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Abstract

Extreme precipitation events are expected to increase in magnitude in response to global warming, but the magnitude of the
forced response may vary considerably across distances of ~ 100 km or less. To examine the spatial variability of extreme pre-
cipitation and its sensitivity to global warming with high statistical certainty, we use a large (16,980 years), initial-condition
ensemble of dynamically downscaled global climate model simulations. Under approximately 2 °C of global warming above
a recent baseline period, we find large variability in the change (0 to>60%) of the magnitude of very rare events (from 10
to 1000-year return period values of annual maxima of daily precipitation) across the western United States. Western (and
predominantly windward) slopes of coastal ranges, the Cascades, and the Sierra Nevada typically show smaller increases in
extreme precipitation than eastern slopes and bordering valleys and plateaus, but this pattern is less evident in the continental
interior. Using the generalized extreme value shape parameter to characterize the tail of the precipitation distribution (light
to heavy tail), we find that heavy tails dominate across the study region, but light tails are common on the western slopes of
mountain ranges. The majority of the region shows a tendency toward heavier tails under warming, though some regions,
such as plateaus of eastern Oregon and Washington, and the crest of the Sierra Nevada, show a lightening of tails. Spatially,
changes in long return-period precipitation amounts appear to partially result from changes in the shape of the tail of the
distribution.

Keywords Extreme precipitation - Single model initial condition large ensemble (SMILE) - Generalized extreme value -
Shape parameter - Orography - Climate change - Western North America

1 Introduction on average (Lopez-Cantu and Samaras 2018), while dams

are designed to withstand much rarer events (Hossain et al.

Much of the storm water infrastructure in the US is built to
withstand runoff generated by precipitation amounts that, in
a stable climate, would occur only once every 10-100 years
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2012). Quantifying the anthropogenic influence on extreme
precipitation events at local-to-basin scales is therefore criti-
cal for understanding future flood hazard and its implications
for water infrastructure.

Features of the landscape modulate the large-scale
response of the hydrological cycle to anthropogenic green-
house gas forcing (Diffenbaugh et al. 2005), resulting in spa-
tially heterogeneous responses at meso- and finer scales in
temperature (Rupp et al. 2017), winds (Letcher and Minder
2015, 2017), and precipitation intensity (Wallace and Minder
2021). The importance of topographic gradients to precipi-
tation, and the societal relevance of extreme precipitation
events, has long motivated the study of forced changes in
precipitation extremes by using global climate model output
downscaled with finer resolution regional climate models
that more accurately represent a region’s topography. Many
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studies have been done around the globe, but, for brevity,
as examples we list here those whose geographical focus
included western United States (US), and still only a subset
of those: Diffenbaugh et al. (2005), Dominguez et al. (2012),
Singh et al. (2013), Wehner (2013), Ashfaq et al. (2016),
Huang and Ullrich (2017), Prein et al. (2017), Li et al.
(2019a), Huang et al. (2020), Lopez-Cantu et al. (2020),
Wrzesien and Pavelsky (2020), Mahoney et al. (2021).

Overall, studies show an apparent influence of mountains
on the spatial pattern of changes in extreme precipitation
over the western US (Singh et al. 2013; Prein et al. 2017;
Huang et al. 2020; Mahoney et al. 2021). In some more
recent studies (Huang et al. 2020; Mahoney et al. 2021),
a general pattern emerges of larger percentage increases
(though not necessarily larger absolute increases) in the lee-
ward (eastward) side of major mountain ranges and smaller
percentage increases on the windward (westward) side. This
difference is often most conspicuous between the east and
west sides of the Cascades in Washington and Oregon and
the Sierra Nevada in California, north—south oriented moun-
tain ranges that run roughly perpendicular to dominant win-
ter wind directions.

However, attributing apparent changes in extreme pre-
cipitation to the imposed anthropogenic forcing in climate
model experiments is hindered by the inherent internal vari-
ability of the climate system and by how well climate models
simulate this internal variability (Deser et al. 2014; Poschlod
and Ludwig 2021). Standard comparisons of, for example,
two 30-year integrations (one reference state and one future
state) from a downscaled global climate model poorly distin-
guish signal from noise. Examining the mean response from
multi-model ensemble experiments (Dominguez et al. 2012;
Wehner 2013; Ashfaq et al. 2016; Mahoney et al. 2021)
partially addresses the problem by reducing the effect of
internal variability and has the added benefit of likely cance-
ling some model errors. However, averaging across models
may smooth over the very feature of interest here, which
is the finer-scale spatial heterogeneity of forced response
in extreme precipitation. This smoothing may arise from
different representations of the land surface where spatial
resolutions, surface parameters (e.g., albedo or roughness),
and land-surface process representations differ across mod-
els. Even where resolutions are similar, regional models may
use different grid configurations. Moreover, the location of
key features of the atmospheric circulation (e.g., jet stream)
that affect where extreme precipitation events occur, as well
as how these features respond to forcing, may vary across
models.

Pseudo-global warming experiments offer an alterna-
tive method for improving signal to noise (Prein et al.
2017; Wrzesien and Pavelsky 2020). In such experiments,
a future climate is generated by adding a mean climate per-
turbation to the regional boundary conditions of a reference
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(historical) integration. This perturbation is based on
expected changes in the mean conditions predicted by global
climate model runs. Constraining the boundary conditions
of the future integration to that of the reference integration
(albeit with a perturbation) greatly reduces the influence of
interval variability. The downside of this approach is that
it does not capture potential changes in storm dynamics,
including shifts in the location or intensity of the midlatitude
storm tracks, which could have a large impact on the spatial
change of precipitation extremes.

