
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

JFP, 47 pages, 2023. © Cambridge University Press 2023 1
doi:10.1017/xxxxx

Trace contracts

CAMERON MOY and MATTHIAS FELLEISEN

Northeastern University, Boston, MA, USA

(e-mails: camoy@ccs.neu.edu, matthias@ccs.neu.edu)

Abstract

Behavioral software contracts allow programmers to strengthen the obligations and promises that

they express with conventional types. They lack expressive power, though, when it comes to invari-

ants that hold across several function calls. Trace contracts narrow this expressiveness gap. A trace

contract is a predicate over the sequence of values that flow through function calls and returns. This

paper presents a principled design, an implementation, and an evaluation of trace contracts.

1 Multi-call constraints for APIs

Conventional type systems lack the power to express all the obligations and promises that

an API imposes on, or promises to, client modules. Some language designers cover this

expressiveness gap with contracts (Meyer, 1988, 1992), dubbed behavioral contracts in the

literature. Simply put, a contract is a Boolean-valued assertion that governs some aspect

of an API. Say a programmer wishes to narrow the set of acceptable inputs to a function

from integers to primes. A type combined with a contract, say {p:Int | isPrime p},

expresses this concisely. A proof assistant might discharge this assertion at compile time

or a run-time check might monitor it during execution.

While contracts can easily express logical constraints on function signatures, other con-

straints pose challenges. Temporal properties in particular are difficult to express. Due to

this expressiveness gap, APIs come with sequence diagrams, protocol descriptions, and

other informal specifications. The Unix I/O API is a standard example: “open a file before

reading from it.” A framework for specifying static-analysis passes may state that the given

transfer functions must be monotone. A GUI framework may allow the registration of

callback objects and promise to call them back in the order of registration.

This paper presents trace contracts, an extension of contract systems that permits the

functional specification of constraints across multiple function and method calls. A trace

reifies the sequence of values that flow through certain interception points of a contract

system (Dimoulas et al., 2016), say, function calls. A trace contract inspects this reified

trace with a predicate that decides whether a property holds.

Concretely, this paper reports two contributions. The first is a principled blueprint of

trace contracts (section 4), including the design of a compiler to ordinary contracts with a

correctness theorem (section 6). Working through the blueprint points to the central chal-

lenge of extending existing systems with trace contracts: on the one hand, specifications

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2 Trace contracts

should remain functional, while on the other hand, collecting a trace of values necessarily

involves mutable state. Managing this state while maintaining ordinary contract composi-

tion is key. Our insight is to separate value-interception time from the point when a value

crosses from one component to another.

The second contribution is a practical and efficient implementation of the blueprint in

Racket, which could be ported to any other language that satisfies some basic requirements

(section 7). The implementation supports both predicates over full traces (as streams) as

well as the use of efficient, bespoke data structures. For example, the creator of a static-

analysis pass could state the monotonicity obligation as a predicate either across a full trace

of all input-output pairs or a special-purpose, tree-based data structure. A performance

evaluation shows that the fixed-cost overhead of trace contracts is between 1% and 17%

on average (section 8).

2 Pedagogic trace-contract examples

Constraints on sequences of function calls are common. Sometimes these constraints cover

just one function, but more commonly they involve several. In a functional language such

as Racket, they also govern higher-order functions. This section introduces the Racket

implementation of trace contracts with pedagogic examples of such constraints. It demon-

strates how the integration of trace contracts with Racket’s higher-order contract system

facilitates authoring maintainable specifications.

2.1 A naive look at trace contracts

In 2020, a developer reported a bug to Racket’s mailing list about the

current-memory-use function.1 The documentation states that the function “returns an

estimate of the total number of bytes allocated since start up, including bytes that have

since been reclaimed by garbage collection” (Flatt and PLT, 2010). Given this description,

one might expect that the series of return values from current-memory-use would

increase over time. However, a memory-consumption plot for a long-running system

showed periodic dips.

In a language with a conventional type system, such as Java, this function would have

the following signature:

// Returns the number of bytes allocated since start up,

// including those deallocated during garbage collection.

int currentMemoryUse();

The comment mentions two unchecked constraints. First, the function’s result cannot be

negative, so int is imprecise. In Racket, the API author could improve on this type with a

run-time-checked contract such as (-> natural?). This notation denotes the signature of

a function that takes no arguments and returns natural numbers. Second, the documentation

1 https://groups.google.com/g/racket-users/c/xqOY8uevGzE/m/mBtHeq2jAwAJ

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

C. Moy and M. Felleisen 3

implies that every call returns a number that is greater than or equal to the result of all

previous calls. Existing contract systems cannot express this constraint easily.

With trace contracts, it is possible to express this second constraint directly:

(provide

(contract-out

[current-memory-use

(trace/c ([y natural?])1

(-> y)2

(full (y) sorted?)3)]))

This contract captures both of the constraints that conventional type systems could not

express. As the highlighting and subscripts indicate, a trace contract consists of three

parts: (1) a sequence of trace variable declarations , including one behavioral contract

for each; (2) a contract expression, dubbed the body contract ; and (3) a sequence of

predicate clauses , in this example introduced with full.

Here, there is a single trace variable, y, associated with natural?. The body contract

is (-> y), which specifies ordinary, single-call constraints placed on values protected by

the trace contract. When a client module calls current-memory-use, the contract system

ensures that the returned value is a natural number and, if so, collects the value in a data

structure associated with y. This data structure is called a trace. Additionally, the trace

contract specifies a full predicate clause that depends on y. For full, the trace data

structure is a stream. Every time the contract system collects a value in the y trace, it

applies the function specified in the predicate clause—sorted?—to the stream of values.

The trace contract fails if sorted? returns false, indicating a dip in the sequence.

Note that sorted? is a pure function in the host language, just like ordinary first-

order behavioral contracts. One immediate advantage is that a developer can test contracts

like any other piece of code—an important property considering that all code, including

specification code, may have bugs. Testing builds confidence in the correctness of the

specification itself.

With this contract in place, violations are detected as soon as they occur. Moreover, the

trace contract blames the appropriate party for the violation:

> (current-memory-use)

100

> (current-memory-use)

200

> (current-memory-use)

; current-memory-use: broke its own contract

; produced: 0

; ...

; blaming: current-memory-use

In this interaction, current-memory-use returns increasing values for the first two calls.

On the third call it produces 0, causing a contract error. Since the problematic value was

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

4 Trace contracts

collected from the module that defined current-memory-use, the function itself is to

blame. Developers confronted with this error message can immediately report a bug in the

run-time library, knowing with confidence that their code is not responsible for the fault.

2.2 A less naive look: tolerable performance

In its current form, the current-memory-use contract comes with a steep performance

cost. While any contract can slow down a program, naive trace contracts can be especially

expensive because they execute code every time a value is added to a trace. Programmers

should be mindful of this expense. In particular, sorted? iterates through the entirety

of the y trace every time a new value is collected. Thus, checking this trace contract

is quadratic in the number of calls to current-memory-use. To reduce this overhead,

a trace-contract system must hand developers fine-grained control over the trace data

structure.

Fine-grained control means that developers can choose a custom representation of

the trace instead of the naive, stream data structure. When choosing, a developer must:

(1) decide on a data structure, (2) pick an initial value, and (3) supply an operation that

incorporates a value into the existing trace representation or signals a failure. This kind of

predicate clause is introduced with accumulate and the data structure is referred to as the

accumulator. Note that the function given to accumulate is no longer a predicate. Instead,

it receives two values: the current accumulator and the newly collected values. It returns

the new accumulator on success or a designated failure value otherwise.

For the running example, it suffices to use a single number as the accumulator. A simple

comparison between any collected value and the accumulator is enough to enforce the

promised behavior:

(trace/c ([y natural?])

(-> y)

(accumulate 0

[(y) (λ (acc cur)

(if (<= acc cur) cur (fail)))]))

The accumulate clause specifies an initial accumulator value of 0 and an accumulating

function. When y receives a new value, the latter is applied to the current accumulator and

the latest value. If the current accumulator is smaller than the new value, then the new value

is returned and becomes the next accumulator.2 Otherwise, the function’s result is (fail),

the designated failure value.

Every trace contract can be expressed with accumulate instead of full. In fact, full

is just syntactic sugar over an accumulate clause with a stream accumulator. While full

is a useful tool to understand trace contracts conceptually, in practice programmers should

almost always use accumulate combined with an efficient trace data structure.

2 If current-memory-use were to return a non-numeric result, an error would be raised even without the
natural? check on y because <= expects two numbers. The error message, however, would blame the contract
itself for violating the precondition of <=, instead of current-memory-use. Thus, to generate practical error
messages, the natural? check must remain.

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

C. Moy and M. Felleisen 5

2.3 Checking all calls to one function

Consider a compiler pass that computes a live-variables analysis via fixed-point iteration.

The interface to such an analysis, using ordinary contracts, might look like this:

(provide

(contract-out

;; The transfer function must be monotonically increasing.

[live-vars (-> (-> set? set?) label? set?)]))

Given a monotonically increasing transfer function and a program label, live-vars

returns the set of live variables at that label (Nielson et al., 2005). Unlike the simplistic

example from the preceding section, this constraint involves a higher-order function. A

comment describes the constraint, but it is not enforced. Since an incorrectly computed

least fixed point can lead to a silent failure, this problem may be especially difficult to

debug.

A trace contract can replace the informal comment, enforcing monotonicity:

(provide

(contract-out

[live-vars (-> (monotone/c set? set? subset?) label? set?)]))

;; Contract Contract (Set Set -> Boolean) -> Contract

(define (monotone/c dom/c cod/c leq?)

(trace/c ([x dom/c] [y cod/c])

(-> x y)

(accumulate (red-black-tree leq?)

[(x y) (monotone-func leq?)])))

The monotone/c function consumes two contracts and a comparison function; it returns

a function contract that checks monotonicity with respect to the given comparison func-

tion. When a client module imports live-vars and invokes it, the highlighted contract is

attached to the supplied transfer function. This contract stipulates that the transfer function

takes and returns sets and is monotone with respect to set inclusion. During fixed-point iter-

ation, the trace contract observes all input-output pairs of the transfer function and builds

an extensional representation of the function. Violations are detected by ensuring that no

two input-output pairs fail monotonicity.

While a stream containing all input-output pairs would work, it would be inefficient. An

order-aware data representation can reduce the time needed to determine whether mono-

tonicity holds from O(n3) to O(n log n), where n is the number of calls to the transfer

function. One possible choice is a red-black tree as it can quickly determine the immediate

predecessor and successor of an ordered element.3

3 Ordinarily this works only for a total order, not a partial order such as set inclusion. However, since fixed-point
iteration always explores comparable elements, a red-black tree is acceptable. A general-purpose contract for
monotonicity that supports partial orders would require a different data structure. Assuming that fixed-point
iteration climbs the lattice in order, as it usually does, a contract like the one from section 2.2 would also work.

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

6 Trace contracts

Every time the trace contract monitors a new value, it initializes a new accumula-

tor. If live-vars is invoked twice, two separate accumulators are created, one for each

given transfer function. This policy allows trace contracts to compose sensibly with other

contract combinators.

Here is the (curried) function that finishes the definition of monotone/c:

;; Acc = [Ordered-Dict Set Set]

;; Comparator -> (Acc Set Set -> [Or Acc Fail])

(define ((monotone-func leq?) acc x y)

(cond

[(dict-has-key? acc x)

(if (equal? y (dict-ref acc x)) acc (fail))]

[else

(define pred-y (dict-pred acc x))

(define succ-y (dict-succ acc x))

(if (and (=> pred-y (leq? pred-y y))

(=> succ-y (leq? y succ-y)))

(dict-set acc x y)

(fail))]))

When the transfer function returns, monotone-func is applied to the current accumu-

lator acc, the latest input x, and the latest output y. It determines the transfer function’s

predecessor and successor results for x and, if they exist, checks that they properly relate to

the current output y. Just two comparisons suffice: by transitivity there are no other mono-

tonicity violations. If successful, monotone-func returns the next accumulator, relating

the new input-output pair in the augmented red-black tree.

2.4 Global initialization of traces

The following warning from Racket’s documentation tells developers about an essential

constraint that the language does not enforce:

“If a key in an equal?-based hash table is mutated (e.g., a key string is modified with

string-set!), then the hash table’s behavior for insertion and lookup operations becomes

unpredictable.”

Time and again, however, programmers—especially novices—fail to heed this warning,

experience arbitrary program behavior, and have a difficult time debugging such mistakes.

Trace contracts can enforce such constraints:

(provide

(contract-out

[hash-set hash-set/c]

[string-set! (-> mutable/c natural? char? void?)]))

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

C. Moy and M. Felleisen 7

(define-values (hash-set/c mutable/c)

(trace/c ([t any/c])

#:global

(values (-> hash? (list/t ’set t) any/c void?)

(list/t ’mut t))

(full (t) not-interfere?)))

This trace contract makes use of a few features. First, the body contract produces two

values using Racket’s values function, which allows an expression to return multiple

values (Ashley and Dybvig, 1994). Because the property relates different functions, i.e.

hash-set and string-set!, their contracts need to be created within the same trace/c.

Second, the #:global option causes the state of the trace contract to be initialized at

definition time, not the usual attachment time. Without #:global, the hash-set/c and

mutable/c contracts would be initialized separately and could never interact. Finally, the

list/t function alters the given collector to tag incoming values with a symbol. Here, the

symbol is used to indicate the operation.

The not-interfere? predicate ensures that no key is modified after it becomes a key

in a hash table:

(define/match (not-interfere? xs)

[((stream))

true]

[((stream* ‘(mut ,x) xt))

(not-interfere? xt)]

[((stream* ‘(set ,x) xt))

(and (not (stream-member? xt ‘(mut ,x)))

(not-interfere? xt))])

2.5 The full grammar of trace contracts

In summary, the trace contract library extends Racket’s grammar with a trace/c form

that constructs trace contracts. Figure 1 displays the extension to Racket’s grammar. As the

preceding examples motivate, each piece of the trace contract (trace variable declarations,

the body contract expression, and predicate clauses) come with enhancements that make

the system practical:

Trace Variable Declarations The trace-variable declarations [x et] determine how many

traces the contract creates. Each declaration comes with a contract et that governs

newly collected values.

