20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45

46

JFP, 47 pages, 2023. © Cambridge University Press 2023 1
doi:10.1017/xxxxx

Trace contracts

CAMERON MOY and MATTHIAS FELLEISEN

Northeastern University, Boston, MA, USA
(e-mails: camoy@ccs.neu.edu, matthias@ccs.neu.edu)

Abstract

Behavioral software contracts allow programmers to strengthen the obligations and promises that
they express with conventional types. They lack expressive power, though, when it comes to invari-
ants that hold across several function calls. Trace contracts narrow this expressiveness gap. A trace
contract is a predicate over the sequence of values that flow through function calls and returns. This
paper presents a principled design, an implementation, and an evaluation of trace contracts.

1 Multi-call constraints for APIs

Conventional type systems lack the power to express all the obligations and promises that
an API imposes on, or promises to, client modules. Some language designers cover this
expressiveness gap with contracts (Meyer, 1988, 1992), dubbed behavioral contracts in the
literature. Simply put, a contract is a Boolean-valued assertion that governs some aspect
of an API. Say a programmer wishes to narrow the set of acceptable inputs to a function
from integers to primes. A type combined with a contract, say {p:Int | isPrime pJ,
expresses this concisely. A proof assistant might discharge this assertion at compile time
or a run-time check might monitor it during execution.

While contracts can easily express logical constraints on function signatures, other con-
straints pose challenges. Temporal properties in particular are difficult to express. Due to
this expressiveness gap, APIs come with sequence diagrams, protocol descriptions, and
other informal specifications. The Unix I/O API is a standard example: “open a file before
reading from it.” A framework for specifying static-analysis passes may state that the given
transfer functions must be monotone. A GUI framework may allow the registration of
callback objects and promise to call them back in the order of registration.

This paper presents trace contracts, an extension of contract systems that permits the
functional specification of constraints across multiple function and method calls. A trace
reifies the sequence of values that flow through certain interception points of a contract
system (Dimoulas et al., 2016), say, function calls. A trace contract inspects this reified
trace with a predicate that decides whether a property holds.

Concretely, this paper reports two contributions. The first is a principled blueprint of
trace contracts (section 4), including the design of a compiler to ordinary contracts with a
correctness theorem (section 6). Working through the blueprint points to the central chal-
lenge of extending existing systems with trace contracts: on the one hand, specifications

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9
9

92

2 Trace contracts

should remain functional, while on the other hand, collecting a trace of values necessarily
involves mutable state. Managing this state while maintaining ordinary contract composi-
tion is key. Our insight is to separate value-interception time from the point when a value
crosses from one component to another.

The second contribution is a practical and efficient implementation of the blueprint in
Racket, which could be ported to any other language that satisfies some basic requirements
(section 7). The implementation supports both predicates over full traces (as streams) as
well as the use of efficient, bespoke data structures. For example, the creator of a static-
analysis pass could state the monotonicity obligation as a predicate either across a full trace
of all input-output pairs or a special-purpose, tree-based data structure. A performance
evaluation shows that the fixed-cost overhead of trace contracts is between 1% and 17%
on average (section 8).

2 Pedagogic trace-contract examples

Constraints on sequences of function calls are common. Sometimes these constraints cover
just one function, but more commonly they involve several. In a functional language such
as Racket, they also govern higher-order functions. This section introduces the Racket
implementation of trace contracts with pedagogic examples of such constraints. It demon-
strates how the integration of trace contracts with Racket’s higher-order contract system
facilitates authoring maintainable specifications.

2.1 A naive look at trace contracts

In 2020, a developer reported a bug to Racket’s mailing list about the
current-memory-use function.! The documentation states that the function “returns an
estimate of the total number of bytes allocated since start up, including bytes that have
since been reclaimed by garbage collection” (Flatt and PLT, 2010). Given this description,
one might expect that the series of return values from current-memory-use would
increase over time. However, a memory-consumption plot for a long-running system
showed periodic dips.

In a language with a conventional type system, such as Java, this function would have
the following signature:

// Returns the number of bytes allocated since start up,
// including those deallocated during garbage collection.
int currentMemoryUse() ;

The comment mentions two unchecked constraints. First, the function’s result cannot be
negative, so int is imprecise. In Racket, the API author could improve on this type with a
run-time-checked contract such as (-> natural?). This notation denotes the signature of
a function that takes no arguments and returns natural numbers. Second, the documentation

! https://groups.google.com/g/racket-users/c/xq0Y8uevGzE/m/mBtHeq2jAwAJ

93
94
95
9%
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

C. Moy and M. Felleisen 3

implies that every call returns a number that is greater than or equal to the result of all
previous calls. Existing contract systems cannot express this constraint easily.
With trace contracts, it is possible to express this second constraint directly:

(provide
(contract-out
[current-memory-use
(trace/c ([y natural?]);
(-> y)2
(full (y) sorted?)3)1))

This contract captures both of the constraints that conventional type systems could not
express. As the highlighting and subscripts indicate, a trace contract consists of three
parts: (1) a sequence of trace variable declarations , including one behavioral contract
for each; (2) a contract expression, dubbed the body contract; and (3) a sequence of
predicate clauses , in this example introduced with full.

Here, there is a single trace variable, y, associated with natural?. The body contract
is (-> y), which specifies ordinary, single-call constraints placed on values protected by
the trace contract. When a client module calls current-memory-use, the contract system
ensures that the returned value is a natural number and, if so, collects the value in a data
structure associated with y. This data structure is called a frace. Additionally, the trace
contract specifies a full predicate clause that depends on y. For full, the trace data
structure is a stream. Every time the contract system collects a value in the y trace, it
applies the function specified in the predicate clause—sorted?—to the stream of values.
The trace contract fails if sorted? returns false, indicating a dip in the sequence.

Note that sorted? is a pure function in the host language, just like ordinary first-
order behavioral contracts. One immediate advantage is that a developer can test contracts
like any other piece of code—an important property considering that all code, including
specification code, may have bugs. Testing builds confidence in the correctness of the
specification itself.

With this contract in place, violations are detected as soon as they occur. Moreover, the
trace contract blames the appropriate party for the violation:

> (current-memory-use)

100

> (current-memory-use)

200

> (current-memory-use)

; current-memory-use: broke its own contract
H produced: O

H blaming: current-memory-use

In this interaction, current-memory-use returns increasing values for the first two calls.
On the third call it produces 0, causing a contract error. Since the problematic value was

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

181
182
183

184

4 Trace contracts

collected from the module that defined current-memory-use, the function itself is to
blame. Developers confronted with this error message can immediately report a bug in the
run-time library, knowing with confidence that their code is not responsible for the fault.

2.2 A less naive look: tolerable performance

In its current form, the current-memory-use contract comes with a steep performance
cost. While any contract can slow down a program, naive trace contracts can be especially
expensive because they execute code every time a value is added to a trace. Programmers
should be mindful of this expense. In particular, sorted? iterates through the entirety
of the y trace every time a new value is collected. Thus, checking this trace contract
is quadratic in the number of calls to current-memory-use. To reduce this overhead,
a trace-contract system must hand developers fine-grained control over the trace data
structure.

Fine-grained control means that developers can choose a custom representation of
the trace instead of the naive, stream data structure. When choosing, a developer must:
(1) decide on a data structure, (2) pick an initial value, and (3) supply an operation that
incorporates a value into the existing trace representation or signals a failure. This kind of
predicate clause is introduced with accumulate and the data structure is referred to as the
accumulator. Note that the function given to accumulate is no longer a predicate. Instead,
it receives two values: the current accumulator and the newly collected values. It returns
the new accumulator on success or a designated failure value otherwise.

For the running example, it suffices to use a single number as the accumulator. A simple
comparison between any collected value and the accumulator is enough to enforce the
promised behavior:

(trace/c ([y natural?])
(->
(accumulate 0O
[(y) (A (acc cur)
(if (<= acc cur) cur (fail)))1))

The accumulate clause specifies an initial accumulator value of 0 and an accumulating
function. When y receives a new value, the latter is applied to the current accumulator and
the latest value. If the current accumulator is smaller than the new value, then the new value
is returned and becomes the next accumulator.? Otherwise, the function’s result is (fail),
the designated failure value.

Every trace contract can be expressed with accumulate instead of full. In fact, full
is just syntactic sugar over an accumulate clause with a stream accumulator. While full
is a useful tool to understand trace contracts conceptually, in practice programmers should
almost always use accumulate combined with an efficient trace data structure.

2 If current -memory-use were to return a non-numeric result, an error would be raised even without the
natural? check on y because <= expects two numbers. The error message, however, would blame the contract
itself for violating the precondition of <=, instead of current-memory-use. Thus, to generate practical error
messages, the natural? check must remain.

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

230

C. Moy and M. Felleisen 5

2.3 Checking all calls to one function

Consider a compiler pass that computes a live-variables analysis via fixed-point iteration.
The interface to such an analysis, using ordinary contracts, might look like this:

(provide
(contract-out
;; The transfer function must be monotonically increasing.
[live-vars (-> (-> set? set?) label? set?)]))

Given a monotonically increasing transfer function and a program label, 1live-vars
returns the set of live variables at that label (Nielson et al., 2005). Unlike the simplistic
example from the preceding section, this constraint involves a higher-order function. A
comment describes the constraint, but it is not enforced. Since an incorrectly computed
least fixed point can lead to a silent failure, this problem may be especially difficult to
debug.

A trace contract can replace the informal comment, enforcing monotonicity:

(provide
(contract-out
[live-vars (-> (monotone/c set? set? subset?) label? set?)]))

;; Contract Contract (Set Set -> Boolean) -> Contract
(define (monotone/c dom/c cod/c leq?)
(trace/c ([x dom/c] [y cod/c])
(->xy
(accumulate (red-black-tree leq?)
[(x y) (monotone-func leq?)])))

The monotone/c function consumes two contracts and a comparison function; it returns
a function contract that checks monotonicity with respect to the given comparison func-
tion. When a client module imports 1ive-vars and invokes it, the highlighted contract is
attached to the supplied transfer function. This contract stipulates that the transfer function
takes and returns sets and is monotone with respect to set inclusion. During fixed-point iter-
ation, the trace contract observes all input-output pairs of the transfer function and builds
an extensional representation of the function. Violations are detected by ensuring that no
two input-output pairs fail monotonicity.

While a stream containing all input-output pairs would work, it would be inefficient. An
order-aware data representation can reduce the time needed to determine whether mono-
tonicity holds from O(n?) to O(nlogn), where n is the number of calls to the transfer
function. One possible choice is a red-black tree as it can quickly determine the immediate
predecessor and successor of an ordered element.’

3 Ordinarily this works only for a total order, not a partial order such as set inclusion. However, since fixed-point
iteration always explores comparable elements, a red-black tree is acceptable. A general-purpose contract for
monotonicity that supports partial orders would require a different data structure. Assuming that fixed-point
iteration climbs the lattice in order, as it usually does, a contract like the one from section 2.2 would also work.

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

266

270
271
272
273
274
275

276

6 Trace contracts

Every time the trace contract monitors a new value, it initializes a new accumula-
tor. If live-vars is invoked twice, two separate accumulators are created, one for each
given transfer function. This policy allows trace contracts to compose sensibly with other
contract combinators.

Here is the (curried) function that finishes the definition of monotone/c:

;3 Acc = [Ordered-Dict Set Setl]
;3 Comparator -> (Acc Set Set -> [Or Acc Faill)
(define ((monotone-func leq?) acc x y)
(cond
[(dict-has-key? acc x)
(if (equal? y (dict-ref acc x)) acc (fail))]
[else
(define pred-y (dict-pred acc x))
(define succ-y (dict-succ acc x))
(if (and (=> pred-y (leq? pred-y y))
(=> succ-y (leq? y succ-y)))
(dict-set acc x y)
(fail))1))

When the transfer function returns, monotone-func is applied to the current accumu-
lator acc, the latest input x, and the latest output y. It determines the transfer function’s
predecessor and successor results for x and, if they exist, checks that they properly relate to
the current output y. Just two comparisons suffice: by transitivity there are no other mono-
tonicity violations. If successful, monotone-func returns the next accumulator, relating
the new input-output pair in the augmented red-black tree.

2.4 Global initialization of traces

The following warning from Racket’s documentation tells developers about an essential
constraint that the language does not enforce:

“If a key in an equal?-based hash table is mutated (e.g., a key string is modified with
string-set!), then the hash table’s behavior for insertion and lookup operations becomes
unpredictable.”

Time and again, however, programmers—especially novices—fail to heed this warning,
experience arbitrary program behavior, and have a difficult time debugging such mistakes.
Trace contracts can enforce such constraints:

(provide
(contract-out
[hash-set hash-set/c]
[string-set! (-> mutable/c natural? char? void?)]))

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

304

311
312
313
314
315
316
317
318
319
320
321

322

C. Moy and M. Felleisen 7

(define-values (hash-set/c mutable/c)
(trace/c ([t any/cl)
#:global
(values (-> hash? (list/t ’set t) any/c void?)
(list/t ’mut t))
(full (t) not-interfere?)))

This trace contract makes use of a few features. First, the body contract produces two
values using Racket’s values function, which allows an expression to return multiple
values (Ashley and Dybvig, 1994). Because the property relates different functions, i.e.
hash-set and string-set!, their contracts need to be created within the same trace/c.
Second, the #:global option causes the state of the trace contract to be initialized at
definition time, not the usual atfachment time. Without #: global, the hash-set/c and
mutable/c contracts would be initialized separately and could never interact. Finally, the
list/t function alters the given collector to tag incoming values with a symbol. Here, the
symbol is used to indicate the operation.