An obvious way to improve signal-to-noise is to gener-
ate a single-model initial-condition (IC) large ensemble
(SMILE), which is generated by running many simulations
of the same experiment repeatedly but with a different ini-
tial state for each simulation. However, as the resolution of
regional climate models becomes finer, the computational
requirements become burdensome. For this reason, early
studies on extremes using IC ensembles had relatively small
ensemble sizes (e.g., five members in Singh et al. 2013),
but experiments using ~ 50-member ensembles are rapidly
becoming more common (Scinocca et al. 2016; Innocenti
et al. 2019; Wood and Ludwig 2020; Huang et al. 2020;
Singh et al. 2021).

Besides differences in experimental designs, a com-
parison of studies is complicated by the varied definition
of “extreme”. Most studies define “extreme” as the 95th or
99th percentile of daily precipitation, sometimes stratified by
season (Diffenbaugh et al. 2005; Singh et al. 2013; Ashfaq
et al. 2016; Wrzesien and Pavelsky 2020; Mahoney et al.
2021). However, measured against precipitation events that
have sudden and large impacts on the environment and for
the design of flood management infrastructure, such levels
of precipitation would not typically be considered extreme.
Uniquely, Huang and Ullrich (2017) chose a fixed threshold
amount (40 mm day~') but the level of impact would vary
greatly across space, so it is difficult to evaluate across a
region as spatially heterogeneous as the western US. Fewer
studies consider more extreme precipitation, such as the
20, 50-year (Dominguez et al. 2012; Wehner 2013; Li et al.
2019a), or even 100-year (Lopez-Cantu et al. 2020) return
period of annual maximum of daily precipitation amounts.
Yet, the “100-year” standard is widely used for more criti-
cal storm water infrastructure (Lopez-Cantu and Samaras
2018; Wright et al. 2019) while more rare events are of
interest and concern beyond just storm water infrastructure
considerations.

Studies of changes to rare extreme precipitation intensi-
ties such as Dominguez et al. (2012), Wehner (2013), and
Lopez-Cantu et al. (2020), used fitted theoretical distri-
butions, namely the generalized extreme value (GEV) or
Pareto, to estimate return period values, sometimes extrapo-
lating to return periods beyond the length of the model inte-
gration (Dominguez et al. 2012; Lopez-Cantu et al. 2020).
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However, there is some danger in using such theoretical
distributions to estimate values for return periods that are
longer than, or even of roughly the same length as, the model
integration itself: The parameter that controls the shape of
the distribution and, therefore, the heaviness of the right tail,
is poorly constrained in sample sizes typically available for
many climate modeling experiments (Papalexiou and Kout-
soyiannis 2013). Moreover, the theoretical distributions may
provide a poor fit in some locations (Wehner 2013). Because
of the large uncertainty due to small sample size, some stud-
ies do not allow the shape parameter to change under addi-
tional forcing (e.g., Brown et al. 2014; Fix et al. 2018), while
others do (Dominguez et al. 2012; Wehner 2013; Lopez-
Cantu et al. 2020; Ban et al. 2020).

To examine very extreme precipitation and its sensitivity
to climate change, we use a uniquely large (16,980 years)
IC ensemble of dynamically downscaled global climate
model simulations. By driving a regional climate model with
a large global model ensemble, we include the effects of
changing large-scale atmospheric variability and not just the
changing mean-state climatology. The size of the ensemble
permits examining precipitation amounts, and their changes
under approximately 2 °C of global warming above a recent
baseline period, during very rare events (e.g., 100-year
return interval and even higher of annual maxima) with
higher statistical certainty than previously done. Moreover,
because the regional model resolves key mountain ranges of
the western US, we examine the spatial pattern of changes
in relation to topography. We give special attention to the
GEV shape parameter, because of its utility as an index of
the heaviness of the distribution tail and of its relevance to
water infrastructure design.

2 Methods

Precipitation was simulated with the Hadley Centre
Regional Climate Model (HadRM3P; Jones et al. 2003) at
0.22°x0.22° horizontal resolution nested within the Hadley
Centre Atmospheric Model (HadAM3P; Gordon et al. 2000)
at 1.875°x 1.25° horizontal resolution with updated global
and regional parameters (Hawkins et al. 2019; Li et al.
2019c). Both the regional and global model use the UK Met
Office Surface Exchange Scheme 2 (MOSES2; Essery and
Clark 2003) for the land surface. The grid cell size of the
regional model (~25 km) is not only fine enough to resolve
major mountain ranges but also the smaller coastal ranges
(Fig. 1) which are some of the rainiest locations in the US.

It is important to note that the HadAM-RM3P pairing
is not coupled to a dynamic ocean model, and sea surface
temperature (SST) and sea ice are prescribed as boundary
conditions. Excluding coupling can lead to reduced variance
in the precipitation distribution and thus bias the change
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Fig. 1 Surface elevation in study area within the HadRM3P domain
with features discussed in the text. Red dashed lines show the four
transects, black-outlined polygons show the four regions identified by
numbers “1” through “4”, solid dots show selected locations of major
cities and mountains, dotted lines show selected mountain range
divides, and gray lines show political boundaries

signal in an extreme value (e.g., Fischer et al. 2018). Still,
uncoupled models are valuable tools, which do not suffer
from problematic biases in sea surface temperatures and are
less computationally demanding (He and Soden 2016a, b),
the latter being a critical feature for the model simulations
used in this study. Furthermore, Li et al. (2014) showed
coupling had marginal effect on changes in seasonal mean
precipitation over California while Dong et al. (2020) found
little effect on changes in extreme winter or summer seasonal
precipitation over North America.