Body-Contract Expression When a trace contract is attached to a value, the body-

contract expression eb is evaluated in an environment where trace variables are

bound to collectors. A collector is a contract that gathers values that flow through

the corresponding points in the body contract. These points are called interception

points, e.g., argument or return positions. Once collected, values are added to all

dependent trace data structures.

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

8 Trace contracts

e ∈Expr = . . . | (trace/c ([x et] . . .
+) o eb c . . .+)

o ∈ Opt = #:global | ε

c ∈ Clause = (accumulate e [(x . . .+) ea] . . .
+)

| (full (x . . .+) ep)

| (track e c . . .+)

et , eb ∈ Exprκ = {e | e evaluates to a contract}

ea ∈Expra = {e | e evaluates to an accumulating function}

ep ∈Exprp = {e | e evaluates to a predicate}

x ∈Var

Fig. 1. The Extended Racket Grammar for Trace Contracts

If trace/c comes with the #:global option, then the collectors are initialized only

once, namely, when the contract is created. The default behavior, as demonstrated in

section 2.3, initializes collectors each time the trace contract is attached to a value.

The body-contract expression may produce multiple values, which is useful in con-

junction with #:global. Programmers should use the #:global option when more

than one contract must share a trace or multiple traces, as seen in section 2.4.

Predicate Clauses A predicate clause c is responsible for determining how the trace

should be updated when a new value is collected and whether the contract is violated.

The implementation supports three types: accumulate, full, and track.

The accumulate clause consists of several subclauses that determine how the

accumulator is updated when a new value is collected. A subclause consists of

a dependency specification and an expression ea, which must evaluate to a func-

tion. When a subclause depends on more than one collector, the contract system

waits until all values have been collected before applying the function. If a collector

receives more than one value before the other collectors are ready, then all but the

last are discarded.4 The corresponding accumulating function must return either an

updated accumulator or a value indicating failure.

The full clause evaluates the expression ep to a predicate and applies this pred-

icate to a time-ordered stream of collected values. Instead of triggering when all

the dependent collectors have new values, the predicate is applied when any of the

dependent collectors have new values.

The track clause augments the error message of other clauses with information

about all the parties that contributed values to the trace. Section 7.1 describes this

feature in detail.

3 Real-world trace-contract examples

This section provides two real-world examples of trace contracts. The first comes from

Racket’s drawing library and the second comes from code written as part of the grading

infrastructure for an undergraduate course.

4 Alternative choices are expressible by having multiple accumulate subclauses with one dependency each.
The accumulator would store collected values and then the accumulating function would determine the policy.

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

C. Moy and M. Felleisen 9

3.1 Reusing trace contracts

Racket comes with a built-in library, racket/draw, for drawing images. The library pro-

vides a thin wrapper around a low-level graphics API written in C. As such, the wrapper

must protect against client behavior that would induce undefined behavior at the C level.

One instance of undefined behavior occurs with drawing context (DC) objects.

To produce an image with racket/draw, a developer must first choose a DC represent-

ing the desired output device. There are many such contexts, but they all share a common

interface. Part of this interface is a collection of methods that manages the pages of a doc-

ument: start-doc, start-page, end-page, end-doc. Clients must call these methods

in a particular order. It does not make sense to call, e.g., end-doc before start-doc.

Moreover, all drawing commands must occur within a page.

Here is a regular expression that describes a valid complete sequence of method calls:

start-doc, (start-page, draw⋆, end-page)⋆, end-doc

This regular expression is not suitable for trace-contract monitoring. A trace contract also

checks every incomplete sequence of method calls, not just the complete sequence. So, this

regular expression has to be adapted to accept any prefix of the complete sequence.

Here is an adapted version of the regular expression above, described using Racket’s

automata library (McCarthy, 2011):

(define SINGLE-PAGE

(re (seq/close ’start-page (star ’draw) ’end-page)))

(define DC-RE

(re (seq/close ’start-doc (star ,SINGLE-PAGE) ’end-doc)))

The re form compiles a finite-state automaton that accepts the given regular expres-

sion. Within re, seq/close denotes a regular expression that accepts not just the given

sequence, but any prefix of that sequence.

The following trace contract enforces the protocol using DC-RE:

(provide

(contract-out [make-ps-dc (-> (dc/c DC-RE))]))

(define (dc/c aut)

(trace/c ([s symbol?])

(object/c

[start-doc (apply/c [s ’start-doc])]

[start-page (apply/c [s ’start-page])]

[draw-point (apply/c [s ’draw])]

[end-page (apply/c [s ’end-page])]

[end-doc (apply/c [s ’end-doc])])

(accumulate aut

[(s) (λ (acc x)

(define acc* (acc x))

(if (machine-accepting? acc*) acc* (fail)))])))

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

10 Trace contracts

Given a finite-state automaton, dc/c produces a contract for a DC where the method call

sequence is governed by the regular expression. In the body of dc/c, a trace contract is

wrapped around an object contract specifying each of the DC methods. There is only a

single collector, s, that collects symbols corresponding to the method calls. The apply/c

combinator provides the collector with a constant value each time a protected method is

called. To check the protocol, the trace predicate uses the state of the automaton as the

accumulator. So long as the automaton is accepting, the contract is satisfied. The trace

contract is then used in the codomain of make-ps-dc, which produces PostScript (PS)

drawing contexts.

As mentioned before, there is more than one kind of DC. In particular, an Encapsulated

PostScript (EPS) drawing context has a slightly different constraint than an ordinary PS

context. Since an EPS file is intended to be embedded in a larger document, it can only have

a single page. Supporting EPS is easy since dc/c abstracts over the regular expression.

Checking a different protocol requires only passing in a different regular expression to

dc/c:

(provide (contract-out [make-eps-dc (-> (dc/c EPS-RE))]))

(define EPS-RE

(re (seq/close ’start-doc ,SINGLE-PAGE ’end-doc)))

3.2 Protocols for many methods

Imagine a board-game framework that pits AI player components against one another. In a

typical board game, players (1) receive their game pieces; (2) take turns, which may consist

of several interactions with the board; and (3) determine which ones won and lost. Winners

of a game can move on to the next round of a tournament while losers are left behind.

A natural implementation of an AI player is as an object with methods that correspond

to these game stages. Each player expects that these methods are called in a certain order,

which may depend on the state of the game. In short, the methods relate to each other

according to a value-dependent, multi-function, temporal property.

Programmers often use state-transition diagrams to document such multi-function pro-

tocols. Figure 2 displays a diagram for an AI board-game player (top), together with

a matching trace-contract specification (bottom). States in this diagram indicate which

method the referee component must call next. Labeled edges represent transitions that

depend on either an argument value or a return value. Unlabeled edges represent inde-

pendent transitions. Since there are several possible transitions for some states, this is a

non-deterministic automaton.

Specifically, this diagram dictates that players must implement five methods:

1. A setup method that delivers the game pieces.

2. A pick method that asks a player to choose some game objectives.

3. A play method that grants a player the right to take a turn. The result is either a

request to perform an action on the game state or a request for more game pieces.

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

C. Moy and M. Felleisen 11

setup pick play winmoreresult: more?

argument: true?

argument: false?

(provide (contract-out [player-factory (-> strategy/c player/c)]))

(define PLAYER-NFA

(nfa (setup) (setup pick play more win done)

[setup ([‘(setup ,_) (pick)])]

[pick ([‘(pick ,_) (play)])]

[play ([‘(play ,(? action?)) (play win)]

[‘(play ,(? more?)) (play more win)])]

[more ([‘(more ,_) (play win)])]

[win ([‘(win ,true) (setup)]

[‘(win ,false) (done)])]

[done ()]))

(define player/c

(trace/c ([x any/c])

(object/c

[setup (->m game-map? (list/t ’setup x))]

[pick (->m set? (list/t ’pick x))]

[play (->m state? (list/t ’play x))]

[more (->m list? (list/t ’more x))]

[win (->m (list/t ’win x) any/c)])

(accumulate PLAYER-NFA

[(x) (λ (acc x)

(define acc* (acc x))

(if (machine-accepting? acc*) acc* (fail)))])))

Fig. 2. The state-machine contract for AI players, with a transition diagram

4. If the referee gets this second kind of request in response to play, it may invoke the

player’s more method. But, it may also skip this call, depending on the game state.

5. The player is granted turns and more pieces until the referee discovers an end-

game condition and then informs the player whether it won or lost. The player may

participate in the next game only if win is called with true.

In this particular software system, a factory function creates AI players from a strategy

and returns player objects that implement the above five methods. The contract on this

factory method attaches a trace contract to each player object. As a result, every instance

of the player class must obey the order of method calls specified in the sequence diagram.

Otherwise, the system raises an error with a blame-assignment message that informs the

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

12 Trace contracts

developer of the player that was mistreated; once again, the trace-contract design greatly

benefits from a tight integration with higher-order behavioral contracts.

This protocol is a language over the alphabet containing the names of methods, along

with the specific arguments or return values of two of them: play and win. For example,

the following sequence of method calls is correct so long as play returned a value satis-

fying the more? predicate: setup, pick, play, more. If play returned a value satisfying

action? instead, then that sequence of method calls is invalid, and a contract error should

be raised on the call to more.

To check this protocol, the trace contract once again simulates the finite-state machine

with accumulate. Unlike the automaton in section 3.2, this machine inspects pieces

of data. For setup, pick, and more, the transition is independent of run-time values.

However, play and win have value-dependent transitions. For example, play uses the

action? and more? predicates to determine the next set of states. It does so using Racket’s

(? p) match pattern, which matches a value if the predicate p holds.

3.3 Contracts are better than ad-hoc checks

As mentioned previously, these two examples come from real-world projects. In the origi-

nal code, both contained ad-hoc protocol checks instead of trace contracts. Given that, it is

worth reviewing why contracts are preferable to such handwritten checks:

1. Contracts cleanly separate specification code and implementation code—with ad-

hoc checks the two are intertwined. This makes programs difficult to read, and thus

hard to maintain (Meyer, 1988, 1992). Additionally, the code needed to correctly

check a specification is often repetitive and tedious. Getting it wrong is inevitable.

2. As a direct consequence of separating specification and implementation, contracts

enable static and dynamic analyses. For example, the contract library supports pro-

filing (Andersen et al., 2018) to determine which contracts are slowing down a

program. Static techniques (Nguyễn et al., 2018) can verify whether a program

satisfies a contract. These kinds of tools are impossible with ad-hoc checks.

3. The contract library automatically supports detailed error messages with blame that

points to the module that violated the contract. This information is exceptionally

useful for debugging (Lazarek et al., 2020).

4. Programmers have fine-grained control over the scope of a contract, i.e., which mod-

ules get checks and which ones do not. Trusted modules may not need checks. Thus,

the balance between correctness and performance can be tuned precisely. This also

allows tools to automatically bypass contracts in certain cases, for instance, when

they are statically proven to be unnecessary (Moy et al., 2021).

5. Finally, contracts permit specification reuse. In section 3.1, repetitive blocks of ad-

hoc checking code are replaced with make-ps-dc and make-eps-dc; abstracting

over the contract eliminates duplicate code.

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

C. Moy and M. Felleisen 13

Λ Surface Syntax

e ∈Expr = b | x | f | o e | if e e e

| e e | queue | add! e e

b ∈Bool = true | false

f ∈ Fun = λx.e

o ∈Op = null? | head | tail

x, y, z ∈Var

Λ Evaluation Syntax

ς ∈Conf = ïe, σð

e ∈Expr = . . . | α | errk
j

v ∈Val = b | f | α

E ∈Ctx = □ | o E | if E e e | E e

| v E | add! E e | add! v E

u ∈SVal = null | cons v α

σ ∈Store = Addr→fin SVal

α ∈Addr

j, k, l ∈ Lab

Fig. 3. Surface and Evaluation Syntax of Λ

4 A model of trace contracts

A design requires a rigorous blueprint so that implementors of other languages can under-

stand the idea and adapt it. This section presents a model of the λ -calculus extended with

trace contracts. To keep the formalism accessible, the model is developed and explained

incrementally using five languages: Λ, ΛB, ΛC, ΛT , ΛU . Additionally, some of the prag-

matic features of section 2 have been omitted to reduce the complexity of the final model.

Section 5 presents formal properties of these models.

4.1 A functional base

Figure 3 (left) defines the surface syntax of Λ, the call-by-value λ -calculus (Plotkin, 1975)

extended with Booleans and mutable queues. The final model represents traces using

queues. The nullary constructor queue builds a new instance and add! puts an element

into a queue. Primitive operations allow functions to walk over queues similar to immutable

lists. All the remaining syntax is standard.

Figure 3 (right) defines the evaluation syntax of Λ. Along with a grammar of values and

evaluation contexts, the syntax contains errors and queue-specific stores.

Errors come with two labels: j names the party that specified the violated contract and

k names the party that violated the contract. There are two special labels: ◦ refers to the

language runtime itself and † refers to the read-eval-print-loop (REPL). Since Λ does not

have user-defined contracts, the only possible error is err†
◦.

Stores map addresses to either an empty queue (null) or a cons cells that combines

a head value with an address containing the remaining elements. This choice facilitates

functional iteration over queues.

Next, figure 4 defines the reduction relation for Λ with the supporting metafunctions

provided in figure 5. Conditionals and application are standard. For functional primi-

tive operations, the δ metafunction (Barendregt, 1981) is used to compute the result.

