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Decomposing Task-Relevant Information From
Surface Electromyogram for User-Generic

Dexterous Finger Force Decoding
Jiahao Fan and Xiaogang Hu

Abstract—Existing electromyographic (EMG) based mo-
tor intent detection algorithms are typically user-specific,
and a generic model that can quickly adapt to new users
is highly desirable. However, establishing such a model
remains a challenge due to high inter-person variability
and external interference with EMG signals. In this study,
we present a feature disentanglement approach, imple-
mented by an autoencoder-like architecture, designed to
decompose user-invariant, motor-task-sensitive high-level
representations from user-sensitive, task-irrelevant rep-
resentations in EMG amplitude features. Our method is
user-generic and can be applied to unseen users for con-
tinuous multi-finger force predictions. We evaluated our
approach on eight subjects, predicting the force of three
fingers (index, middle, and ring-pinky) concurrently. We
assessed the decoder’s performance through a rigorous
leave-one-subject-out validation. Our developed approach
consistently outperformed both the conventional EMG am-
plitude method and a commonly used feature projection
approach, principal component analysis (PCA), with a lower
force prediction error (RMSE: 6.91 ± 0.45 % MVC; R2: 0.835
± 0.026) and a higher finger classification accuracy (83.0
± 4.5%). The comparison with the state-of-the-art neural
networks further demonstrated the superior performance
of our method in user-generic force predictions. Overall,
our methods provide novel insights into the development of
user-generic and accurate neural decoding for myoelectric
control of assistive robotic hands.
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decomposition, finger force prediction, neural interface.
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I. INTRODUCTION

T
HE human digits are capable of performing precise and

coordinated movements with little conscious effort, em-

powering us to execute a variety of daily tasks ranging from

simple grasping to complex object manipulations. However,

neuromuscular injuries can severely impair hand functions,

which imposes challenges to the quality of life of these indi-

viduals. In recent years, assistive devices like prosthetic hands

and exoskeletons, which were designed to mimic the intricate

movements of a biological human hand, have progressed sig-

nificantly [1], [2], [3], [4], [5]. However, naturally controlling

these advanced robotic devices during real-life activities has

been a long-standing challenge [6], [7]. One primary reason

is the absence of a robust neural-machine interface capable of

accurately decoding the user’s motion intentions at individual

digit levels [8], [9].

Surface electromyogram (EMG) has emerged as a source

for decoding human motion intentions. For upper limb control,

extensive studies have explored EMG-based pattern recognition,

demonstrating its ability to identify a vast array of hand/wrist

gestures [10], [11], [12]. However, pattern recognition operates

on a discrete finite state machine, which does not fully capture

the nuances of human hand continuous control of movements.

In contrast, an alternative approach, termed proportional direct

control [13], [14], allows for continuous control of individual fin-

gers and is highly preferable for achieving dexterous control of

advanced robotic hands. Although promising, such an approach

poses additional challenges, because it requires an accurate

decoding of not only the intended motion of individual fingers

but also the continuous variations of finger joint kinematics or

fingertip forces.

Generally, continuous control of robotic fingers could be

achieved through various regression models that maps between

EMG amplitude and motor output. However, most previous

studies focus on the estimation of one finger force at a time,

which has limited applicability, since dexterous multi-finger mo-

tions are generally involved in most daily manipulation tasks. It

remains a substantial challenge to concurrently decode the motor

output of multiple fingers in a continuous manner, largely due

to the anatomical organization of finger muscles that are closely

located to each other. Recently, high-density EMG (HD-EMG)

has been utilized in proportional EMG-force modeling, reveal-

ing distinct localized activation patterns on EMG feature maps
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during different finger motions, which enables the decoding of

the forces of separate fingers in a concurrent manner [15], [16],

[17]. With HD-EMG, previous studies managed to establish

the finger-specific mappings between the HD-EMG energy map

and finger force, demonstrating the possibility of finger-specific

control. However, the accuracy is still far from satisfactory as

the intricate interplay across multiple fingers could not be fully

captured by linear models. In contrast, deep neural networks,

with high model complexity, have shown some potential with

high decoding accuracy [18], [19]. A primary limitation, though,

is that most existing models are user-specific and require exten-

sive training data for each user, which imposes a cumbersome

burden for data acquisition. From a practical perspective, a

generic model that can efficiently adapt to new users without

extensive calibration procedures, while maintaining a high level

of accuracy, is highly desirable.

A primary challenge in developing a user-generic model is

the user-specific peculiarities embedded in global HD-EMG

features. For example, the HD-EMG energy map during specific

finger motion can differ between people, which is attributed to

person-specific variations in anatomical structures, neuromus-

cular control strategies, or muscle co-activation patterns. Such

variations are often considered task-irrelevant and may lead to

notable interference during modeling. Despite these individual

differences, the dominant patterns in HD-EMG during the same

finger motion should still exhibit consistent information across

different individuals, given the shared fundamental physiologi-

cal and mechanical constructs [20]. For example, a significant

overlap can be observed in the HD-EMG energy maps associated

with the same finger motion across different people.

In light of these challenges, rather than attempting to directly

establish a generic mapping between EMG and force, we seek to

develop a feature projection technique that learns the represen-

tation of original features in a new latent space that can disen-

tangle the user-invariant and task-sensitive representations from

user-sensitive and task-irrelevant representations. Specifically,

the latent space can maximize the most prominent information

relevant to finger motor output while the user-sensitive infor-

mation is minimized. We hypothesize that a user-generic model

would benefit from mitigating the influence of the user-sensitive

(task-irrelevant) components while retaining the task-sensitive

components that encapsulate the information of involved fingers

and their corresponding forces.