The not-interfere? predicate ensures that no key is modified after it becomes a key
in a hash table:

(define/match (not-interfere? xs)
[((stream))
true]
[((stream* ‘(mut ,x) xt))
(not-interfere? xt)]
[((stream* ‘(set ,x) xt))
(and (not (stream-member? xt ¢ (mut ,x)))
(not-interfere? xt))]1)

2.5 The full grammar of trace contracts

In summary, the trace contract library extends Racket’s grammar with a trace/c form
that constructs trace contracts. Figure 1 displays the extension to Racket’s grammar. As the
preceding examples motivate, each piece of the trace contract (trace variable declarations,
the body contract expression, and predicate clauses) come with enhancements that make
the system practical:

Trace Variable Declarations The trace-variable declarations [x ¢;] determine how many
traces the contract creates. Each declaration comes with a contract e, that governs
newly collected values.

Body-Contract Expression When a trace contract is attached to a value, the body-
contract expression e, is evaluated in an environment where trace variables are
bound to collectors. A collector is a contract that gathers values that flow through
the corresponding points in the body contract. These points are called interception
points, e.g., argument or return positions. Once collected, values are added to all
dependent trace data structures.

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

341

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

364

366
367
368

8 Trace contracts

ecExpr = ... | (trace/c([xe]...)oepc ... T)
0€Opt = #:global | €
ceClause = (accumulatee|(x ...T)e,] ...7)

(full(x ... ")ep)
(trackec ...T)
e, ep € Expr, = {e| e evaluates to a contract}
eq € Expr, = {e| e evaluates to an accumulating function}
ep € Expr, = {e| e evaluates to a predicate}
x € Var

Fig. 1. The Extended Racket Grammar for Trace Contracts

If trace/c comes with the #: global option, then the collectors are initialized only
once, namely, when the contract is created. The default behavior, as demonstrated in
section 2.3, initializes collectors each time the trace contract is attached to a value.
The body-contract expression may produce multiple values, which is useful in con-
junction with #: global. Programmers should use the #: global option when more
than one contract must share a trace or multiple traces, as seen in section 2.4.
Predicate Clauses A predicate clause c is responsible for determining how the trace
should be updated when a new value is collected and whether the contract is violated.
The implementation supports three types: accumulate, full, and track.
The accumulate clause consists of several subclauses that determine how the
accumulator is updated when a new value is collected. A subclause consists of
a dependency specification and an expression e,, which must evaluate to a func-
tion. When a subclause depends on more than one collector, the contract system
waits until all values have been collected before applying the function. If a collector
receives more than one value before the other collectors are ready, then all but the
last are discarded.* The corresponding accumulating function must return either an
updated accumulator or a value indicating failure.
The full clause evaluates the expression e, to a predicate and applies this pred-
icate to a time-ordered stream of collected values. Instead of triggering when all
the dependent collectors have new values, the predicate is applied when any of the
dependent collectors have new values.
The track clause augments the error message of other clauses with information
about all the parties that contributed values to the trace. Section 7.1 describes this
feature in detail.

3 Real-world trace-contract examples

This section provides two real-world examples of trace contracts. The first comes from
Racket’s drawing library and the second comes from code written as part of the grading
infrastructure for an undergraduate course.

4 Alternative choices are expressible by having multiple accumulate subclauses with one dependency each.
The accumulator would store collected values and then the accumulating function would determine the policy.

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

396

400
401
402
403
404

405

411
412
413

414

C. Moy and M. Felleisen 9

3.1 Reusing trace contracts

Racket comes with a built-in library, racket/draw, for drawing images. The library pro-
vides a thin wrapper around a low-level graphics API written in C. As such, the wrapper
must protect against client behavior that would induce undefined behavior at the C level.
One instance of undefined behavior occurs with drawing context (DC) objects.

To produce an image with racket/draw, a developer must first choose a DC represent-
ing the desired output device. There are many such contexts, but they all share a common
interface. Part of this interface is a collection of methods that manages the pages of a doc-
ument: start-doc, start-page, end-page, end-doc. Clients must call these methods
in a particular order. It does not make sense to call, e.g., end-doc before start-doc.
Moreover, all drawing commands must occur within a page.

Here is a regular expression that describes a valid complete sequence of method calls:

start-doc, (start-page, draw”, end-page)*, end-doc

This regular expression is not suitable for trace-contract monitoring. A trace contract also
checks every incomplete sequence of method calls, not just the complete sequence. So, this
regular expression has to be adapted to accept any prefix of the complete sequence.

Here is an adapted version of the regular expression above, described using Racket’s
automata library (McCarthy, 2011):

(define SINGLE-PAGE

(re (seq/close ’start-page (star ’draw) ’end-page)))
(define DC-RE

(re (seq/close ’start-doc (star ,SINGLE-PAGE) ’end-doc)))

The re form compiles a finite-state automaton that accepts the given regular expres-
sion. Within re, seq/close denotes a regular expression that accepts not just the given
sequence, but any prefix of that sequence.

The following trace contract enforces the protocol using DC-RE:

(provide
(contract-out [make-ps-dc (-> (dc/c DC-RE))]1))

(define (dc/c aut)
(trace/c ([s symbol?])
(object/c
[start-doc (apply/c [s ’start-doc])]
[start-page (apply/c [s ’start-pagel)]
[draw-point (apply/c [s ’draw])]
[end-page (apply/c [s ’end-pagel)]
[end-doc (apply/c [s ’end-docl)])
(accumulate aut
[(s) (A (acc x)
(define accx (acc x))
(if (machine-accepting? accx) accx (fail)))])))

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

440

449
450
451
452

453

10 Trace contracts

Given a finite-state automaton, dc/c produces a contract for a DC where the method call
sequence is governed by the regular expression. In the body of dc/c, a trace contract is
wrapped around an object contract specifying each of the DC methods. There is only a
single collector, s, that collects symbols corresponding to the method calls. The apply/c
combinator provides the collector with a constant value each time a protected method is
called. To check the protocol, the trace predicate uses the state of the automaton as the
accumulator. So long as the automaton is accepting, the contract is satisfied. The trace
contract is then used in the codomain of make-ps-dc, which produces PostScript (PS)
drawing contexts.

As mentioned before, there is more than one kind of DC. In particular, an Encapsulated
PostScript (EPS) drawing context has a slightly different constraint than an ordinary PS
context. Since an EPS file is intended to be embedded in a larger document, it can only have
a single page. Supporting EPS is easy since dc/c abstracts over the regular expression.
Checking a different protocol requires only passing in a different regular expression to
dc/c:

(provide (contract-out [make-eps-dc (-> (dc/c EPS-RE))1))

(define EPS-RE
(re (seq/close ’start-doc ,SINGLE-PAGE ’end-doc)))

3.2 Protocols for many methods

Imagine a board-game framework that pits Al player components against one another. In a
typical board game, players (1) receive their game pieces; (2) take turns, which may consist
of several interactions with the board; and (3) determine which ones won and lost. Winners
of a game can move on to the next round of a tournament while losers are left behind.

A natural implementation of an Al player is as an object with methods that correspond
to these game stages. Each player expects that these methods are called in a certain order,
which may depend on the state of the game. In short, the methods relate to each other
according to a value-dependent, multi-function, temporal property.

Programmers often use state-transition diagrams to document such multi-function pro-
tocols. Figure 2 displays a diagram for an Al board-game player (top), together with
a matching trace-contract specification (bottom). States in this diagram indicate which
method the referee component must call next. Labeled edges represent transitions that
depend on either an argument value or a return value. Unlabeled edges represent inde-
pendent transitions. Since there are several possible transitions for some states, this is a
non-deterministic automaton.

Specifically, this diagram dictates that players must implement five methods:

1. A setup method that delivers the game pieces.

2. A pick method that asks a player to choose some game objectives.

3. A play method that grants a player the right to take a turn. The result is either a
request to perform an action on the game state or a request for more game pieces.

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495

C. Moy and M. Felleisen 11

argument: false?

@ result: more? @ @

argument: true?

(provide (contract-out [player-factory (-> strategy/c player/c)]))

(define PLAYER-NFA
(nfa (setup) (setup pick play more win done)
[setup ([‘(setup ,_) (pick)1)]
[pick ([‘(pick ,_.) (play)1)]
[play ([‘(play ,(? action?)) (play win)]
[“(play ,(? more?)) (play more win)])]

[more ([¢(more ,_) (play win)])]
[win ([¢(win ,true) (setup)]
[¢(win ,false) (done)1)]

[done (1))

(define player/c
(trace/c ([x any/cl)

(object/c
[setup (->m game-map? (list/t ’setup x))]
[pick (->m set? (1ist/t ’pick x))]
[play (->m state? (1ist/t ’play x))]
[more (->m 1list? (list/t ’more x))]

[win (->m (list/t ’win x) any/c)])
(accumulate PLAYER-NFA
[(x) (A (acc x)
(define acc* (acc x))
(if (machine-accepting? accx) accx (fail)))1)))

Fig. 2. The state-machine contract for Al players, with a transition diagram

4. If the referee gets this second kind of request in response to play, it may invoke the
player’s more method. But, it may also skip this call, depending on the game state.

5. The player is granted turns and more pieces until the referee discovers an end-
game condition and then informs the player whether it won or lost. The player may
participate in the next game only if win is called with true.

In this particular software system, a factory function creates Al players from a strategy
and returns player objects that implement the above five methods. The contract on this
factory method attaches a trace contract to each player object. As a result, every instance
of the player class must obey the order of method calls specified in the sequence diagram.
Otherwise, the system raises an error with a blame-assignment message that informs the

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

537

539
540
541
542
543
544
545
546
547
548
549
550
551

552

12 Trace contracts

developer of the player that was mistreated; once again, the trace-contract design greatly
benefits from a tight integration with higher-order behavioral contracts.

This protocol is a language over the alphabet containing the names of methods, along
with the specific arguments or return values of two of them: play and win. For example,
the following sequence of method calls is correct so long as play returned a value satis-
fying the more? predicate: setup, pick, play, more. If play returned a value satisfying
action? instead, then that sequence of method calls is invalid, and a contract error should
be raised on the call to more.

To check this protocol, the trace contract once again simulates the finite-state machine
with accumulate. Unlike the automaton in section 3.2, this machine inspects pieces
of data. For setup, pick, and more, the transition is independent of run-time values.
However, play and win have value-dependent transitions. For example, play uses the
action? and more? predicates to determine the next set of states. It does so using Racket’s
(? p) match pattern, which matches a value if the predicate p holds.

3.3 Contracts are better than ad-hoc checks

As mentioned previously, these two examples come from real-world projects. In the origi-
nal code, both contained ad-hoc protocol checks instead of trace contracts. Given that, it is
worth reviewing why contracts are preferable to such handwritten checks:

1. Contracts cleanly separate specification code and implementation code—with ad-
hoc checks the two are intertwined. This makes programs difficult to read, and thus
hard to maintain (Meyer, 1988, 1992). Additionally, the code needed to correctly
check a specification is often repetitive and tedious. Getting it wrong is inevitable.

2. As a direct consequence of separating specification and implementation, contracts
enable static and dynamic analyses. For example, the contract library supports pro-
filing (Andersen et al., 2018) to determine which contracts are slowing down a
program. Static techniques (Nguyén et al., 2018) can verify whether a program
satisfies a contract. These kinds of tools are impossible with ad-hoc checks.

3. The contract library automatically supports detailed error messages with blame that
points to the module that violated the contract. This information is exceptionally
useful for debugging (Lazarek et al., 2020).

4. Programmers have fine-grained control over the scope of a contract, i.e., which mod-
ules get checks and which ones do not. Trusted modules may not need checks. Thus,
the balance between correctness and performance can be tuned precisely. This also
allows tools to automatically bypass contracts in certain cases, for instance, when
they are statically proven to be unnecessary (Moy et al., 2021).

5. Finally, contracts permit specification reuse. In section 3.1, repetitive blocks of ad-
hoc checking code are replaced with make-ps-dc and make-eps-dc; abstracting
over the contract eliminates duplicate code.

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

578

581
582
583
584
585
586
587

588

590
591
592
593
594
595
596
597

598

C. Moy and M. Felleisen 13

A Surface Syntax‘ ‘A Evaluation Syntax‘
ecExpr=>b|x| f|oe]|ifeee g e Conf = (e, 0)
| ee | queue | add! ee eGEXpr:...|a\err]j‘-
b€ Bool = true | false veVal=b | f | «
f€Fun = Ax.e EcCitx =0 |0oE | ifEee | Ee
0€0p = null? | head | tail | vVE | add! E ¢ | add! vE
x,y,z € Var ueSVal = null | consva
o € Store = Addr —4, SVal
o € Addr
J,k,l€lab

Fig. 3. Surface and Evaluation Syntax of A

4 A model of trace contracts

A design requires a rigorous blueprint so that implementors of other languages can under-
stand the idea and adapt it. This section presents a model of the A-calculus extended with
trace contracts. To keep the formalism accessible, the model is developed and explained
incrementally using five languages: A, Ap, Ac, Ar, Ay. Additionally, some of the prag-
matic features of section 2 have been omitted to reduce the complexity of the final model.
Section 5 presents formal properties of these models.

4.1 A functional base

Figure 3 (left) defines the surface syntax of A, the call-by-value A-calculus (Plotkin, 1975)
extended with Booleans and mutable queues. The final model represents traces using
queues. The nullary constructor queue builds a new instance and add! puts an element
into a queue. Primitive operations allow functions to walk over queues similar to immutable
lists. All the remaining syntax is standard.