Constructing a new queue uses the next free address in the store and sets it to the empty

queue. Adding to an existing queue updates the store, replacing the empty queue at the end

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

14 Trace contracts

Λ Reduction Relation

ïE[if v e1 e2], σð 7−→ ïE[e1], σð if v ̸= false IF-TRUE

ïE[if false e1 e2], σð 7−→ ïE[e2], σð IF-FALSE

ïE[(λx.e) v], σð 7−→ ïE[e[v/x]], σð APP

ïE[o v], σð 7−→ ïE[δ (o, v, σ)], σð PRIM

ïE[queue], σð 7−→ ïE[α], σ [α 7→ null]ð if α = next(σ) QUEUE

ïE[add! α v], σð 7−→ ïE[α], add(σ , α, v)ð ADD!

ïE[v f v], σð 7−→ ïE[err†
◦], σð if v f /∈ Fun ERR-APP

ïE[add! vq v], σð 7−→ ïE[err†
◦], σð if vq /∈Addr ERR-ADD!

ïE[errk
j], σð 7−→ ïerrk

j, σð if E ̸=□ ERR-UNWIND

Fig. 4. Reduction Relation of Λ

add(σ , α, v) =

{

σ [α 7→ cons v α ′][α ′ 7→ null] if α ′ = next(σ), σ(α) = null

add(σ , α ′, v) if σ(α) = cons vh α ′

next(σ) =max(dom(σ)) + 1

δ (o, v, σ) =























































true if o = null?, σ(v) = null

false if o = null?, σ(v) = cons v α ′

err†
◦ if o = head, σ(v) = null

v if o = head, σ(v) = cons v α ′

err†
◦ if o = tail, σ(v) = null

α ′ if o = tail, σ(v) = cons v α ′

err†
◦ if v /∈Addr

Fig. 5. Metafunctions of Λ

with a cons cell containing the new value. The last three rules deal with error conditions.

Errors to do with primitive operations are handled by δ itself.

4.2 The classic contract model

Figure 6 defines the surface and evaluation syntax for ΛB, a model of higher-order contracts

based on that of Dimoulas and Felleisen (2011) and Dimoulas et al. (2011). The surface

syntax extends Λ with two new elements: dependent function contracts ed →i ec and moni-

tors mon
k,l
j eκ ec. A dependent function contract can describe properties of functions where

the codomain contract depends on the argument to the protected function.5 A monitor is

then used to attach a contract to a value. So, mon
k,l
j eκ ec attaches eκ to ec. The value of ec

5 This paper uses the abbreviation ed → ec to stand for an independent function contract, i.e., ed →i (λ_.ec).

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

C. Moy and M. Felleisen 15

ΛB Surface Syntax extends Λ

e ∈Expr = . . . | e →i e | monk,l
j e e

j, k, l ∈ Lab

ΛB Evaluation Syntax extends Λ

v ∈Val = . . . | κ

κ ∈ Con = b | λx.e | v →i v

E ∈Ctx = . . . | E →i e | v →i E

| monk,l
j E e | monk,l

j v E

Fig. 6. Surface and Evaluation Syntax of ΛB

is dubbed the carrier of the contract. Monitors also come with labels naming the parties

that agreed to the contract: the contract-defining module j, the server module k, and the

client module l.

In addition to dependent function contacts, the evaluation syntax reveals that Booleans

and functions can be used as contracts. When used as a contract, true permits any value

and false forbids all values. These correspond to Racket’s any/c and none/c contracts,

respectively. When used as a contract, a function checks first-order properties of the carrier.

This corresponds to Racket’s flat contracts.

Here is an example program with a contract:6

mon
lib,main
ctc (true→i (λx.λy.x = y)) (λ z.z) (4.1)

This example contains a contract fully specifying the behavior of the identity function.

Since the domain contract is true, every argument is accepted. When the function returns,

the output value is checked against the codomain contract λy.x = y, ensuring that it is equal

to the input value.

Figure 7 shows the reduction relation for ΛB. The first four rules describe the checks per-

formed by each kind of contract. For true and false, the check immediately succeeds or

immediately fails, respectively. For a flat contract λx.e, the result of applying this function

to the carrier is then used as the new contract. Thus, if λx.e is a predicate, this corresponds

exactly to a first-order check because true and false are themselves contracts.

While λx.e may return a Boolean, there is nothing in the semantics that forces it to be

one. In particular, it could return a function contract. This can be used to create cascading

contracts that combine arbitrary first-order checks with higher-order contracts.

Consider this example:

λ f .if (arity f = 1) (int?→ int?) false

Assuming an arity primitive, this cascading contract checks a first-order constraint, namely

that the carrier has arity one. If successful, the higher-order contract int?→ int? protects

the carrier. Otherwise, the contract fails.

In Racket, function contracts perform arity checks eagerly, exactly in this manner.

The model from Dimoulas and Felleisen (2011) cannot encode this behavior. Cascading

contracts are essential for defining the compiler in section 6.

6 These example programs are intended to illustrate a point, and therefore may use language features that are not
formally defined. The meaning should always be clear from context.

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

16 Trace contracts

ΛB Reduction Relation extends Λ

ïE[monk,l
j true v], σð 7−→ ïE[v], σð MON-TRUE

ïE[monk,l
j false v], σð 7−→ ïE[errk

j], σð MON-FALSE

ïE[monk,l
j (λx.e) v], σð 7−→ ïE[monk,l

j ((λx.e) v) v], σð MON-FLAT

ïE[monk,l
j (vd →i vc) v], σð 7−→ ïE[λx.let x j = mon

l, j
j vd x in

let xk = mon
l,k
j vd x in

mon
k,l
j (vc x j) (v xk)], σð

MON-FUN

ïE[monk,l
j vκ v], σð 7−→ ïE[err†

◦], σð if vκ /∈Con ERR-MON

Fig. 7. Reduction Relation of ΛB

Finally, MON-FUN describes the indy semantics of dependent function con-

tracts (Dimoulas et al., 2011). The key insight of indy is that the contract itself can be

inconsistent, and therefore must be subject to checks.

Here is an example that illustrates this point:

(bool?→ bool?)→i (λ f . f 42)

While the domain contract states that the input is a function over Booleans, generating the

codomain contract violates that assumption by applying f to a number. In this case, indy

raises an error blaming the contract itself.

4.3 A revised contract model

As is, ΛB cannot accommodate contracts with effects, such as trace contracts. When used

as the domain of a function, a contract’s effects are erroneously duplicated.

Take the following variation on program (4.1):

mon
lib,main
ctc ((λx.print x ; true) →i (λx.λy.x = y)) (λ z.z)

The only difference is the presence of an effect in the domain contract. As the following

reduction sequence demonstrates, print is executed twice:

ï(monlib,mainctc ((λx.print x ; true)→i (λx.λy.x = y)) (λ z.z)) 42, /0ð

By MON-FUN, the monitor produces a wrapper function that checks the arguments

against the domain contract and the return value against the codomain contract.

7−→ ï(λx.monlib,mainctc ((λx.λy.x = y) (monmain,ctcctc (λy.print y ; true) x))

((λ z.z) (monmain,libctc (λy.print y ; true) x))) 42, /0ð

The wrapper function is applied to 42.

7−→ ïmonlib,mainctc ((λx.λy.x = y) (monmain,ctcctc (λy.print y ; true) 42))

((λ z.z) (monmain,libctc (λy.print y ; true) 42)), /0ð

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

C. Moy and M. Felleisen 17

To produce the codomain contract, the argument is first checked against the domain

contract with the contract-defining party (ctc) as the client label. This prints 42.

7−→+ ïmonlib,mainctc ((λx.λy.x = y) 42)

((λ z.z) (monmain,libctc (λy.print y ; true) 42)), /0ð

Once the argument is checked, the codomain contract can be created.

7−→ ïmonlib,mainctc (λy.42 = y)

((λ z.z) (monmain,libctc (λy.print y ; true) 42)), /0ð

The argument has to be checked against the domain contract once more. This time

the client label is lib. Again, 42 is printed.

7−→+ ïmonlib,mainctc (λy.42 = y) ((λ z.z) 42), /0ð

Now the carrier is applied to 42. Since the carrier is the identity function, it returns

42.

7−→+ ïmonlib,mainctc (λy.42 = y) 42, /0ð

The returned value is checked against the generated codomain contract. In this case,

the contract is satisfied and is discharged.

7−→ ï42, /0ð

Effect duplication is a major problem for trace contracts. If a collector is used as the

domain of a function, then it will collect duplicate values.

To understand the source of the problem, consider the contractum of MON-FUN. It con-

tains two vd monitors that differ only in their client label: one uses j and the other uses k.

A simple let binding cannot be used to eliminate the duplicated effect since each of the

monitors may produce wrappers that contain different labels.

The conclusion to draw is that ΛB conflates interception time and crossing time.

Interception time occurs when the contract system intercepts a value from the monitored

program, i.e., when a value flows through an interception point. Crossing time occurs when

an intercepted value moves to another component.

Consider a wrapper for the contract vd → vc. Every time the wrapper is applied, it must

perform two tasks related to the argument. First, vd must be used to check first-order prop-

erties of the argument. Second, if vd is a higher-order contract, wrappers must be created

for every client of the argument. In the case of indy, there are two such clients, by conven-

tion labeled j and l. Interception time corresponds to when task one occurs and crossing

time corresponds to when task two occurs.7 Since ΛB has only one mon form, both tasks

are its responsibility.

Splitting the three-labeled monitor into two forms separates these responsibilities.

Figure 8 defines the syntax of ΛC, a revised contract language. While the surface syntax

7 Often, interception-time coincides with first-order checks and crossing-time coincides with higher-order wrap-
ping. There are exceptions, however. For example, in Racket the unconstrained-domain-> contract makes
no demand on function arguments. Because such a contract is guaranteed never to blame clients, its wrapper
can be constructed at interception time. For simplicity, though, this paper blurs the distinction.

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

18 Trace contracts

ΛC Surface Syntax extends Λ

e ∈Expr = . . . | e →i e | monk,l
j e e

j, k, l ∈ Lab

ΛC Evaluation Syntax extends Λ

e ∈Expr = . . . | monk
j e e | grdk

j ω v

| e · l

v ∈Val = . . . | κ | grdk
j ω v

κ ∈Con = b | λx.e | v →i v

ω ∈ Wrap = true | v →i v

E ∈ Ctx = . . . | E →i e | v →i E

| monk
j E e | monk

j v E | E · l

Fig. 8. Surface and Evaluation Syntax of ΛC

is the same as ΛB, the evaluation syntax has a few differences (highlighted): two-labeled

monitors monk
j eκ ec, guarded values grdk

j ω v, and label applications eg · l. Reduction of

monk
j eκ ec corresponds to interception time, when first-order properties of the carrier are

checked. Reduction of (grdk
j ω v) · l corresponds to crossing time and produces a wrapper

for client l.

Figure 9 displays the reduction relation for ΛC. The first rule, MON-APPLY, decomposes

the surface-level monitor into a two-labeled monitor applied to the client label. If success-

ful, the two-labeled monitor produces a guarded value. The next four rules are responsible

for the first-order checks of each contract. In the case of MON-TRUE and MON-FALSE,

the first-order check is all that needs to occur.

Below the monitor rules, there are two rules for guarded values: GRD-TRUE and GRD-

FUN. For true there is no wrapper needed so the carrier is produced directly. A wrapper

is needed for function contracts, though. The wrapper in the contractum of GRD-FUN

exploits the two-stage process. Instead of two vd monitors, there is now only one, with its

result bound to xg. Effects caused by checking vd occur only once while binding xg. In

the scope of this let binding, two wrappers are produced by applying xg to the two client

labels. Constructing these wrappers is not effectful.

4.4 The trace contract model

Finally, figure 10 defines the trace contract model ΛT that extends ΛC. The surface syntax

contains only one new form: tr eκ ep. This represents a trace contract with body-contract

constructor eκ and trace predicate ep. A body-contract constructor is a function that, when

provided with a collector, returns the body contract. The evaluation syntax contains one

new form: co α vp. This represents a collector with trace address α and trace predicate vp.

The reduction relation for ΛT is presented in figure 11. MON-TRACE performs two

tasks. First, it allocates a queue for storing the trace. Second, it creates a collector and

provides it to the body-contract constructor. MON-COL produces code that adds a new

value to the trace and checks it using the trace predicate.

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

C. Moy and M. Felleisen 19

ΛC Reduction Relation extends Λ

ïE[monk,l
j eκ e], σð 7−→ ïE[(monk

j eκ e) · l], σð MON-APPLY

ïE[monk
j true v], σð 7−→ ïE[grdk

j true v], σð MON-TRUE

ïE[monk
j false v], σð 7−→ ïE[errk

j], σð MON-FALSE

ïE[monk
j (λx.e) v], σð 7−→ ïE[monk

j ((λx.e) v) v], σð MON-FLAT

ïE[monk
j (vd →i vc) v], σð 7−→ ïE[grdk

j (vd →i vc) v], σð MON-FUN

ïE[(grdk
j true v) · l], σð 7−→ ïE[v], σð GRD-TRUE

ïE[(grdk
j (vd →i vc) v) · l], σð 7−→ ïE[λx.let xg = monl

j vd x in

let x j = xg · j in

let xk = xg · k in

mon
k,l
j (vc x j) (v xk)], σð

GRD-FUN

ïE[monk
j vκ v], σð 7−→ ïE[err†

◦], σð if vκ /∈Con ERR-MON

Fig. 9. Reduction Relation of ΛC

ΛT Surface Syntax extends ΛC

e ∈Expr = . . . | tr e e

ΛT Evaluation Syntax extends ΛC

e ∈ Expr = . . . | co α v

κ ∈Con = . . . | tr v v | co α v

E ∈Ctx = . . . | tr E e | tr v E

Fig. 10. Surface and Evaluation Syntax of ΛT

ΛT Reduction Relation extends ΛC

ïE[monk
j (tr vb vp) v], σð 7−→ ïE[monk

j (vb (co α vp)) v], σ [α 7→ null]ð

if α = next(σ)

MON-TRACE

ïE[monk
j (co α vp) v], σð 7−→ ïE[monk

j (vp (add! α v)) v], σð MON-COL

Fig. 11. Reduction Relation of ΛT

Here is a translation of the current-memory-use example from section 2.1 into this

model:

tr (λy.true→ y) sorted? (4.2)

As mentioned earlier, the body-contract constructor consumes a collector k and returns a

contract: true→ k. That is, the generated contract does not impose any precondition on

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

20 Trace contracts

the argument of the carrier; the collector itself serves as the function’s codomain contract.

