particles to the system, including negative charge added to the inner
electrode in excess of the amount that would be added without adding plasma. The energy
associated with particle motion is not included in Ae,nvs. The volume averaged plasma
kinetic energy density (including drift and thermal portions) is estimated for Sim 3 as
Epave = (K) Navg = 27 kJ/m3. The volume averaged energy associated with loading the
system for Sim 3 is €5 avg = A avg + Epave = 28.7 kJ/m?, which is predominantly associated
with kinetic energy.

The available fusion energy is defined here as the energy that would be produced if all
plasma ions undergo fusion reactions. The volume averaged available fusion energy density
of a deuterium-tritium plasma is estimated for Sim 3 as € max = %E FNavg = 2.2 MJ/ m3. Let
@max denote the ratio of the available fusion energy to the energy associated with loading
the system. For Sim 3, Qmax = €f.max/Es,avg = 77

For Sim 3, Q = Py/P, = 10.2, where the fusion power density P; and the energy loss
power density P, are each proportional to the square of the plasma density, in the way each
is evaluated here. Consequently, () also represents the ratio of the volume averaged fusion
power density to the volume averaged energy loss power density.

Equations (15) and (16) of Ref. 45 define scientific gain, Qs = Py/Pex:, and fuel gain,
Qtuel = P/ Paps, in terms of fusion power Py, externally applied power Pe, and absorbed
power Paps = 7ansPext, Where 7.1 is the absorption efficiency. Scientific gain and fuel gain
are related by Qi = Nabs@ruel-?® The work presented here does not provide information
that can be used to estimate a value for either 7,,s or Qs, and only a value for Qg is
estimated for Sim 3. For applying the definition of Qg to Sim 3, the associated terms are
considered here to be volume averaged quantities. It is assumed here that a centrifugal-
electrostatic confinement fusion reactor would operate using a repeating cycle consisting of
a plasma loading stage, a plasma holding stage, and a plasma release stage. The absorbed
power P, would be predominantly associated with the plasma loading stage, and the fusion
power would be predominantly associated with the plasma holding stage. To obtain a value
for Qguel, each plasma particle is treated as if it is loaded immediately before being lost,

such that P,,s = Py, assuming that the number of particles that undergo fusion reactions is
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negligibly small compared to the number of particles that are lost. With such a treatment,

Qfuel = Q@ = 10.2 for Sim 3.

VIII. DISCUSSION

Confinement of a near-Maxwellian, drifting deuterium-tritium plasma is considered here,
with a plasma temperature of 20 keV. The plasma consists of ions and no electrons, with each
ion approximated as having a mass of 2.5 amu and with a Coulomb logarithm approximated
as 20. The work presented here predicts @) = 10 (which is a fusion energy production rate
that is 10 times larger than the rate at which energy is lost to surrounding structures) for
the parameter values associated with Sim 3.

The value of the secondary electron emission coefficient § is material-dependent and
sensitive to surface conditions.® The value 6 = 1 is chosen here, by considering the data
compendium reported by Ref. 46. A specific design for the endcap electrodes is not consid-
ered, and it is assumed that Vo, = V' is possible with a suitable design that keeps axial motion
decoupled from radial and azimuthal motion. Axial motion that is decoupled from radial
and azimuthal motion may also be necessary for keeping axial reflections from broadening
the radial density profile (e.g., at the axial midplane).

The magnitude of the electric field at the surface of the inner electrode (Ep) cannot be
too large. Too large a value of Ey can be expected to cause significant issues associated
with field emission of electrons. An upper limit for the value of Ey can be expected to be
material-dependent, sensitive to surface conditions, and affected by how high a vacuum is
present. The value Ey = 6.1 GV/m occurs in Sim 3. Such a value is not ruled out here as a
possibility, by considering that, in Ref. 47, the electric field for a cathode spot unipolar arc is
reported to be 10 GV /m. However, significant uncertainty exists with considering Eq = 6.1
GV/m as a possibility. With Ey < 10 GV/m, the present work predicts that P, may
be too small to be of practical use. The fusion power density values for future magnetic
confinement fusion reactors include 600 kW/m? for ITER and 7 MW/m?3 for SPARC.*849
Such values may be significantly larger than what is possible with centrifugal-electrostatic
confinement fusion.

To mitigate issues with field emission, it may be necessary to operate under conditions of

ultrahigh vacuum and with special materials selected or developed for the inner electrode. It
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should also be noted that if the electrode configuration illustrated in Fig. 1 is used, the elec-
tric field at the surface of the inner electrode will be larger under the endcap electrodes than
at the axial midplane. For example, if the endcap electrodes are chosen to have a normalized
inner radius equal to p;, the electric field will increase by a factor of In(p;)/In(p,) = 2.3 for

Sim 3 parameter values, under endcap electrodes that are sufficiently wide axially.

The energy flux associated with ions incident on the inner electrode is evaluated using
0=0as
o T%Pf,avgpo

= nan o

Here, Pjave/Q gives the volume averaged energy-loss power density, 73/(2r) is the ratio
of the volume associated with r < r; to the inner-electrode surface area associated with
r = 1o, and Fy/F, is the fraction of energy incident on the inner electrode as calculated
using Eq. (42). For Sim 3 parameter values, except with § = 0, the energy flux incident on
the inner electrode is found to be Ry = 12 W/m?. The energy flux associated with blackbody
radiation is evaluated using the Stefan-Boltzmann law, R = ¢T*, where ¢ = 5.67 x 1078
W/(m? K*) is the Stefan-Boltzmann constant. The blackbody-radiation energy flux from
an inner electrode at approximately room temperature (300 K) is calculated to be R = 459
W /m?2. Tt is concluded for Sim 3 parameter values that the inner electrode will not heat up
to a temperature significantly higher than the temperature of surrounding structures at or
above room temperature, as a result of the energy flux associated with plasma ions incident

on the inner electrode.

The results reported here for Sim 3 parameter values are interpreted to indicate that the
volume averaged fusion power density may be too small to be of practical use, even while
the fusion energy production rate is much larger than the energy loss rate to the electrodes.
However, it may be possible to realize a practical use for centrifugal-electrostatic confinement
fusion, if an approach can be employed for enhancing the time and space averaged fusion
power density. For example, time-dependent non-uniformities that are intentionally driven
to large amplitudes may increase the root-mean-square value of the plasma density and
increase the time and space averaged fusion power density, without also increasing the mean

value of the plasma density and the total plasma space charge.
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IX. CONCLUSION

Two approaches consisting of an analytical approach and a computational approach have
been developed and applied for describing an electrically confined nonneutral plasma that
orbits a cylindrical electrode. The analytical approach takes the low density limit, for which
the effect of space charge is negligible. The computational approach incorporates a classical
trajectory Monte Carlo simulation and accounts for space charge effects. Both approaches
were applied for describing confinement and loss characteristics associated with a drifting
deuterium-tritium plasma that has a 20 keV temperature and a near-Maxwellian velocity
distribution at one radial location. Conditions were predicted for confining a plasma using
a 460 kV applied electric potential difference, such that the fusion energy production rate
would exceed the energy loss rate to electrodes by a factor of 10. However, the study also
indicated that the volume averaged fusion power density may be too small to be of practical
use. Therefore, an approach for enhancing the volume averaged fusion power density may

have to be employed to realize a practical use for centrifugal-electrostatic confinement fusion.
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