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Decomposing Task-Relevant Information From
Surface Electromyogram for User-Generic
Dexterous Finger Force Decoding

Jiahao Fan

Abstract—EXxisting electromyographic (EMG) based mo-
tor intent detection algorithms are typically user-specific,
and a generic model that can quickly adapt to new users
is highly desirable. However, establishing such a model
remains a challenge due to high inter-person variability
and external interference with EMG signals. In this study,
we present a feature disentanglement approach, imple-
mented by an autoencoder-like architecture, designed to
decompose user-invariant, motor-task-sensitive high-level
representations from user-sensitive, task-irrelevant rep-
resentations in EMG amplitude features. Our method is
user-generic and can be applied to unseen users for con-
tinuous multi-finger force predictions. We evaluated our
approach on eight subjects, predicting the force of three
fingers (index, middle, and ring-pinky) concurrently. We
assessed the decoder’s performance through a rigorous
leave-one-subject-out validation. Our developed approach
consistently outperformed both the conventional EMG am-
plitude method and a commonly used feature projection
approach, principal component analysis (PCA), with a lower
force prediction error (RMSE: 6.91 + 0.45 % MVC; R2:0.835
+ 0.026) and a higher finger classification accuracy (83.0
+ 4.5%). The comparison with the state-of-the-art neural
networks further demonstrated the superior performance
of our method in user-generic force predictions. Overall,
our methods provide novel insights into the development of
user-generic and accurate neural decoding for myoelectric
control of assistive robotic hands.

Index  Terms—Surface  electromyogram, feature
decomposition, finger force prediction, neural interface.
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[. INTRODUCTION

HE human digits are capable of performing precise and
T coordinated movements with little conscious effort, em-
powering us to execute a variety of daily tasks ranging from
simple grasping to complex object manipulations. However,
neuromuscular injuries can severely impair hand functions,
which imposes challenges to the quality of life of these indi-
viduals. In recent years, assistive devices like prosthetic hands
and exoskeletons, which were designed to mimic the intricate
movements of a biological human hand, have progressed sig-
nificantly [1], [2], [3], [4], [5]. However, naturally controlling
these advanced robotic devices during real-life activities has
been a long-standing challenge [6], [7]. One primary reason
is the absence of a robust neural-machine interface capable of
accurately decoding the user’s motion intentions at individual
digit levels [8], [9].

Surface electromyogram (EMG) has emerged as a source
for decoding human motion intentions. For upper limb control,
extensive studies have explored EMG-based pattern recognition,
demonstrating its ability to identify a vast array of hand/wrist
gestures [10], [11], [12]. However, pattern recognition operates
on a discrete finite state machine, which does not fully capture
the nuances of human hand continuous control of movements.
In contrast, an alternative approach, termed proportional direct
control [13], [14], allows for continuous control of individual fin-
gers and is highly preferable for achieving dexterous control of
advanced robotic hands. Although promising, such an approach
poses additional challenges, because it requires an accurate
decoding of not only the intended motion of individual fingers
but also the continuous variations of finger joint kinematics or
fingertip forces.

Generally, continuous control of robotic fingers could be
achieved through various regression models that maps between
EMG amplitude and motor output. However, most previous
studies focus on the estimation of one finger force at a time,
which has limited applicability, since dexterous multi-finger mo-
tions are generally involved in most daily manipulation tasks. It
remains a substantial challenge to concurrently decode the motor
output of multiple fingers in a continuous manner, largely due
to the anatomical organization of finger muscles that are closely
located to each other. Recently, high-density EMG (HD-EMG)
has been utilized in proportional EMG-force modeling, reveal-
ing distinct localized activation patterns on EMG feature maps
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during different finger motions, which enables the decoding of
the forces of separate fingers in a concurrent manner [15], [16],
[17]. With HD-EMG, previous studies managed to establish
the finger-specific mappings between the HD-EMG energy map
and finger force, demonstrating the possibility of finger-specific
control. However, the accuracy is still far from satisfactory as
the intricate interplay across multiple fingers could not be fully
captured by linear models. In contrast, deep neural networks,
with high model complexity, have shown some potential with
high decoding accuracy [18], [19]. A primary limitation, though,
is that most existing models are user-specific and require exten-
sive training data for each user, which imposes a cuambersome
burden for data acquisition. From a practical perspective, a
generic model that can efficiently adapt to new users without
extensive calibration procedures, while maintaining a high level
of accuracy, is highly desirable.

A primary challenge in developing a user-generic model is
the user-specific peculiarities embedded in global HD-EMG
features. For example, the HD-EMG energy map during specific
finger motion can differ between people, which is attributed to
person-specific variations in anatomical structures, neuromus-
cular control strategies, or muscle co-activation patterns. Such
variations are often considered task-irrelevant and may lead to
notable interference during modeling. Despite these individual
differences, the dominant patterns in HD-EMG during the same
finger motion should still exhibit consistent information across
different individuals, given the shared fundamental physiologi-
cal and mechanical constructs [20]. For example, a significant
overlap can be observed in the HD-EMG energy maps associated
with the same finger motion across different people.