The trace predicate sorted? consumes and inspects a queue to ensure that it is sorted.8

Here is an example reduction sequence generated by protecting a function with this

contract and applying it to false:

ïlet f = mon
lib,main
lib (tr (λy.true→ y) sorted?) (λx.) in f false, /0ð

A three-labeled mon becomes a two-labeled mon that is immediately applied to the

client label. All other monitor reductions are defined only on the two-labeled form.

7−→ ïlet f = (monliblib (tr (λy.true→ y) sorted?) (λx.)) · main in f false, /0ð

MON-TRACE allocates a fresh queue for the trace and constructs a collector to give

to the body-contract constructor.

7−→ ïlet f = (monliblib ((λy.true→ y) (co α0 sorted?)) (λx.)) · main in

f false, [α0 7→ null]ð

In this step, the first argument to the trace contract produces the body contract—

filling in the appropriate spot with the collector.

7−→ ïlet f = (monliblib (true→ (co α0 sorted?)) (λx.)) · main in

f false, [α0 7→ null]ð

The monitor contains a function contract, so the first-order check succeeds and

produces a guarded value by MON-FUN.

7−→ ïlet f = (grdliblib (true→ (co α0 sorted?)) (λx.)) · main in

f false, [α0 7→ null]ð

After several let-based steps, the elided function is applied to false.

7−→+ ï(monliblib (co α0 sorted?) ((λx.) false)) · main, [α0 7→ null]ð

Assume that the elided function produces 42.

7−→+ ï(monliblib (co α0 sorted?) 42) · main, [α0 7→ null]ð

MON-COL appends the newly received value, 42, to the trace. It then arranges for

the trace predicate to be checked.

7−→+ ï(monliblib (sorted? α0) 42) · main, [α0 7→ cons 42 α1, α1 7→ null]ð

Since the singleton queue containing just 42 is sorted, the predicate succeeds.

7−→+ ï(monliblib true 42) · main, [α0 7→ cons 42 α1, α1 7→ null]ð

The result is just the return value of the function.

7−→+ ï42, [α0 7→ cons 42 α1, α1 7→ null]ð

8 This model’s syntax does not support trace variable declarations, so the natural? constraint from section 2.1
is missing. Section 4.5 demonstrates how to add this feature to the model.

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

C. Moy and M. Felleisen 21

ΛU Surface Syntax extends ΛC

e ∈Expr = . . . | tr e e e

ΛU Evaluation Syntax extends ΛC

e ∈ Expr = . . . | co v α v

κ ∈Con = . . . | tr v v v | co v α v

E ∈Ctx = . . . | tr E e e | tr v E e

| tr v v E

Fig. 12. Surface and Evaluation Syntax of ΛU

ΛU Reduction Relation extends ΛC

ïE[monk
j (tr vκ vb vp) v], σð 7−→ ïE[monk

j (vb (co vκ α vp)) v], σ [α 7→ null]ð

if α = next(σ)

MON-TRACE

ïE[monk
j (co vκ α vp) v], σð 7−→ ïE[let xv = monk

j vκ v in

let x j = xv · j in

add! α x j ; monk
j (vp α) v ; xv], σð

MON-COL

Fig. 13. Reduction Relation of ΛU

4.5 Extending the model

While the Racket implementation pairs each trace variable with a contract that governs

collected values, the model omits this capability. To illustrate the versatility of the model,

this subsection shows how to add this feature. To do so is relatively simple: one tweak

to the syntax and another to MON-COL. Other adaptations to the model—making it more

faithful to the implementation—are similarly straightforward.

The revised surface syntax, shown in figure 12, adds contracts to the body-contract

constructor; an analogous change augments collectors with contracts to protect collected

values. Figure 13 shows the modified reduction relation. The MON-TRACE rule is just

adapted for the new argument, while the revised MON-COL reduction has some new behav-

ior. In the contractum, a let expression binds xv to the collected value v, monitored with

contract vκ . The second binding, for x j, applies the monitored value xv to j because the

consumer of the trace is the contract-defining party. At this point, the value is added to the

trace, and the trace is tested with the predicate. If the predicate succeeds, the monitored

value xv becomes the result of the let expression.

This variant of MON-COL demands careful construction. First, it requires the proper

management of blame parties. Monitoring the to-be-collected value is the responsibility

of the contract-defining party, but using the value remains the responsibility of the client,

which is the context. Second, the right-hand side may not duplicate the monitoring expres-

sion because a contract may have effects—after all, it could be another collector. So, like

GRD-FUN, this rule is arranged such that the effects of vκ are performed only once.

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

22 Trace contracts

5 Semantic properties

Here is an evaluation function that can be used for all the languages defined in section 4:

evalL : Prog→Ans

evalL (e) =















b if ïe, /0ð 7−→⋆ ïb, σð

opaque if ïe, /0ð 7−→⋆ ïv, σð, v /∈ Bool

errk
j if ïe, /0ð 7−→⋆ ïerrk

j, σð

The evalL function takes programs as input. A program is a closed surface expression.

If the reduction relation connects the program to a Boolean, then evalL produces the

same Boolean. If the reduction relation connects the program to any other value, then

evalL produces opaque, just like the REPL does for a λ expression. Finally, the evaluator

produces an error token with two labels when the reduction relation does too.

The evalL relation is a partial function. Therefore, a deterministic interpreter can be

defined.

Theorem 5.1 (Functional Evaluator). evalL is a partial function.

Proof. See appendix B.

Moreover, the only time evalL is undefined is when it diverges.

Theorem 5.2 (Uniform Evaluator). Either evalL (e) is defined or the reduction sequence

starting with ïe, /0ð is unbounded.

Proof. See appendix C.

Finally, the revised contract semantics is equivalent to the original model in the absence

of mutations.

Definition (Mutation Free). An expression e is mutation free if for all e′ such that

ïe, /0ð 7−→⋆ ïe′, σð it must be that σ = /0.

Theorem 5.3 (Evaluator Equivalence). If e is mutation free, then evalΛB
(e) = evalΛC

(e).

Proof. See appendix D.

6 Implementation in principle

The semantics of section 4 suggests a macro-style compilation of trace contracts into a mix

of plain contracts and queue manipulations. Such a translation requires the timely initial-

ization of traces, strict control of effects (i.e., queue manipulation), the injection of run-time

checks, and proper blame assignment. Compiler correctness follows from a theorem like

the one Findler and Felleisen (2002) prove for plain contracts.

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

C. Moy and M. Felleisen 23

6.1 Theoretical compiler

Consider the following compiler that translates a ΛT program into a ΛC program:

C (tr eb ep) =























let xb =C (eb) in

let xp =C (ep) in

λ_.let xα = queue in

xb (λy.xp (add! xα y))

Since there is only one construct related to trace contracts in the surface syntax, C has only

one interesting case and is otherwise a homomorphism.

For a trace contract, the compiler sets up two bindings in a let expression: xb and xp.

These stand for the compilations of the body-contract constructor and the trace predicate,

respectively. The body of the let expression is a flat contract. Like MON-TRACE, it creates

a fresh queue, and then an instance of the body contract by applying xb to (the compilation

of) a collector. The flat contract is used as a mechanism to initialize the queue at attachment

time. Similarly, the compilation of the collector yields a flat contract that simulates MON-

COL. Specifically, it adds the given element to the queue and then passes the extended

queue to the trace predicate.

Here is the compilation of program (4.2):

let xb = λy.true→ y in

let xp = sorted? in

λ_.let xα = queue in

xb (λy.xp (add! xα y))

(6.1)

6.2 Compiler correctness

Compare the reduction sequences for program (4.2) with that of program (6.1):

ïlet f = mon
lib,main
lib (let xb = λy.true→ y in

let xp = sorted? in

λ_.let xb = queue in

xκ (λy.xp (add! xα y)))

(λx.) in f false, /0ð

Following left-to-right evaluation, the compilation uses a sequence of let expres-

sions to evaluate the arguments of the trace contract.

7−→+ ïlet f = mon
lib,main
lib (λ_.let xα = queue in

(λy.true→ y) (λy.sorted? (add! xα y)))

(λx.) in f false, /0ð

The three-labeled mon becomes a two-labeled mon applied to the client label.

7−→ ïlet f = (monliblib (λ_.let xα = queue in

(λy.true→ y) (λy.sorted? (add! xα y)))

(λx.)) · main in f false, /0ð

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

24 Trace contracts

The flat contract constructs a new queue and then produces an application of the

body-contract constructor to the compiled collector.

7−→+ ïlet f = (monliblib ((λy.true→ y) (λy.sorted? (add! α0 y)))

(λx.)) · main in f false, [α0 7→ null]ð

Substituting gives a function contract with the compiled collector in the codomain

position.

7−→ ïlet f = (monliblib (true→ (λy.sorted? (add! α0 y)))

(λx.)) · main in f false, [α0 7→ null]ð

After a few steps, the elided function produces 42 by assumption. This must be

checked against the compiled collector.

7−→+ ï(monliblib (λy.sorted? (add! α0 y)) 42) · main, [α0 7→ null]ð

The compiled collector adds the given value to the associated trace.

7−→ ï(monliblib (sorted? α0) 42) · main, [α0 7→ cons 42 α1, α1 7→ null]ð

Finally, the trace predicate is run to ensure that the trace is sorted. Since it is, the

final value is the result of the function: 42.

7−→ ï42, [α0 7→ cons 42 α1, α1 7→ null]ð

This comparison suggests a proof that the compiled trace contract simulates the origi-

nal behavior. Indeed, evaluating the compiled code always yields the same answer as the

uncompiled source code, including divergence and errors.

Theorem 6.1 (Compiler Correctness). evalΛT
= evalΛC

◦C

Proof. See appendix E.

7 Implementation in practice

A principled design (section 4) specifies when traces are initialized, when they are updated,

and when a predicate evaluates their validity. The design gives rise to a principled imple-

mentation (section 6), which clarifies how to translate key features into a kernel language.

But, developers do not live by principles alone; pragmatics matter just as much.

One pragmatic concern is contract blame. Contracts help enforce basic correctness

claims, and contract failures alert developers to problems. Findler and Felleisen (2002)

insist on precise blame assignment in failure messages. The design of the trace contract

system carefully reuses the blame assignment mechanism from the underlying contract

system. Experience suggests that for trace contracts, developers may need additional

information beyond what standard blame provides (section 7.1).

Another concern is the availability of contract combinators. Working with the trace

contract system pointed to limitations in the existing behavioral contract system. In partic-

ular, additional combinators are needed to support the specification of interception points

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

C. Moy and M. Felleisen 25

relevant to trace contracts. Fortunately, these pragmatically important combinators are

orthogonal additions to the base system (section 7.2).

Finally, an implementation effort also informs designers of what is needed in a target

host language to add a new feature. While the use of Racket’s macro system greatly facili-

tates the addition of macro-expressible features, it should not be much more effort to extend

existing compilers directly with support for trace contracts, provided the target language

supports certain features (section 7.3).

7.1 Blame and suspects

When a contract system discovers a contract violation, it raises an exception, includ-

ing a witness value and a pointer to the responsible component. This is dubbed blame

assignment. Section 2.1 illustrates this point with an example of a violated trace contract.

As Lazarek et al. (2020) show in the context of behavioral contracts, blame assignment

comes with enough information to almost always locate the actual source of the bug. They

simulate tens of thousands of buggy programs by introducing a targeted fault via mutation.

In most cases, following blame assignment leads to the source of the bug. For the few

hundred cases where blame fails to identify the bug, Lazarek et al. (2020) reduce the failure

to a lack of multi-call contracts. One of their examples is the DUNGEON program. As

section 8 explains, strengthening the behavioral contract to a trace contract for DUNGEON

provides exactly the needed blame information.

Trace contracts also complicate the situation, however. By default, blame goes to the

party that added a value to the trace just before the predicate fails. Since all prefixes of

the trace satisfied the predicate, this blame assignment seems to make sense. Yet, debug-

ging real scenarios suggests that neither the blame correctness property (Dimoulas and

Felleisen, 2011) nor the complete monitoring property (Dimoulas et al., 2012) are as useful

for trace contracts as they are for behavioral ones.

Imagine a scenario with five components (A, B, C, D, E), where each contributes a

number to a trace in increasing order (f). Here is an execution:

Component A B C E D

Contribution 1.41 2.71 3.14 5.00 4.67

The model blames D because it contributes 4.67, causing the f relation to fail. But, E

might have made a call to the API out of order, and blaming just D does not even indicate

a suspicion that some other component could be at fault. It is often useful to know the

source of all values in a trace. After all, the idea behind traces is to subject multi-function

interactions to contractual obligations.

A careful reader may argue that the problem is not with the blame assignment system,

but with the predicate. Perhaps f does not capture the specification to a sufficient degree.

This claim is already true about behavioral contracts because a predicate may always

be weaker than the intended property. And if the predicate is weaker than the intended

property, the contract system may blame the wrong party.

This argument, however, overlooks the key premise of contract-system design: blame

assignment must help developers narrow the search space for bugs, regardless of the

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

26 Trace contracts

strength of the predicate. To explain this idea rigorously, Lazarek et al. (2020) turn folk

wisdom into two properties: blame trail and search progress. The blame trail property

states that either (i) blame is assigned to the buggy component or (ii) blame can be shifted

to another component by strengthening contracts. The search progress property states that

blame shifting always points to a component closer to the bug than before the modification.

For trace contracts, both properties can be violated in practice. In the example, strength-

ening contracts on D is unlikely to shift the blame, meaning the blame trail property is

violated. When strengthening a trace predicate, the violating trace may decrease in length,

but there is no reason to think a priori that the last contributor to a trace is always closest

to the source of a bug, violating the search progress property. In short, the current blame

assignment scheme points to the broken contract, but more information is needed to help

developers identify the fault.