We used two large ensembles of simulations. The first
represents baseline climate conditions and the second rep-
resents a future wherein the mean global surface tempera-
ture is on average 2.26 °C warmer than the baseline. Both
ensembles span 29 years (baseline: October 1987—December
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2016; future: October 2047-December 2076). Transient con-
centrations of greenhouse gases, aerosols, and chemically
active gases were based on observed values before 2006 and
on Representative Concentration Pathway 8.5 (Meinshausen
et al. 2011) from 2006 forward. Operational Sea Surface
Temperature and Sea Ice Analysis (OSTIA; Donlon et al.
2012) provided the transient SSTs and sea ice fractions for
the baseline period. For the future period, SSTs were gener-
ated using a “delta” (A) method: Smoothed transient changes
in modeled SSTs (ASSTs) from the historical to the future
period were added to the OSTIA SSTs. The ASSTs, and
associated changes in sea ice fraction deltas, were derived
from the global model CESM1-CAMS, following Hawkins
et al. (2019). See, also, Ch. 3 in Hawkins (2019) for addi-
tional details on the modeling set-up, including spin-up and
updates to the HadRM3P soil parameters.

Simulations were done on the volunteer computing plat-
form weather@home (Massey et al. 2015; Guillod et al.
2017) configured for western North America (Mote et al.
2016). To facilitate parallel processing, simulations started
in September of each year from 1986 to 2014 and from 2045
to 2074, with each simulation spanning a 28-month block.
We used only the second complete water year (WY: Octo-
ber—September) from each simulation.

Simulations were performed with three sets of model
parameters with altered values for parameters affecting
moisture fluxes, cloud formation, and precipitation (See
Table S1). These values were identified as among the best
performing parameterizations in Li et al. (2019c¢), selected to
minimize biases in regional seasonal mean temperature and
precipitation while still attempting to account for parameter
uncertainty by spanning a region of parameter space. Inter-
ested readers are referred to Li et al. (2019¢) and Hawkins
et al. (2019) for the detailed parameter improvement pro-
cess. The three parameter sets were not chosen with a priori
expectations of how they might lead to differences in daily
precipitation extremes.

The IC ensembles were created by perturbing the global
model’s potential temperature field when initializing the
simulation. For the baseline period, 100 IC ensemble mem-
bers were generated per parameter set (300 members in total)
per 28-month block. For the future period, 100 IC ensemble
members per parameter set were completed per 28-month
block except for three blocks ending in WY's 2050, 2060,
and 2070 that had a different number of ensemble mem-
bers per parameter set, and all fewer than 100. Therefore,
to balance the number of ensemble members per parameter
set, we used a subset of the future runs for the three blocks
ending in WYs 2050, 2060, and 2070. For each year and
each parameter set, we used only the number of ensemble
members equal to the number of runs for the parameter set
that had the fewest runs, resulting in 81, 76, and 73 ensemble
members per parameter set for WY's 2050, 2060, and 2070,
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and 100 ensemble members for all other WYs. The total
sample consisted of 2,830 WY's per parameter set (or 8,490
WYs in total) for the future period.

To have an equal the number of ensemble members in the
baseline and future periods, we used only a subset of base-
line runs consisting of 2830 WY's per parameter set. Spe-
cifically, the selection consisted of 81, 76, and 73 ensemble
members per parameter set for WYs 1990, 2000, and 2010,
and 100 ensemble members for all other WYs. Setting the
number of ensemble members in WY's 1990, 2000, and 2010
to be the same as those in 2050, 2060, and 2070 is justified
based on how future SSTs are generated: e.g., SSTs in WY
2050 are derived from observed SSTs in WY 1990 plus an
estimated anthropogenic response.

Simulated 24-h precipitation accumulations were
archived at a fixed daily time step (00 to 24 UTC). For each
ensemble member, we extracted the WY maximum daily
precipitation (R) and estimated the value of R at various
return periods ranging from 2 to 1000 years (or, equivalently,
at exceedance probabilities ranging from 0.5 to 0.001) for
the baseline and future periods separately. Because our sam-
ple size was large (n=2830), we first estimated the return
period values empirically.

We compared HadRM3P return period values to those
from the 1/24°-resolution gridded daily precipitation from
the PRISM Climate Group. However, because the record
length of the gridded PRISM data is relatively short
(41 years) and because the spatial interpolation is guided by
the climatological (30-year) averages of monthly precipita-
tion (Daly et al. 2008), the PRISM data are not well suited
for examining the shape of the far-right tail. Long-term sta-
tion records, despite their much-reduced spatial coverage,
are more appropriate for examining properties of the tails of
precipitation distributions. Therefore, we also acquired daily
precipitation station data from the US National Weather Ser-
vice (NWS) Cooperative Observer Program (COOP; Wuertz
et al. 2018) for all stations in the conterminous US west of
—109 °E with records longer than 100 years (162 stations;
see Table S2 for a list of the stations). For comparing right-
tail heaviness of modeled with observed precipitation, we
used a non-parametric, dimensionless statistic: the ratio of
the 20-year return period WY maximum daily precipita-
tion (RP20) to the 2-year return period WY maximum daily
precipitation (RP2). This ratio was calculated directly from
empirical quantile estimates. We chose RP20 for the numer-
ator to achieve a robust statistic from the observations after
a visual inspection of the return period curves for the station
observations showed RP values above RP20 to be noticeably
impacted by sampling noise (see supplementary Fig. S1).

Despite the large sample size of our simulations, it was
still useful to characterize the frequency distribution of R
using a theoretical distribution, in part to compare with other
studies. The generalized extreme value (GEV) distribution is
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commonly used for block maxima precipitation. The GEV
cumulative distribution G for variable x is

G() = exp{—[l +e(=2)) 1/6}, 1+e(=E) >0
o o

ey
where i, o, and & are the location, scale, and shape param-
eters, respectively. Our interest is primarily in the shape
parameter, which determines the heaviness of the right tail of
the distribution (e.g., Papalexiou and Koutsoyiannis 2013).
When &=0, the right tail of the distribution is asymptotically
exponential. Values of &> 0 produce heavy right tails (i.e.,
of power-law type without all moments finite), whereas & <0
leads to bounded right tails (i.e., G reaches 1 at finite x).