In light of these challenges, rather than attempting to directly
establish a generic mapping between EMG and force, we seek to
develop a feature projection technique that learns the represen-
tation of original features in a new latent space that can disen-
tangle the user-invariant and task-sensitive representations from
user-sensitive and task-irrelevant representations. Specifically,
the latent space can maximize the most prominent information
relevant to finger motor output while the user-sensitive infor-
mation is minimized. We hypothesize that a user-generic model
would benefit from mitigating the influence of the user-sensitive
(task-irrelevant) components while retaining the task-sensitive
components that encapsulate the information of involved fingers
and their corresponding forces.

Accordingly, we developed a novel framework designed to ex-
plicitly extract the task-sensitive high-level representations from
the original HD-EMG features. Our implementation leveraged
an autoencoder (AE) with specifically tailored loss functions.
The AE consists of two branches that can separately capture
task-sensitive information and user-sensitive information, re-
spectively. By extracting the task-sensitive information across
users, we were able to apply the trained model directly to new
users for both finger force estimation and finger classification.
We evaluated the method, termed Disentangle Autoencoder
(DisAE), on eight participants for concurrent prediction of finger
forces during multiple-finger (index, middle, and ring-pinky
finger) force production tasks. Our results showed that this
novel approach can achieve a significantly better prediction
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Fig. 1. Experimental setting. (a) An 8 x 20 EMG electrode array
was placed on the extensor digitorum communis of the forearm (b) An
example of the single-finger trial (c) An example of the multi-finger trial.

performance over the conventional EMG amplitude method and
the state-of-the-art feature projection approach. The compar-
isons with the state-of-the-art neural networks further demon-
strated the superior performance of the DisAE in cross-user
force prediction. Overall, the current study has several novel
contributions. First, we introduced a novel feature projection
approach for HD-EMG, yielding more compact and informative
representations that enhanced performance in both finger clas-
sification and force prediction. Second, our approach offered
a new user-generic neural decoding approach for efficient and
dexterous control of assistive robots.

II. MATERIALS
A. Participants

Eight participants (one female and seven males, aged between
21 to 34) without any known neural or muscular disorders were
enrolled in the experiments. All participants provided informed
consent with protocols reviewed and approved by the Institu-
tional Review Board of the Pennsylvania State University in
2022. (IRB approval number: STUDY00021035).

B. Experiment Setup

During the experiment, participants were comfortably seated
in a height-adjustable chair. Their forearms were positioned
in a neutral posture and rested on a desk, cushioned by soft
foam. To mitigate potential force contamination, both the palm
and dorsal aspects of the hand were stabilized. As depicted
in Fig. 1, an 8 x 20 electrode array (with a 3-mm electrode
diameter and 10-mm inter-electrode distance) was placed over
the extensor digitorum communis (EDC) of the forearm. The
placement of this electrode array was determined by palpat-
ing the EDC muscle as the participants extended their fingers,
with the HD-EMG array approximately centered at the midway
between the olecranon processes and the styloid process. Four
miniature load cells (SM-200 N, Interface) were attached to the
index, middle, ring, and pinky fingers to measure the forces.
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Notably, due to the significant enslaving effect between the ring
and pinky fingers [21], [22], these fingers were consistently
directed to extend simultaneously during the experiment. The
forces produced by these two fingers were always summed up
during subsequent data processing.

First, the maximum voluntary contraction (MVC) forces for
each finger were measured for each participant. Next, the par-
ticipants were instructed to perform two types of tasks. In the
first task, designated as the “single-finger task”, the participants
were directed to extend a single finger (treating the ring and
pinky finger as one finger, hereinafter referred to as ring-pinky)
to follow a trapezoidal force target, peaking at 50% MVC
over a duration of 21 seconds. The participants were asked
to avoid co-activation of the non-instructed fingers during this
task. In the second task, termed “multi-finger task”, the target
force was shaped as a series of trapezoids, interspersed with
1-second rest intervals. During the task, the participants were
instructed to extend a minimum of two fingers to follow the
presented force trapezoids, chosen at random before each trial.
The multi-finger task duration varied based on the number of
fingers involved: 36 seconds for three fingers and 12 seconds for
two fingers). The peak contraction level remained at 50% MVC.
Given that the multi-finger task aimed to simulate everyday
finger motions, co-contractions of non-instructed fingers were
not intentionally controlled. Each participant was required to
perform fifteen single-finger trials and twenty-eight multi-finger
trials. After each trial, a quality check was conducted. Some
participants had difficulty completing the single-finger trials
without co-activation. Therefore, we ensured that a minimum
number of single-finger trials were completed after multiple
attempts. During the multi-finger trials, if the researcher was
uncertain about the correctness of a trial, participants were asked
to repeat it. As a result, some participants completed more trials
than others.

The finger force signals were obtained at a sampling rate of
1000 Hz and presented to the participants during the experimen-
tal trials. The EMG signals were acquired by the EMG-USB2+
(OT Bioelettronica) with a gain of 1000 and a sampling fre-
quency of 2048 Hz, filtered with a 10-900 Hz bandpass filter.

Ill. METHOD
A. Data Prepossessing

We performed the data analysis using MATLAB (The Math-
Works, Inc.), scikit-learn,! and Pytorch,2 running on a computer
equipped with an Intel i7-12700 k CPU and an Nvidia RTX
3070 Ti GPU. The motion artifacts removal was subsequently
applied using the method detailed in [23]. The acquired force
signals were normalized by the MVC value of each finger.