Figure 3 (right) defines the evaluation syntax of A. Along with a grammar of values and
evaluation contexts, the syntax contains errors and queue-specific stores.

Errors come with two labels: j names the party that specified the violated contract and
k names the party that violated the contract. There are two special labels: o refers to the
language runtime itself and f refers to the read-eval-print-loop (REPL). Since A does not
have user-defined contracts, the only possible error is err.

Stores map addresses to either an empty queue (null) or a cons cells that combines
a head value with an address containing the remaining elements. This choice facilitates
functional iteration over queues.

Next, figure 4 defines the reduction relation for A with the supporting metafunctions
provided in figure 5. Conditionals and application are standard. For functional primi-
tive operations, the 0 metafunction (Barendregt, 1981) is used to compute the result.
Constructing a new queue uses the next free address in the store and sets it to the empty
queue. Adding to an existing queue updates the store, replacing the empty queue at the end

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

644

14 Trace contracts

[A Reduction Relation]

(E[ifvej e2], 0) —> (E[e1], o) if v # false IF-TRUE
(E[if falsee) €3], 0) — (E[e2], O) IF-FALSE
(E[(Ax.e) V],) — (Ele][v/x]], o) ApP
(E[ov],0) — (E[6(0,V, 0)], O) PRIM
(E[queue], o) — (E[o], o[— null]) if o = next(c) QUEUE

(E[add! av], o) — (E[ct], add(o, o, v)) ADD!

(E[vs V], 0) — (E[err]], o) if v; ¢ Fun ERR-APP

(E[add! v, V], 0) — (E[err]], o) if v, ¢ Addr ERR-ADD!
(Elerrh], 6) — (err, o) if E# 0 ERR-UNWIND

Fig. 4. Reduction Relation of A

add(c, a,v) = ola— consva'][a’ — null] ?f o’ =next(o), o(a) =null
add(o, o, v) ifo(o) =consv, o
next(c) = max(dom(o)) + 1
true ifo=null? o(v) =null
(

false ifo=null? o(v)=consva/

err! ifo=head, 6(v) =null
0(o,v,0)=1qv ifo =head, 6(v) =consva’

err] ifo=tail, o(v)=

o ifo=tail,o(v) =consva'

err! ifv¢ Addr

Fig. 5. Metafunctions of A

with a cons cell containing the new value. The last three rules deal with error conditions.
Errors to do with primitive operations are handled by 4 itself.

4.2 The classic contract model

Figure 6 defines the surface and evaluation syntax for Ap, a model of higher-order contracts
based on that of Dimoulas and Felleisen (2011) and Dimoulas et al. (2011). The surface
syntax extends A with two new elements: dependent function contracts e; —; e, and moni-
tors monI;’l ex e.. A dependent function contract can describe properties of functions where
the codomain contract depends on the argument to the protected function.”> A monitor is
then used to attach a contract to a value. So, mon];."l e e. attaches ey to e.. The value of e,

5 This paper uses the abbreviation e; — e, to stand for an independent function contract, i.e., e; —; (A_.e.).

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

690

C. Moy and M. Felleisen 15

Ap Surface Syntax‘ extends A ‘AB Evaluation Syntax ‘ extends A
eeEXpr:...|e—>ie|mon];’lee veVal = ... | k
j.k,1€lab keCon=5b| Axe | v—v
EcCtx = ... ‘ E—je | v—i E

| mon1;7lEe | mon];-’l vE

Fig. 6. Surface and Evaluation Syntax of Ap

is dubbed the carrier of the contract. Monitors also come with labels naming the parties
that agreed to the contract: the contract-defining module j, the server module k, and the
client module /.

In addition to dependent function contacts, the evaluation syntax reveals that Booleans
and functions can be used as contracts. When used as a contract, true permits any value
and false forbids all values. These correspond to Racket’s any/c and none/c contracts,
respectively. When used as a contract, a function checks first-order properties of the carrier.
This corresponds to Racket’s flat contracts.

Here is an example program with a contract:®

lib,main

mon;,. (true —; (Ax.Ayx=y)) (Az.2) 4.1)

This example contains a contract fully specifying the behavior of the identity function.
Since the domain contract is true, every argument is accepted. When the function returns,
the output value is checked against the codomain contract Ay.x =y, ensuring that it is equal
to the input value.

Figure 7 shows the reduction relation for Ap. The first four rules describe the checks per-
formed by each kind of contract. For true and false, the check immediately succeeds or
immediately fails, respectively. For a flat contract Ax.e, the result of applying this function
to the carrier is then used as the new contract. Thus, if Ax.e is a predicate, this corresponds
exactly to a first-order check because true and false are themselves contracts.

While Ax.e may return a Boolean, there is nothing in the semantics that forces it to be
one. In particular, it could return a function contract. This can be used to create cascading
contracts that combine arbitrary first-order checks with higher-order contracts.

Consider this example:

Af.if (arity f=1)(int? — int?) false

Assuming an arity primitive, this cascading contract checks a first-order constraint, namely
that the carrier has arity one. If successful, the higher-order contract int? — int? protects
the carrier. Otherwise, the contract fails.

In Racket, function contracts perform arity checks eagerly, exactly in this manner.
The model from Dimoulas and Felleisen (2011) cannot encode this behavior. Cascading
contracts are essential for defining the compiler in section 6.

6 These example programs are intended to illustrate a point, and therefore may use language features that are not
formally defined. The meaning should always be clear from context.

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
17
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

736

16 Trace contracts

]AB Reduction Relation\ extends A

<E[mon truev], o) — (E[v], 0) MON-TRUE

(E[mon falsev], o) +— (E[errlj], o) MON-FALSE
(E[mon’’ (Ax.e) v], 6) — (E[mon’’ (Ax.e)v)v], o) MON-FLAT
(E[monl;’l (va =ive)v],0) — (E[Ax.letxj = monjﬁj Vg xin MoON-FuUN

let x; = monlj’k Vg Xin

monlj’l (vexj) (vxi)], o)

(E[mon’ v, v], 6) — (E[err]], o) if v, ¢ Con ERR-MON

Fig. 7. Reduction Relation of Ag

Finallyy, MON-FUN describes the indy semantics of dependent function con-
tracts (Dimoulas et al., 2011). The key insight of indy is that the contract itself can be
inconsistent, and therefore must be subject to checks.

Here is an example that illustrates this point:

(bool? — bool?) —; (Af.f42)

While the domain contract states that the input is a function over Booleans, generating the
codomain contract violates that assumption by applying f to a number. In this case, indy
raises an error blaming the contract itself.

4.3 A revised contract model

As is, Ag cannot accommodate contracts with effects, such as trace contracts. When used
as the domain of a function, a contract’s effects are erroneously duplicated.
Take the following variation on program (4.1):

lib,main

monge. ((Ax.printx;true) —; (Ax.Ayx=y)) (Az.2)

The only difference is the presence of an effect in the domain contract. As the following
reduction sequence demonstrates, print is executed twice:

((mongie™ ™ ((Ax.print x ; true) —; (Ax.Ay.x=y)) (Az.z)) 42, 0)
By MON-FUN, the monitor produces a wrapper function that checks the arguments

against the domain contract and the return value against the codomain contract.

lib,main

— ((Axmongio™™ ((Ax.Ay.x =y) (monfes*® (Ay.print y; true) x))
((Az.z) (mon™i™*® (Ayprint y; true) x))) 42, 0)
The wrapper function is applied to 42.

lib,main main,ctc

— (mong " ((AxAyx=y) (mongee - (Ay.printy;true)42))
((Az.z) (mon™ai™® (Ay.print y; true) 42)), 0)

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

782

C. Moy and M. Felleisen 17

To produce the codomain contract, the argument is first checked against the domain
contract with the contract-defining party (ctc) as the client label. This prints 42.

—T <monitﬂg‘main (Ax.Ayx=y)42)
(Az.2) (mon™i™*® (Ay.print y; true)42)), 0)

Once the argument is checked, the codomain contract can be created.

lib,main ,

— (mon., (Ay.42 =y)
((Az.2) (mon™ai™*® (Ay.print y; true) 42)), 0)

The argument has to be checked against the domain contract once more. This time
the client label is 1ib. Again, 42 is printed.

st (monio ™ (1y.42 =) ((Az.2) 42), 0)

Now the carrier is applied to 42. Since the carrier is the identity function, it returns
42,

T (mongio™™ (Ay.42 =y) 42, 0)

The returned value is checked against the generated codomain contract. In this case,
the contract is satisfied and is discharged.

— (42,0)

Effect duplication is a major problem for trace contracts. If a collector is used as the
domain of a function, then it will collect duplicate values.

To understand the source of the problem, consider the contractum of MON-FUN. It con-
tains two vy monitors that differ only in their client label: one uses j and the other uses k.
A simple let binding cannot be used to eliminate the duplicated effect since each of the
monitors may produce wrappers that contain different labels.

The conclusion to draw is that Ap conflates interception time and crossing time.
Interception time occurs when the contract system intercepts a value from the monitored
program, i.e., when a value flows through an interception point. Crossing time occurs when
an intercepted value moves to another component.

Consider a wrapper for the contract vy — v.. Every time the wrapper is applied, it must
perform two tasks related to the argument. First, v; must be used to check first-order prop-
erties of the argument. Second, if v; is a higher-order contract, wrappers must be created
for every client of the argument. In the case of indy, there are two such clients, by conven-
tion labeled j and /. Interception time corresponds to when task one occurs and crossing
time corresponds to when task two occurs.” Since Ag has only one mon form, both tasks
are its responsibility.

Splitting the three-labeled monitor into two forms separates these responsibilities.
Figure 8 defines the syntax of Ac, a revised contract language. While the surface syntax

7 Often, interception-time coincides with first-order checks and crossing-time coincides with higher-order wrap-
ping. There are exceptions, however. For example, in Racket the unconstrained-domain-> contract makes
no demand on function arguments. Because such a contract is guaranteed never to blame clients, its wrapper
can be constructed at interception time. For simplicity, though, this paper blurs the distinction.

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

828

18 Trace contracts

Ac Surface Syntax‘ extends A ‘Ac Evaluation Syntax‘ extends A
ecExpr=...] e—e| mon];-’lee ecExpr=...]| mon’j‘.ee | grd];a)v
J.k,lelab | e-1
veVal = ... | k| grdhov

keCon =b>b| Axe | v—;v
oweWrap = true | v—;v
E € Ctx ...|E—>,~e\v—>,~E

\ mon’;Ee | mon];vE | E-I

Fig. 8. Surface and Evaluation Syntax of A¢

is the same as Ap, the evaluation syntax has a few differences (highlighted): two-labeled
monitors mon’; ex e, guarded values grd]j‘- ® v, and label applications e, - [. Reduction of

mon’; ex e. corresponds to interception time, when first-order properties of the carrier are
checked. Reduction of (grd’} @ v) - I corresponds to crossing time and produces a wrapper
for client /.

Figure 9 displays the reduction relation for Ac. The first rule, MON-APPLY, decomposes
the surface-level monitor into a two-labeled monitor applied to the client label. If success-
ful, the two-labeled monitor produces a guarded value. The next four rules are responsible
for the first-order checks of each contract. In the case of MON-TRUE and MON-FALSE,
the first-order check is all that needs to occur.

Below the monitor rules, there are two rules for guarded values: GRD-TRUE and GRD-
FUN. For true there is no wrapper needed so the carrier is produced directly. A wrapper
is needed for function contracts, though. The wrapper in the contractum of GRD-FUN
exploits the two-stage process. Instead of two v, monitors, there is now only one, with its
result bound to x,. Effects caused by checking v4 occur only once while binding x,. In
the scope of this 1et binding, two wrappers are produced by applying x, to the two client
labels. Constructing these wrappers is not effectful.

4.4 The trace contract model

Finally, figure 10 defines the trace contract model Az that extends A¢. The surface syntax
contains only one new form: tr e, e,,. This represents a trace contract with body-contract
constructor e and trace predicate e,. A body-contract constructor is a function that, when
provided with a collector, returns the body contract. The evaluation syntax contains one
new form: co & v,. This represents a collector with trace address o and trace predicate v,,.

The reduction relation for Ar is presented in figure 11. MON-TRACE performs two
tasks. First, it allocates a queue for storing the trace. Second, it creates a collector and
provides it to the body-contract constructor. MON-COL produces code that adds a new
value to the trace and checks it using the trace predicate.

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

874

C. Moy and M. Felleisen 19

Ac Reduction Relation‘ extends A

(E[mon exe|,0) — (E[(mon exe)-1], o) MON-APPLY
<E[mon truevl], o) — <E[grd truevl, o) MON-TRUE
<E[mon falsev], o) —> (E[err], 0) MON-FALSE
(E [mon (Ax.e)v],0) — (E[mon ((Ax.e)v)v], o) MON-FLAT
<E[mon (Vva —ive) V], 0) —> (E[grdk (Vva —ive) V], 0) MoN-FuN
(E [(grdk truev)-l], o) — (E[v], 0) GRD-TRUE
(E [(grdk (va =ive)v) 1], 0) — (E[Ax.let x, = monl Vg X in GRD-FUN

letx;=x;-jin
letxy =x,-kin

kil
mon;" (vex;) (vxy)], o)

<E[mon’} v V], 6) — (Elerr]], o) if v ¢ Con ERR-MON

Fig. 9. Reduction Relation of A¢

‘AT Surface Syntax‘ extends Ac ‘AT Evaluation Syntax‘ extends Ac

ecExpr=...|tree ecExpr=... | coav
keCon=...|trvv|coav
EcCtx=...|trEe | trvE

Fig. 10. Surface and Evaluation Syntax of Ay

\AT Reduction Relation\ extends A¢

<E[mon (trvpvp)v], o) — (E[monk (vp (coaxvp)) V], o[or = null]) MON-TRACE
if o« = next(o)

<E[monIJ‘- (coavy)v],0)— (E[mon]; (vp (add! av))v|, o) MoN-CoL

Fig. 11. Reduction Relation of Ar

Here is a translation of the current-memory-use example from section 2.1 into this
model:

tr (Ay.true — y) sorted? 4.2)

As mentioned earlier, the body-contract constructor consumes a collector k£ and returns a
contract: true — k. That is, the generated contract does not impose any precondition on

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

920

20 Trace contracts

the argument of the carrier; the collector itself serves as the function’s codomain contract.
The trace predicate sorted? consumes and inspects a queue to ensure that it is sorted.®

Here is an example reduction sequence generated by protecting a function with this
contract and applying it to false:

libmain

(let f =monjiy (tr (Ay.true — y) sorted?) (Ax.—) in f false,0)

A three-labeled mon becomes a two-labeled mon that is immediately applied to the
client label. All other monitor reductions are defined only on the two-labeled form.