To address this problem, the implementation comes with three different ways of express-

ing blame assignments. Let a suspect be any party that contributes to a trace. Here are the

three mechanisms used to express blame:

1. By default, the trace/c implementation does not report suspects. Instead, the error

message merely mentions the violated contract and its parties.

2. The setof-suspect option forces the trace-contract system to track the set of all

suspects and report that information when assigning blame. Frequently, there are just

two parties to a contract. Without #:global, a two-party contract has a suspect set

with at most two elements.

3. The listof-suspect option causes the trace-contract system to report the exact

sequence of suspects, one per value in the trace. This option supplies the most com-

prehensive information, but it requires a large amount of memory and makes for

large error messages.

Whether all of these strategies are useful in practice, only some of them, or some in certain

circumstances and some in other circumstances, is left as an open research question.

7.2 Supporting functionality

The trace contract library comes with additional functions for manipulating interception

points, resetting state explicitly, transforming collectors, and augmenting error messages

with additional information.

Unlike behavioral contracts, trace contracts occasionally need to note events even in the

absence of an informative value flow. For example, when a function receives no arguments,

there is no natural interception point. The trace contract library supplies some combinators

to create interception points for such situations (e.g., apply/c, return/c). See section 3.1

for sample uses.

Collector transformers wrap a collector and compute the value to be added to a trace

from the given one. An example is list/t, which allows a programmer to tag values

before they go into a trace. Typically, this tag adds information about the interception point.

See section 3.2 for an example. Another one is map/t, which applies a given function to

the captured value before adding it to a trace.

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

C. Moy and M. Felleisen 27

In practical situations, the fail function may have to perform more tasks than just

inform the contract system of a failure. A software system may have to recover from a

contract failure, and in those cases, a failure should reset accumulators to certain values.

The author of a trace contract may also wish to add information about the rationale behind

a failure. To this end, the trace-contract system supports augmenting error messages.

7.3 Implementing trace contracts in general

While the implementation is based on Racket’s contract system, the design is language

independent. An implementor of another programming language may thus wonder what it

takes to add trace contracts. Our experience suggests a few criteria.

A trace is a data structure representing the sequence of values collected from various

interception points. In the context of a functional language, function calls and returns are

obvious interception points. Similarly, in an object-oriented language, this same role is

played by methods. Generally speaking, an implementor’s first business is to decide where

to intercept and how to monitor the flow of values. The rest of this section assumes that

call-and-return points suffice.

7.3.1 Monitoring higher-order values

In a higher-order language, functions, objects, modules, and classes may be first-class val-

ues. This implies that a contract system cannot determine statically where a particular call

or return takes place. It is the task of the target language’s runtime to support the moni-

toring of value flows. The Racket implementation employs proxy values (Strickland et al.,

2012)—invisible wrappers—for interception. With such wrappers, it is straightforward to

intercept values even in the presence of higher-order values.

Wrappers are not the only option. For instance, the weaving mechanism from aspect-

oriented programming (Kiczales et al., 1997) could be used for a similar purpose. Roughly

speaking, weaving injects code into the program at specifiable program points. Although

weaving is powerful, it is not clear whether weaving can efficiently intercept values in a

higher-order language, as needed by the proposed design.

7.3.2 Mutation within contracts

Trace-contract checking is effectful. When a collector receives a value, it mutably adds this

value to a trace. Even though, as some of the examples in section 2 show, the component

itself can be purely functional. Hence, the underlying language must allow side effects in

contracts, even though trace predicates themselves are pure functions.9

Formally, section 6 validates that trace contracts are expressible as shorthand in an

underlying language with higher-order contracts and a mutable data structure. In the termi-

nology of Felleisen (1991), the new feature is macro expressible. Theorem 6.1 shows that

this translation completely preserves the specified behavior. Though, Felleisen (1991) also

9 Since collectors mutate traces, checking a collector is not idempotent. While idempotence is sometimes consid-
ered an important property of contract systems (Degen et al., 2009; Findler and Blume, 2006), it often fails to
hold for other reasons. For example, Owens (2012) and Hinze et al. (2006) observe violations of idempotence
in several useful contexts.

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

28 Trace contracts

shows that imperative assignment increases the expressive power of a pure host language.

By implication, trace contracts are not expressible in such a setting.

7.3.3 Interception and crossing times

As mentioned in section 4.3, a trace-contract system assumes that crossing and intercep-

tion time in the target contract system are separate. As it turns out, the implementation

of trace contracts exposed the lack of this separation in Racket’s contract system. Racket

fails to separate the two points in one combinator: the depended-upon argument contract in

->i (Dimoulas et al., 2013). A change to Racket’s contract system allows trace contracts

to distinguish these boundary crossings, meaning that a collector may ignore arguments

passing through a boundary that has an indy (third) party.10 This is sufficient to eliminate

the duplicate-collection problem.

7.3.4 Macros not needed

An implementor can easily add trace contracts to a language with a rich macro system, such

as a Racket. Including all the practical features mentioned in section 2 makes this macro

rather large and complex. While macros are a convenient implementation mechanism for

trace contracts, they are not a requirement. The implementor of a functional language such

as SML, which elaborates surface syntax into a small kernel, can add trace contracts with

a similar addition to the front-end elaborator.

8 Usability and performance evaluation

Usability questions concern the ease with which programmers can write trace-contract

properties for their programs and what performance penalty the system imposes.

Section 8.2 gives a qualitative assessment of our experience writing trace contracts.

This assessment suggests two opposite insights. On the one hand, trace contracts enable

developers to use the entire underlying programming language. Hence, developing a

trace-contract property is just like developing an ordinary predicate in an ordinary lan-

guage, using all available tools—especially unit and property-testing frameworks. On the

other hand, as experience with ordinary higher-order contracts shows, contracts are a

special-purpose domain. Such domains call for specific, tailor-made notations to eliminate

boilerplate code. Developing such notations remains future work.

As for performance, the only relevant question is what kind of fixed cost the mechanism

itself imposes on programs, not the variable cost of the programmer-defined predicates.11

Trace initialization, trace updates, and calls to predicates are all included in this fixed cost.

The results of measuring the performance of trace contracts, presented in section 8.3, are

quite encouraging.

10 Thanks to Robby Findler for help with this change to Racket’s contract system.
11 The performance evaluation cannot answer questions concerning the variable cost of trace predicates. Trace

contracts are property agnostic, so the variable cost of a trace contract depends largely on the property being
checked. In other words, this cost is solely under the purview of the programmer, not the trace-contract system.

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

C. Moy and M. Felleisen 29

8.1 Benchmark programs

The selected benchmarks represent real-world uses of Racket that offer opportunities for

adding trace contracts. MEMORY turns the example from section 2.1 into a pathological

stress test. FUTURE is a large existing Racket library equipped with trace contracts, plus

an application that stresses the functionality. Four of the benchmark programs (DUNGEON,

JPEG, LNM, TETRIS) are variants on programs from the standard gradual typing benchmark

suite (Greenman et al., 2019). Three (DATAFLOW, FISH, TICKET) are programs developed

for use in university courses. All the benchmarks have been adapted so that they do not

measure I/O operations.

DATAFLOW Computes a constant propagation analysis for a simple imperative language.

A trace contract, similar to the one from section 2.3, checks the monotonicity of a

transfer function during fixed-point iteration.

DUNGEON Generates the specification of a maze. A trace contract on the random-number

generator ensures that it does not exhaust a fixed pool of random numbers. In the

original program, resizing the random number pool caused a contract violation that

failed to provide helpful blame information (Lazarek et al., 2020, sec. 5.1). With a

trace contract, this same bug produces an error message with a blame assignment

that directly points to the problem. The contract must keep track of how many times

the random function is called, so its accumulator is just a natural number and the

check is cheap.

FISH Runs a “That’s My Fish” board game tournament. There are two trace contracts: a

referee contract and a player contract.

The referee contract ensures that the referee calls back players in the specified order

unless the game state does not permit the player to take a turn. The contract is a

promise made by the referee to all the players. To enforce this promise, the contract

is placed on the referee’s list of player objects. A collector receives a new value every

time the referee calls the take-turn method on any player. The trace contract then

checks that this is in accordance with the promised callback order on the players,

including skipping over players that are momentarily prohibited from taking a turn.

The player contract enforces a sequence property on its method calls. In other words,

the player components ensure that their individual methods are called in the specified

order. This contract is similar to the value-dependent temporal protocol example

from section 3.2. It is independent of, and orthogonal to, the referee contract.

FUTURE Visualizes the performance of a futures benchmark. Futures are a run-time mech-

anism for incrementally adding parallelism to programs (Swaine et al., 2010). The

future visualizer (Swaine et al., 2012) uses Racket’s drawing library, which has been

equipped with trace contracts to enforce multi-call properties. A full list of these

properties is enumerated in appendix F. Some of the properties were monitored by

the drawing library using ad-hoc checks and others were not checked at all.

JPEG Parses a JPEG input stream and writes it to an output stream. A trace contract

guarantees that operations on the output stream occur in the correct order. Like the

example in section 3.2, it checks every stream-related function call against a finite

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

30 Trace contracts

Benchmark SLOC Protects Checks Disabled Enabled Predicate Overhead

DATAFLOW 502 1 584 83 ± 3 87 ± 2 274 ± 3 5%

DUNGEON 589 0 538,000 2441 ± 38 2715 ± 46 2713 ± 33 11%

FISH 1,452 2,698 63,175 7780 ± 70 8340 ± 82 8366 ± 80 7%

FUTURE 1,721 16,360 234,444 6075 ± 54 7083 ± 83 7502 ± 86 17%

JPEG 1,481 0 54,556 276 ± 5 303 ± 6 316 ± 6 10%

LNM 564 168 3,248 522 ± 8 532 ± 9 534 ± 9 2%

MEMORY 59 0 10,000 141 ± 4 164 ± 4 164 ± 4 16%

TETRIS 334 6,807 125,570 3040 ± 24 3566 ± 36 3927 ± 43 17%

TICKET 1,427 384 15,794 13062 ± 149 13186 ± 170 13199 ± 182 1%

Table 4. Basic Metrics and Performance Measurements

automaton. Formulating the trace contract involves creating several contracts that

share the same accumulator, the state of the finite automaton.

LNM Draws plots of the performance measurements of a gradual type system. Like

FUTURE, this benchmark uses a variant of Racket’s drawing library equipped with

trace contracts.

MEMORY Reports memory use, including garbage-collected blocks. The trace contract

from section 2.1 ensures that current-memory-use returns increasing numbers

over time; it is called 10,000 times in a tight loop, the results of which are graphed

on a line chart using Racket’s plot (Toronto and Harsányi, 2011) library.

TETRIS Simulates and displays a recording of the game of Tetris. This benchmark also

uses a variant of Racket’s drawing library equipped with trace contracts.

TICKET Runs a “Ticket to Ride” board game tournament. Like FISH, TICKET has both a

referee and a player contract. The referee contract enforces a promise that the referee

calls back players in the specified order. This trace contract is significantly simpler

than the one for FISH, because every player can execute an action in every game

state. The player-side trace contract enforces the correct sequence of method calls.

The example presented in section 3.2 is a simplified version of this contract.

8.2 Benchmark summary

Table 4 first lists the number of essential lines of source code (SLOC) for each program,

including the trace contract and its auxiliary functions.

None of the trace contracts require much code. FISH and TICKET contain the most com-

plex ones, but the others are relatively simple. Even the most complex trace contracts are

concise. Indeed, the contract for TICKET is shown nearly verbatim in section 3.2. Since

predicates are ordinary code, they can make use of existing data structure libraries, and

those libraries serve as workhorses in many cases. For example, JPEG uses an existing

FSM package that renders its temporal constraint predicate practically a one-liner.

Tight integration with the existing contract system makes writing many trace contracts

natural. Since the trace contract mechanism manages state behind the scenes, contract com-

position and contract abstraction work as expected. Developers can write trace contracts as

ordinary code, compose them as usual, and even abstract over them.

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

C. Moy and M. Felleisen 31

Programming trace contracts for these benchmark programs also points to limitations.

For example, placing collector contracts can be awkward and repetitive. Consider the trace

contracts in sections 3.1 and 3.2, both of which contain several nearly identical lines. A

macro can eliminate the repetition in each case individually, but it is not obvious if there is

a general-purpose DSL that could reduce such repetitive code across many cases.

8.3 Performance measurements

The performance measurements on the right side of table 4 were recorded on a dedicated

Linux machine with an Intel Xeon E3 processor running at 3.10 GHz with 32 GB of RAM

and with Racket 8.6 CS. Each benchmark configuration was repeated 100 times with a

maximum timeout of two minutes.

The Protects column reports the number of times a trace contract protects a new value

during the steady state of a program’s execution. Each time, there is some overhead due to

allocating references for accumulators and creating collector contracts. Some benchmarks

have a zero entry because all of the trace contracts are initialized before the main body of

the program begins, for example, when dependencies are being loaded.

The Checks column states the number of times each trace predicate is checked. As men-

tioned, this evaluation is concerned with the fixed cost of trace contracts. Therefore, each

trace predicate is replaced with the trivial predicate that always returns true. Benchmarks

were executed at two levels: Disabled where trace contracts are disabled, and Enabled

where they are enabled. These measurements are the mean number of milliseconds it takes

to run each benchmark, averaged over 100 samples, along with the standard deviation. The

Predicate column lists the performance numbers where trace contracts are enabled and the

predicate actually checks the desired property. Despite it not being the primary means of

evaluation, these numbers are provided for context. Such predicates are straightforward

implementations and are not heavily optimized. Finally, the Overhead column shows the

percent overhead of Enabled compared to Disabled.

The overhead of the trace-contract mechanism is relatively low, somewhere between 1%

and 17%. As is, the setups basically simulate worst-case scenarios. For example, MEMORY

just calls a simple function in a tight loop, so contract checking takes up a large portion

of total execution time. By contrast, benchmarks that are closer to real-world programs,

such as TICKET, incur a low overhead. Thus, the evidence suggests that the trace-contract

mechanism itself does not exhibit any performance pathology.