To obtain dimensionless location and scale parameters
that we could compare across all stations, we scaled precipi-
tation by the mean of the WY maximum daily precipitation
E, i.e.,x = R/E (Koutsoyiannis 2004). The shape parameter
is unaffected by the scaling.

Because GEV parameters have been shown to be sensitive
to estimation method (e.g., Koutsoyiannis 2004), we fitted
the GEV distribution using both an L-moments and a maxi-
mum likelihood (ML) method. Both methods were applied
using the R package extRemes (Gilleland and Katz 2016).
We also tested a generalized ML and a Bayesian method
(both available in extRemes) but both were much slower and
more susceptible to non-convergence, which were important
factors given the large sample size and large number of loca-
tions (11,700 grid cells).

Various measures exist of how well GEV distributions fit
observations (e.g., Laio 2004) but we wanted a direct meas-
ure of bias in the fitted GEV distribution along the far-right
tail of the climate model data, particularly spanning return
periods of 100-1000 years. We quantified right-tail bias as

Bias = exp l% Z log()?[/x,»)] )
i=1

where x denotes all n simulated precipitation amounts that
have empirically estimated return periods between 100 and
1000 years, X are the GEV-predicted precipitation amounts
at each of the same empirically estimated return periods, and
i indexes the return periods.

3 Results

3.1 Comparison of large ensemble
with observations

The spatial pattern of extreme precipitation in the west-
ern US is strongly influenced by the topography, as illus-
trated by the 10-year return period WY maximum daily

precipitation (RP10) in Fig. 2. Higher precipitation on the
western and southwestern sides of mountains results from
orographic enhancement and highest moisture transport
coinciding with primarily westerly and southwesterly flow
(e.g., Bracken et al. 2015). HadRM3P successfully repro-
duces the observed spatial pattern, albeit more coarsely due
to the model’s ~25-km spatial resolution. However, Had-
RM3P tends to generate too much extreme precipitation on
the windward side of mountain ranges (Fig. 2). The bias is
particularly high in the Sierra Nevada of California. This
excessive orographic enhancement is also evident in the wet
season (October through April) mean precipitation (Ch. 3 in
Hawkins 2019; Li et al. 2015) so it is not simply a feature of
extreme precipitation events.

None of the three model parameterizations produced
a distinctly lower bias than the others, nor did they show
distinctly different spatial patterns (not shown). For these
reasons, we present each statistic (e.g., the RP20) as an aver-
age of the three parameterizations, unless otherwise noted.

The simulated RP20/RP2 ratio shows a non-random spa-
tial pattern associated with major mountain ranges (Fig. 3).
Lower values of RP20/RP2 are evident on the western side
of, among others, the Sierra Nevada and Cascades Ranges,
Rocky Mountains in both US and Canada, and Coast Moun-
tains of British Columbia (BC), where values tend to be
between 1.5 and 2. The highest values by far are on the lee-
ward side of the Peninsular Ranges of Baja California, and
eastward, where values are mostly between 3 and 5. Unfor-
tunately, the locations and quantity of the stations do not
permit a thorough comparison with the observed spatial pat-
tern of RP20/RP2 (Fig. 3). However, simulated and observed
RP20/RP2 values are positively and moderately correlated in
space (Pearson correlation coefficient =0.49). Considering
only grid cells containing station locations, median RP20/
RP2 is 1.98 and 1.87 in the simulations and observations,
respectively. 95% of simulated values fall within 1.55 and
2.91, compared to 1.55 and 2.47 in the observations.

3.2 Spatial patterns in right tail shape

The GEV shape parameter derived from the large ensem-
ble is strongly associated with the windward and leeward
aspects of major mountains, especially in those mountain
ranges nearer the Pacific Ocean (see Fig. 4 with parameters
estimated using L-moments). Negative values of & are most
prominent along the windward side of the first two major
orographic barriers to westerly/southwesterly flow, indicat-
ing that the tail of the distribution is bounded in these loca-
tions. East of these barriers, positive values (i.e., heavy tails)
dominate, though negative values are still present along
some western slopes of the Rocky Mountains. The largest
positive values of & (those > 0.3) mostly occur on the leeward
(eastward) side of the Peninsular Ranges of Baja California.

@ Springer



2368

D.E.Rupp et al.

PRISM

HadRM3P

1
-110

mm

Fig.2 Empirical 10-year return period for water year (WY) maxi-
mum daily precipitation (RP10) from (left panel) the 1/24°-resolution
PRISM dataset for WYs 1982-2020 and (right panel) the 0.22°-res-

Compared to L-moments, ML estimates yet higher values
of £ in this region, (supplementary Fig. S2). Elsewhere, the
spatial patterns of & produced from L-moments and ML are
very similar.

In general, ML results in higher bias in the far-right tail
compared to L-moments. In and around the Gulf of Cali-
fornia region in particular, the ML-fitted GEV largely over-
predicts the empirical values (see supplementary Fig. S3),
so the high values of & over that region poorly characterize
the actual heaviness of the right tail. Wehner (2013) and
Ben Alaya et al. (2020a, b) also noted a poor fit of the GEV
to simulations of the NARCCAP regional models and the
Canadian Regional Climate Model (CanRCM4), respec-
tively, around the region of Baja California.