Accordingly, we developed a novel framework designed to ex-

plicitly extract the task-sensitive high-level representations from

the original HD-EMG features. Our implementation leveraged

an autoencoder (AE) with specifically tailored loss functions.

The AE consists of two branches that can separately capture

task-sensitive information and user-sensitive information, re-

spectively. By extracting the task-sensitive information across

users, we were able to apply the trained model directly to new

users for both finger force estimation and finger classification.

We evaluated the method, termed Disentangle Autoencoder

(DisAE), on eight participants for concurrent prediction of finger

forces during multiple-finger (index, middle, and ring-pinky

finger) force production tasks. Our results showed that this

novel approach can achieve a significantly better prediction

Fig. 1. Experimental setting. (a) An 8 × 20 EMG electrode array
was placed on the extensor digitorum communis of the forearm (b) An
example of the single-finger trial (c) An example of the multi-finger trial.

performance over the conventional EMG amplitude method and

the state-of-the-art feature projection approach. The compar-

isons with the state-of-the-art neural networks further demon-

strated the superior performance of the DisAE in cross-user

force prediction. Overall, the current study has several novel

contributions. First, we introduced a novel feature projection

approach for HD-EMG, yielding more compact and informative

representations that enhanced performance in both finger clas-

sification and force prediction. Second, our approach offered

a new user-generic neural decoding approach for efficient and

dexterous control of assistive robots.

II. MATERIALS

A. Participants

Eight participants (one female and seven males, aged between

21 to 34) without any known neural or muscular disorders were

enrolled in the experiments. All participants provided informed

consent with protocols reviewed and approved by the Institu-

tional Review Board of the Pennsylvania State University in

2022. (IRB approval number: STUDY00021035).

B. Experiment Setup

During the experiment, participants were comfortably seated

in a height-adjustable chair. Their forearms were positioned

in a neutral posture and rested on a desk, cushioned by soft

foam. To mitigate potential force contamination, both the palm

and dorsal aspects of the hand were stabilized. As depicted

in Fig. 1, an 8 × 20 electrode array (with a 3-mm electrode

diameter and 10-mm inter-electrode distance) was placed over

the extensor digitorum communis (EDC) of the forearm. The

placement of this electrode array was determined by palpat-

ing the EDC muscle as the participants extended their fingers,

with the HD-EMG array approximately centered at the midway

between the olecranon processes and the styloid process. Four

miniature load cells (SM-200 N, Interface) were attached to the

index, middle, ring, and pinky fingers to measure the forces.
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Notably, due to the significant enslaving effect between the ring

and pinky fingers [21], [22], these fingers were consistently

directed to extend simultaneously during the experiment. The

forces produced by these two fingers were always summed up

during subsequent data processing.

First, the maximum voluntary contraction (MVC) forces for

each finger were measured for each participant. Next, the par-

ticipants were instructed to perform two types of tasks. In the

first task, designated as the “single-finger task”, the participants

were directed to extend a single finger (treating the ring and

pinky finger as one finger, hereinafter referred to as ring-pinky)

to follow a trapezoidal force target, peaking at 50% MVC

over a duration of 21 seconds. The participants were asked

to avoid co-activation of the non-instructed fingers during this

task. In the second task, termed “multi-finger task”, the target

force was shaped as a series of trapezoids, interspersed with

1-second rest intervals. During the task, the participants were

instructed to extend a minimum of two fingers to follow the

presented force trapezoids, chosen at random before each trial.

The multi-finger task duration varied based on the number of

fingers involved: 36 seconds for three fingers and 12 seconds for

two fingers). The peak contraction level remained at 50% MVC.

Given that the multi-finger task aimed to simulate everyday

finger motions, co-contractions of non-instructed fingers were

not intentionally controlled. Each participant was required to

perform fifteen single-finger trials and twenty-eight multi-finger

trials. After each trial, a quality check was conducted. Some

participants had difficulty completing the single-finger trials

without co-activation. Therefore, we ensured that a minimum

number of single-finger trials were completed after multiple

attempts. During the multi-finger trials, if the researcher was

uncertain about the correctness of a trial, participants were asked

to repeat it. As a result, some participants completed more trials

than others.

The finger force signals were obtained at a sampling rate of

1000 Hz and presented to the participants during the experimen-

tal trials. The EMG signals were acquired by the EMG-USB2+

(OT Bioelettronica) with a gain of 1000 and a sampling fre-

quency of 2048 Hz, filtered with a 10–900 Hz bandpass filter.

III. METHOD

A. Data Prepossessing

We performed the data analysis using MATLAB (The Math-

Works, Inc.), scikit-learn,1 and Pytorch,2 running on a computer

equipped with an Intel i7-12700 k CPU and an Nvidia RTX

3070 Ti GPU. The motion artifacts removal was subsequently

applied using the method detailed in [23]. The acquired force

signals were normalized by the MVC value of each finger.

B. Feature Extraction

In our research, we initially explored four HD-EMG features

frequently employed in myoelectric control studies [24]. These

1[Online]. Available: https://scikit-learn.org/stable/
2[Online]. Available: https://pytorch.org/

features included: 1) Root Mean Square (RMS), 2) Wave Length

(WL), 3) Zero Crossing (ZC), and 4) Slope Sign Change (SSC).