B. Feature Extraction

In our research, we initially explored four HD-EMG features
frequently employed in myoelectric control studies [24]. These

![Online]. Available: https://scikit-learn.org/stable/
2[Online]. Available: https://pytorch.org/

features included: 1) Root Mean Square (RMS), 2) Wave Length
(WL), 3) Zero Crossing (ZC), and 4) Slope Sign Change (SSC).
Our results indicated that the best performance was achieved
using only the RMS feature (the feature evaluation results are
described in the supplementary material). To maintain com-
putational efficiency, we only presented results using RMS.
Specifically, the RMS was calculated for each channel using
a moving window of 0.5 seconds with a step size of 50 ms.
The normalized force was also smoothed employing the same
window and step size. In subsequent analyses, the extracted
RMS value functioned as the input x € R8%20 for the decoder,
while the preprocessed force y € R?® was used as the ground
truth for prediction evaluations. For samples derived from the
single-finger trials, an additional attribute p was assigned. This
attribute could be one of the following: {index, middle, ring-
pinky, rest}, indicating the currently activated finger. The “rest”
state was determined by comparing the recorded forces with the
10% MVC threshold of the corresponding finger.

C. Autoencoder for Feature Disentanglement

Our framework is illustrated in Fig. 2. For an EMG data sam-
ple x ata given time period, it could be labeled by three attributes:
the identity s € {1, N,}, the involved finger p € {1, N, }, and
the produced force, where N, = 8 and NV}, = 4 are the number
of enrolled subjects and involved fingers, respectively. y is
a 3-dimensional vector where each dimension represents the
force of one of the three fingers, and its values are continuous.
Considering that HD-EMG features exhibit high consistency
at different muscle contraction levels when the same finger
is activated [15], we optimized our approach by merging the
force attribute y into the finger p during feature learning. While
this could result in a loss of information, we found that it
streamlined the learning process for obtaining user-invariant and
task-sensitive representations. Once these representations are
extracted, the finger force information can be obtained readily
using the linear regression function.

To this end, let x] represents the input sample associated with
identity s; and finger p;. Our goal was to progressively learn two
types of information from xg : 1) a static component representing
the inherent characteristics of the subjects and 2) a dynamic
component encoding the finger. To achieve this, we implemented
a two-branch autoencoder, comprising two encoders, £, and
L. The E, was designed to capture task-sensitive finger infor-
mation, while F; was tailored to learn the static, user-sensitive
characteristics. A decoder D, was subsequently utilized to recon-
struct the original feature from these decomposed components.

To train the network, we constructed a loss function consisting
of three components: the reconstruction loss and two triplet
losses. For the reconstruction loss, we used the mean squared
error (MSE) between the input and the output of the AE.

Lyecon = E[|D(Ey(x]), Bs(x])) — X7 (1)

During decomposition, we expected that the extracted latent
vector E,(x7) with the same finger should be tightly clustered
on the latent space, Specifically, the distance between vectors of
different fingers should be larger than the distance between that
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Fig. 2. Conceptual framework of the DisAE.

of the same finger. Thus, For F,,, we applied triplet loss on the
finger latent space:

Ly = B Ey(x]) = Ep(x])l| — 1B, (x])
, 2
= Ep(xp)l + o]+

where x{ (I # ©) represents a sample shared the same finger with
x7 but from a different subject. x(k # j) represents a sample
that have a different p attribute with x/. o is the margin.

L =E[|[Es(x]) = Es(x)]| = | Bs(x))
3
— Es(xy,)|| + o+

where x!(I # j) represents a sample that shares the same iden-
tity with x? but represents a different finger. xF (k # i) denotes

a sample that have a different s attribute with x7.
Combining the three loss components gives the total loss:

L= £recon + )\lﬁp + )\2£s + )"3 Z |wz‘ (4)
where A1 and A, are the balancing weights, which were set as
0.5 in this study. The last term is the /; regularization to provide
sparsity and avoid overfitting. The balancing weight A3 was set
as 10~ based on a grid search among {1073, 1074, 107°}

D. Force Estimation

By training the user-generic AE, we leveraged the £, branch
to decompose the original features into the finger latent space
e = E,(x). The next step involves using the disentangled latent
vector to estimate the actual force via linear regression:

') = wie + C; (5)

where 3/(*) signifies the force of the i — th finger, e is the learned
latent vector, wj is the regression coefficient vector, and C;
is the intercept. To further remove feature redundancy, an [y
regularization with a weight of 10~% was incorporated during

the regression. The regression function was trained using data
from the new subject to establish the relation between the latent
vector and the force of individual fingers.

E. Validation Protocol

As illustrated in Fig. 2, we utilized a leave-one-subject-out
validation to assess the efficacy of the developed DisAE. Specif-
ically, we used data from one subject for testing and one subject
for validation, with the remaining 6 subjects for training. During
regression on the new user (testing subject), we selected two of
the three-finger trials to train the linear regression function. To
guarantee a thorough assessment, we adopted a leave-two-trial-
out approach for all three-finger trials, ensuring every trial had a
presence in both the regression and testing stages. The remaining
multi-finger trials were tested on the regression function to
evaluate the accuracy of the force prediction.