— (let /= (mon}i} (tr (Ay.true — y) sorted?) (Ax.—)) -mainin [false, ()

MON-TRACE allocates a fresh queue for the trace and constructs a collector to give
to the body-contract constructor.

— (let f = (monjip ((Ay.true —y) (co o sorted?)) (Ax.—)) -mainin
f false, [0 — null])

In this step, the first argument to the trace contract produces the body contract—
filling in the appropriate spot with the collector.

+— (let f = (moniip (true — (co o sorted?)) (Ax.—)) ‘mainin
f false, [0 — null])

The monitor contains a function contract, so the first-order check succeeds and
produces a guarded value by MON-FUN.

— (let f = (grdil? (true — (co 0 sorted?)) (Ax.—)) -main in
f false, [0 — null])
After several let-based steps, the elided function is applied to false.
7 ((monii} (co o sorted?) ((Ax.—) false)) -main, [0 > null])
Assume that the elided function produces 42.
" ((monjif (co ap sorted?)42) -main, [0 > nulll)

MoN-CoL appends the newly received value, 42, to the trace. It then arranges for
the trace predicate to be checked.

T ((mon}i? (sorted? o) 42) -main, [0~ cons 42 ¢y, 0 —» null))

Since the singleton queue containing just 42 is sorted, the predicate succeeds.
" ((mon}if true 42) -main, [0+ cons 42 oy, @) > nulll)

The result is just the return value of the function.

—T (42, [op > cons 42 o, @ — null])

8 This model’s syntax does not support trace variable declarations, so the natural? constraint from section 2.1
is missing. Section 4.5 demonstrates how to add this feature to the model.

C. Moy and M. Felleisen 21

Ay Surface Syntax ‘ extends A¢ ‘AU Evaluation Syntax‘ extends Ac
921
922

ecExpr=...| trece ecExpr=...| covav
3
2 keCon=...|trvvv | covav
. EcCix=...|trEee | trvEe
925

| trvvE

926
. Fig. 12. Surface and Evaluation Syntax of Ay
928
929

930

031 \AU Reduction Relation\ extends A¢

932 (E[monf (trvevpvp) V], 0) — (E[mon§ (vp (cove ot vp)) v], o[t +—null]) MON-TRACE
933

934 if o« = next(o)

035 <E[mon]; (covk avy)v],0) —> (E[let x, = mon]]‘- Vevin MoN-CoL
936 letxj=x,-jin

7 add! ax; ;mon]; (vp @) v;x,], 0)
938 ’

939
940 Fig. 13. Reduction Relation of Ay
941
942
943

944 4.5 Extending the model

945
While the Racket implementation pairs each trace variable with a contract that governs

collected values, the model omits this capability. To illustrate the versatility of the model,
this subsection shows how to add this feature. To do so is relatively simple: one tweak
to the syntax and another to MON-COL. Other adaptations to the model—making it more
faithful to the implementation—are similarly straightforward.

The revised surface syntax, shown in figure 12, adds contracts to the body-contract
constructor; an analogous change augments collectors with contracts to protect collected
values. Figure 13 shows the modified reduction relation. The MON-TRACE rule is just
adapted for the new argument, while the revised MON-COL reduction has some new behav-
ior. In the contractum, a let expression binds x, to the collected value v, monitored with
contract v¢. The second binding, for x;, applies the monitored value x, to j because the
consumer of the trace is the contract-defining party. At this point, the value is added to the
trace, and the trace is tested with the predicate. If the predicate succeeds, the monitored
value x, becomes the result of the 1et expression.

This variant of MON-COL demands careful construction. First, it requires the proper
management of blame parties. Monitoring the to-be-collected value is the responsibility
of the contract-defining party, but using the value remains the responsibility of the client,
which is the context. Second, the right-hand side may not duplicate the monitoring expres-
sion because a contract may have effects—after all, it could be another collector. So, like
GRD-FUN, this rule is arranged such that the effects of vy are performed only once.

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965

966

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

1012

22 Trace contracts

5 Semantic properties
Here is an evaluation function that can be used for all the languages defined in section 4:

eval ¢ : Prog — Ans

b if (e, 0) —* (b,)
eval #(e) = { opaque if (e, 0) —* (v, o), v ¢ Bool
err]]‘- if (e, 0) —* <errl;», o)

The eval ¢ function takes programs as input. A program is a closed surface expression.
If the reduction relation connects the program to a Boolean, then evaly produces the
same Boolean. If the reduction relation connects the program to any other value, then
eval ¢ produces opaque, just like the REPL does for a A expression. Finally, the evaluator
produces an error token with two labels when the reduction relation does too.

The eval ¢ relation is a partial function. Therefore, a deterministic interpreter can be
defined.

Theorem 5.1 (Functional Evaluator). eval ¢ is a partial function.

Proof. See appendix B. O

Moreover, the only time eval ¢ is undefined is when it diverges.

Theorem 5.2 (Uniform Evaluator). Either eval (e) is defined or the reduction sequence
starting with (e, @) is unbounded.

Proof. See appendix C. O

Finally, the revised contract semantics is equivalent to the original model in the absence
of mutations.

Definition (Mutation Free). An expression e is mutation free if for all ¢’ such that
(e,0) —™* (¢/, o) it must be that ¢ = 0.
Theorem 5.3 (Evaluator Equivalence). If e is mutation free, then evaly, (e) = evaly.(e).

Proof. See appendix D. O

6 Implementation in principle

The semantics of section 4 suggests a macro-style compilation of trace contracts into a mix
of plain contracts and queue manipulations. Such a translation requires the timely initial-
ization of traces, strict control of effects (i.e., queue manipulation), the injection of run-time
checks, and proper blame assignment. Compiler correctness follows from a theorem like
the one Findler and Felleisen (2002) prove for plain contracts.

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

1058

C. Moy and M. Felleisen 23

6.1 Theoretical compiler
Consider the following compiler that translates a Ay program into a A¢ program:
let x, =% (ep) in
letx,=%(e,) in
C(treye,) = r 2)
A_.let xq = queue in
xp (Ay.xp (add! xq y))
Since there is only one construct related to trace contracts in the surface syntax, % has only
one interesting case and is otherwise a homomorphism.

For a trace contract, the compiler sets up two bindings in a let expression: x; and x,,.
These stand for the compilations of the body-contract constructor and the trace predicate,
respectively. The body of the 1et expression is a flat contract. Like MON-TRACE, it creates
a fresh queue, and then an instance of the body contract by applying x;, to (the compilation
of) a collector. The flat contract is used as a mechanism to initialize the queue at attachment
time. Similarly, the compilation of the collector yields a flat contract that simulates MON-
CoL. Specifically, it adds the given element to the queue and then passes the extended
queue to the trace predicate.

Here is the compilation of program (4.2):

let x;, = Ay.true — yin
let x, = sorted? in
6.1)
A_.let xq = queue in

xp (Ay.x, (add! xq y))

6.2 Compiler correctness

Compare the reduction sequences for program (4.2) with that of program (6.1):

(letf=mon /™" (let x, = Ay.true — y in

letx, =sorted? in
A_.let x, = queue in
X (Ayxp (add! xq y)))
(Ax.—) in f false, 0)
Following left-to-right evaluation, the compilation uses a sequence of let expres-
sions to evaluate the arguments of the trace contract.

—t (letf —monyip™™ (A_.let x4 = queue in

(Ay.true —y) (Ay.sorted? (add! xq y)))
(Ax.—) in [false,0)
The three-labeled mon becomes a two-labeled mon applied to the client label.
— (letf = (moniip (A_.let x4 = queue in
(Ay.true — y) (Ay.sorted? (add! x4 y)))
(Ax.—)) ‘mainin [false,0)

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

1104

24 Trace contracts

The flat contract constructs a new queue and then produces an application of the
body-contract constructor to the compiled collector.

T (letf = (monyiy ((Ay.true —y) (Ay.sorted? (add! o y)))

(Ax.—)) -mainin f false, [0 > null])

Substituting gives a function contract with the compiled collector in the codomain
position.

— (letf = (monjip (true — (Ay.sorted? (add! ay)))
(Ax.—)) -main in f false, [0g — null])

After a few steps, the elided function produces 42 by assumption. This must be
checked against the compiled collector.

" ((mon}i? (Ay.sorted? (add! o y)) 42) -main, [0 > null])

The compiled collector adds the given value to the associated trace.

— ((monii} (sorted? og)42) -main, [0+ cons 42 oy, oy — nulll)
Finally, the trace predicate is run to ensure that the trace is sorted. Since it is, the
final value is the result of the function: 42.

—> (42, [0 > cons 42 ay, oy — null])

This comparison suggests a proof that the compiled trace contract simulates the origi-
nal behavior. Indeed, evaluating the compiled code always yields the same answer as the
uncompiled source code, including divergence and errors.

Theorem 6.1 (Compiler Correctness). evaly, =evaly,. o %

Proof. See appendix E. O

7 Implementation in practice

A principled design (section 4) specifies when traces are initialized, when they are updated,
and when a predicate evaluates their validity. The design gives rise to a principled imple-
mentation (section 6), which clarifies how to translate key features into a kernel language.
But, developers do not live by principles alone; pragmatics matter just as much.

One pragmatic concern is contract blame. Contracts help enforce basic correctness
claims, and contract failures alert developers to problems. Findler and Felleisen (2002)
insist on precise blame assignment in failure messages. The design of the trace contract
system carefully reuses the blame assignment mechanism from the underlying contract
system. Experience suggests that for trace contracts, developers may need additional
information beyond what standard blame provides (section 7.1).

Another concern is the availability of contract combinators. Working with the trace
contract system pointed to limitations in the existing behavioral contract system. In partic-
ular, additional combinators are needed to support the specification of interception points

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

C. Moy and M. Felleisen 25

relevant to trace contracts. Fortunately, these pragmatically important combinators are
orthogonal additions to the base system (section 7.2).

Finally, an implementation effort also informs designers of what is needed in a target
host language to add a new feature. While the use of Racket’s macro system greatly facili-
tates the addition of macro-expressible features, it should not be much more effort to extend
existing compilers directly with support for trace contracts, provided the target language
supports certain features (section 7.3).

7.1 Blame and suspects

When a contract system discovers a contract violation, it raises an exception, includ-
ing a witness value and a pointer to the responsible component. This is dubbed blame
assignment. Section 2.1 illustrates this point with an example of a violated trace contract.

As Lazarek et al. (2020) show in the context of behavioral contracts, blame assignment
comes with enough information to almost always locate the actual source of the bug. They
simulate tens of thousands of buggy programs by introducing a targeted fault via mutation.
In most cases, following blame assignment leads to the source of the bug. For the few
hundred cases where blame fails to identify the bug, Lazarek et al. (2020) reduce the failure
to a lack of multi-call contracts. One of their examples is the DUNGEON program. As
section 8 explains, strengthening the behavioral contract to a trace contract for DUNGEON
provides exactly the needed blame information.

Trace contracts also complicate the situation, however. By default, blame goes to the
party that added a value to the trace just before the predicate fails. Since all prefixes of
the trace satisfied the predicate, this blame assignment seems to make sense. Yet, debug-
ging real scenarios suggests that neither the blame correctness property (Dimoulas and
Felleisen, 2011) nor the complete monitoring property (Dimoulas et al., 2012) are as useful
for trace contracts as they are for behavioral ones.

Imagine a scenario with five components (A, B, C, D, E), where each contributes a
number to a trace in increasing order (<). Here is an execution:

Component A B C E D
Contribution 1.41 271 3.14 5.00 4.67

The model blames D because it contributes 4.67, causing the < relation to fail. But, E
might have made a call to the API out of order, and blaming just D does not even indicate
a suspicion that some other component could be at fault. It is often useful to know the
source of all values in a trace. After all, the idea behind traces is to subject multi-function
interactions to contractual obligations.

A careful reader may argue that the problem is not with the blame assignment system,
but with the predicate. Perhaps < does not capture the specification to a sufficient degree.
This claim is already true about behavioral contracts because a predicate may always
be weaker than the intended property. And if the predicate is weaker than the intended
property, the contract system may blame the wrong party.

This argument, however, overlooks the key premise of contract-system design: blame
assignment must help developers narrow the search space for bugs, regardless of the

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1196

26 Trace contracts

strength of the predicate. To explain this idea rigorously, Lazarek et al. (2020) turn folk
wisdom into two properties: blame trail and search progress. The blame trail property
states that either (i) blame is assigned to the buggy component or (ii) blame can be shifted
to another component by strengthening contracts. The search progress property states that
blame shifting always points to a component closer to the bug than before the modification.