Our results indicated that the best performance was achieved

using only the RMS feature (the feature evaluation results are

described in the supplementary material). To maintain com-

putational efficiency, we only presented results using RMS.

Specifically, the RMS was calculated for each channel using

a moving window of 0.5 seconds with a step size of 50 ms.

The normalized force was also smoothed employing the same

window and step size. In subsequent analyses, the extracted

RMS value functioned as the input x ∈ R
8×20 for the decoder,

while the preprocessed force y ∈ R
3 was used as the ground

truth for prediction evaluations. For samples derived from the

single-finger trials, an additional attribute p was assigned. This

attribute could be one of the following: {index, middle, ring-

pinky, rest}, indicating the currently activated finger. The “rest”

state was determined by comparing the recorded forces with the

10% MVC threshold of the corresponding finger.

C. Autoencoder for Feature Disentanglement

Our framework is illustrated in Fig. 2. For an EMG data sam-

plex at a given time period, it could be labeled by three attributes:

the identity s ∈ {1, Ns}, the involved finger p ∈ {1, Np}, and

the produced force, where Ns = 8 and Np = 4 are the number

of enrolled subjects and involved fingers, respectively. y is

a 3-dimensional vector where each dimension represents the

force of one of the three fingers, and its values are continuous.

Considering that HD-EMG features exhibit high consistency

at different muscle contraction levels when the same finger

is activated [15], we optimized our approach by merging the

force attribute y into the finger p during feature learning. While

this could result in a loss of information, we found that it

streamlined the learning process for obtaining user-invariant and

task-sensitive representations. Once these representations are

extracted, the finger force information can be obtained readily

using the linear regression function.

To this end, let x
j
i represents the input sample associated with

identity si and finger pj . Our goal was to progressively learn two

types of information fromx
j
i : 1) a static component representing

the inherent characteristics of the subjects and 2) a dynamic

component encoding the finger. To achieve this, we implemented

a two-branch autoencoder, comprising two encoders, Ep and

Es. The Ep was designed to capture task-sensitive finger infor-

mation, while Es was tailored to learn the static, user-sensitive

characteristics. A decoderD, was subsequently utilized to recon-

struct the original feature from these decomposed components.

To train the network, we constructed a loss function consisting

of three components: the reconstruction loss and two triplet

losses. For the reconstruction loss, we used the mean squared

error (MSE) between the input and the output of the AE.

Lrecon = E[‖D(Ep(x
j
i ), ES(x

j
i ))−X

j
i ‖] (1)

During decomposition, we expected that the extracted latent

vector Ep(x
j) with the same finger should be tightly clustered

on the latent space, Specifically, the distance between vectors of

different fingers should be larger than the distance between that
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Fig. 2. Conceptual framework of the DisAE.

of the same finger. Thus, For Ep, we applied triplet loss on the

finger latent space:

Lp = E[‖Ep(x
j
i )− Ep(x

j
l )‖ − ‖Ep(x

j
i )

− Ep(x
k
m)‖+ α]+

(2)

wherex
j
l (l �= i) represents a sample shared the same finger with

x
j
i but from a different subject. x(k �= j) represents a sample

that have a different p attribute with x
j
i . α is the margin.

Ls = E[‖Es(x
j
i )− Es(x

l
i)‖ − ‖Es(x

j
i )

− ES(x
k
m)‖+ α]+

(3)

where x
l
i(l �= j) represents a sample that shares the same iden-

tity with x
j
i but represents a different finger. xk

m(k �= i) denotes

a sample that have a different s attribute with x
j
i .

Combining the three loss components gives the total loss:

L = Lrecon + λ1Lp + λ2Ls + λ3

∑

i

|wi| (4)

where λ1 and λ2 are the balancing weights, which were set as

0.5 in this study. The last term is the l1 regularization to provide

sparsity and avoid overfitting. The balancing weight λ3 was set

as 10−4 based on a grid search among {10−3, 10−4, 10−5}

D. Force Estimation

By training the user-generic AE, we leveraged the Ep branch

to decompose the original features into the finger latent space

e = Ep(x). The next step involves using the disentangled latent

vector to estimate the actual force via linear regression:

y(i) = wie+ Ci (5)

where y(i) signifies the force of the i− th finger, e is the learned

latent vector, wi is the regression coefficient vector, and Ci

is the intercept. To further remove feature redundancy, an l1
regularization with a weight of 10−4 was incorporated during

the regression. The regression function was trained using data

from the new subject to establish the relation between the latent

vector and the force of individual fingers.

E. Validation Protocol

As illustrated in Fig. 2, we utilized a leave-one-subject-out

validation to assess the efficacy of the developed DisAE. Specif-

ically, we used data from one subject for testing and one subject

for validation, with the remaining 6 subjects for training. During

regression on the new user (testing subject), we selected two of

the three-finger trials to train the linear regression function. To

guarantee a thorough assessment, we adopted a leave-two-trial-

out approach for all three-finger trials, ensuring every trial had a

presence in both the regression and testing stages. The remaining

multi-finger trials were tested on the regression function to

evaluate the accuracy of the force prediction.