ML also resulted in larger differences in bias between
the baseline and future periods (see supplementary Fig.
S4). Given that substantial differences in bias between
periods would reduce confidence in estimates of the
shape parameter’s response to anthropogenic forcing, and
that L-moments results in lower tail bias overall, we use
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olution HadRM3P ensemble for the baseline period (WYs 1988—
2016). For HadRM3P, the average of RP10 from the three parameter
sets is shown

L-moments estimates for the remainder of this analysis. Key
figures showing results based on ML are provided in the
Supplementary Information for comparison.

For the simulated precipitation, Fig. 5 provides example
return period curves for six locations marked in Fig. 4 (see
supplementary Fig. S5 for curves for the other 12 locations
and Table S3 for a list of all 18 locations). Left column
panels show windward aspect locations in (top to bottom)
the Washington Cascades, Oregon Coast Range, and Sierra
Nevada, all with & <0. Right column panels show locations
of major cities in the Willamette Valley of Oregon, Central
Valley of California, and Salt River Valley in Arizona. These
three valley locations, like most places in the study domain,
have & >0 and show no visual indication of asymptotically
approaching a maximum precipitation value even by return
intervals of a few thousand years.

How the variability across space in & seen in Fig. 4 mani-
fests as variability in very extreme return period values
may not be intuitive, so we compared & to a statistic whose
hydrological relevance is more directly understandable: the
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Fig.3 (Left panel) Ratio of empirical 20-year (RP20) to 2-year
(RP2) return period water year maximum daily precipitation from
the HadRM3P ensemble during the baseline period. Colors are sat-
urated above 3.0 to help distinguish the spatial heterogeneity across
most of the domain. Circles mark station locations, color-shaded to
their RP20/RP2 values. Black lines show selected mountain range
divides (same as in Fig. 1). (Right panel) Frequency distribution of

ratio of the 1000-year return period water year maximum
daily precipitation (RP1000) to the 10-year return period
water year maximum daily precipitation (RP10), or RP1000/
RP10. There is a strong spatial correlation between & and the
empirical log(RP1000/RP10) (r=0.95 over land), indicating
that RP1000/RP10 is useful as a proxy for right tail shape.

Although there is an exact, analytical solution of RP1000/
RP10 as a function of the GEV parameters (e.g., Wehner
et al. 2010), we found that the following linear equation is
more easily interpretable and provides a satisfactory approx-
imation over the range of & across the study area:

log(RP1000/RP10) = b, + b, 3)

with coefficients b, and b, estimated using standard least
squares regression. Using all land cells in the regional
model domain gives b, =2.84 and b,=0.64 with R*>=0.90.
The value of b, implies that RP1000/RP10 is less than
1.90 (greater than 1.90) for negative (positive) values of

2

HadRM3P
1.8+ J_ —— HadRMB3P at station locs.
18 —— Station obs.

1.4+ J’

1.24

14

0.8

Relative frequency

0.6

0.4

0.2+

0 . . ; —— . :

1 1.5 2 25 3 35 4 45 5
Ratio of 20 to 2-year return period precipitation

RP20/RP2 from observed precipitation at 162 stations, from the Had-
RM3P ensemble for the 162 grid cells containing the station coordi-
nates, and from the HadRM3P ensemble for all land grid cells. Note
the width of the histogram bins are different for the ensemble and the
observations to more effectively visualize the distributions. Also, for
the HadRM3P ensemble, the ratio is of the average of RP20 to the
average of RP2 of the three parameter sets

€. Equation (3) also produces a 33% increase in RP1000/
RP10 for every 0.1 increase in &. Stated another way, a dif-
ference in & from —0.15 and 0.15 corresponds to an increase
in RP1000/RP10 by a factor of 2.3. If we take £=—0.15 and
0.15 as example values on the windward and leeward side,
respectively, of a hypothetical mountain range, RP1000 is
only 23% greater than RP10 on the windward side while
RP1000 is 189% greater than RP10 on the leeward side.

3.3 Changes in extreme precipitation under global
warming

Changes in extreme precipitation vary markedly across
the western US and the spatial pattern of these changes
shows the imprint of topography. Using RP20 as an exam-
ple (Fig. 6), changes range from near zero to increases that
exceed 40%. The largest percentage increases are in the
southern Central Valley of California, Mojave Desert, and
Imperial Valley south to the Gulf of California. Other areas
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Fig.4 GEV shape parameter £ from the large ensemble for the base-
line period with parameters estimated using L-moments. Green
indicates a heavy right tail and brown indicates a bounded right tail.
Black lines show selected mountain range divides and points indicate
selected locations shown in other figures. Colors are saturated above
£>0.32 to help distinguish the spatial heterogeneity across most of
the domain

along the coastal US with high increases relative to their
surroundings include the Modoc Plateau in northeast Cali-
fornia, Willamette Valley in western Oregon, Puget Sound
in western Washington, and Columbia Plateau in eastern
Washington. In contrast, smaller increases are detected on
the much wetter windward slopes of adjacent mountains
which form the first (the coastal ranges from Washington
to California) and second (Cascades and Sierra Nevada)
major topographic barriers to the dominant southwesterly
flow directions during most major precipitation events. It
is worth noting that changes in lowlands east of the coastal
mountain ranges tend to be of similar magnitude as those
over the ocean.

However, this pattern of smaller percentage increases in
wetter climates is not present everywhere throughout the
interior. For example, the dry Idaho Snake River Valley
shows smaller increases in RP20 than do the wetter Rocky
Mountains immediately to the north and northwest.

@ Springer

The spatial patterns described above largely persist for
other extreme return periods (see RP10 and RP100 in Fig. 7),
although the percentage changes tend to increase with longer
return periods (see supplementary Fig. S6), consistent with
other results (Li et al. 2019b). The spatial similarity across
return periods indicates that these patterns are robust and
not just the result of selecting a particular return period. The
patterns become less well-defined as return periods become
longer (Fig. 7, going left to right), though we do not know
how much this reflects a real difference in the response of
the most extreme precipitation events versus simply a lower
signal-to-noise ratio. It is notable, however, that the patterns
in California and western Oregon and Washington are the
most persistent across a wide range of return intervals (at
least from RP10 to RP1000).