For trace contracts, both properties can be violated in practice. In the example, strength-
ening contracts on D is unlikely to shift the blame, meaning the blame trail property is
violated. When strengthening a trace predicate, the violating trace may decrease in length,
but there is no reason to think a priori that the last contributor to a trace is always closest
to the source of a bug, violating the search progress property. In short, the current blame
assignment scheme points to the broken contract, but more information is needed to help
developers identify the fault.

To address this problem, the implementation comes with three different ways of express-
ing blame assignments. Let a suspect be any party that contributes to a trace. Here are the
three mechanisms used to express blame:

1. By default, the trace/c implementation does not report suspects. Instead, the error
message merely mentions the violated contract and its parties.

2. The setof-suspect option forces the trace-contract system to track the set of all
suspects and report that information when assigning blame. Frequently, there are just
two parties to a contract. Without #: global, a two-party contract has a suspect set
with at most two elements.

3. The listof-suspect option causes the trace-contract system to report the exact
sequence of suspects, one per value in the trace. This option supplies the most com-
prehensive information, but it requires a large amount of memory and makes for
large error messages.

Whether all of these strategies are useful in practice, only some of them, or some in certain
circumstances and some in other circumstances, is left as an open research question.

7.2 Supporting functionality

The trace contract library comes with additional functions for manipulating interception
points, resetting state explicitly, transforming collectors, and augmenting error messages
with additional information.

Unlike behavioral contracts, trace contracts occasionally need to note events even in the
absence of an informative value flow. For example, when a function receives no arguments,
there is no natural interception point. The trace contract library supplies some combinators
to create interception points for such situations (e.g., apply/c, return/c). See section 3.1
for sample uses.

Collector transformers wrap a collector and compute the value to be added to a trace
from the given one. An example is list/t, which allows a programmer to tag values
before they go into a trace. Typically, this tag adds information about the interception point.
See section 3.2 for an example. Another one is map/t, which applies a given function to
the captured value before adding it to a trace.

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242

C. Moy and M. Felleisen 27

In practical situations, the fail function may have to perform more tasks than just
inform the contract system of a failure. A software system may have to recover from a
contract failure, and in those cases, a failure should reset accumulators to certain values.
The author of a trace contract may also wish to add information about the rationale behind
a failure. To this end, the trace-contract system supports augmenting error messages.

7.3 Implementing trace contracts in general

While the implementation is based on Racket’s contract system, the design is language
independent. An implementor of another programming language may thus wonder what it
takes to add trace contracts. Our experience suggests a few criteria.

A trace is a data structure representing the sequence of values collected from various
interception points. In the context of a functional language, function calls and returns are
obvious interception points. Similarly, in an object-oriented language, this same role is
played by methods. Generally speaking, an implementor’s first business is to decide where
to intercept and how to monitor the flow of values. The rest of this section assumes that
call-and-return points suffice.

7.3.1 Monitoring higher-order values

In a higher-order language, functions, objects, modules, and classes may be first-class val-
ues. This implies that a contract system cannot determine statically where a particular call
or return takes place. It is the task of the target language’s runtime to support the moni-
toring of value flows. The Racket implementation employs proxy values (Strickland et al.,
2012)—invisible wrappers—for interception. With such wrappers, it is straightforward to
intercept values even in the presence of higher-order values.

Wrappers are not the only option. For instance, the weaving mechanism from aspect-
oriented programming (Kiczales et al., 1997) could be used for a similar purpose. Roughly
speaking, weaving injects code into the program at specifiable program points. Although
weaving is powerful, it is not clear whether weaving can efficiently intercept values in a
higher-order language, as needed by the proposed design.

7.3.2 Mutation within contracts

Trace-contract checking is effectful. When a collector receives a value, it mutably adds this
value to a trace. Even though, as some of the examples in section 2 show, the component
itself can be purely functional. Hence, the underlying language must allow side effects in
contracts, even though trace predicates themselves are pure functions.’

Formally, section 6 validates that trace contracts are expressible as shorthand in an
underlying language with higher-order contracts and a mutable data structure. In the termi-
nology of Felleisen (1991), the new feature is macro expressible. Theorem 6.1 shows that
this translation completely preserves the specified behavior. Though, Felleisen (1991) also

9 Since collectors mutate traces, checking a collector is not idempotent. While idempotence is sometimes consid-
ered an important property of contract systems (Degen et al., 2009; Findler and Blume, 2006), it often fails to
hold for other reasons. For example, Owens (2012) and Hinze et al. (2006) observe violations of idempotence
in several useful contexts.

1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

1288

28 Trace contracts

shows that imperative assignment increases the expressive power of a pure host language.
By implication, trace contracts are not expressible in such a setting.

7.3.3 Interception and crossing times

As mentioned in section 4.3, a trace-contract system assumes that crossing and intercep-
tion time in the target contract system are separate. As it turns out, the implementation
of trace contracts exposed the lack of this separation in Racket’s contract system. Racket
fails to separate the two points in one combinator: the depended-upon argument contract in
->i (Dimoulas et al., 2013). A change to Racket’s contract system allows trace contracts
to distinguish these boundary crossings, meaning that a collector may ignore arguments
passing through a boundary that has an indy (third) party.'” This is sufficient to eliminate
the duplicate-collection problem.

7.3.4 Macros not needed

An implementor can easily add trace contracts to a language with a rich macro system, such
as a Racket. Including all the practical features mentioned in section 2 makes this macro
rather large and complex. While macros are a convenient implementation mechanism for
trace contracts, they are not a requirement. The implementor of a functional language such
as SML, which elaborates surface syntax into a small kernel, can add trace contracts with
a similar addition to the front-end elaborator.

8 Usability and performance evaluation

Usability questions concern the ease with which programmers can write trace-contract
properties for their programs and what performance penalty the system imposes.

Section 8.2 gives a qualitative assessment of our experience writing trace contracts.
This assessment suggests two opposite insights. On the one hand, trace contracts enable
developers to use the entire underlying programming language. Hence, developing a
trace-contract property is just like developing an ordinary predicate in an ordinary lan-
guage, using all available tools—especially unit and property-testing frameworks. On the
other hand, as experience with ordinary higher-order contracts shows, contracts are a
special-purpose domain. Such domains call for specific, tailor-made notations to eliminate
boilerplate code. Developing such notations remains future work.

As for performance, the only relevant question is what kind of fixed cost the mechanism
itself imposes on programs, not the variable cost of the programmer-defined predicates.!!
Trace initialization, trace updates, and calls to predicates are all included in this fixed cost.
The results of measuring the performance of trace contracts, presented in section 8.3, are
quite encouraging.

10" Thanks to Robby Findler for help with this change to Racket’s contract system.

'l The performance evaluation cannot answer questions concerning the variable cost of trace predicates. Trace
contracts are property agnostic, so the variable cost of a trace contract depends largely on the property being
checked. In other words, this cost is solely under the purview of the programmer, not the trace-contract system.

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334

C. Moy and M. Felleisen 29

8.1 Benchmark programs

The selected benchmarks represent real-world uses of Racket that offer opportunities for
adding trace contracts. MEMORY turns the example from section 2.1 into a pathological
stress test. FUTURE is a large existing Racket library equipped with trace contracts, plus
an application that stresses the functionality. Four of the benchmark programs (DUNGEON,
JPEG, LNM, TETRIS) are variants on programs from the standard gradual typing benchmark
suite (Greenman et al., 2019). Three (DATAFLOW, FISH, TICKET) are programs developed
for use in university courses. All the benchmarks have been adapted so that they do not
measure 1/O operations.

DATAFLOW Computes a constant propagation analysis for a simple imperative language.
A trace contract, similar to the one from section 2.3, checks the monotonicity of a
transfer function during fixed-point iteration.

DUNGEON Generates the specification of a maze. A trace contract on the random-number
generator ensures that it does not exhaust a fixed pool of random numbers. In the
original program, resizing the random number pool caused a contract violation that
failed to provide helpful blame information (Lazarek et al., 2020, sec. 5.1). With a
trace contract, this same bug produces an error message with a blame assignment
that directly points to the problem. The contract must keep track of how many times
the random function is called, so its accumulator is just a natural number and the
check is cheap.

FISH Runs a “That’s My Fish” board game tournament. There are two trace contracts: a

referee contract and a player contract.
The referee contract ensures that the referee calls back players in the specified order
unless the game state does not permit the player to take a turn. The contract is a
promise made by the referee to all the players. To enforce this promise, the contract
is placed on the referee’s list of player objects. A collector receives a new value every
time the referee calls the take-turn method on any player. The trace contract then
checks that this is in accordance with the promised callback order on the players,
including skipping over players that are momentarily prohibited from taking a turn.
The player contract enforces a sequence property on its method calls. In other words,
the player components ensure that their individual methods are called in the specified
order. This contract is similar to the value-dependent temporal protocol example
from section 3.2. It is independent of, and orthogonal to, the referee contract.

FUTURE Visualizes the performance of a futures benchmark. Futures are a run-time mech-
anism for incrementally adding parallelism to programs (Swaine et al., 2010). The
future visualizer (Swaine et al., 2012) uses Racket’s drawing library, which has been
equipped with trace contracts to enforce multi-call properties. A full list of these
properties is enumerated in appendix F. Some of the properties were monitored by
the drawing library using ad-hoc checks and others were not checked at all.

JPEG Parses a JPEG input stream and writes it to an output stream. A trace contract
guarantees that operations on the output stream occur in the correct order. Like the
example in section 3.2, it checks every stream-related function call against a finite

1335
1336
1337
1338
1339
1340
1341

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

1372
1373
1374
1375
1376
1377
1378
1379

1380

30 Trace contracts

Benchmark | SLOC | Protects Checks Disabled Enabled Predicate Overhead
DATAFLOW 502 1 584 83+3 87+2 274 +£3 5%
DUNGEON 589 0 | 538,000 2441 £ 38 2715 £ 46 2713 £33 11%
FISH 1,452 2,698 63,175 7780 £70 8340 + 82 8366 + 80 7%
FUTURE 1,721 16,360 | 234,444 6075 £+ 54 7083 £ 83 7502 + 86 17%
JPEG 1,481 0 54,556 276 £5 303+ 6 316+ 6 10%
LNM 564 168 3,248 522+8 532+9 534+9 2%
MEMORY 59 0 10,000 141 +4 164 £ 4 164 +4 16%
TETRIS 334 6,807 | 125,570 3040 £24 3566 + 36 3927 £43 17%
TICKET 1,427 384 15,794 | 13062 +149 | 13186+ 170 | 13199 + 182 1%

Table 4. Basic Metrics and Performance Measurements

automaton. Formulating the trace contract involves creating several contracts that
share the same accumulator, the state of the finite automaton.

LNM Draws plots of the performance measurements of a gradual type system. Like
FUTURE, this benchmark uses a variant of Racket’s drawing library equipped with
trace contracts.

MEMORY Reports memory use, including garbage-collected blocks. The trace contract
from section 2.1 ensures that current-memory-use returns increasing numbers
over time; it is called 10,000 times in a tight loop, the results of which are graphed
on a line chart using Racket’s plot (Toronto and Harséanyi, 2011) library.

TETRIS Simulates and displays a recording of the game of Tetris. This benchmark also
uses a variant of Racket’s drawing library equipped with trace contracts.

TICKET Runs a “Ticket to Ride” board game tournament. Like FISH, TICKET has both a
referee and a player contract. The referee contract enforces a promise that the referee
calls back players in the specified order. This trace contract is significantly simpler
than the one for FISH, because every player can execute an action in every game
state. The player-side trace contract enforces the correct sequence of method calls.
The example presented in section 3.2 is a simplified version of this contract.

8.2 Benchmark summary

Table 4 first lists the number of essential lines of source code (SLOC) for each program,
including the trace contract and its auxiliary functions.

None of the trace contracts require much code. FISH and TICKET contain the most com-
plex ones, but the others are relatively simple. Even the most complex trace contracts are
concise. Indeed, the contract for TICKET is shown nearly verbatim in section 3.2. Since
predicates are ordinary code, they can make use of existing data structure libraries, and
those libraries serve as workhorses in many cases. For example, JPEG uses an existing
FSM package that renders its temporal constraint predicate practically a one-liner.

Tight integration with the existing contract system makes writing many trace contracts
natural. Since the trace contract mechanism manages state behind the scenes, contract com-
position and contract abstraction work as expected. Developers can write trace contracts as
ordinary code, compose them as usual, and even abstract over them.

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425

1426

C. Moy and M. Felleisen 31

Programming trace contracts for these benchmark programs also points to limitations.
For example, placing collector contracts can be awkward and repetitive. Consider the trace
contracts in sections 3.1 and 3.2, both of which contain several nearly identical lines. A
macro can eliminate the repetition in each case individually, but it is not obvious if there is
a general-purpose DSL that could reduce such repetitive code across many cases.

8.3 Performance measurements

The performance measurements on the right side of table 4 were recorded on a dedicated
Linux machine with an Intel Xeon E3 processor running at 3.10 GHz with 32 GB of RAM
and with Racket 8.6 CS. Each benchmark configuration was repeated 100 times with a
maximum timeout of two minutes.

The Protects column reports the number of times a trace contract protects a new value
during the steady state of a program’s execution. Each time, there is some overhead due to
allocating references for accumulators and creating collector contracts. Some benchmarks
have a zero entry because all of the trace contracts are initialized before the main body of
the program begins, for example, when dependencies are being loaded.