F. Implementation Details

The network structure of the DisAE method is detailed in

Table I. All the encoders and the decoder were implemented us-

ing 2-D Convolutional Neural Networks (CNNs). Both encoders

utilized convolution operations across the spatial dimension of

the RMS map and incorporated down-sampling to obtain the

latent vectors. In contrast, the CNN blocks in the decoder em-

ployed up-sampling processes to reconstruct the input samples.

Training optimization was achieved using the Adam optimizer

(Kingma and Ba, 2014) initialized at a learning rate of 0.002

and gradually decayed with a factor of 0.5 every 200 iterations.

The maximum number of training epochs was set at 500, with a

training batch size of 2000. The dropout probability (if applied)

was set at 0.5. Validation was performed every 200 iterations

on the validation data by evaluating the regression performance

between the learned latent vector and the force signals. The

model that yielded the highest coefficient of determination was

selected for subsequent analyses.
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Fig. 3. Neural networks utilized for comparison include (a) CNN, (b) CNN+LSTM, and (c) Transformer. ‘Conv’ represents the convolutional layer
with a filter size of 3 and a stride of 1. ’LReLU’ stands for Leaky Rectified Linear Unit with a negative slope of 0.1. ‘Pooling’ refers to max pooling with
a filter size of 2. ’FC’ denotes a fully connected layer. ‘MHA’ indicates multi-head attention. ’Add & Norm’ consists of the residual connection and
layer normalization. When the output is ‘Force’, the networks were trained for force prediction, using continuous force values as labels. Conversely,
when the output is ’Finger’, the networks were trained for finger classification.

TABLE I
ARCHITECTURE OF THE NETWORK

We evaluated our DisAE method against two standard bench-

marks: the personalized amplitude method (EMG-amp) and

the Principal Components Analysis (PCA) [25], [26]. Notably,

both benchmarks transform the original features into different

representations akin to our DisAE approach. For the EMG-amp

method, we incorporated a channel selection technique [27],

[28] to the original features. This strategy allowed us to diminish

finger co-activation, thereby improving multi-finger force pre-

diction accuracy. Specifically, we began by choosing 60 channels

(denoted as the channel pool Ci for the i-th finger) that had

the highest average RMS values across the single-finger trials

(note that motion artifacts have been removed from the EMG

signals). Subsequently, for the channel pool Ci of each finger,

we examined the correlation between the RMS of a channel in the

pool and the forces of all fingers using the training multi-finger

trials. If the highest coefficient of determination on a channel

was linked to the i-th finger, it was retained in Ci. If not, the

channel was excluded. Finally, the refined channel pool for each

finger was employed to estimate the force via a linear regression

model. This strategy can be considered as a transformation to a

sparse representation of the original feature.

For PCA, our objective was to investigate if the principal

components extracted from the population could be generalized

to the new user. Therefore, we used the same leave-one-subject-

out validation protocol to determine the projection matrix. Only

the principal components that accounted for 95% variance were

kept, which were subsequently utilized to predict the forces of

individual fingers.

In addition to the feature projection benchmark, we have com-

pared DisAE with the state-of-the-art neural networks, which

have proven effective in both sEMG-based pattern recogni-

tion and continuous kinematic/force predictions. These neural

networks included CNN [19], CNN+LSTM [18] and Trans-

former [29]. The architectures of these neural networks are

illustrated in Fig. 3, and the detailed parameters are presented in

Table S.3 of the Supplementary Material. For CNN+LSTM and

Transformer, sequential input was used, with a sequence length

L = 5 (equivalent to an additional 200 ms delay compared to

the one-to-one CNN network), selected to ensure the delay

remained within the acceptable scope. All neural networks were

trained separately under two tasks: finger classification and force

prediction. For classification, the label was the ’fingers’ as that

in DisAE. The network weights were optimized using cross-

entropy loss. For force prediction, the label was the continuous

force exerted by the three fingers, and the network weights were

optimized using the mean squared error (MSE) between the

predicted and actual forces. The networks were trained using

the same leave-one-subject-out validation protocol as DisAE,

with the weights being updated using the Adam optimizer, set

at a learning rate of 10−3. The training process was capped

at a maximum of 200 epochs, incorporating an early stopping

strategy to prevent overfitting.

G. Performance Metrics

The accuracy of finger force prediction was evaluated using

the root mean square error (RMSE) and the coefficient of de-

termination (r2). The ability of finger separation by different
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Fig. 4. Visualization of the t-SNE embeddings for (a) the original fea-
ture, (b) the disentangled task-sensitive component, and (c) the user-
sensitive component. Both the top and bottom depict the same figure,
but they are labeled by fingers and users, respectively.

methods was also investigated. The finger classification accuracy

on the learned features by the k-nearest neighbor (KNN) was

reported on the single-finger trials of the testing subjects. The

false-active-rate and false-rest-rate were calculated at different

threshold levels on multi-finger trials. Specifically, a finger was

deemed “active” if the measured force surpassed a preset MVC

threshold (5%, 10%, or 15%) during a given period. Conversely,

a force below this threshold indicated a “rest” state of the

finger. The false-rest-rate measures the percentage of “rest”

samples labeled as “active”, while the false-active-rate denotes

the percentage of ‘active’ samples incorrectly identified as ’rest’.

The normality of the obtained metrics was tested using the

Shapiro-Wilk test. For non-normally distributed variables, the

Box-Cox transformation was used to fit the normality assump-

tion. The repeated measures analysis of variance (ANOVA) was

then used to analyze the influence of specific variables on the

measured performance metrics. Post hoc pairwise comparisons

with Bonferroni-Holm corrections were conducted when neces-

sary. A significant level of p < 0.05 was used.