These measurements do not exercise an industrial-strength implementation of trace con-

tracts, but rather a direct translation of the design. This implementation serves as a vehicle

for exploration. With some performance engineering, it is likely to perform significantly

better. While this evaluation can provide some first impression of the performance of trace

contracts, it is not enough to generalize to other settings or languages.

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

32 Trace contracts

9 Related work

Prior work is in the tradition of software contracts or runtime verification (RV).

Specifically, this paper leverages the development of higher-order dependent con-

tracts (Findler and Felleisen, 2002; Blume and McAllester, 2006; Findler and Blume, 2006;

Greenberg et al., 2010; Dimoulas et al., 2012); the temporal contract system of Disney

et al. (2011) is the most directly comparable piece of work from this area. Within the

runtime verification area, the most similar approach is the monitor-oriented programming

framework (Meredith et al., 2011; Chen and Roşu, 2007; Chen et al., 2005).

These two bodies of research have distinct philosophies about expressing and checking

properties. Trace contracts borrow the notion of traces from RV to extend a higher-order

behavioral contract system. They seek to bridge the gap between the two areas. Eventually

this bridge should make many results from RV available to contract programmers, and it

may inject new ideas into RV.

9.1 Runtime verification, generally

Traditional contract systems and RV systems differ along several dimensions. Most impor-

tantly, as Meyer (1992) observes, contracts are a design tool for the developer; in contrast,

RV is a tool for the quality assurance stage of the development process.

9.1.1 Scope

Contracts are modular. A programmer attaches contracts to the interface of a “server”

component. When a “client” component imports a server component, it is forced to agree

to the contract. Similarly, a client component may impose a contract on imported pieces

of functionality to protect itself from a misbehaving service component. In the first case,

clients do not need to be adapted to the service contract, and in the second case, service

components remain unaware of the client’s protective contract. Put differently, it is possible

to compile these components in either order or, even better, to link pre-compiled binary

objects.

RV is whole program. A programmer specifies events of interest and properties about

event traces. The RV system converts this specification into an executable monitor and

weaves interception code into the host program to communicate first-order data about

events to a separate monitor process (Bartocci et al., 2018).

Monitoring higher-order values is possible with RV, but the encoding uses a com-

plex protocol between the server and the client module; it requires source modification

to both components. Implementing the protocol on a modular basis is either impossible,

which precludes the binary-linking approach available with contracts, or requires complex

extensions (Xiang et al., 2015).

9.1.2 Language

Contracts are linguistic elements that are inside the language. The programmer uses the

same language—and the exact same tools—for writing code and contracts. Extending the

notation for contracts in a domain-specific manner (via macros in Racket) is useful; the

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

C. Moy and M. Felleisen 33

-> abbreviation for function contracts is one example. Racket also treats contracts as first-

class objects, meaning they can be put into lists, passed and returned from functions, and

composed at run time.

RV is extra-linguistic; that is, RV systems exist outside the language. Specifications are

usually written in a distinct, external logic language and tend to make temporal statements

about sequences of first-order data (Havelund et al., 2018). While this language may con-

tain fragments of host-language code, it is only loosely connected with the host language

and its tool chain.

9.1.3 Violations

As a consequence of the differences along the linguistic axis, contracts and RV differ in two

ways concerning the violation of specifications: recovery and error-location information.

When a contract system discovers a violation of an assertion, it raises an exception that

includes information about the parties that agreed to the contract and which of them vio-

lated it—blame information. By raising an exception at the very point where a contract

violation is discovered, the contract system gives the program a chance to recover immedi-

ately and with a response targeted to the problem. In a language with resumable exceptions,

such as Common Lisp (Steele, 1990), a program may even resume its execution at the exact

place where the violation occurred.

The precise error information in violation messages enables the developer to understand

the cause of a violation. Lazarek et al. (2020) show that this blame information is effec-

tive at narrowing the search space during debugging. It is also a well-founded concept;

Dimoulas et al. (2012) provide a framework for proving that blame information points to

the component which supplies a value that does not meet the specification.

Traditionally, RV systems report violations of specifications with delay and do not

contain blame information (Swords, 2019). The delay is due to the underlying process-

communication arrangement between the program proper and its monitor. This poses

a problem for tracking the provenance of values and for assigning blame. Hence, RV

makes it difficult to restart programs with a problem-specific, localized response, unless

an additional “diagnosis layer” is supplied (Leucker and Schallhart, 2009).

9.1.4 Properties

Contracts are property agnostic. Any predicate, including one that tries to decide a

recursively-enumerable property, can be used as a contract. This is maximally expressive

but can be computationally expensive.

RV is property sensitive. Much of RV research focuses on the development of specifica-

tion languages that can express properties of interest concisely and that can be compiled

into efficient monitoring code (Leucker and Schallhart, 2009). Often these are variants of

temporal logic. These specialized logics can provide hard guarantees about time and space

efficiency, at the cost of expressive power.

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

34 Trace contracts

9.2 Runtime verification, specifically

Within the landscape of RV tools, JavaMOP is the best point for comparison. It is the

most versatile implementation in the family of monitor-oriented programming (MOP)

systems (Meredith et al., 2011). A selling feature of JavaMOP is that it is generic; the

programmer can choose the events of interest, specification logic, and violation handler

code. Chen and Roşu (2007) argue that there is no logic suitable to express all properties,

and thus JavaMOP developers must engineer external logic “plugins” (Chen et al., 2005).

Trace contracts, by contrast, allow programmers to take full advantage of the host lan-

guage. If this host language comes with expressive meta-programming facilities, such as

the macros of Racket (Ballantyne et al., 2020; Felleisen et al., 2018; Flatt, 2002), develop-

ers can easily add a custom notation for trace contracts. Consider section 3.2 which uses

Racket’s automata package (McCarthy, 2011) and significantly improves the readability of

the trace predicate without external tooling. With the visual-interactive syntax of Andersen

et al. (2020), a developer could even edit and view the NFA graphically.

For an example of cross-pollination, consider trace slicing. This idea is due to the RV

community (Chen and Roşu, 2007). In the RV world, this operation is not exposed to users

of RV systems; rather, an efficient slicing algorithm is derived from data quantifiers in

the specification logic. The trace contract library supports trace slicing via tagging and

ordinary stream functions. In keeping with the philosophy of contract-system design, the

power is handed to programmers.

9.3 Higher-order contracts, specifically

While higher-order contracts are typically independent of state, trace contracts manage

state behind the scenes to support a mostly functional view of specifications. Others

show that contracts could occasionally benefit from a modicum of state (Tov and Pucella,

2010; Moore et al., 2016; Waye et al., 2017), though these systems do not come with the

expressiveness of trace contracts.

The higher-order temporal contracts of Disney et al. (2011) are the closest prior work to

trace contracts. Their research focuses on two aspects: an operational theory of temporal

event sequences and the specification of properties. On the theory side, the work intro-

duces a novel approach to operational semantics that formalizes the meaning of modules as

automata that create trees of observable events, similar to game-based denotational seman-

tics. The semantics satisfies a non-interference theorem, meaning that streams of values

are kept separate. On the practical side, the work focuses on specifying properties of event

sequences as regular expressions without giving programmers access to a data represen-

tation of traces. Trace contracts come with more expressive power, yet do not necessarily

sacrifice efficiency.

At first glance, computational contracts (Scholliers et al., 2015) look similar to higher-

order temporal contracts. But, computational contracts go far beyond any classical contract

classification scheme (Beugnard et al., 1999, 2010), providing unprecedented power and

imposing a similarly high cost. A computational contract system empowers programmers

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

C. Moy and M. Felleisen 35

to impose arbitrary restrictions on components from the outside and in a post-hoc man-

ner. Thus, computational contracts depart from the idea that contracts are assertions at the

boundary between black-box components, instead turning components into glass boxes.

9.4 Typestate and type systems

Researchers often try to move from dynamically checked contracts to statically checked

types, because discovering general mistakes during compile time is safer than discover-

ing specific mistakes at run time, perhaps even after a program has been deployed. This

subsection deals with two distantly related ideas from the world of static checking.

The work of Strom and Yemini (1986) on typestate systems, recently resumed in vari-

ous forms (Jaspan and Aldrich, 2009; Pucella and Tov, 2008; Wolff et al., 2011), directly

addresses simple but common affinity restrictions in APIs. For example, typestate systems

can check constraints such as “method m may be called at most once” and even “method m

must be called before method n.” These constraints are restricted to regular properties, i.e.,

those that can be expressed using a finite-state machine.

Honda et al. (1998)’s notion of session type is a closely related idea. Recently this field

has experienced rapid growth. Roughly speaking, session types for objects come with the

same expressive power as typestate (Gay et al., 2010).

Effect systems are also capable, in a limited way, of constraining the order in which

effects can be performed. Ordinary effect systems do not consider the order of effects,

but sequential effect systems (Tate, 2013; Koskinen and Terauchi, 2014) can. Further

extensions can statically verify some temporal logic propositions (Gordon, 2017).

No existing static technique can express all of the trace-contract examples. By combin-

ing traces with plain code, a programmer can formulate arbitrary predicates and check

value-dependent constraints on traces. Trace predicates can look for specific values or

use specific values to express a constraint, which is impossible with these type systems.

Dependent session types (Toninho et al., 2011) may be able to do better, but are still lim-

ited to statically decidable properties. Trace contracts, by monitoring programs at run time,

are able to take advantage of the precision that run-time checking offers. A combination of

session types and contracts (Bocchi et al., 2010) can refine the content of messages passed

between parties, but the structure of the protocol remains fixed. This approach also does

not naturally extend to contracts on higher-order values.

10 Trace contracts for rich specifications

Engineering complex software requires mechanisms for expressing and enforcing compo-

nent specifications. Types, contracts, run-time verification—each has been successful in its

own way, but major expressiveness gaps remain.

This paper introduces trace contracts as a novel, practical, and well-founded element

of this spectrum. Specifically, trace contracts enable developers to protect the elements of

their API across multiple function and method calls. The trace contract system provides

traces of argument and result values as a first-class piece of data. Hence, trace contracts

can express protocols that are ubiquitous in practice, but are usually specified informally.

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

36 Trace contracts

In addition to a principled design, this paper describes an implementation of trace

contracts, along with an evaluation. The implementation addresses a good number of prag-

matic concerns, especially those of performance. On the question of blame assignment,

the implementation supports several natural strategies with different precision and memory

consumption trade-offs.

Critically, the trace-contract design separates the concept of a value trace from the

language of enforced properties. In other words, trace contracts separate the low-level col-

lection mechanism from the high-level property formulation. Hence, the design enables an

investigation of trace-collection performance, independent of an exploration of problem-

specific notations for expressing the properties of traces. Racket, with its powerful tools for

creating embedded and extensible DSLs (Ballantyne et al., 2020), is a convenient platform

for this kind of research.

Plenty of work remains. Section 7.1 proposes three blame strategies but gives no the-

oretical or empirical justification for any of them. What are the tradeoffs between these

approaches with regard to theory (blame correctness), implementation (memory use),

and pragmatics (debugging violations)? Protocols are common in concurrent progams

but are often informally described. Can trace contracts be adapted to monitor protocols

in concurrent applications? Techniques exist to statically verify functional contracts in

Racket (Nguyễn et al., 2018). Is static verification practical for trace contracts? Section 9

compares trace contracts to other research results. How many of these systems can be

implemented on top of trace contracts? If they can, what are the benefits of doing so? If

they cannot, how can trace contracts be extended to accomodate such systems?

Even though future work is needed to turn trace contracts into a truly practical technol-

ogy, hopefully the foundation put forth in this paper is sufficient to advance the practice of

software specification in Racket and beyond.

Acknowledgements

This work was supported by National Science Foundation grant SHF 2116372. The authors

thank anonymous POPL and JFP reviewers for their comments.

Artifact

The implementation of trace contracts has been released as an open-source library. Right

now, Racket developers can use trace contracts to fortify their programs.

Conflicts of Interest

None.

References

Andersen, L., Ballantyne, M. & Felleisen, M. (2020) Adding Interactive Visual Syntax to Textual

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

C. Moy and M. Felleisen 37

Code. Object-Oriented Programming, Systems, Languages and Applications (OOPSLA).

Andersen, L., St-Amour, V., Vitek, J. & Felleisen, M. (2018) Feature-Specific Profiling. Transactions

on Programming Languages and Systems (TOPLAS).

Ashley, J. M. & Dybvig, R. K. (1994) An Efficient Implementation of Multiple Return Values in

Scheme. LISP and Functional Programming (LFP).

Ballantyne, M., King, A. & Felleisen, M. (2020) Macros for Domain-Specific Languages. Object-

Oriented Programming, Systems, Languages and Applications (OOPSLA).

Barendregt, H. P. (1981) The Lambda Calculus. North-Holland Publishing Co.

Bartocci, E., Falcone, Y., Francalanza, A. & Reger, G. (2018) Introduction to Runtime Verification.

In Lectures on Runtime Verification. Springer.

Beugnard, A., Jézéquel, J.-M. & Plouzeau, N. (2010) Contract Aware Components, 10 Years After.

International Workshop on Component and Service Interoperability (WCSI).

Beugnard, A., Jézéquel, J.-M., Plouzeau, N. & Watkins, D. (1999) Making Components Contract

Aware. Computer.

Blume, M. & McAllester, D. (2006) Sound and Complete Models of Contracts. Journal of Functional

Programming (JFP).

Bocchi, L., Honda, K., Tuosto, E. & Yoshida, N. (2010) A Theory of Design-by-Contract for

Distributed Multiparty Interactions. International Conference on Concurrency Theory.

Chen, F., d’Amorim, M. & Roşu, G. (2005) Checking and Correcting Behaviors of Java Programs at

Runtime with Java-MOP. Workshop on Runtime Verification (RV).

Chen, F. & Roşu, G. (2007) MOP: An Efficient and Generic Runtime Verification Framework.