The association of percentage changes in extreme pre-
cipitation with orography within the first several hundreds
of kilometers from the coast is clearly evident in a set of
four latitudinal transects ranging from northern Washington
to southern California (Fig. 8, right column). Moving from
west to east, the magnitude of increase in RP20 declines near
the coastline and along the windward slope of the first topo-
graphic barrier. Past the first topographic divide, the mag-
nitude of increase rises until reaching a maximum near the
valley bottom, then declines once again along the windward
slope of the second topographic barrier. Between the coast
and the crest of the second topographic barrier, percentage
changes in RP20 have a strong inverse relationship with the
baseline RP20 (Fig. 9). Percentage changes in the dryer val-
ley bottoms are frequently more than double those in the
wetter mountain ranges. Further east, the relationship of
precipitation change with topography becomes less clearly
defined (Fig. 8, right column). The patterns described above
are similar for RP10, RP100, and RP1000, although percent-
age increase in precipitation tend to be larger at longer return
periods (supplementary Fig. S7).

Like our results, Li et al. (2019a; see their Fig. S3) and Li
et al. (2019b; see their Fig. S7) also show larger increases
in southern California than elsewhere in the western US.
However, their results show less fine-scale variability than
we present, which is likely due in part to the coarser resolu-
tion of their model (CanRCM4 at 50-km resolution) and the
spatial pooling of neighboring grid cells they do to reduce
the uncertainty from internal variability. Within California,
our results are also consistent with Huang et al. (2020), who
examined changes in precipitation from extreme atmos-
pheric rivers in California based on the 40-member ensem-
ble of ten-year long integrations from the Community Earth
System Model Large Ensemble Experiment (CESM-LENS)
and multiple nesting of a Weather Research and Forecast-
ing Model (WRF) down to 3-km resolution, with anthropo-
genic forcings comparable to ours (RCP8.5; 1996-2005 vs.
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2071-2080). They report increases of 25-50% in the Cen-
tral Valley compared to 10-30% along the western slopes of
the Sierra Nevada, which are similar to the ranges in Fig. 8
(Region 4). As in Huang et al. (2020), we also found larger
percentage increases in the southern Central Valley than in
the northern Central Valley (Figs. 6 and 7).

These differential changes across space are statistically
significant and the statistical power of a~ 100-member
ensemble is evident in Fig. 8. (Note: Unlike other figures
that show averages of the changes from the three parameteri-
zations, Fig. 8 shows results from only one parameter set to
isolate the effect of IC ensemble size. Differences between
parameter sets generally fall within the sampling noise so
are not discussed here.) Based on width of the bootstrapped

Return period (years)

95% confidence intervals (e.g., Rupp et al. 2017), we can
detect changes from baseline in excess of about + 5% using
the large ensemble, though the width of confidence intervals
varies somewhat in space. More importantly for this study
of spatial patterns, we can similarly detect significant differ-
ences in response across space of at least+5%. In contrast,
ten ensemble members would only detect changes greater
than about+ 15 to 20%, whereas detection is effectively
hopeless with a single ensemble member. It is important
to note that the number of ensemble members required to
achieve a certain confidence interval pertains to our setup
without dynamic ocean coupling and we expect intervals
would be wider in coupled model experiments and narrower
in pseudo-global warming experiments.
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Fig.6 (Left panel) Empirical 20-year return period water year maximum daily precipitation (RP20) for the baseline period. (Right panel) Per-
centage change in RP20 between the baseline and future (42.26 °C) period. In both panels the average from the three parameter sets is shown

Changes in the shape of the extreme value distribution
also show distinct non-random spatial patterns (Fig. 10;
see supplementary Fig. S8 for results based on ML), with
changes in & ranging from —0.09 to+ 0.12 across the model
domain. Decreases in &, indicative of tails becoming lighter,
occur east of the Coast Mountains of BC, the Cascades, and
along the spine of the Sierra Nevada. In the case of the Cas-
cades, decreases extend for several hundred kilometers east
of the topographic divide. Other areas with decreases are
not so clearly associated with the leeward side of a major
north—south mountain range. These include the decreases
west of the divide of the North Cascades where they extend
into Canada, the Snake River Plain in Idaho, and the western
part of the Rocky Mountains in central Idaho. Increases in
&, indicative of tails becoming heavier, cover more of the
domain than do decreases. The largest increases occur west
of the Coast Mountains of BC, west of the Cascades, and
in the Central Valley of California east of the Peninsular
Ranges of Baja California.
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We assume that the larger changes in the shape parameter
are primarily a response to the increased anthropogenic forc-
ing between the baseline and future periods, but the change
in the shape parameter could also be affected by different
degrees of low-frequency non-stationarity within the two
periods. The future period is subjected to a higher rate of
increase in anthropogenic forcing within its 29-year period
than is the baseline period, so it is conceivable that this dif-
ference alone could broaden the distribution in the future
period, resulting in a larger & (i.e., more positive or less
negative). As a test, we first calculated the land pixel linear
trends in water year maximum daily precipitation within the
baseline and future periods (supplementary Fig. S9). We
reasoned that a higher absolute value of a linear trend with a
period (i.e., greater non-stationarity) would lead to a broader
distribution and possibly larger & and, therefore, the absolute
value of the future trend minus the absolute value of the
baseline trend (Fig. S9) would be positively correlated with
the change in ¢ if within-period non-stationarity were an
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Fig.7 Change (%) in the empirical 10 (left), 100 (center) and 1000-
year (right panel) return period water year maximum daily precipita-
tion (RP10, RP100, and RP1000). Black lines show selected moun-
tain range divides and points indicate selected locations shown in

important factor. We found no spatial correlation (r=0.03)
between this difference of absolute values of the trends and
the change in &, implying that differences in non-stationarity
between the periods have a negligible influence on the spa-
tial pattern of between-period changes in €.