IV. RESULTS

A. Finger Classification

In Fig. 4, we used t-Distributed Stochastic Neighbor Embed-

ding (t-SNE) to visualize the task-sensitive and user-sensitive

components extracted from single-finger trials. It can be ob-

served that clear decision boundaries were hard to discern in the

original features when samples were labeled by either finger

or user. In contrast, the extracted task-sensitive components

displayed clear clustering when labeled by fingers. Similarly, the

extracted user-sensitive component exhibited tighter clustering

compared to the original features when labeled by users. Fig. 5

shows the RMS maps corresponding to different finger forces

during a representative trial compared with their reconstructions

via PCA and DisAE. Both PCA and DisAE appeared to preserve

the intrinsic spatial activation patterns in the original RMS

map for each finger. Interestingly, the map reconstructed from

the task-sensitive latent vector via DisAE seemed to exhibit a

more refined and localized spatial activation pattern, which was

particularly evident for the reconstructed map corresponding to

the index and middle finger tasks.

Fig. 5. RMS map, and the map reconstructed by PCA and DisAE dur-
ing the index, middle, and ring-pinky finger extension in a representative
trial.

Fig. 6. (a) The average finger classification results across subjects by
KNN using the original feature (Orig. Fea) and the feature projected by
PCA and DisAE. (b) to (d): The confusion matrix obtained by DisAE,
PCA, and the original feature. *:p < 0.05. **: p < 0.01.

KNN classifiers (k = 1) were employed on the original fea-

ture, the PCA-transformed feature, and the task-sensitive com-

ponent extracted by DisAE. As depicted in Fig. 6, there was

a substantial enhancement in classification accuracy in DisAE

with an accuracy of 83% across subjects, marking a significant

improvement over the original feature and PCA (overall accu-

racy at p < 0.01). The confusion matrix underscored the effec-

tiveness of the task-sensitive information extracted by DisAE,

particularly in the accurate classification of individual fingers

(finger-wise F-1 score: p < 0.05 for three fingers). However, no

significant difference was found in the detection accuracy in the

“rest” state (F-1 score: F (2, 21) = 0.18, p > 0.05).

B. Finger Force Predictions

Fig. 7 displays the accuracy of the force prediction using

the three approaches. With feature projection, DisAE exhib-

ited superior performance to the PCA and EMG-amp methods,

achieving RMSE values of and 6.91± 0.45 (%MVC, mean
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Fig. 7. Averaged force prediction results on target fingers. The results
were obtained under LOSO validation and averaged across testing sub-
jects, trials, and fingers. (a) RMSE; (b) R2. The results were obtained
under LOSO validation and averaged across testing subjects, trials, and
fingers. *:p < 0.05. **: p < 0.01.

Fig. 8. (a) An exemplar trial of multiple finger extension. The RMSE
(b) and R2 (c) of the force estimation for individual fingers when the
corresponding finger was instructed to move. *:p < 0.05, **: p < 0.01.

± standard error), and R2 values of 0.835± 0.026. The PCA

approach showed RMSE values of 7.72± 0.63 and R2 val-

ues of 0.772± 0.039. In contrast, the EMG-amplitude method

demonstrated the worst performance, with RMSE values of

11.51± 0.83 and R2 of 0.607± 0.029, which is comparable

with our previous studies [27]. The accuracy was significantly

different among the three methods as indicated by one-way

repeated measures of ANOVA (RMSE:F (2, 21) = 30.90, p <

0.001;R2:F (2, 21) = 51.20, p < 0.001). Further post hoc com-

parison confirmed the significant differences between DisAE

and the other two methods (p < 0.05).

Fig. 8(a) shows a representative trial of force estimation for

the index, middle, and ring-pinky fingers. While all methods

aligned well with the recorded force of the middle finger, the

EMG-amp method tended to overestimate both the index and

Fig. 9. (a) The average RMSE across all subjects on non-target fin-
gers. (b) to (d): The false active rate, the false rest rate, as well as the
accuracy for the active v.s. rest classification at 5%, 10%, and 15%MVC
*:p < 0.05, **: p < 0.01.

ring-pinky finger forces. Furthermore, The PCA force prediction

of the index finger appeared to be influenced by the activities of

other fingers. In contrast, our DisAE force estimation closely

mirrored the actual forces of all fingers, maintaining a high

level of accuracy even when multiple fingers were concurrently

activated.

Fig. 8(b) and (c) offered a detailed examination of the

force prediction performance of individual fingers. The DisAE

method consistently showed the lowest prediction error, with

the RMSE of the index (6.02 ± 0.31), middle (6.7±0.63), and

ring-pinky fingers (8.0 ± 0.84 %MVC). The two-way (method

(EMG-amp vs. PCA vs.DisAE) × finger (index vs. middle vs.

ring)) ANOVA revealed a significant effect of the method on the

RMSE (F (2, 14) = 22.70, p < 0.001 and R2(F (2,14) = 16.89,

p < 0.001) with no significant effect on the finger factors and

no interaction effect. Subsequent post hoc analysis revealed that

the DisAE method significantly outperformed the EMG-amp

in almost all conditions, except when compared to PCA, a

significant difference was observed only in the index finger.