F. Implementation Details

The network structure of the DisAE method is detailed in
Table I. All the encoders and the decoder were implemented us-
ing 2-D Convolutional Neural Networks (CNNs). Both encoders
utilized convolution operations across the spatial dimension of
the RMS map and incorporated down-sampling to obtain the
latent vectors. In contrast, the CNN blocks in the decoder em-
ployed up-sampling processes to reconstruct the input samples.
Training optimization was achieved using the Adam optimizer
(Kingma and Ba, 2014) initialized at a learning rate of 0.002
and gradually decayed with a factor of 0.5 every 200 iterations.
The maximum number of training epochs was set at 500, with a
training batch size of 2000. The dropout probability (if applied)
was set at 0.5. Validation was performed every 200 iterations
on the validation data by evaluating the regression performance
between the learned latent vector and the force signals. The
model that yielded the highest coefficient of determination was
selected for subsequent analyses.
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Neural networks utilized for comparison include (a) CNN, (b) CNN+LSTM, and (c) Transformer. ‘Conv’ represents the convolutional layer

with a filter size of 3 and a stride of 1. 'LReLU’ stands for Leaky Rectified Linear Unit with a negative slope of 0.1. ‘Pooling’ refers to max pooling with
a filter size of 2. 'FC’ denotes a fully connected layer. ‘MHA’ indicates multi-head attention. ’Add & Norm’ consists of the residual connection and
layer normalization. When the output is ‘Force’, the networks were trained for force prediction, using continuous force values as labels. Conversely,
when the output is 'Finger’, the networks were trained for finger classification.

TABLE |
ARCHITECTURE OF THE NETWORK

Module Layers k s In/Out
Encoder £, Conv+ IN + LReLu 31 1/4
Conv+ IN+ LReLu 32 4/8
Conv+ IN+ LReLu 3 2 8/16
Encoder Eg Conv+ IN+ LReLu 3 1 1/4
Conv+ IN+ LReLu 3 2 4/8
Conv+ IN+ LReLu 32 8/16

Decoder D US+ Conv+ DO+ LReLu 3 1 32/16
US+ Conv+ DO+ LReLu 3 1 16/8

Conv x 2 3 1 8/1

In this depiction, *Conv’, "IN’, ’LReLU’, *UpS’, and DO’ stand for convo-
lution, instance normalization, leaky ReLU, upsampling, and dropout layers,
respectively. All convolution layers employ zero padding. The terms 'k’ and
’s” represent kernel width and stride, respectively. The ’In/Out’ column on
the far right denotes the channel numbers for input and output.

We evaluated our DisAE method against two standard bench-
marks: the personalized amplitude method (EMG-amp) and
the Principal Components Analysis (PCA) [25], [26]. Notably,
both benchmarks transform the original features into different
representations akin to our DiSAE approach. For the EMG-amp
method, we incorporated a channel selection technique [27],
[28] to the original features. This strategy allowed us to diminish
finger co-activation, thereby improving multi-finger force pre-
diction accuracy. Specifically, we began by choosing 60 channels
(denoted as the channel pool C; for the i-th finger) that had
the highest average RMS values across the single-finger trials
(note that motion artifacts have been removed from the EMG
signals). Subsequently, for the channel pool C; of each finger,
we examined the correlation between the RMS of a channel in the
pool and the forces of all fingers using the training multi-finger
trials. If the highest coefficient of determination on a channel
was linked to the i-th finger, it was retained in C;. If not, the
channel was excluded. Finally, the refined channel pool for each
finger was employed to estimate the force via a linear regression

model. This strategy can be considered as a transformation to a
sparse representation of the original feature.

For PCA, our objective was to investigate if the principal
components extracted from the population could be generalized
to the new user. Therefore, we used the same leave-one-subject-
out validation protocol to determine the projection matrix. Only
the principal components that accounted for 95% variance were
kept, which were subsequently utilized to predict the forces of
individual fingers.

In addition to the feature projection benchmark, we have com-
pared DisAE with the state-of-the-art neural networks, which
have proven effective in both sEMG-based pattern recogni-
tion and continuous kinematic/force predictions. These neural
networks included CNN [19], CNN+LSTM [18] and Trans-
former [29]. The architectures of these neural networks are
illustrated in Fig. 3, and the detailed parameters are presented in
Table S.3 of the Supplementary Material. For CNN+LSTM and
Transformer, sequential input was used, with a sequence length
L =5 (equivalent to an additional 200 ms delay compared to
the one-to-one CNN network), selected to ensure the delay
remained within the acceptable scope. All neural networks were
trained separately under two tasks: finger classification and force
prediction. For classification, the label was the ’fingers’ as that
in DisAE. The network weights were optimized using cross-
entropy loss. For force prediction, the label was the continuous
force exerted by the three fingers, and the network weights were
optimized using the mean squared error (MSE) between the
predicted and actual forces. The networks were trained using
the same leave-one-subject-out validation protocol as DisAE,
with the weights being updated using the Adam optimizer, set
at a learning rate of 1072, The training process was capped
at a maximum of 200 epochs, incorporating an early stopping
strategy to prevent overfitting.