4 Discussion
4.1 Heaviness of the tail

The first main result of our analysis is the windward/leeward
spatial structure of the shape of the distribution tail arising
in the large ensemble, particularly apparent along the west
coast of the US and Canada. In the interior of the US, the
windward/leeward pattern is less apparent and heavy tails
dominate. In the interior, extreme precipitation events are
less centered on the winter months when stratiform systems
dominate and are more distributed across warmer months
(supplementary Fig. S10) where convection plays a larger
role and the direction of moisture transport during extreme
events is not as singularly oriented (i.e., westerly and south-
westerly) throughout the year (Kunkel et al. 1999; Bracken
et al. 2015).

There are few similar studies against which to compare
our findings for the western US. Ben Alaya et al. (2020a,
b) used a smaller (35-member) ensemble from a regional

-115 -110 -125 -120 -115 -110

0 25 -60 -30 0 30 60

other figures. The average of the return period values from the three
parameterizations is shown. Note the color scales are different for
each panel

climate model to estimate the GEV shape parameter & across
North America. The coarser resolution of their climate
model (0.44°) and the greater spatial extent of their analysis
domain reveal less spatial detail (see their Fig. 1) but a rela-
tionship between & and topography is still visible. For exam-
ple, similar to our results, negative values of £ are prominent
west of the Sierra Nevada, Cascade, and Coast Mountains
(BC) while the largest values of & occur on Baja Califor-
nia and surroundings. Fix et al. (2018), using a 30-member
ensemble of 1°-resolution global climate runs, also show
negative values of £ in California (except for southernmost
end), western Oregon, and most of Washington and Idaho,
with mainly positive values elsewhere in the western US.
However, neither Fix et al. (2018) nor Ben Alaya et al.
(2020a, b) discuss the spatial pattern of &, or its causes,
across the western US.

Using daily observations from a large number of stations
around the globe, Ragulina and Reitan (2017) found a sta-
tistical relationship between & and elevation. However, they
only used 17 stations in the western US (median & of 0.07),
where they did not find statistical evidence against simply
assuming a regionally constant value of &. Their findings
generally support prior studies arguing for applying a posi-
tive value of & globally (Papalexiou and Koutsoyiannis 2013)
if not even a universal value (of roughly 0.1) (Koutsoyian-
nis 2004; Wilson and Toumi 2005), given the difficulty in
constraining & for any single station.
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Fig.8 (Left column) Empirical 20-year return period water year
maximum daily precipitation (RP20) for the baseline and future
(4+2.26 °C) period from simulations using parameter set #1 along the
four longitudinal transects shown in Fig. 1. (Right column) Percent-
age change from the baseline to the future period along the same four

In contrast, Dyrrdal et al. (2016), using observation-based
gridded data, found a tendency for negative values of & to
occur in wetter regions of Norway, typically the windward

@ Springer

transects (dark line). Dark, medium, and light blue shading show the
95% confidence intervals using 1, 10, and~100 ensemble members
per year, respectively. Also shown is elevation along each transect.
Note that the precipitation and elevation y-axis ranges differ for each
transect

(west) side of the Norwegian mountain range. They sug-
gested the influence of orographic enhancement as a mecha-
nistic argument for the spatially varying & across Norway.
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Fig.9 Change (%) in the 20-year return period water year maximum
daily precipitation (RP20) vs. the baseline RP20 from the large-
ensemble simulations. Each symbol represents a grid cell in one of
the four regions outlined in Fig. 1: a Coast through the Imperial Val-
ley, b coast to the Sierra Nevada, ¢ coast to Oregon Cascades, and d
coast to Northern Cascades. Symbols are color-coded by their relative

Given that extremes in orographic enhancement are influ-
enced by the wind speed orthogonal to the mountain range,
it follows that the shape of the distribution of extremes wind
speeds will be a control on E. The relative roles of extremes
in wind speed and water vapor in determining the shape of
the precipitation tail merit further study.

In a global study of over 22,000 station records,
Cavanaugh et al. (2015) concluded that mixing of different
precipitation types—i.e., those generated by different types

distance eastward from the coast in each region, such that blues gen-
erally represent the coastal mountains, yellows the valleys to the east
of the coastal mountains, and reds the mountain range or hills to the
east of the valleys. Values shown are the average of the return levels
from the three parameter sets

of weather systems—produces heavier power-law tails. They
highlight California as an example, attributing the lighter
(more exponential) tails there to the dominance of one pre-
cipitation type (frontal systems). They also ascribe heavy
tails in winter to the Cascades, which they attribute to a mix-
ing of systems. This latter conclusion is questionable, how-
ever, given the dearth of long-term stations in the mountains
and very low signal-to-noise obscuring differences across
distances less than 1000 km. We also find generally heavier
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Fig. 10 Change in GEV shape parameter (future—baseline) with
parameters estimated using L-moments. Green indicates a change
towards a heavier right tail and brown indicates a change toward a
lighter or bounded right tail. Black lines indicate selected mountain
range divides and points indicated selected locations shown in other
figures. Colors are saturated above 0.08 to help distinguish the spatial
heterogeneity across most of the domain

tails in the interior west where precipitation types are more
mixed, so repeating our analysis by season to help isolate the
dominate precipitation type may yield insight.