We also quantified the prediction errors of the three methods

on non-targeted fingers (Fig. 9). Interestingly, the RMSE values

of these non-target fingers were close to those of the target

fingers. A two-way ANOVA (method × finger) indicated a sig-

nificant effect of the method on RMSE (F (2, 14) = 13.48, p <

0.001). However, there was no significant effect on fingers, and

no interaction effect between the method and finger factors was

observed. Further post hoc analysis revealed that the DisAE

method consistently registered significantly lower prediction

errors for non-target fingers compared with EMG-amp, par-

ticularly for the index and ring-pinky fingers. However, no

significant difference was found for the middle finger across

any of the method comparisons. When comparing DisAE with

PCA, a significant difference was only observed in the index

finger.
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TABLE II
PERFORMANCE COMPARISON FOR FINGER CLASSIFICATION

To assess the finger separation capabilities of the three meth-

ods in multi-finger tasks, we evaluated the active vs. rest de-

tection accuracy. As depicted in Fig. 9(b), the DisAE method

consistently exhibited the lowest false-active-rate across all

thresholds (5%, 10%, and 15% MVC). In contrast, the EMG-

amp method showed a notably higher false-active-rate, which

was especially evident at the 5% MVC threshold. A two-way

repeated measures ANOVA, factors of method and threshold,

revealed a significant interaction effect (F (4, 28) = 9.36, p <

0.01). Subsequent post hoc analyses indicated that compared to

EMG-amp, the DisAE method achieved a significantly lower

false-active-rate across all thresholds. When compared with

PCA, significant differences emerged at the 5% and 10% MVC

thresholds. Observations from Fig. 9(c) demonstrate no sig-

nificant differences among either methods or thresholds in

the false-rest-rates. Regarding detection accuracy (Fig. 9(d)),

DisAE outperformed its counterparts. The two-way ANOVA

confirmed the significant effect of both factors (method and

threshold) without any interaction effect (method: F (2, 14) =
39.7, p < 0.001; threshold: F (2, 14) = 53.56, p < 0.001). Post

hoc comparisons underscored that the DisAE detection accuracy

notably surpassed EMG-amp across all thresholds and surpassed

PCA at the 10% and 15% MVC thresholds.

Lastly, we evaluated the efficiency of the developed approach

based on both training and testing times. The specific training

durations for the three methods are detailed in Table S.2 of

the supplementary materials. Training with both EMG-amp and

PCA took under 100 ms. In contrast, training the user-generic

encoder took an average of 469.37 seconds, while training the

personalized regression model only took 0.106 seconds. All

approaches managed to process a 500-ms EMG signal within

the 50-ms signal update interval. Remarkably, our method was

able to generate latent features and predict EMG force in 1.6 ms.

C. Comparison With Other Deep Learning Methods

The performance of SOTA neural networks for finger classi-

fication was evaluated under a leave-one-subject-out validation

protocol. The results were presented in Table II. All tested

approaches achieved average classification accuracies above

80% on unseen subjects, with our DisAE yielding the highest

performance. However, a one-way repeated measures ANOVA

revealed no significant differences among the methods in terms

of both accuracy (F(3,21)=0.938, p > 0.05) and the F1 score

(F(3,21)=0.951, p > 0.05). There are significant differences in

the training time cost per epoch among these four approaches

Fig. 10. Force prediction performance on target fingers. The results
were obtained under leave-one-subject-out validation and averaged
across testing subjects, trials, and fingers. *:p < 0.05. **: p < 0.01.

TABLE III
CLASSIFICATION AND REGRESSION PERFORMANCE ON ABLATION STUDIES

(F (3, 21) = 48.98, p < 0.01). Further post-hoc comparison in-

dicated that CNN emerged as the most efficient approach (p <

0.01). In contrast, the CNN+LSTM model exhibited the longest

training time relative to all other methods (p < 0.01). Compared

to the Transformer, the DisAE showed an average increase in

training duration of 5 ms, with this difference being statistically

significant (p < 0.01).

Fig. 10 depicted the force prediction performance when ap-

plying the trained neural networks to the unseen subjects with the

network weights fixed. All the end-to-end neural networks, when

predicting data from unseen subjects, exhibited a high prediction

error with RMSE values of 10.24± 1.19, 10.50± 1.36, and

11.24± 1.33, and R2 values of 0.671± 0.07 0.654± 0.08, and

0.587± 0.101 for CNN, CNN+LSTM, and Transformer, re-

spectively. The prediction accuracy was significantly lower than

that obtained by DisAE (RMSE: F (3, 21) = 10.81, p < 0.01
and R2:F (3, 21) = 8.90, p < 0.01). Further post-hoc compari-

son confirmed that DisAE had significantly more accurate force

prediction outcomes than CNN, CNN+LSTM, and Transformer

(p < 0.05).

D. Ablation Studies

Table III presents the results of the ablation studies, where

we evaluated the effectiveness of the two-branch encoder and

l1 regularization. Without the two-branch encoder, essential for

feature disentanglement, the autoencoder showed significantly

lower classification accuracy compared with the full DisAE

implementation (p < 0.05 for both accuracy and F1 score, as

indicated by a paired t-test). Omitting l1 regularization during

training also resulted in a notable drop in classification per-

formance (p < 0.05 for both accuracy and RMSE). Similarly,

force prediction accuracy decreased significantly without the

two-branch encoder, as evidenced by the higher RMSE and

lowerR2 values (p < 0.05). A decline in regression performance
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was also observed without the l1 regularization, although these

differences were not statistically significant. Overall, this ab-

lation study highlights the critical role of each component in

enhancing the DisAE’s performance.