G. Performance Metrics

The accuracy of finger force prediction was evaluated using
the root mean square error (RMSE) and the coefficient of de-
termination (r2). The ability of finger separation by different
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Fig. 4. Visualization of the t-SNE embeddings for (a) the original fea-
ture, (b) the disentangled task-sensitive component, and (c) the user-
sensitive component. Both the top and bottom depict the same figure,
but they are labeled by fingers and users, respectively.

methods was also investigated. The finger classification accuracy
on the learned features by the k-nearest neighbor (KNN) was
reported on the single-finger trials of the testing subjects. The
false-active-rate and false-rest-rate were calculated at different
threshold levels on multi-finger trials. Specifically, a finger was
deemed “active” if the measured force surpassed a preset MVC
threshold (5%, 10%, or 15%) during a given period. Conversely,
a force below this threshold indicated a “rest” state of the
finger. The false-rest-rate measures the percentage of “rest”
samples labeled as “active”, while the false-active-rate denotes
the percentage of ‘active’ samples incorrectly identified as ‘rest’.

The normality of the obtained metrics was tested using the
Shapiro-Wilk test. For non-normally distributed variables, the
Box-Cox transformation was used to fit the normality assump-
tion. The repeated measures analysis of variance (ANOVA) was
then used to analyze the influence of specific variables on the
measured performance metrics. Post hoc pairwise comparisons
with Bonferroni-Holm corrections were conducted when neces-
sary. A significant level of p < 0.05 was used.

IV. RESULTS
A. Finger Classification

In Fig. 4, we used t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) to visualize the task-sensitive and user-sensitive
components extracted from single-finger trials. It can be ob-
served that clear decision boundaries were hard to discern in the
original features when samples were labeled by either finger
or user. In contrast, the extracted task-sensitive components
displayed clear clustering when labeled by fingers. Similarly, the
extracted user-sensitive component exhibited tighter clustering
compared to the original features when labeled by users. Fig. 5
shows the RMS maps corresponding to different finger forces
during a representative trial compared with their reconstructions
via PCA and DisAE. Both PCA and DisAE appeared to preserve
the intrinsic spatial activation patterns in the original RMS
map for each finger. Interestingly, the map reconstructed from
the task-sensitive latent vector via DisAE seemed to exhibit a
more refined and localized spatial activation pattern, which was
particularly evident for the reconstructed map corresponding to
the index and middle finger tasks.

— Index --- Middle —-- Ring-pinky

Original
RMS

PCA
reconstructed

DisAE :
reconstructed

Fig. 5. RMS map, and the map reconstructed by PCA and DisAE dur-
ing the index, middle, and ring-pinky finger extension in a representative
trial.
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Fig. 6. (a) The average finger classification results across subjects by
KNN using the original feature (Orig. Fea) and the feature projected by
PCA and DisAE. (b) to (d): The confusion matrix obtained by DisAE,
PCA, and the original feature. *:;p < 0.05. **: p < 0.01.

KNN classifiers (k = 1) were employed on the original fea-
ture, the PCA-transformed feature, and the task-sensitive com-
ponent extracted by DisAE. As depicted in Fig. 6, there was
a substantial enhancement in classification accuracy in DisAE
with an accuracy of 83% across subjects, marking a significant
improvement over the original feature and PCA (overall accu-
racy at p < 0.01). The confusion matrix underscored the effec-
tiveness of the task-sensitive information extracted by DisAE,
particularly in the accurate classification of individual fingers
(finger-wise F-1 score: p < 0.05 for three fingers). However, no
significant difference was found in the detection accuracy in the
“rest” state (F-1 score: F'(2,21) = 0.18,p > 0.05).

B. Finger Force Predictions

Fig. 7 displays the accuracy of the force prediction using
the three approaches. With feature projection, DisAE exhib-
ited superior performance to the PCA and EMG-amp methods,
achieving RMSE values of and 6.91 £ 0.45 (%MVC, mean
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Fig. 7. Averaged force prediction results on target fingers. The results

were obtained under LOSO validation and averaged across testing sub-
jects, trials, and fingers. (a) RMSE; (b) R2. The results were obtained
under LOSO validation and averaged across testing subjects, trials, and
fingers. *:;p < 0.05. **: p < 0.01.
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Fig. 8. (a) An exemplar trial of multiple finger extension. The RMSE

(b) and R? (c) of the force estimation for individual fingers when the
corresponding finger was instructed to move. *:p < 0.05, **: p < 0.01.

=+ standard error), and R? values of 0.835 £ 0.026. The PCA
approach showed RMSE values of 7.72 4 0.63 and R? val-
ues of 0.772 4 0.039. In contrast, the EMG-amplitude method
demonstrated the worst performance, with RMSE values of
11.51 + 0.83 and R? of 0.607 + 0.029, which is comparable
with our previous studies [27]. The accuracy was significantly
different among the three methods as indicated by one-way
repeated measures of ANOVA (RMSE:F'(2,21) = 30.90,p <
0.001;R?:F(2,21) = 51.20, p < 0.001). Further post hoc com-
parison confirmed the significant differences between DisAE
and the other two methods (p < 0.05).