The Checks column states the number of times each trace predicate is checked. As men-
tioned, this evaluation is concerned with the fixed cost of trace contracts. Therefore, each
trace predicate is replaced with the trivial predicate that always returns true. Benchmarks
were executed at two levels: Disabled where trace contracts are disabled, and Enabled
where they are enabled. These measurements are the mean number of milliseconds it takes
to run each benchmark, averaged over 100 samples, along with the standard deviation. The
Predicate column lists the performance numbers where trace contracts are enabled and the
predicate actually checks the desired property. Despite it not being the primary means of
evaluation, these numbers are provided for context. Such predicates are straightforward
implementations and are not heavily optimized. Finally, the Overhead column shows the
percent overhead of Enabled compared to Disabled.

The overhead of the trace-contract mechanism is relatively low, somewhere between 1%
and 17%. As is, the setups basically simulate worst-case scenarios. For example, MEMORY
just calls a simple function in a tight loop, so contract checking takes up a large portion
of total execution time. By contrast, benchmarks that are closer to real-world programs,
such as TICKET, incur a low overhead. Thus, the evidence suggests that the trace-contract
mechanism itself does not exhibit any performance pathology.

These measurements do not exercise an industrial-strength implementation of trace con-
tracts, but rather a direct translation of the design. This implementation serves as a vehicle
for exploration. With some performance engineering, it is likely to perform significantly
better. While this evaluation can provide some first impression of the performance of trace
contracts, it is not enough to generalize to other settings or languages.

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471

1472

32 Trace contracts

9 Related work

Prior work is in the tradition of software contracts or runtime verification (RV).
Specifically, this paper leverages the development of higher-order dependent con-
tracts (Findler and Felleisen, 2002; Blume and McAllester, 2006; Findler and Blume, 2006;
Greenberg et al., 2010; Dimoulas et al., 2012); the temporal contract system of Disney
et al. (2011) is the most directly comparable piece of work from this area. Within the
runtime verification area, the most similar approach is the monitor-oriented programming
framework (Meredith et al., 2011; Chen and Rosu, 2007; Chen et al., 2005).

These two bodies of research have distinct philosophies about expressing and checking
properties. Trace contracts borrow the notion of traces from RV to extend a higher-order
behavioral contract system. They seek to bridge the gap between the two areas. Eventually
this bridge should make many results from RV available to contract programmers, and it
may inject new ideas into RV.

9.1 Runtime verification, generally

Traditional contract systems and RV systems differ along several dimensions. Most impor-
tantly, as Meyer (1992) observes, contracts are a design tool for the developer; in contrast,
RV is a tool for the quality assurance stage of the development process.

9.1.1 Scope

Contracts are modular. A programmer attaches contracts to the interface of a “server”
component. When a “client” component imports a server component, it is forced to agree
to the contract. Similarly, a client component may impose a contract on imported pieces
of functionality to protect itself from a misbehaving service component. In the first case,
clients do not need to be adapted to the service contract, and in the second case, service
components remain unaware of the client’s protective contract. Put differently, it is possible
to compile these components in either order or, even better, to link pre-compiled binary
objects.

RV is whole program. A programmer specifies events of interest and properties about
event traces. The RV system converts this specification into an executable monitor and
weaves interception code into the host program to communicate first-order data about
events to a separate monitor process (Bartocci et al., 2018).

Monitoring higher-order values is possible with RV, but the encoding uses a com-
plex protocol between the server and the client module; it requires source modification
to both components. Implementing the protocol on a modular basis is either impossible,
which precludes the binary-linking approach available with contracts, or requires complex
extensions (Xiang et al., 2015).

9.1.2 Language

Contracts are linguistic elements that are inside the language. The programmer uses the
same language—and the exact same tools—for writing code and contracts. Extending the
notation for contracts in a domain-specific manner (via macros in Racket) is useful; the

1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518

C. Moy and M. Felleisen 33

-> abbreviation for function contracts is one example. Racket also treats contracts as first-
class objects, meaning they can be put into lists, passed and returned from functions, and
composed at run time.

RV is extra-linguistic; that is, RV systems exist outside the language. Specifications are
usually written in a distinct, external logic language and tend to make temporal statements
about sequences of first-order data (Havelund et al., 2018). While this language may con-
tain fragments of host-language code, it is only loosely connected with the host language
and its tool chain.

9.1.3 Violations

As a consequence of the differences along the linguistic axis, contracts and RV differ in two
ways concerning the violation of specifications: recovery and error-location information.

When a contract system discovers a violation of an assertion, it raises an exception that
includes information about the parties that agreed to the contract and which of them vio-
lated it—blame information. By raising an exception at the very point where a contract
violation is discovered, the contract system gives the program a chance to recover immedi-
ately and with a response targeted to the problem. In a language with resumable exceptions,
such as Common Lisp (Steele, 1990), a program may even resume its execution at the exact
place where the violation occurred.

The precise error information in violation messages enables the developer to understand
the cause of a violation. Lazarek et al. (2020) show that this blame information is effec-
tive at narrowing the search space during debugging. It is also a well-founded concept;
Dimoulas et al. (2012) provide a framework for proving that blame information points to
the component which supplies a value that does not meet the specification.

Traditionally, RV systems report violations of specifications with delay and do not
contain blame information (Swords, 2019). The delay is due to the underlying process-
communication arrangement between the program proper and its monitor. This poses
a problem for tracking the provenance of values and for assigning blame. Hence, RV
makes it difficult to restart programs with a problem-specific, localized response, unless
an additional “diagnosis layer” is supplied (Leucker and Schallhart, 2009).

9.1.4 Properties

Contracts are property agnostic. Any predicate, including one that tries to decide a
recursively-enumerable property, can be used as a contract. This is maximally expressive
but can be computationally expensive.

RV is property sensitive. Much of RV research focuses on the development of specifica-
tion languages that can express properties of interest concisely and that can be compiled
into efficient monitoring code (Leucker and Schallhart, 2009). Often these are variants of
temporal logic. These specialized logics can provide hard guarantees about time and space
efficiency, at the cost of expressive power.

1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563

1564

34 Trace contracts

9.2 Runtime verification, specifically

Within the landscape of RV tools, JavaMOP is the best point for comparison. It is the
most versatile implementation in the family of monitor-oriented programming (MOP)
systems (Meredith et al., 2011). A selling feature of JavaMOP is that it is generic; the
programmer can choose the events of interest, specification logic, and violation handler
code. Chen and Rosu (2007) argue that there is no logic suitable to express all properties,
and thus JavaMOP developers must engineer external logic “plugins” (Chen et al., 2005).

Trace contracts, by contrast, allow programmers to take full advantage of the host lan-
guage. If this host language comes with expressive meta-programming facilities, such as
the macros of Racket (Ballantyne et al., 2020; Felleisen et al., 2018; Flatt, 2002), develop-
ers can easily add a custom notation for trace contracts. Consider section 3.2 which uses
Racket’s automata package (McCarthy, 2011) and significantly improves the readability of
the trace predicate without external tooling. With the visual-interactive syntax of Andersen
et al. (2020), a developer could even edit and view the NFA graphically.

For an example of cross-pollination, consider trace slicing. This idea is due to the RV
community (Chen and Rosu, 2007). In the RV world, this operation is not exposed to users
of RV systems; rather, an efficient slicing algorithm is derived from data quantifiers in
the specification logic. The trace contract library supports trace slicing via tagging and
ordinary stream functions. In keeping with the philosophy of contract-system design, the
power is handed to programmers.

9.3 Higher-order contracts, specifically

While higher-order contracts are typically independent of state, trace contracts manage
state behind the scenes to support a mostly functional view of specifications. Others
show that contracts could occasionally benefit from a modicum of state (Tov and Pucella,
2010; Moore et al., 2016; Waye et al., 2017), though these systems do not come with the
expressiveness of trace contracts.

The higher-order temporal contracts of Disney et al. (2011) are the closest prior work to
trace contracts. Their research focuses on two aspects: an operational theory of temporal
event sequences and the specification of properties. On the theory side, the work intro-
duces a novel approach to operational semantics that formalizes the meaning of modules as
automata that create trees of observable events, similar to game-based denotational seman-
tics. The semantics satisfies a non-interference theorem, meaning that streams of values
are kept separate. On the practical side, the work focuses on specifying properties of event
sequences as regular expressions without giving programmers access to a data represen-
tation of traces. Trace contracts come with more expressive power, yet do not necessarily
sacrifice efficiency.

At first glance, computational contracts (Scholliers et al., 2015) look similar to higher-
order temporal contracts. But, computational contracts go far beyond any classical contract
classification scheme (Beugnard et al., 1999, 2010), providing unprecedented power and
imposing a similarly high cost. A computational contract system empowers programmers

1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609

1610

C. Moy and M. Felleisen 35

to impose arbitrary restrictions on components from the outside and in a post-hoc man-
ner. Thus, computational contracts depart from the idea that contracts are assertions at the
boundary between black-box components, instead turning components into glass boxes.

9.4 Typestate and type systems

Researchers often try to move from dynamically checked contracts to statically checked
types, because discovering general mistakes during compile time is safer than discover-
ing specific mistakes at run time, perhaps even after a program has been deployed. This
subsection deals with two distantly related ideas from the world of static checking.

The work of Strom and Yemini (1986) on typestate systems, recently resumed in vari-
ous forms (Jaspan and Aldrich, 2009; Pucella and Tov, 2008; Wolff et al., 2011), directly
addresses simple but common affinity restrictions in APIs. For example, typestate systems
can check constraints such as “method m may be called at most once” and even “method m
must be called before method n.” These constraints are restricted to regular properties, i.e.,
those that can be expressed using a finite-state machine.

Honda et al. (1998)’s notion of session type is a closely related idea. Recently this field
has experienced rapid growth. Roughly speaking, session types for objects come with the
same expressive power as typestate (Gay et al., 2010).

Effect systems are also capable, in a limited way, of constraining the order in which
effects can be performed. Ordinary effect systems do not consider the order of effects,
but sequential effect systems (Tate, 2013; Koskinen and Terauchi, 2014) can. Further
extensions can statically verify some temporal logic propositions (Gordon, 2017).

No existing static technique can express all of the trace-contract examples. By combin-
ing traces with plain code, a programmer can formulate arbitrary predicates and check
value-dependent constraints on traces. Trace predicates can look for specific values or
use specific values to express a constraint, which is impossible with these type systems.
Dependent session types (Toninho et al., 2011) may be able to do better, but are still lim-
ited to statically decidable properties. Trace contracts, by monitoring programs at run time,
are able to take advantage of the precision that run-time checking offers. A combination of
session types and contracts (Bocchi et al., 2010) can refine the content of messages passed
between parties, but the structure of the protocol remains fixed. This approach also does
not naturally extend to contracts on higher-order values.

10 Trace contracts for rich specifications

Engineering complex software requires mechanisms for expressing and enforcing compo-
nent specifications. Types, contracts, run-time verification—each has been successful in its
own way, but major expressiveness gaps remain.

This paper introduces trace contracts as a novel, practical, and well-founded element
of this spectrum. Specifically, trace contracts enable developers to protect the elements of
their API across multiple function and method calls. The trace contract system provides
traces of argument and result values as a first-class piece of data. Hence, trace contracts
can express protocols that are ubiquitous in practice, but are usually specified informally.

1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655

1656

36 Trace contracts

In addition to a principled design, this paper describes an implementation of trace
contracts, along with an evaluation. The implementation addresses a good number of prag-
matic concerns, especially those of performance. On the question of blame assignment,
the implementation supports several natural strategies with different precision and memory
consumption trade-offs.

Critically, the trace-contract design separates the concept of a value trace from the
language of enforced properties. In other words, trace contracts separate the low-level col-
lection mechanism from the high-level property formulation. Hence, the design enables an
investigation of trace-collection performance, independent of an exploration of problem-
specific notations for expressing the properties of traces. Racket, with its powerful tools for
creating embedded and extensible DSLs (Ballantyne et al., 2020), is a convenient platform
for this kind of research.

Plenty of work remains. Section 7.1 proposes three blame strategies but gives no the-
oretical or empirical justification for any of them. What are the tradeoffs between these
approaches with regard to theory (blame correctness), implementation (memory use),
and pragmatics (debugging violations)? Protocols are common in concurrent progams
but are often informally described. Can trace contracts be adapted to monitor protocols
in concurrent applications? Techniques exist to statically verify functional contracts in
Racket (Nguyén et al., 2018). Is static verification practical for trace contracts? Section 9
compares trace contracts to other research results. How many of these systems can be
implemented on top of trace contracts? If they can, what are the benefits of doing so? If
they cannot, how can trace contracts be extended to accomodate such systems?

Even though future work is needed to turn trace contracts into a truly practical technol-
ogy, hopefully the foundation put forth in this paper is sufficient to advance the practice of
software specification in Racket and beyond.

Acknowledgements

This work was supported by National Science Foundation grant SHF 2116372. The authors
thank anonymous POPL and JFP reviewers for their comments.

Artifact

The implementation of trace contracts has been released as an open-source library. Right
now, Racket developers can use trace contracts to fortify their programs.

Conflicts of Interest

None.

References

Andersen, L., Ballantyne, M. & Felleisen, M. (2020) Adding Interactive Visual Syntax to Textual

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671

1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

1692
1693
1694
1695
1696
1697
1698
1699
1700
1701

1702

C. Moy and M. Felleisen 37

Code. Object-Oriented Programming, Systems, Languages and Applications (OOPSLA).

Andersen, L., St-Amour, V., Vitek, J. & Felleisen, M. (2018) Feature-Specific Profiling. Transactions
on Programming Languages and Systems (TOPLAS).