Object-Oriented Programming, Systems, Languages and Applications (OOPSLA).

Degen, M., Thiemann, P. & Wehr, S. (2009) True Lies: Lazy Contracts for Lazy Languages

(Faithfulness is Better than Laziness). Arbeitstagung Programmiersprachen (ATPS).

Dimoulas, C. & Felleisen, M. (2011) On Contract Satisfaction in a Higher-Order World. Transactions

on Programming Languages and Systems (TOPLAS).

Dimoulas, C., Findler, R. B. & Felleisen, M. (2013) Option Contracts. Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA).

Dimoulas, C., Findler, R. B., Flanagan, C. & Felleisen, M. (2011) Correct Blame for Contracts: No

More Scapegoating. Principles of Programming Languages (POPL).

Dimoulas, C., New, M. S., Findler, R. B. & Felleisen, M. (2016) Oh Lord, Please Don’t Let Contracts

Be Misunderstood (Functional Pearl). International Conference on Functional Programming

(ICFP).

Dimoulas, C., Tobin-Hochstadt, S. & Felleisen, M. (2012) Complete Monitors for Behavioral

Contracts. European Symposium on Programming (ESOP).

Disney, T., Flanagan, C. & McCarthy, J. (2011) Temporal Higher-Order Contracts. International

Conference on Functional Programming (ICFP).

Felleisen, M. (1991) On the Expressive Power of Programming Languages. Science of Computer

Programming.

Felleisen, M., Findler, R. B., Flatt, M., Krishnamurthi, S., Barzilay, E., McCarthy, J. & Tobin-

Hochstadt, S. (2018) A Programmable Programming Language. Communications of the ACM

(CACM).

Findler, R. B. & Blume, M. (2006) Contracts as Pairs of Projections. Functional and Logic

Programming (FLP).

Findler, R. B. & Felleisen, M. (2002) Contracts for Higher-Order Functions. International

Conference on Functional Programming (ICFP).

Flatt, M. (2002) Composable and Compilable Macros: You Want it When? International Conference

on Functional Programming (ICFP).

Flatt, M. & PLT. (2010) Reference: Racket. Technical Report PLT-TR-2010-1. PLT Design Inc.

https://racket-lang.org/tr1/.

Gay, S. J., Vasconcelos, V. T., Ravara, A., Gesbert, N. & Caldeira, A. Z. (2010) Modular Session

Types for Distributed Object-Oriented Programming. Principles of Programming Languages

(POPL).

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

38 Trace contracts

Gordon, C. S. (2017) A Generic Approach to Flow-Sensitive Polymorphic Effects. European

Conference on Object-Oriented Programming (ECOOP).

Greenberg, M., Pierce, B. C. & Weirich, S. (2010) Contracts Made Manifest. Principles of

Programming Languages (POPL).

Greenman, B., Takikawa, A., New, M. S., Feltey, D., Findler, R. B., Vitek, J. & Felleisen, M.

(2019) How to Evaluate the Performance of Gradual Typing Systems. Journal of Functional

Programming (JFP).

Havelund, K., Reger, G., Thoma, D. & Zălinescu, E. (2018) Monitoring Events that Carry Data. In

Lectures on Runtime Verification. Springer.

Hinze, R., Jeuring, J. & Löh, A. (2006) Typed Contracts for Functional Programming. Functional

and Logic Programming (FLP).

Honda, K., Vasconcelos, V. T. & Kubo, M. (1998) Language Primitives and Type Discipline for

Structured Communication-Based Programming. European Symposium on Programming (ESOP).

Jaspan, C. & Aldrich, J. (2009) Checking Framework Interactions with Relationships. European

Conference on Object-Oriented Programming (ECOOP).

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. & Irwin, J.

(1997) Aspect-Oriented Programming. European Conference on Object-Oriented Programming

(ECOOP).

Koskinen, E. & Terauchi, T. (2014) Local Temporal Reasoning. Logic in Computer Science (LICS).

Lazarek, L., King, A., Sundar, S., Findler, R. B. & Dimoulas, C. (2020) Does Blame Shifting Work?

Principles of Programming Languages (POPL).

Leucker, M. & Schallhart, C. (2009) A Brief Account of Runtime Verification. The Journal of Logic

and Algebraic Programming.

McCarthy, J. (2011) Automata: Compiling State Machines. https://docs.racket-lang.org/

automata/index.html.

Meredith, P. O., Jin, D., Griffith, D., Chen, F. & Roşu, G. (2011) An Overview of the MOP Runtime

Verification Framework. International Journal on Software Tools for Technology Transfer.

Meyer, B. (1988) Object-Oriented Software Construction. Prentice Hall.

Meyer, B. (1992) Applying “Design by Contract”. Computer.

Moore, S., Dimoulas, C., Findler, R. B., Flatt, M. & Chong, S. (2016) Extensible Access Control with

Authorization Contracts. Object-Oriented Programming, Systems, Languages and Applications

(OOPSLA).

Moy, C., Nguyễn, P. C., Tobin-Hochstadt, S. & Van Horn, D. (2021) Corpse Reviver: Sound and

Efficient Gradual Typing via Contract Verification. Principles of Programming Languages (POPL).

Nguyễn, P. C., Gilray, T., Tobin-Hochstadt, S. & Van Horn, D. (2018) Soft Contract Verification for

Higher-Order Stateful Programs. Principles of Programming Languages (POPL).

Nielson, F., Nielson, H. R. & Hankin, C. (2005) Principles of Program Analysis. Springer Verlag.

Owens, Z. (2012) Contract Monitoring as an Effect. Higher-Order Programming with Effects

(HOPE).

Plotkin, G. (1975) Call-by-name, call-by-value and the λ -calculus. Theoretical Computer Science.

Pucella, R. & Tov, J. A. (2008) Haskell Session Types with (Almost) No Class. Haskell Symposium.

Scholliers, C., Tanter, E. & De Meuter, W. (2015) Computational Contracts. Science of Computer

Programming.

Steele, G. L. (1990) Common Lisp the Language. Digital Press.

Strickland, T. S., Tobin-Hochstadt, S., Findler, R. B. & Flatt, M. (2012) Chaperones and

Impersonators: Run-Time Support for Reasonable Interposition. Object-Oriented Programming,

Systems, Languages and Applications (OOPSLA).

Strom, R. E. & Yemini, S. (1986) Typestate: A Programming Language Concept for Enhancing

Software Reliability. IEEE Transactions on Software Engineering.

Swaine, J., Fetscher, B., St-Amour, V., Findler, R. B. & Flatt, M. (2012) Seeing the Futures: Profiling

Shared-Memory Parallel Racket. Functional High-Performance Computing (FHPC).

Swaine, J., Tew, K., Dinda, P. A., Findler, R. B. & Flatt, M. (2010) Back to the Futures: Incremental

Parallelization of Existing Sequential Runtime Systems. Object-Oriented Programming, Systems,

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

C. Moy and M. Felleisen 39

Languages and Applications (OOPSLA).

Swords, C. (2019) A Unified Characterization of Runtime Verification Systems as Patterns of

Communication. Ph.D. thesis. Indiana University.

Tate, R. (2013) The Sequential Semantics of Producer Effect Systems. Principles of Programming

Languages (POPL).

Toninho, B., Caires, L. & Pfenning, F. (2011) Dependent Session Types via Intuitionistic Linear Type

Theory. Principles and Practice of Declarative Programming (PPDP).

Toronto, N. & Harsányi, A. (2011) Plot: Graph Plotting. https://docs.racket-lang.org/

plot/index.html.

Tov, J. A. & Pucella, R. (2010) Stateful Contracts for Affine Types. European Symposium on

Programming (ESOP).

Waye, L., Chong, S. & Dimoulas, C. (2017) Whip: Higher-Order Contracts for Modern Services.

International Conference on Functional Programming (ICFP).

Wolff, R., Garcia, R., Tanter, E. & Aldrich, J. (2011) Gradual Typestate. European Conference on

Object-Oriented Programming (ECOOP).

Xiang, C., Qi, Z. & Binder, W. (2015) Flexible and Extensible Runtime Verification for Java.

International Journal of Software Engineering and Knowledge Engineering.

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

40 Trace contracts

A Proof syntax and judgments

The proofs in the sections that follow require some additional syntax and judgments. In

particular, certain sets of expressions that exist implicitly in the semantics must be named

explicitly. Additionally, a judgment identifying valid expressions is needed.

Λ Proof Syntax

a ∈Ans = t | opaque

t ∈ Ter = v | errk
j

r ∈Redex = if v e e | v v | o v | queue | add! v v | errk
j

ΛB Proof Syntax extends Λ

r ∈Redex = . . . | monk,l
j e e

ΛC Proof Syntax extends Λ

r ∈Redex = . . . | monk,l
j e e | monk

j v v | (grdk
j ω v) · l

Fig. 14. Proof Syntax of Λ, ΛB, and ΛC

Figure 14 defines three sets of terms. An answer is the result of evalL (for a language

L) and is either a terminal expression or the opaque token. A terminal expression is

either a value or an error token. Finally, a reducible expression (redex) is an expression

that inhabits the hole of the evaluation context on the left-hand side of a reduction rule.

fv(e) = /0

∀α ∈ addrs(e)[σ « σ(α)]

σ ¢ e σ « null

σ ¢ v

σ « σ(α)

σ « cons v α

Fig. 15. Valid Expression Judgment

Figure 15 defines a judgment that identifies valid expressions from the too-liberal gram-

mar for the evaluation syntax. A valid expression is closed and contains only addresses that

map to valid queues. A valid queue contains only valid values.

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

C. Moy and M. Felleisen 41

B Functional evaluator proof

The theorems in this section hold for all languages presented in section 4.

Theorem 5.1 (Functional Evaluator). evalL is a partial function.

Proof. A straightforward consequence of lemma B.1.

Lemma B.1 (Deterministic Evaluator). If ïe, σð 7−→⋆ ït1, σ1ð and ïe, σð 7−→⋆ ït2, σ2ð,

then t1 = t2 and σ1 = σ2.

Proof. By lemma B.2, every expression can be decomposed into a unique evaluation con-

text and a unique redex. For each redex, there is only one reduction rule that could apply.

Thus evaluation is deterministic.

Lemma B.2 (Unique Decomposition). For all e ∈Expr either e ∈ Ter or there exists a

unique evaluation context E and unique redex r such that e = E[r].

Proof. By induction on the structure of e.

Case e = t.

Trivial.

Case e = o ea.

Applying the inductive hypothesis to ea, it follows that either (1) ea ∈ Ter or (2) there

exists unique Ea and r such that ea = Ea[r]. For (1), ea could be a value, in which case

E =□, r = o ea. Otherwise, ea = errk
j, in which case E = o □, r = errk

j. For (2),

E = o Ea since E[r] = (o Ea)[r] = o Ea[r] = o ea = e. This decomposition is unique

since Ea is unique.

Case e = monk
j eκ ev.

Apply induction to eκ . Either (1) eκ ∈ Ter or (2) there exists a unique Eκ and r such

that eκ = Eκ [r]. For (1), there are two subcases.

Case eκ = vκ .

Apply induction to ev. If ev = v then E =□, r = monk
j vκ v = e. If ev = Ev[r]

then E = monk
j vκ Ev.

Case eκ = errk
j.

E = monk
j □ ev, r = errk

j.

For (2), E = monk
j Eκ ev.

Otherwise.

The remaining cases are similar to one of the above.

C Uniform evaluator proof

The proofs in this section hold for all languages presented in section 4.

Theorem 5.2 (Uniform Evaluator). Either evalL (e) is defined or the reduction sequence

starting with ïe, /0ð is unbounded.

Proof. By interleaved application of lemma C.1 and lemma C.2.

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

42 Trace contracts

Lemma C.1 (Progress). If σ ¢ e then either e ∈ Ter or ïe, σð 7−→ ïe′, σ ′ð.

Proof. By lemma B.2 either e ∈ Ter or e = E[r]. By cases on r.

Case r = if v et e f .

Either IF-TRUE or IF-FALSE apply.

Case r = add! vα va.

Suppose vα is an address. Since σ ¢ e, add(σ , vα , v) is defined, so ADD! applies. If

vα is not an address then ERR-ADD! applies.

Case r = monk
j vκ v.

By cases on vκ .

Case vκ /∈Con.

ERR-MON applies.

Case vκ = b.

Either MON-TRUE or MON-FALSE applies.

Case vκ = λx.e.

MON-FLAT applies.

Case vκ = vd →i vc.

MON-FUN applies.

Case vκ = tr vb vp.

MON-TRACE applies.

Case vκ = co α vp.

MON-COL applies.

Otherwise.

The remaining cases are similar to one of the above.

Lemma C.2 (Preservation). If σ ¢ e and ïe, σð 7−→ ïe′, σ ′ð then σ ′ ¢ e′.

Proof. By cases on the reduction relation.

Case ïE[if v et e f], σð 7−→ ïE[et], σð, v ̸= false.

Since σ ¢ if v et e f we know σ ¢ et .

Case ïE[(λx.eb) v], σð 7−→ ïE[eb[v/x]], σð.

This follows from lemma C.3.

Case ïE[add! α v], σð 7−→ ïE[α], add(σ , α, v)ð.

This follows from lemma C.4.

Case ïE[monk
j (tr vb vp) v], σð 7−→ ïE[monk

j (vb (co α vp)) v], σ [α 7→ null]ð.

The contractum is closed since no new variables are introduced. A new address α is

introduced. For the expression to remain valid, σ « σ(α) must hold which it does

since σ(α) = null.

Case ïE[monk
j (co α vp) v], σð 7−→ ïE[monk

j (vp (add! α v)) v], σð.

No variables are introduced, no addresses are introduced, and the store is maintained.

Therefore, the contractum remains closed with addresses still to valid queues.

Otherwise.

The remaining cases are similar to one of the above.