V. DISCUSSION

The current study exploited a feature disentanglement ap-

proach to enable a robust user-generic EMG-based neural de-

coder for finger extension force decoding. Our DisAE method,

through an autoencoder network structure, can explicitly disen-

tangle the task-sensitive features from the user-sensitive features

in HD-EMG signals. Our results suggested that the learned

task-sensitive features offered a more generic representation

across users. Intriguingly, when we applied these latent features

to both finger classification and individual finger force predic-

tion, the DisAE-learned task-sensitive features demonstrated

superior performance compared with the conventional EMG

amplitude method and the commonly used feature projection

PCA method. Our developed approach offers a novel decoding

framework for user-generic decoding models that allow efficient

clinical implementations. The outcomes pave the way for further

development of robust neural-machine interfaces feasible for

dexterous control of assistive robotic hands.

Previous studies have characterized the spatial activation of

finger extensor muscles, highlighting finger-specific localized

patterns evident across users using HD-EMG grids [15]. How-

ever, due to individual variations in anatomical and physiological

factors, the muscle activation patterns for different persons often

exhibit variations. These variations are also influenced by exter-

nal factors, including inconsistencies in electrode placement,

changes in electrode-skin impedance, or background noise [30].

As a result, it remains a challenge to establish a generic relation

between muscle activation patterns and the corresponding motor

outputs across users. In the context of individual finger force

prediction, the HD-EMG grid covers substantial skin regions

with minimum muscle activation, since only localized muscle

compartments of the extensor muscle are active. Consequently,

conventional EMG amplitude methods can be significantly

improved by removing non-active channels for each finger

movement through a “channel pool refinement” strategy [31],

[32]. However, during multi-finger movements, the co-activation

effects between fingers emerge, thereby introducing complex

activation patterns. These complexities may not be adequately

captured by the “channel mask” learned from single-finger tasks.

PCA is a widely accepted feature projection tool in HD-EMG

analysis and more broad neural decoding. PCA has demon-

strated efficacy in both pattern recognition and proportional

control [25], [33], [34], [35]. In our study, this substantial

reduction in dimensionality potentially eliminated interference

in the original features, thereby greatly simplifying the force

regression process and leading to improved results. However, a

limitation of PCA is that data corresponding to tasks involving

different fingers might not be distinctly clustered in the reduced

feature space, as evidenced by the poor finger classification

outcomes.

DisAE considers class separation during feature projection.

This feature disentanglement paradigm has been used in various

fields, such as gait recognition [36], motion retargeting [37], and

voice conversion [38]. In line with these studies, our results re-

vealed that the representations learned by DisAE form compact

clusters in the respective latent spaces, namely the task space

and the user space. Additionally, the DisAE representations dis-

played more distinct decision boundaries for classifying various

finger tasks compared to the original features. This indicated a

substantial improvement in classification performance, which is

evident even in the cross-user validation protocol.

For force predictions across three fingers (index, middle,

and ring-pinky), the DisAE representation clearly achieved the

highest correlation with the recorded forces, delivering accurate

force predictions even with concurrent activation of multiple

fingers. No significant differences were detected across fingers

in prediction error, especially for the middle finger. This could

be attributed to the activation region of the middle finger being

relatively distinct (most proximal), compared to the other two

fingers [15]. Consequently, the middle finger force prediction

was minimally influenced by co-activation from the other two

fingers.

The active- vs. rest-state classification offers insights into

the decoder capability in finger separation, a critical aspect

of robotic hand control. By directly comparing the recorded

forces with the prediction outcomes, we showed that DisAE

consistently yielded a lower false-active-rate than the other two

methods, which may enhance the reliability of prosthetic hand

control in practice by addressing the overestimation issues. This

improvement could be attributed to the attenuation of user-

sensitive information in the original features. However, the prob-

lem of underestimation remained unaddressed with all methods

exhibiting a high false-rest-rate. Future efforts should aim to

identify and retain information that contributed to nuanced force

variations.

In comparison with the state-of-the-art neural networks such

as CNN, CNN+LSTM, and Transformer, we observed that

these networks demonstrated a high level of generalizability

in finger classification when tested on unseen subjects, com-

parable to our DisAE approach. However, for force prediction,

the neural network models’ performance significantly declined

when applied directly to unseen subjects without adjusting the

network weights. This observation is consistent with findings

in other fields, such as computer vision, which suggest that

achieving good cross-domain regression performance is more

challenging than classification [29]. In contrast, our DisAE

approach provides new insights into cross-domain regression

by extracting task-sensitive information that is relevant to the

variability between domains.

Our method is different from previous studies that sought

to enhance the generalizability of neural decoders. Transfer

learning has been the key approach to tackle the generalization

issue, either in supervised settings [37], [39] or unsupervised

settings [40], [41]. In supervised settings, once the classifier

is trained, it is adjusted using limited labeled data from the

new user. Unsupervised learning, on the other hand, seeks to

find a feature space that minimizes domain shift. This is done
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by using data from both the source domain (i.e., multiple-user

cohort) and the new user to tune the model parameters. Though

many studies target pattern recognition, these concepts have also

been applied in proportional control. Jiang et al. [42] employed

correlation-based data weighting to align data distribution across

multiple users in elbow force estimation. A BERT-based net-

work was introduced for continuous hand kinematics estimation,

drawing on testing data from various sources [43]. Yet, the

training of the neural networks in this study was not completely

user-independent.