Ashley, J. M. & Dybvig, R. K. (1994) An Efficient Implementation of Multiple Return Values in
Scheme. LISP and Functional Programming (LFP).

Ballantyne, M., King, A. & Felleisen, M. (2020) Macros for Domain-Specific Languages. Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA).

Barendregt, H. P. (1981) The Lambda Calculus. North-Holland Publishing Co.

Bartocci, E., Falcone, Y., Francalanza, A. & Reger, G. (2018) Introduction to Runtime Verification.
In Lectures on Runtime Verification. Springer.

Beugnard, A., Jézéquel, J.-M. & Plouzeau, N. (2010) Contract Aware Components, 10 Years After.
International Workshop on Component and Service Interoperability (WCSI).

Beugnard, A., Jézéquel, J.-M., Plouzeau, N. & Watkins, D. (1999) Making Components Contract
Aware. Computer.

Blume, M. & McAllester, D. (2006) Sound and Complete Models of Contracts. Journal of Functional
Programming (JFP).

Bocchi, L., Honda, K., Tuosto, E. & Yoshida, N. (2010) A Theory of Design-by-Contract for
Distributed Multiparty Interactions. International Conference on Concurrency Theory.

Chen, F., d’Amorim, M. & Rosu, G. (2005) Checking and Correcting Behaviors of Java Programs at
Runtime with Java-MOP. Workshop on Runtime Verification (RV).

Chen, F. & Rosu, G. (2007) MOP: An Efficient and Generic Runtime Verification Framework.
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA).

Degen, M., Thiemann, P. & Wehr, S. (2009) True Lies: Lazy Contracts for Lazy Languages
(Faithfulness is Better than Laziness). Arbeitstagung Programmiersprachen (ATPS).

Dimoulas, C. & Felleisen, M. (2011) On Contract Satisfaction in a Higher-Order World. Transactions
on Programming Languages and Systems (TOPLAS).

Dimoulas, C., Findler, R. B. & Felleisen, M. (2013) Option Contracts. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA).

Dimoulas, C., Findler, R. B., Flanagan, C. & Felleisen, M. (2011) Correct Blame for Contracts: No
More Scapegoating. Principles of Programming Languages (POPL).

Dimoulas, C., New, M. S., Findler, R. B. & Felleisen, M. (2016) Oh Lord, Please Don’t Let Contracts
Be Misunderstood (Functional Pearl). International Conference on Functional Programming
(ICFP).

Dimoulas, C., Tobin-Hochstadt, S. & Felleisen, M. (2012) Complete Monitors for Behavioral
Contracts. European Symposium on Programming (ESOP).

Disney, T., Flanagan, C. & McCarthy, J. (2011) Temporal Higher-Order Contracts. International
Conference on Functional Programming (ICFP).

Felleisen, M. (1991) On the Expressive Power of Programming Languages. Science of Computer
Programming.

Felleisen, M., Findler, R. B., Flatt, M., Krishnamurthi, S., Barzilay, E., McCarthy, J. & Tobin-
Hochstadt, S. (2018) A Programmable Programming Language. Communications of the ACM
(CACM).

Findler, R. B. & Blume, M. (2006) Contracts as Pairs of Projections. Functional and Logic
Programming (FLP).

Findler, R. B. & Felleisen, M. (2002) Contracts for Higher-Order Functions. International
Conference on Functional Programming (ICFP).

Flatt, M. (2002) Composable and Compilable Macros: You Want it When? International Conference
on Functional Programming (ICFP).

Flatt, M. & PLT. (2010) Reference: Racket. Technical Report PLT-TR-2010-1. PLT Design Inc.
https://racket-lang.org/trl/.

Gay, S. J., Vasconcelos, V. T., Ravara, A., Gesbert, N. & Caldeira, A. Z. (2010) Modular Session
Types for Distributed Object-Oriented Programming. Principles of Programming Languages
(POPL).

1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747

1748

38 Trace contracts

Gordon, C. S. (2017) A Generic Approach to Flow-Sensitive Polymorphic Effects. European
Conference on Object-Oriented Programming (ECOOP).

Greenberg, M., Pierce, B. C. & Weirich, S. (2010) Contracts Made Manifest. Principles of
Programming Languages (POPL).

Greenman, B., Takikawa, A., New, M. S., Feltey, D., Findler, R. B., Vitek, J. & Felleisen, M.
(2019) How to Evaluate the Performance of Gradual Typing Systems. Journal of Functional
Programming (JFP).

Havelund, K., Reger, G., Thoma, D. & Zilinescu, E. (2018) Monitoring Events that Carry Data. In
Lectures on Runtime Verification. Springer.

Hinze, R., Jeuring, J. & Loh, A. (2006) Typed Contracts for Functional Programming. Functional
and Logic Programming (FLP).

Honda, K., Vasconcelos, V. T. & Kubo, M. (1998) Language Primitives and Type Discipline for
Structured Communication-Based Programming. European Symposium on Programming (ESOP).

Jaspan, C. & Aldrich, J. (2009) Checking Framework Interactions with Relationships. European
Conference on Object-Oriented Programming (ECOOP).

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. & Irwin, J.
(1997) Aspect-Oriented Programming. European Conference on Object-Oriented Programming
(ECOOP).

Koskinen, E. & Terauchi, T. (2014) Local Temporal Reasoning. Logic in Computer Science (LICS).

Lazarek, L., King, A., Sundar, S., Findler, R. B. & Dimoulas, C. (2020) Does Blame Shifting Work?
Principles of Programming Languages (POPL).

Leucker, M. & Schallhart, C. (2009) A Brief Account of Runtime Verification. The Journal of Logic
and Algebraic Programming.

McCarthy, J. (2011) Automata: Compiling State Machines. https://docs.racket-1lang.org/
automata/index.html.

Meredith, P. O., Jin, D., Griffith, D., Chen, F. & Rosu, G. (2011) An Overview of the MOP Runtime
Verification Framework. International Journal on Software Tools for Technology Transfer.

Meyer, B. (1988) Object-Oriented Software Construction. Prentice Hall.

Meyer, B. (1992) Applying “Design by Contract”. Computer.

Moore, S., Dimoulas, C., Findler, R. B., Flatt, M. & Chong, S. (2016) Extensible Access Control with
Authorization Contracts. Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA).

Moy, C., Nguyén, P. C., Tobin-Hochstadt, S. & Van Horn, D. (2021) Corpse Reviver: Sound and
Efficient Gradual Typing via Contract Verification. Principles of Programming Languages (POPL).

Nguyén, P. C., Gilray, T., Tobin-Hochstadt, S. & Van Horn, D. (2018) Soft Contract Verification for
Higher-Order Stateful Programs. Principles of Programming Languages (POPL).

Nielson, F., Nielson, H. R. & Hankin, C. (2005) Principles of Program Analysis. Springer Verlag.

Owens, Z. (2012) Contract Monitoring as an Effect. Higher-Order Programming with Effects
(HOPE).

Plotkin, G. (1975) Call-by-name, call-by-value and the A-calculus. Theoretical Computer Science.

Pucella, R. & Tov, J. A. (2008) Haskell Session Types with (Almost) No Class. Haskell Symposium.

Scholliers, C., Tanter, E. & De Meuter, W. (2015) Computational Contracts. Science of Computer
Programming.

Steele, G. L. (1990) Common Lisp the Language. Digital Press.

Strickland, T. S., Tobin-Hochstadt, S., Findler, R. B. & Flatt, M. (2012) Chaperones and
Impersonators: Run-Time Support for Reasonable Interposition. Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA).

Strom, R. E. & Yemini, S. (1986) Typestate: A Programming Language Concept for Enhancing
Software Reliability. IEEE Transactions on Software Engineering.

Swaine, J., Fetscher, B., St-Amour, V., Findler, R. B. & Flatt, M. (2012) Seeing the Futures: Profiling
Shared-Memory Parallel Racket. Functional High-Performance Computing (FHPC).

Swaine, J., Tew, K., Dinda, P. A., Findler, R. B. & Flatt, M. (2010) Back to the Futures: Incremental
Parallelization of Existing Sequential Runtime Systems. Object-Oriented Programming, Systems,

1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793

1794

C. Moy and M. Felleisen 39

Languages and Applications (OOPSLA).

Swords, C. (2019) A Unified Characterization of Runtime Verification Systems as Patterns of
Communication. Ph.D. thesis. Indiana University.

Tate, R. (2013) The Sequential Semantics of Producer Effect Systems. Principles of Programming
Languages (POPL).

Toninho, B., Caires, L. & Pfenning, F. (2011) Dependent Session Types via Intuitionistic Linear Type
Theory. Principles and Practice of Declarative Programming (PPDP).

Toronto, N. & Harsanyi, A. (2011) Plot: Graph Plotting. https://docs.racket-lang.org/
plot/index.html.

Tov, J. A. & Pucella, R. (2010) Stateful Contracts for Affine Types. European Symposium on
Programming (ESOP).

Waye, L., Chong, S. & Dimoulas, C. (2017) Whip: Higher-Order Contracts for Modern Services.
International Conference on Functional Programming (ICFP).

Wolff, R., Garcia, R., Tanter, E. & Aldrich, J. (2011) Gradual Typestate. European Conference on
Object-Oriented Programming (ECOOP).

Xiang, C., Qi, Z. & Binder, W. (2015) Flexible and Extensible Runtime Verification for Java.
International Journal of Software Engineering and Knowledge Engineering.

1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839

1840

40 Trace contracts

A Proof syntax and judgments

The proofs in the sections that follow require some additional syntax and judgments. In
particular, certain sets of expressions that exist implicitly in the semantics must be named
explicitly. Additionally, a judgment identifying valid expressions is needed.

A Proof Syntax

ac Ans
teTer

t | opaque
v | errl;
reRedex = ifvee | vv | ov | queue | add! vv | err’;

Ap Proof Syntax | extends A

reRedex = ... | monl;’lee
Ac Proof Syntax | extends A

_ k.l k k
reRedex = ... | mon;" ee | monjvv | (grd; wv)-I

Fig. 14. Proof Syntax of A, Ag, and A¢

Figure 14 defines three sets of terms. An answer is the result of eval ¢ (for a language
Z) and is either a terminal expression or the opaque token. A terminal expression is
either a value or an error token. Finally, a reducible expression (redex) is an expression
that inhabits the hole of the evaluation context on the left-hand side of a reduction rule.

fv(e)=0 okv
Vo € addrs(e)[o I+ o(a)] olo(a)
oke o lFnull olFconsva

Fig. 15. Valid Expression Judgment

Figure 15 defines a judgment that identifies valid expressions from the too-liberal gram-
mar for the evaluation syntax. A valid expression is closed and contains only addresses that
map to valid queues. A valid queue contains only valid values.

1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885

1886

C. Moy and M. Felleisen 41

B Functional evaluator proof
The theorems in this section hold for all languages presented in section 4.
Theorem 5.1 (Functional Evaluator). eval ¢ is a partial function.

Proof. A straightforward consequence of lemma B.1. O

Lemma B.1 (Deterministic Evaluator). If (¢, 6) —* (1, 01) and (e,) —* (1, 02),
then t{ =1, and 6] = 0».

Proof. By lemma B.2, every expression can be decomposed into a unique evaluation con-
text and a unique redex. For each redex, there is only one reduction rule that could apply.
Thus evaluation is deterministic. O

Lemma B.2 (Unique Decomposition). For all e € Expr either e € Ter or there exists a
unique evaluation context E and unique redex r such that e = E|[r].

Proof. By induction on the structure of e.

Casee=t.
Trivial.
Casee=oe¢,.
Applying the inductive hypothesis to e,, it follows that either (1) ¢, € Ter or (2) there
exists unique E, and r such that e, = E,[r]. For (1), ¢, could be a value, in which case
E=0,r=o0e,. Otherwise, ¢, = err?, in which case E=o0ll,r= errl’;. For (2),
E =0E, since E[r] = (0 E,)[r] = 0 E4[r] = 0 e, = e. This decomposition is unique
since E, is unique.
Case e = mon’} ek ey
Apply induction to ey. Either (1) e € Ter or (2) there exists a unique Ey and r such
that e,c = Ec[r]. For (1), there are two subcases.
Case ¢, = vi.
Apply induction to e,. If e, =v then E=0,r= mon’; vev=e. If e, = E,[r]
then E = mon’j‘. v Ey.
Case ¢ = err]j‘-.

E= mon’; Oe,, r = errk.

J
For (2), E = mon’ Ex e,

Otherwise.
The remaining cases are similar to one of the above. O

C Uniform evaluator proof
The proofs in this section hold for all languages presented in section 4.

Theorem 5.2 (Uniform Evaluator). Either eval ¢ (e) is defined or the reduction sequence
starting with (e, @) is unbounded.

Proof. By interleaved application of lemma C.1 and lemma C.2. O

1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931

1932

42 Trace contracts

Lemma C.1 (Progress). If ¢ I e then either e € Ter or (e,) — (¢, o).

Proof. By lemma B.2 either e € Ter or e = E[r]. By cases on r.

Caser=1ifve; ey,
Either IF-TRUE or IF-FALSE apply.
Case r = add! vq v,.
Suppose v, is an address. Since o I ¢, add(0, vq, v) is defined, so ADD! applies. If
Vg 18 not an address then ERR-ADD! applies.
Case r = mon’j‘- Vie Ve
By cases on vy.
Case v, ¢ Con.
ERR-MON applies.
Case v = b.
Either MON-TRUE or MON-FALSE applies.
Case v, = Ax.e.
MON-FLAT applies.
Case v =v; = ve.
MON-FUN applies.
Case v = tr v, v).
MON-TRACE applies.
Case v = co 0t v,
MoN-CoL applies.
Otherwise.
The remaining cases are similar to one of the above. O

Lemma C.2 (Preservation). If 6 - ¢ and (e, 6) — (¢/, 6’) then 6’ - ¢

Proof. By cases on the reduction relation.