Fig. 8(a) shows a representative trial of force estimation for
the index, middle, and ring-pinky fingers. While all methods
aligned well with the recorded force of the middle finger, the
EMG-amp method tended to overestimate both the index and
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Fig. 9. (a) The average RMSE across all subjects on non-target fin-
gers. (b) to (d): The false active rate, the false rest rate, as well as the
accuracy for the active v.s. rest classification at 5%, 10%, and 15%MVC
*1p < 0.05, **:p < 0.01.

ring-pinky finger forces. Furthermore, The PCA force prediction
of the index finger appeared to be influenced by the activities of
other fingers. In contrast, our DiSAE force estimation closely
mirrored the actual forces of all fingers, maintaining a high
level of accuracy even when multiple fingers were concurrently
activated.

Fig. 8(b) and (c) offered a detailed examination of the
force prediction performance of individual fingers. The DisAE
method consistently showed the lowest prediction error, with
the RMSE of the index (6.02 £ 0.31), middle (6.740.63), and
ring-pinky fingers (8.0 = 0.84 %MVC). The two-way (method
(EMG-amp vs. PCA vs.DisAE) x finger (index vs. middle vs.
ring)) ANOVA revealed a significant effect of the method on the
RMSE (F'(2,14) = 22.70,p < 0.001 and R?(F (2,14) = 16.89,
p < 0.001) with no significant effect on the finger factors and
no interaction effect. Subsequent post hoc analysis revealed that
the DisAE method significantly outperformed the EMG-amp
in almost all conditions, except when compared to PCA, a
significant difference was observed only in the index finger.

We also quantified the prediction errors of the three methods
on non-targeted fingers (Fig. 9). Interestingly, the RMSE values
of these non-target fingers were close to those of the target
fingers. A two-way ANOVA (method X finger) indicated a sig-
nificant effect of the method on RMSE (F(2,14) = 13.48,p <
0.001). However, there was no significant effect on fingers, and
no interaction effect between the method and finger factors was
observed. Further post hoc analysis revealed that the DisAE
method consistently registered significantly lower prediction
errors for non-target fingers compared with EMG-amp, par-
ticularly for the index and ring-pinky fingers. However, no
significant difference was found for the middle finger across
any of the method comparisons. When comparing DisAE with
PCA, a significant difference was only observed in the index
finger.
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Method Accuracy (%)  Macro-F1 (%) (second / epoch) 5 15 6 o 1.00 .
> °
CNN 80.49 + 4.60 80.00 4+ 4.70 0.249 4+ 1.38 § 10 N 0.75 ¢
CNN+LSTM  80.99 + 5.28 80.30 + 5.18 1.801 £0.13 ’-‘gv-‘ s = 0.50
Transformer 80.88 + 5.71 79.05 £ 5.91 1.596 £ 0.11 ~ 0.25
DisAE+KNN  83.0+4.5 83.4443.20  1.601 4 1.91 0 0.00
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Fig. 10. Force prediction performance on target fingers. The results

To assess the finger separation capabilities of the three meth-
ods in multi-finger tasks, we evaluated the active vs. rest de-
tection accuracy. As depicted in Fig. 9(b), the DisAE method
consistently exhibited the lowest false-active-rate across all
thresholds (5%, 10%, and 15% MVC). In contrast, the EMG-
amp method showed a notably higher false-active-rate, which
was especially evident at the 5% MVC threshold. A two-way
repeated measures ANOVA, factors of method and threshold,
revealed a significant interaction effect (F'(4,28) = 9.36,p <
0.01). Subsequent post hoc analyses indicated that compared to
EMG-amp, the DisAE method achieved a significantly lower
false-active-rate across all thresholds. When compared with
PCA, significant differences emerged at the 5% and 10% MVC
thresholds. Observations from Fig. 9(c) demonstrate no sig-
nificant differences among either methods or thresholds in
the false-rest-rates. Regarding detection accuracy (Fig. 9(d)),
DisAE outperformed its counterparts. The two-way ANOVA
confirmed the significant effect of both factors (method and
threshold) without any interaction effect (method: F'(2,14) =
39.7,p < 0.001; threshold: F'(2,14) = 53.56, p < 0.001). Post
hoc comparisons underscored that the DisAE detection accuracy
notably surpassed EMG-amp across all thresholds and surpassed
PCA at the 10% and 15% MVC thresholds.

Lastly, we evaluated the efficiency of the developed approach
based on both training and testing times. The specific training
durations for the three methods are detailed in Table S.2 of
the supplementary materials. Training with both EMG-amp and
PCA took under 100 ms. In contrast, training the user-generic
encoder took an average of 469.37 seconds, while training the
personalized regression model only took 0.106 seconds. All
approaches managed to process a 500-ms EMG signal within
the 50-ms signal update interval. Remarkably, our method was
able to generate latent features and predict EMG force in 1.6 ms.

C. Comparison With Other Deep Learning Methods

The performance of SOTA neural networks for finger classi-
fication was evaluated under a leave-one-subject-out validation
protocol. The results were presented in Table II. All tested
approaches achieved average classification accuracies above
80% on unseen subjects, with our DisAE yielding the highest
performance. However, a one-way repeated measures ANOVA
revealed no significant differences among the methods in terms
of both accuracy (F(3,21)=0.938, p > 0.05) and the F1 score
(F(3,21)=0.951, p > 0.05). There are significant differences in
the training time cost per epoch among these four approaches

were obtained under leave-one-subject-out validation and averaged
across testing subjects, trials, and fingers. *:p < 0.05. **: p < 0.01.