4.2 Spatial variability in changes of extreme
precipitation

Our second main result is the spatial structure of the percent-
age change in extreme precipitation under global warming.
This spatial structure is important because it affects where
runoff generation may be more impacted. As an example,
discharge in large West Coast rivers, such as the Willamette
River in western Oregon, derive most of their flood waters
from the windward side of the major north—south oriented
mountain ranges. Projected percentage changes in extreme
precipitation are lower on these windward slopes than in sur-
rounding areas, suggesting the effects of changing intensity
will have a smaller effect on such rivers. In smaller lowland
basins, including those with drainage from the leeward sides
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of coastal mountains, and in most urban areas, percentage
increases in precipitation are much larger, implying a larger
increase in risk of localized flooding in such areas. These
impacts, however, do not consider the effects of changing
precipitation phase from snow to rain, which are expected
to contribute greatly to increases in extreme river discharge
in the region (Chegwidden et al. 2020).

The pattern of differential windward-leeward changes
from the west coast through the first and second major
roughly north-to-south oriented topographic barriers is
consistent with results from idealized experiments (Siler
and Roe 2014; Shi and Durran 2015, 2016) and experi-
ments using the actual topography at fine (3-km) resolution
(Huang et al. 2020). Several mechanisms may contribute to
this result. For example, Siler and Roe (2014) argue that,
due to simple thermodynamics, the pattern of windward
condensation will shift upward with warming. This may in
turn contribute to a downstream shift in the spatial pattern of
surface precipitation, resulting in larger fractional increases
in the lee of a mountain range. In addition, other studies have
identified changes in mountain-wave dynamics as a potential
reason for weak changes in precipitation on windward slopes
(Shi and Durran 2015). More complex patterns of change
in the interior may reflect a more diverse range of moisture
sources and flow directions. Further research is needed to
fully understand the spatial pattern of extreme precipitation
change and its governing mechanisms.

Changes in the GEV shape parameter also show non-ran-
dom structure, with large variations in changes in & across
relatively short distances (e.g., from west to east across
the Cascades divide). With projected changes in & ranging
mainly from about —0.05 to+ 0.1, the impacts are conse-
quential. As noted above, a 0.1 increase in & implies about
a 33% increase in RP1000:10. Also, the spatial pattern of
changes in & (Fig. 10) bears resemblance to the percentage
change in RP100 (Fig. 7), suggesting that the changes in &
contribute in part to the spatial pattern of changes in extreme
precipitation. Spatially, changes in & are positively correlated
(r=0.38) with percentage changes in RP100.

The simulated changes in £ under global warming con-
tradict Wilson and Toumi (2005) who, based on theoretical
reasoning and an analysis of long-term records around the
globe, argued that the shape of tail should be largely unaf-
fected by climate change. Our findings, along with others
showing a projected increase in heavy-tailed distributions
over northeastern North America (Innocenti et al. 2019),
indicate that the dynamic mechanisms driving projected
changes in tail shape merit further investigation.

One limitation of this study is that it relies on just a single
climate model (albeit with three different sets of parameteri-
zations). This model generally does well at representing the
spatial pattern of precipitation across the western US, but it
is not without biases. In particular, it tends to overestimate
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the degree to which precipitation is enhanced by orography,
especially in the Cascades and Sierra Nevada. We do not
know whether or how this bias in orographic precipitation
might impact the spatial pattern of £ and its response to
global warming. Additional simulations with a wider range
of climate models and parameterizations would be needed
to evaluate the robustness of our results.

5 Conclusions

Results from a large ensemble of dynamically downscaled
climate simulations reveals non-random spatial variability in
the heaviness of the tail of the distribution of extreme daily
precipitation. This variability has a very distinct windward
vs. leeward pattern along the coastal mountains, the Sierra
Nevada, and Cascades. This pattern is also present, but less
strongly defined, in much of the Rocky Mountains. As char-
acterized by the GEV shape parameter &, tails tend to be
bounded (€ <0) on windward slopes and power-law (&> 0)
elsewhere.

Anthropogenic forcing increases extreme precipitation
(i.e., the 10 to 1000-year return interval intensity) across
the western US, but the amount of increase varies from
near zero to more than 40% at the grid cell scale, using the
20-year return period as an example. Nearer to the coast,
the largest percentage increases tend to occur leeward of
mountain ranges, but this pattern is not consistent through-
out the interior west, where the direction of vapor transport
is less consistent. At least a portion of the increase appears
to be enhanced by a shift towards a heavier tail in most of
the western US but dampened by a shift towards a less heavy
tail in some areas (e.g., much of eastern Oregon and Wash-
ington, the Sierra Nevada, and Coast Mountains of BC).

The 25-km resolution climate model we used param-
eterizes convection, but general consistency of results in
changes in extreme perception in California using a much
higher resolution convective-permitting model (Huang et al.
2020) suggests much can still be learned by running coarser
models, particularly where orography is important. With
coarser models, the ability to generate very large ensembles
becomes more feasible, so conducting both lower-resolution/
large ensemble experiments and higher-resolution/small
ensemble experiments can yield complementary insights
(Lopez-Cantu et al. 2020). Computational requirements can
be reduced as well by using, for example, pooling of neigh-
boring grid cells (Li et al. 2019b) or pattern recognition
(Wills et al. 2020) to extract forced responses from internal
variability using smaller ensembles.

We report mainly on the spatial variability of extreme
precipitation and its response to~2 °C warming. While we
note some potential mechanisms that might contribute to this
response, further research is needed to better understand its

causes. Methods to decompose responses into their thermo-
dynamic and dynamic causes (Li et al. 2019a; Ben Alaya
et al. 2020b), for example, may shed light on how mountains
modulate the shape of the precipitation distribution and its
response to global warming.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00382-022-06214-3.
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