Case (E[if ve; ef], 0) — (E[e;], 0),v # false.
Since o - if ve; ey we know G |- ¢;.
Case (E[(Ax.ep) V], 0) — (E[ep[v/x]], O).
This follows from lemma C.3.
Case (E[add! av], o) — (E[a], add(o, a, v)).
This follows from lemma C.4.
Case <E[mon’j‘» (trvpvy)v], 0) — <E[mon/j‘- (vp (co avy)) v], ola — null)).
The contractum is closed since no new variables are introduced. A new address « is
introduced. For the expression to remain valid, ¢ I o(o) must hold which it does
since o (o) = null.
Case (E[mon]j‘- (coavy)v], o) — (E[mon’j‘. (vp (add! av))v], o).
No variables are introduced, no addresses are introduced, and the store is maintained.
Therefore, the contractum remains closed with addresses still to valid queues.
Otherwise.
The remaining cases are similar to one of the above. O

1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977

1978

C. Moy and M. Felleisen 43

l,j . ~ .
Ax.let x; :mon]-“’ vaxin ~ Ax.letx, :moni» Vg xin O~0O
0k . e L id Kl k7
letxy =mon; vy xin letxj=x,-jin mon;" E e (monjEe) -1

mon];’l (ve xj) (vxg) letxy =Xy knin mon];-’l VE ~ (mon]j‘» VE)-1

ki o~ ~
mon;” (Ve x;) (V)
letx;=e;in ~letx;j=ejin
letxy =e¢; in letxy =¢; in

l |/~ ~
mon];-’ (vexj) (vxx) mon];-’ (Ve xj) (Vxx)

letxy — e in ~letx; =e¢;in
mon’y’ (vev;) (vxe) mony (V. v7) (Vaxy)
mon];.’[exen~ (mon];- exe)-l

Fig. 16. Expression and Evaluation Context Simulation Relation

Lemma C.3 (Substitution Preservation). If o - Ax.¢, and o - v then o F ¢, [v/x].

Proof. By induction on ey, O

Lemma C.4 (Store Preservation). If o - @ and 6 v then add(o, o, v) - o.

Proof. By induction on [dom(o)| — a. O

D Evaluator equivalence proof

This section shows the equivalence of Ag and Ac¢ in the absence of queue mutations.
Because no mutation occurs, the store is irrelevant to reduction calculations and is thus
omitted. The proof proceeds by a simulation argument. Figure 16 relates Ag expressions
and evaluation contexts to equivalent ones in Ac.

Lemma D.1 (Mutation Freedom). If expression e contains no queue subexpression, then
it is mutation free.

Proof. Assume to the contrary that (e, 0) —* (¢/, @) — (¢, o) for o # 0. The latter
reduction must be QUEUE because the only other store-manipulating rule, ADD!, presup-
poses a non-empty store. However, this is a contradiction since QUEUE only applies if the
initial program e contains a queue subexpression. O

Theorem 5.3 (Evaluator Equivalence). If ¢ is mutation free, then evals, (¢) = evaly.(e).

Note. By design, trace contracts use mutation and the existing behavior of dependent
function contracts is inappropriate for this case. Conversely, queue-mutating programs are
excluded because it is the purpose of A¢ to specify a behavior for —; that is appropriate
when contracts perform mutation.

1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023

2024

44 Trace contracts

Proof. There are two directions to prove. First, that evaIAB - evaIAC on the restricted
domain of mutation-free expressions. By cases on evaly,(e).

Case evaly,(e) = b.
Thus e %7\3 b. Because e ~ ¢, lemma D.2 yields e »—>j\c by and there exists b such
that by ~gps bandb ~b. Qbservational equivalence and the simulation both preserve
Booleans, therefore by = b = b. Hence, e —7 b and evals.(e) =b.

Case evaly, (e) = opaque.
Similar to the prior case since preserving Booleans also implies preserving non-
Booleaness.

The inverse direction states that eval,,. C evala,. There is only one interesting case,
namely showing that the situation where e %)/*\C t but evaly, (e) is undefined is impossi-
ble.

Assume the contrary. Using lemma D.3 yields a contradiction. By theorem 5.2, the
reduction sequence in Ap is unbounded. Let e n—>f\B ¢ and e n—>f\c ¢ where ¢ ~ ¢ are
the last pair of expressions related under ~. This choice is possible since the reduction
sequence in Ac is finite. Because ¢’ can take a step, lemma D.3 applies and generates a
later pair of related expressions, contradicting the choice of &’ ~ e. O

Lemma D.2 (Transitive Simulation). Let ¢ be mutation free. If e »—>j\B t and e ~ e, then
there exists 77 and 7 such that Er—bR Ifs Tf obs f,andt ~71.

Proof. By induction on the number of steps n in e —7} 1.

Case n=0.
Trivial.

Case n > 0.
By lemma D.3, e»—)XB e’ ?»—>XC ei, e ~ops €', and e" ~ ¢, From lemma B.1,
e’ 4, - Applying the inductive hypothesis yields e’ »—>1*\C 1; where t; ~qps and

t ~17. In summary, &% _e; ~ops €” —4 . 1i obs 1, Which suffices.

O

Lemma D.3 (Simulation). Let e be mutation free and e ~ €. If e —,, €/, then there exists

e, e;, e" such that e b—>XB e, 5|—>XC ei, € ~ops €, and ¢ ~ e,
Proof. By cases on e —>, €. Each case relies on lemma D.4 followed by lemma D.5.

Case E[if ve, ef| — Ele;|, v # false.

Let e = E[if Ve ef|. The simulation preserves non-Booleans, so v # false. Thus,
E[if Ve é}] — Ele;].
Case E[(Ax.letx;—) v|— E[let x; —]|.
This reduction implies that E[(Ax.1et x, —) 9] — Ele;] where
ej=1letx, = mon5~ Vg Vin
letxj=x,-jin
letxy =x,-kin

kil o~ ~
mon’" (Ve x;) (Vxg).

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069

2070

C. Moy and M. Felleisen 45

Because e is mutation free, e; ~ps €’ Where
’7 _ L | ~ ..
¢ =letx;=(mon;vyv)-jin

letx%::(monéﬁgﬁ)okin
k

1~ ~
mon;” (Ve x;) (V).

Thus, E[e;] ~ps E[¢/]. Note that ¢ ~ ¢/, therefore E[1et xj—]~Ele].
Case E[letx; =v;in — |+ E[let xy = ¢ in —].
E[letx;=v;in —]+ E[let x; = & in — |
. k1l
Case E[let x; =i in —]+ E[mon’" (ve v;) (v vi)).
E[let x; =V in —] +— E[mon’’ (V. v;) (V%)]

Case E[mon];'l true v] — E[v].

E[(mon’ true¥) -] — E|[(grd}’ trued) -] — E[7]
Case E[monI;’l falsev]— E[errlj‘-].

E[(mon?l falseV) Il — E[err]; 1] ~ops E[err]]‘»]
Case E[mon (Ax.e) v] — E[mon ((Ax.e)v)v].

E|(mon]" (Ax.2) ¥) -] — E|(mon]" ((Ax.2) V) ¥) - 1]

Case E[mon*’ (vy —;v.) v] —» E[Ax.1let xj—1.

J

E[(mon’y’ (Vg —i V) ¥) - 1] — E[(grd}’ (7 —: %) V) - I] — E[Ax.let xg—]
Otherwise.

The remaining cases are similar to one of the above or are standard. O
Lemma D.4 (Simulation Decomposition). If ¢ ~ ¢ and ¢ = Ele;], then exists E and ¢,
such that € = E[e;] where E ~ E and e, ~ ¢;.

Proof. By induction on e ~ e. O

Lemma D.5 (Simulation Composition). If E ~ E and e ~ ¢, then Ele] ~ E[¢].
Proof. By induction on E ~ E. O

E Compiler correctness proof

This section proves that the compiler is correct. Like appendix D, the proof follows from a
simulation argument. However, the simulation relation is the compiler function € itself
extended to the evaluation syntax. Since the evaluation syntax contains collectors, ¢
defines the compilation of collectors following the description in section 6.1. Figure 17
defines the relevant extension of €.

2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115

2116

46 Trace contracts

Cle-1)=F(e) 1 ¢(0) =0
letx, =% (ep) in C(trEe)=tr€(E) % e)
G epe,) = 4 LT =Elep) in ¢(trvE) =tr €(v) 6(E)

A_.let x4 = queue in
xp € (coxg xp)

€(coavy)=Ayv, (add! ay)
Fig. 17. Expression and Evaluation Context Compiler

Theorem 6.1 (Compiler Correctness). evaly, =evaly. o ¢

Proof. Similar to the proof of theorem 5.3. Let e € Ar. It suffices to show that if o
e and (e, 6) — (€', 6’), then there exists ¢” and ¢” such that (e, o) —* (", ¢") and
(€(e), € o0)—* (€ ("), % 00c”). By cases on (e, 0) — (€', 0”).

Case (E [mon (trvpvp) V], 0) — <E[monk (v (coavp)) v], o[a — null]).
The compiled reduction sequence mirrors this step:

(%(E[mon (trvpvy)V]), € o0)

= (‘K(E)[monk- C(trvyvy) €(v)), € o0)

= (‘K(E)[mon (letxp =% (vp) in
letx, =% (vp) in
A_letxq—)€ (v)],€ o0)

T (‘K(E)[mon (let xq = queue in
€ (vp) € (coC(vp) xa)) € (v)], ¢ 0 0)

—t (mon’j‘. C(vp) €(coa®(vp)) € (v), € o0’

Case (E[mon’j‘» (coavy)v],0)— (E[monk (vp (add! av))v|, o).

©(E[monk (co atv,)V]), % 0 0)
©(E)[mont € (co atv,) €(v)), % o 6)

@ (E)[mont (Ay. —) € (v)], € o o)

s+ (€(E)monk (% (v,) (add! a %)) €(v)],€ 0 0)

(
(
(
(
Otherwise.

The remaining cases are straightforward.

The inverse direction follows from an argument similar to the one made in the proof of
theorem 5.3. O

2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161

2162

C. Moy and M. Felleisen 47

Lemma E.1 (Simulation Decomposition). ¢ (Ele]) = €' (E)[% (¢)]

Proof. By induction on E. O

The

F Trace contracts for racket/draw

following items describe the properties that racket/draw'? either maintains through

defensive-programming checks or documents but does not check:

—

10.

11.
12.
13.
14.

15.

. A call to get-data-from-file must return false unless the bitmap is created
with save-data-from-file and the image is loaded successfully.

The load-file method of bitmapj% cannot be called with bitmaps created by
make-platform-bitmap, make-screen-bitmap, or make-bitmap in canvasj.
The methods get-text-extent, get-char-height, and get-char-width can
be called before a bitmap is installed. All others must be called after a bitmap is
installed.

The method set-argb-pixels cannot be called if the given bitmap is produced by
make-screen-bitmap or make-bitmap in canvas.

A bitmap can be installed into at most one bitmap drawing context and only when it
is not used by a control (as a label), a pen%, or a brush.

A brush cannot be modified while it is installed into a drawing context.

A brush cannot be modified if it is obtained from a brush-1istj.

A color cannot be modified if it is created by passing a string to make-object or by
retrieving a color from the color database.

The methods start-doc, start-page, end-page, and end-doc from dc<%> must
be called in the correct order.

Some methods of dc-path extend an open sub-path, some close an open sub-path,
and some add closed sub-paths to an existing path. Those must all be kept consistent,
e.g. if a method can only extend an open sub-path, then it cannot be called on an
object where no sub-path is open.

A pen cannot be modified if it is obtained from a pen-1listj,.

A pen cannot be modified while it is installed into a drawing context.

If as-eps is set in a post-script-dcY object, then only one page can be created.
The is-empty? method of regiony can only be called when associated with a
drawing context.

There are no restrictions on the sequence of start-doc, start-page, end-page,
and end-doc for record-dc}.

The revision of racket/draw enforces all of these properties with trace contracts.

12 https://docs.racket-lang.org/draw/

	Multi-call constraints for APIs
	Pedagogic trace-contract examples
	A naive look at trace contracts
	A less naive look: tolerable performance
	Checking all calls to one function
	Global initialization of traces
	The full grammar of trace contracts

	Real-world trace-contract examples
	Reusing trace contracts
	Protocols for many methods
	Contracts are better than ad-hoc checks

	A model of trace contracts
	A functional base
	The classic contract model
	A revised contract model
	The trace contract model
	Extending the model

	Semantic properties
	Implementation in principle
	Theoretical compiler
	Compiler correctness

	Implementation in practice
	Blame and suspects
	Supporting functionality
	Implementing trace contracts in general
	Monitoring higher-order values
	Mutation within contracts
	Interception and crossing times
	Macros not needed

	Usability and performance evaluation
	Benchmark programs
	Benchmark summary
	Performance measurements

	Related work
	Runtime verification, generally
	Scope
	Language
	Violations
	Properties

	Runtime verification, specifically
	Higher-order contracts, specifically
	Typestate and type systems
	Trace contracts for rich specifications
	Proof syntax and judgments
	Functional evaluator proof
	Uniform evaluator proof

	Evaluator equivalence proof
	Compiler correctness proof

	Trace contracts for racket/draw