In contrast, our approach aligns more with domain generaliza-

tion [44], aiming to model generic representations of all users.

We address the adaptation challenge by extracting task-sensitive

components from HD-EMG features. Our results showed that

our feature projection establishes a more generalized relation

between the HD-EMG feature and executed motor tasks. When

applied to a new user, only a simple linear regression between

the latent feature and motor output needs to be trained, without

the need to adjust the weights of the DisAE. This process is

highly efficient, requiring an average of only 0.106 seconds for

regression learning.

Fundamentally, our DisAE model falls into the category of

standard autoencoder frameworks, focusing on learning efficient

representations of input EMG features and encouraging feature

disentanglement through specific mechanisms (e.g. two-branch

encoder structure and the triplet losses). Indeed, there are var-

ious autoencoder variants using the concept of variational au-

toencoders (VAE), such as β-VAE [45], The FactorVAE [46],

and Ladder-AVE [47]. These VAEs are designed to explicitly

learn the data distribution, which is beneficial to encourage

the learning of statistically independent features in the latent

space. Additionally, VAEs can function as generative models,

capable of generating samples from the learned EMG feature

distribution. This capability could be worth exploring for various

applications, such as data augmentation and zero-shot machine

learning in myoelectric control contexts. The optimization of our

DisAE model in conjunction with other VAEs will be explored

in future research.

Although the results were promising in the prediction of

individual finger forces, several aspects merit further investi-

gation in future work. First, the training of DisAE currently

depends on recorded force to determine motor task labels. This

presents a challenge when considering amputees, among whom

individual-digit motor output may not be readily available.

Consequently, it may be of importance to explore unsupervised

methods that do not rely on data label input. Additionally,

our current methodology mainly focuses on finger extensions.

Clearly, further research is needed to incorporate both finger

flexion and extension for effective control of advanced robotic

hands. In this context, the interactions between fingers could

be more intricate than those observed in the current study.

Consequently, the encoder will need further adjustment to adapt

to these new scenarios.

VI. CONCLUSION

Utilizing an autoencoder-based feature projection approach,

we decomposed the HD-EMG features into user-invariant and

task-sensitive representations from user-sensitive and task-

irrelevant representations. Our findings suggest that the learned

representations provide a better distinction in performed motor

tasks across different users. Moreover, the features obtained

using our approach demonstrated a significantly higher force

prediction accuracy compared with other approaches. In sum-

mary, our method contributed to a deeper understanding of

the relation between HD-EMG and associated motor output,

paving the way for advancements in user-generic neural interface

techniques for assistive robot control.

REFERENCES

[1] C. Castellini, “Upper limb active prosthetic systems–overview,” in Wear-

able Robotics. Amsterdam, The Netherlands: Elsevier, 2020, pp. 365–376.
[2] M. S. Johannes et al., “The modular prosthetic limb,” in Wearable Robotics.

Amsterdam, The Netherlands: Elsevier, 2020, pp. 393–444.
[3] T. Worsnopp, M. Peshkin, J. Colgate, and D. Kamper, “An actuated finger

exoskeleton for hand rehabilitation following stroke,” in Proc. IEEE 10th

Int. Conf. Rehabil. Robot., 2007, pp. 896–901.
[4] K. Tong et al., “An intention driven hand functions task training

robotic system,” in Proc. IEEE Annu. Int. Conf. Eng. Med. Biol., 2010,
pp. 3406–3409.

[5] T. Bützer, O. Lambercy, J. Arata, and R. Gassert, “Fully wearable actuated
soft exoskeleton for grasping assistance in everyday activities,” Soft Robot.,
vol. 8, no. 2, pp. 128–143, 2021.

[6] A. T. Nguyen et al., “A bioelectric neural interface towards intuitive
prosthetic control for amputees,” J. Neural Eng., vol. 17, no. 6, 2020,
Art. no. 066001.

[7] A. E. Schultz and T. A. Kuiken, “Neural interfaces for control of upper
limb prostheses: The state of the art and future possibilities,” PM&R, vol. 3,
no. 1, pp. 55–67, 2011.

[8] K. Volkova, M. A. Lebedev, A. Kaplan, and A. Ossadtchi, “Decoding
movement from electrocorticographic activity: A review,” Front. Neuroin-

form., vol. 13, 2019, Art. no. 74.
[9] M. Simao, N. Mendes, O. Gibaru, and P. Neto, “A review on electromyo-

graphy decoding and pattern recognition for human-machine interaction,”
IEEE Access, vol. 7, pp. 39564–39582, 2019.

[10] E. N. Kamavuako, E. J. Scheme, and K. B. Englehart, “Determination of
optimum threshold values for EMG time domain features; a multi-dataset
investigation,” J. Neural Eng., vol. 13, no. 4, 2016, Art. no. 046011.

[11] L. Quitadamo et al., “Support vector machines to detect physiological
patterns for eeg and emg-based human–computer interaction: A review,”
J. Neural Eng., vol. 14, no. 1, 2017, Art. no. 011001.

[12] Z. Lu, A. Stampas, G. E. Francisco, and P. Zhou, “Offline and online
myoelectric pattern recognition analysis and real-time control of a robotic
hand after spinal cord injury,” J. Neural Eng., vol. 16, no. 3, 2019,
Art. no. 036018.
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