TABLE IlI
CLASSIFICATION AND REGRESSION PERFORMANCE ON ABLATION STUDIES

Classification Force Prediction

Configuration

Acc Fl RMSE R?
w/o two-branch encoder  76.86 +6.01  75.554+6.45 8.5740.84 0.790 & 0.030
w/o 11 regularization 80.23 +3.87 79.124+4.13 7.744+0.87 0.819+0.036
full implementation 83.0+4.5 82.44+4.0 6.91+£045 0.835£0.026

(F(3,21) = 48.98, p < 0.01). Further post-hoc comparison in-
dicated that CNN emerged as the most efficient approach (p <
0.01). In contrast, the CNN+LSTM model exhibited the longest
training time relative to all other methods (p < 0.01). Compared
to the Transformer, the DisSAE showed an average increase in
training duration of 5 ms, with this difference being statistically
significant (p < 0.01).

Fig. 10 depicted the force prediction performance when ap-
plying the trained neural networks to the unseen subjects with the
network weights fixed. All the end-to-end neural networks, when
predicting data from unseen subjects, exhibited a high prediction
error with RMSE values of 10.24 + 1.19, 10.50 4 1.36, and
11.24 + 1.33, and R? values of 0.671 + 0.07 0.654 £ 0.08, and
0.587 £ 0.101 for CNN, CNN+LSTM, and Transformer, re-
spectively. The prediction accuracy was significantly lower than
that obtained by DisAE (RMSE: F'(3,21) = 10.81,p < 0.01
and R%:F(3,21) = 8.90, p < 0.01). Further post-hoc compari-
son confirmed that DisAE had significantly more accurate force
prediction outcomes than CNN, CNN+LSTM, and Transformer
(p < 0.05).

D. Ablation Studies

Table III presents the results of the ablation studies, where
we evaluated the effectiveness of the two-branch encoder and
[ regularization. Without the two-branch encoder, essential for
feature disentanglement, the autoencoder showed significantly
lower classification accuracy compared with the full DisAE
implementation (p < 0.05 for both accuracy and F1 score, as
indicated by a paired t-test). Omitting /; regularization during
training also resulted in a notable drop in classification per-
formance (p < 0.05 for both accuracy and RMSE). Similarly,
force prediction accuracy decreased significantly without the
two-branch encoder, as evidenced by the higher RMSE and
lower R? values (p < 0.05). A decline inregression performance
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was also observed without the /; regularization, although these
differences were not statistically significant. Overall, this ab-
lation study highlights the critical role of each component in
enhancing the DisAE’s performance.

V. DISCUSSION

The current study exploited a feature disentanglement ap-
proach to enable a robust user-generic EMG-based neural de-
coder for finger extension force decoding. Our DisAE method,
through an autoencoder network structure, can explicitly disen-
tangle the task-sensitive features from the user-sensitive features
in HD-EMG signals. Our results suggested that the learned
task-sensitive features offered a more generic representation
across users. Intriguingly, when we applied these latent features
to both finger classification and individual finger force predic-
tion, the DisAE-learned task-sensitive features demonstrated
superior performance compared with the conventional EMG
amplitude method and the commonly used feature projection
PCA method. Our developed approach offers a novel decoding
framework for user-generic decoding models that allow efficient
clinical implementations. The outcomes pave the way for further
development of robust neural-machine interfaces feasible for
dexterous control of assistive robotic hands.

Previous studies have characterized the spatial activation of
finger extensor muscles, highlighting finger-specific localized
patterns evident across users using HD-EMG grids [15]. How-
ever, due to individual variations in anatomical and physiological
factors, the muscle activation patterns for different persons often
exhibit variations. These variations are also influenced by exter-
nal factors, including inconsistencies in electrode placement,
changes in electrode-skin impedance, or background noise [30].
As aresult, it remains a challenge to establish a generic relation
between muscle activation patterns and the corresponding motor
outputs across users. In the context of individual finger force
prediction, the HD-EMG grid covers substantial skin regions
with minimum muscle activation, since only localized muscle
compartments of the extensor muscle are active. Consequently,
conventional EMG amplitude methods can be significantly
improved by removing non-active channels for each finger
movement through a “channel pool refinement” strategy [31],
[32]. However, during multi-finger movements, the co-activation
effects between fingers emerge, thereby introducing complex
activation patterns. These complexities may not be adequately
captured by the “channel mask™ learned from single-finger tasks.

PCA is a widely accepted feature projection tool in HD-EMG
analysis and more broad neural decoding. PCA has demon-
strated efficacy in both pattern recognition and proportional
control [25], [33], [34], [35]. In our study, this substantial
reduction in dimensionality potentially eliminated interference
in the original features, thereby greatly simplifying the force
regression process and leading to improved results. However, a
limitation of PCA is that data corresponding to tasks involving
different fingers might not be distinctly clustered in the reduced
feature space, as evidenced by the poor finger classification
outcomes.

DisAE considers class separation during feature projection.
This feature disentanglement paradigm has been used in various
fields, such as gait recognition [36], motion retargeting [37], and
voice conversion [38]. In line with these studies, our results re-
vealed that the representations learned by DisAE form compact
clusters in the respective latent spaces, namely the task space
and the user space. Additionally, the DisAE representations dis-
played more distinct decision boundaries for classifying various
finger tasks compared to the original features. This indicated a
substantial improvement in classification performance, which is
evident even in the cross-user validation protocol.