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

C. Moy and M. Felleisen 43

λx.let x j = mon
l, j
j vd x in

let xk = mon
l,k
j vd x in

mon
k,l
j (vc x j) (v xk)

∼ λx.let xg = monl
j ṽd x in

let x j = xg · j in

let xk = xg · kn in

mon
k,l
j (ṽc x j) (ṽ xk)

let x j = e j in

let xk = ek in

mon
k,l
j (vc x j) (v xk)

∼ let x j = ẽ j in

let xk = ẽk in

mon
k,l
j (ṽc x j) (ṽ xk)

let xk = ek in

mon
k,l
j (vc v j) (v xk)

∼ let xk = ẽk in

mon
k,l
j (ṽc ṽ j) (ṽ xk)

mon
k,l
j eκ e ∼ (monk

j ẽκ ẽ) · l

. . .

□∼□

mon
k,l
j E e ∼ (monk

j Ẽ ẽ) · l

mon
k,l
j v E ∼ (monk

j ṽ Ẽ) · l

. . .

Fig. 16. Expression and Evaluation Context Simulation Relation

Lemma C.3 (Substitution Preservation). If σ ¢ λx.eb and σ ¢ v then σ ¢ eb[v/x].

Proof. By induction on eb.

Lemma C.4 (Store Preservation). If σ ¢ α and σ ¢ v then add(σ , α, v) ¢ α .

Proof. By induction on |dom(σ)| − α .

D Evaluator equivalence proof

This section shows the equivalence of ΛB and ΛC in the absence of queue mutations.

Because no mutation occurs, the store is irrelevant to reduction calculations and is thus

omitted. The proof proceeds by a simulation argument. Figure 16 relates ΛB expressions

and evaluation contexts to equivalent ones in ΛC.

Lemma D.1 (Mutation Freedom). If expression e contains no queue subexpression, then

it is mutation free.

Proof. Assume to the contrary that ïe, /0ð 7−→⋆ ïe′, /0ð 7−→ ïe′′, σð for σ ̸= /0. The latter

reduction must be QUEUE because the only other store-manipulating rule, ADD!, presup-

poses a non-empty store. However, this is a contradiction since QUEUE only applies if the

initial program e contains a queue subexpression.

Theorem 5.3 (Evaluator Equivalence). If e is mutation free, then evalΛB
(e) = evalΛC

(e).

Note. By design, trace contracts use mutation and the existing behavior of dependent

function contracts is inappropriate for this case. Conversely, queue-mutating programs are

excluded because it is the purpose of ΛC to specify a behavior for →i that is appropriate

when contracts perform mutation.

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

44 Trace contracts

Proof. There are two directions to prove. First, that evalΛB
¦ evalΛC

on the restricted

domain of mutation-free expressions. By cases on evalΛB
(e).

Case evalΛB
(e) = b.

Thus e 7−→⋆
ΛB

b. Because e ∼ e, lemma D.2 yields e 7−→⋆
ΛC

b f and there exists b̃ such

that b f ≃obs b̃ and b ∼ b̃. Observational equivalence and the simulation both preserve

Booleans, therefore b f = b̃ = b. Hence, e 7−→⋆
ΛC

b and evalΛC
(e) = b.

Case evalΛB
(e) = opaque.

Similar to the prior case since preserving Booleans also implies preserving non-

Booleaness.

The inverse direction states that evalΛC
¦ evalΛB

. There is only one interesting case,

namely showing that the situation where e 7−→⋆
ΛC

t but evalΛB
(e) is undefined is impossi-

ble.

Assume the contrary. Using lemma D.3 yields a contradiction. By theorem 5.2, the

reduction sequence in ΛB is unbounded. Let e 7−→⋆
ΛB

e′ and e 7−→⋆
ΛC

ẽ′ where e′ ∼ ẽ′ are

the last pair of expressions related under ∼. This choice is possible since the reduction

sequence in ΛC is finite. Because e′ can take a step, lemma D.3 applies and generates a

later pair of related expressions, contradicting the choice of e′ ∼ ẽ′.

Lemma D.2 (Transitive Simulation). Let e be mutation free. If e 7−→⋆
ΛB

t and e ∼ ẽ, then

there exists t f and t̃ such that ẽ 7−→⋆
ΛC

t f , t f ≃obs t̃, and t ∼ t̃.

Proof. By induction on the number of steps n in e 7−→⋆
ΛB

t.

Case n = 0.

Trivial.

Case n > 0.

By lemma D.3, e 7−→+
ΛB

e′′, ẽ 7−→+
ΛC

ei, ei ≃obs ẽ′′, and e′′ ∼ ẽ′′. From lemma B.1,

e′′ 7−→⋆
ΛB

t. Applying the inductive hypothesis yields ẽ′′ 7−→⋆
ΛC

ti where ti ≃obs t̃ and

t ∼ t̃. In summary, ẽ 7−→+
ΛC

ei ≃obs ẽ′′ 7−→⋆
ΛC

ti ≃obs t̃, which suffices.

Lemma D.3 (Simulation). Let e be mutation free and e ∼ ẽ. If e 7−→ΛB
e′, then there exists

e′′, ei, ẽ′′ such that e 7−→+
ΛB

e′′, ẽ 7−→+
ΛC

ei, ei ≃obs ẽ′′, and e′′ ∼ ẽ′′.

Proof. By cases on e 7−→ΛB
e′. Each case relies on lemma D.4 followed by lemma D.5.

Case E[if v et e f] 7−→ E[et], v ̸= false.

Let ẽ = Ẽ[if ṽ ẽt ẽ f]. The simulation preserves non-Booleans, so ṽ ̸= false. Thus,

Ẽ[if ṽ ẽt ẽ f] 7−→ Ẽ[ẽt].

Case E[(λx.let x j) v] 7−→ E[let x j].

This reduction implies that Ẽ[(λx.let xg) ṽ] 7−→ Ẽ[ei] where

ei = let xg = monl
j ṽd ṽ in

let x j = xg · j in

let xk = xg · k in

mon
k,l
j (ṽc x j) (ṽ xk).

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

C. Moy and M. Felleisen 45

Because e is mutation free, ei ≃obs ẽ′ where

ẽ′ = let x j = (monl
j ṽd ṽ) · j in

let xk = (monl
j ṽd ṽ) · k in

mon
k,l
j (ṽc x j) (ṽ xk).

Thus, Ẽ[ei]≃obs Ẽ[ẽ′]. Note that e′ ∼ ẽ′, therefore E[let x j]∼ Ẽ[ẽ′].

Case E[let x j = v j in] 7−→ E[let xk = ek in].

Ẽ[let x j = ṽ j in] 7−→ Ẽ[let xk = ẽk in]

Case E[let xk = vk in] 7−→ E[monk,l
j (vc v j) (v vk)].

Ẽ[let xk = ṽk in] 7−→ Ẽ[monk,l
j (ṽc ṽ j) (ṽ ṽk)]

Case E[monk,l
j true v] 7−→ E[v].

Ẽ[(monk,l
j true ṽ) · l] 7−→ Ẽ[(grdk,l

j true ṽ) · l] 7−→ Ẽ[ṽ]

Case E[monk,l
j false v] 7−→ E[errk

j].

Ẽ[(monk,l
j false ṽ) · l] 7−→ Ẽ[errk

j · l]≃obs Ẽ[errk
j]

Case E[monk,l
j (λx.e) v] 7−→ E[monk,l

j ((λx.e) v) v].

Ẽ[(monk,l
j (λx.ẽ) ṽ) · l] 7−→ Ẽ[(monk,l

j ((λx.ẽ) ṽ) ṽ) · l]

Case E[monk,l
j (vd →i vc) v] 7−→ E[λx.let x j].

Ẽ[(monk,l
j (ṽd →i ṽc) ṽ) · l] 7−→ Ẽ[(grdk,l

j (ṽd →i ṽc) ṽ) · l] 7−→ Ẽ[λx.let xg]

Otherwise.

The remaining cases are similar to one of the above or are standard.

Lemma D.4 (Simulation Decomposition). If e ∼ ẽ and e = E[es], then exists Ẽ and ẽs

such that ẽ = Ẽ[ẽs] where E ∼ Ẽ and es ∼ ẽs.

Proof. By induction on e ∼ ẽ.

Lemma D.5 (Simulation Composition). If E ∼ Ẽ and e ∼ ẽ, then E[e]∼ Ẽ[ẽ].

Proof. By induction on E ∼ Ẽ.

E Compiler correctness proof

This section proves that the compiler is correct. Like appendix D, the proof follows from a

simulation argument. However, the simulation relation is the compiler function C itself

extended to the evaluation syntax. Since the evaluation syntax contains collectors, C

defines the compilation of collectors following the description in section 6.1. Figure 17

defines the relevant extension of C .

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

46 Trace contracts

C (e · l) =C (e) · l

C (tr eb ep) =





let xb =C (eb) in

let xp =C (ep) in

λ_.let xα = queue in

xb C (co xα xp)

C (co α vp) = λy.vp (add! α y)

. . .

C (□) =□

C (tr E e) = trC (E)C (e)

C (tr v E) = trC (v)C (E)

. . .

Fig. 17. Expression and Evaluation Context Compiler

Theorem 6.1 (Compiler Correctness). evalΛT
= evalΛC

◦C

Proof. Similar to the proof of theorem 5.3. Let e ∈ ΛT . It suffices to show that if σ ¢

e and ïe, σð 7−→ ïe′, σ ′ð, then there exists e′′ and σ ′′ such that ïe, σð 7−→⋆ ïe′′, σ ′′ð and

ïC (e),C ◦ σð 7−→⋆ ïC (e′′),C ◦ σ ′′ð. By cases on ïe, σð 7−→ ïe′, σ ′ð.

Case ïE[monk
j (tr vb vp) v], σð 7−→ ïE[monk

j (vb (co α vp)) v], σ [α 7→ null]ð.

The compiled reduction sequence mirrors this step:

ïC (E[monk
j (tr vb vp) v]),C ◦ σð

= ïC (E)[monk
j C (tr vb vp)C (v)],C ◦ σð

= ïC (E)[monk
j (let xb =C (vb) in

let xp =C (vp) in

λ_.let xα)C (v)],C ◦ σð

7−→+ ïC (E)[monk
j (let xα = queue in

C (vb)C (coC (vp) xα))C (v)],C ◦ σð

7−→+ ïmonk
j C (vb)C (co α C (vp))C (v),C ◦ σ ′ð

Case ïE[monk
j (co α vp) v], σð 7−→ ïE[monk

j (vp (add! α v)) v], σð.

ïC (E[monk
j (co α vp) v]),C ◦ σð

= ïC (E)[monk
j C (co α vp)C (v)],C ◦ σð

= ïC (E)[monk
j (λy.)C (v)],C ◦ σð

7−→+ ïC (E)[monk
j (C (vp) (add! α C (v)))C (v)],C ◦ σð

Otherwise.

The remaining cases are straightforward.

The inverse direction follows from an argument similar to the one made in the proof of

theorem 5.3.

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

C. Moy and M. Felleisen 47

Lemma E.1 (Simulation Decomposition). C (E[e]) =C (E)[C (e)]

Proof. By induction on E.

F Trace contracts for racket/draw

The following items describe the properties that racket/draw12 either maintains through

defensive-programming checks or documents but does not check:

1. A call to get-data-from-file must return false unless the bitmap is created

with save-data-from-file and the image is loaded successfully.

2. The load-file method of bitmap% cannot be called with bitmaps created by

make-platform-bitmap, make-screen-bitmap, or make-bitmap in canvas%.

3. The methods get-text-extent, get-char-height, and get-char-width can

be called before a bitmap is installed. All others must be called after a bitmap is

installed.

4. The method set-argb-pixels cannot be called if the given bitmap is produced by

make-screen-bitmap or make-bitmap in canvas%.

5. A bitmap can be installed into at most one bitmap drawing context and only when it

is not used by a control (as a label), a pen%, or a brush%.

6. A brush cannot be modified while it is installed into a drawing context.

7. A brush cannot be modified if it is obtained from a brush-list%.

8. A color cannot be modified if it is created by passing a string to make-object or by

retrieving a color from the color database.

9. The methods start-doc, start-page, end-page, and end-doc from dc<%> must

be called in the correct order.

10. Some methods of dc-path% extend an open sub-path, some close an open sub-path,

and some add closed sub-paths to an existing path. Those must all be kept consistent,

e.g. if a method can only extend an open sub-path, then it cannot be called on an

object where no sub-path is open.

11. A pen cannot be modified if it is obtained from a pen-list%.

12. A pen cannot be modified while it is installed into a drawing context.

13. If as-eps is set in a post-script-dc% object, then only one page can be created.

14. The is-empty? method of region% can only be called when associated with a

drawing context.

15. There are no restrictions on the sequence of start-doc, start-page, end-page,

and end-doc for record-dc%.

The revision of racket/draw enforces all of these properties with trace contracts.

12 https://docs.racket-lang.org/draw/

	Multi-call constraints for APIs
	Pedagogic trace-contract examples
	A naive look at trace contracts
	A less naive look: tolerable performance
	Checking all calls to one function
	Global initialization of traces
	The full grammar of trace contracts

	Real-world trace-contract examples
	Reusing trace contracts
	Protocols for many methods
	Contracts are better than ad-hoc checks

	A model of trace contracts
	A functional base
	The classic contract model
	A revised contract model
	The trace contract model
	Extending the model

	Semantic properties
	Implementation in principle
	Theoretical compiler
	Compiler correctness

	Implementation in practice
	Blame and suspects
	Supporting functionality
	Implementing trace contracts in general
	Monitoring higher-order values
	Mutation within contracts
	Interception and crossing times
	Macros not needed

	Usability and performance evaluation
	Benchmark programs
	Benchmark summary
	Performance measurements

	Related work
	Runtime verification, generally
	Scope
	Language
	Violations
	Properties

	Runtime verification, specifically
	Higher-order contracts, specifically
	Typestate and type systems
	Trace contracts for rich specifications
	Proof syntax and judgments
	Functional evaluator proof
	Uniform evaluator proof

	Evaluator equivalence proof
	Compiler correctness proof

	Trace contracts for racket/draw