For force predictions across three fingers (index, middle,
and ring-pinky), the DisAE representation clearly achieved the
highest correlation with the recorded forces, delivering accurate
force predictions even with concurrent activation of multiple
fingers. No significant differences were detected across fingers
in prediction error, especially for the middle finger. This could
be attributed to the activation region of the middle finger being
relatively distinct (most proximal), compared to the other two
fingers [15]. Consequently, the middle finger force prediction
was minimally influenced by co-activation from the other two
fingers.

The active- vs. rest-state classification offers insights into
the decoder capability in finger separation, a critical aspect
of robotic hand control. By directly comparing the recorded
forces with the prediction outcomes, we showed that DisAE
consistently yielded a lower false-active-rate than the other two
methods, which may enhance the reliability of prosthetic hand
control in practice by addressing the overestimation issues. This
improvement could be attributed to the attenuation of user-
sensitive information in the original features. However, the prob-
lem of underestimation remained unaddressed with all methods
exhibiting a high false-rest-rate. Future efforts should aim to
identify and retain information that contributed to nuanced force
variations.

In comparison with the state-of-the-art neural networks such
as CNN, CNN+LSTM, and Transformer, we observed that
these networks demonstrated a high level of generalizability
in finger classification when tested on unseen subjects, com-
parable to our DisAE approach. However, for force prediction,
the neural network models’ performance significantly declined
when applied directly to unseen subjects without adjusting the
network weights. This observation is consistent with findings
in other fields, such as computer vision, which suggest that
achieving good cross-domain regression performance is more
challenging than classification [29]. In contrast, our DisAE
approach provides new insights into cross-domain regression
by extracting task-sensitive information that is relevant to the
variability between domains.

Our method is different from previous studies that sought
to enhance the generalizability of neural decoders. Transfer
learning has been the key approach to tackle the generalization
issue, either in supervised settings [37], [39] or unsupervised
settings [40], [41]. In supervised settings, once the classifier
is trained, it is adjusted using limited labeled data from the
new user. Unsupervised learning, on the other hand, seeks to
find a feature space that minimizes domain shift. This is done
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by using data from both the source domain (i.e., multiple-user
cohort) and the new user to tune the model parameters. Though
many studies target pattern recognition, these concepts have also
been applied in proportional control. Jiang et al. [42] employed
correlation-based data weighting to align data distribution across
multiple users in elbow force estimation. A BERT-based net-
work was introduced for continuous hand kinematics estimation,
drawing on testing data from various sources [43]. Yet, the
training of the neural networks in this study was not completely
user-independent.

In contrast, our approach aligns more with domain generaliza-
tion [44], aiming to model generic representations of all users.
We address the adaptation challenge by extracting task-sensitive
components from HD-EMG features. Our results showed that
our feature projection establishes a more generalized relation
between the HD-EMG feature and executed motor tasks. When
applied to a new user, only a simple linear regression between
the latent feature and motor output needs to be trained, without
the need to adjust the weights of the DisAE. This process is
highly efficient, requiring an average of only 0.106 seconds for
regression learning.

Fundamentally, our DisAE model falls into the category of
standard autoencoder frameworks, focusing on learning efficient
representations of input EMG features and encouraging feature
disentanglement through specific mechanisms (e.g. two-branch
encoder structure and the triplet losses). Indeed, there are var-
ious autoencoder variants using the concept of variational au-
toencoders (VAE), such as 3-VAE [45], The FactorVAE [46],
and Ladder-AVE [47]. These VAEs are designed to explicitly
learn the data distribution, which is beneficial to encourage
the learning of statistically independent features in the latent
space. Additionally, VAEs can function as generative models,
capable of generating samples from the learned EMG feature
distribution. This capability could be worth exploring for various
applications, such as data augmentation and zero-shot machine
learning in myoelectric control contexts. The optimization of our
DisAE model in conjunction with other VAEs will be explored
in future research.

Although the results were promising in the prediction of
individual finger forces, several aspects merit further investi-
gation in future work. First, the training of DiSAE currently
depends on recorded force to determine motor task labels. This
presents a challenge when considering amputees, among whom
individual-digit motor output may not be readily available.
Consequently, it may be of importance to explore unsupervised
methods that do not rely on data label input. Additionally,
our current methodology mainly focuses on finger extensions.
Clearly, further research is needed to incorporate both finger
flexion and extension for effective control of advanced robotic
hands. In this context, the interactions between fingers could
be more intricate than those observed in the current study.
Consequently, the encoder will need further adjustment to adapt
to these new scenarios.

VI. CONCLUSION

Utilizing an autoencoder-based feature projection approach,
we decomposed the HD-EMG features into user-invariant and

task-sensitive representations from user-sensitive and task-
irrelevant representations. Our findings suggest that the learned
representations provide a better distinction in performed motor
tasks across different users. Moreover, the features obtained
using our approach demonstrated a significantly higher force
prediction accuracy compared with other approaches. In sum-
mary, our method contributed to a deeper understanding of
the relation between HD-EMG and associated motor output,
paving the way for advancements in user-generic neural interface
techniques for assistive robot control.
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