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Abstract
Extreme precipitation events are expected to increase in magnitude in response to global warming, but the magnitude of the 
forced response may vary considerably across distances of ~ 100 km or less. To examine the spatial variability of extreme pre-
cipitation and its sensitivity to global warming with high statistical certainty, we use a large (16,980 years), initial-condition 
ensemble of dynamically downscaled global climate model simulations. Under approximately 2 °C of global warming above 
a recent baseline period, we find large variability in the change (0 to > 60%) of the magnitude of very rare events (from 10 
to 1000-year return period values of annual maxima of daily precipitation) across the western United States. Western (and 
predominantly windward) slopes of coastal ranges, the Cascades, and the Sierra Nevada typically show smaller increases in 
extreme precipitation than eastern slopes and bordering valleys and plateaus, but this pattern is less evident in the continental 
interior. Using the generalized extreme value shape parameter to characterize the tail of the precipitation distribution (light 
to heavy tail), we find that heavy tails dominate across the study region, but light tails are common on the western slopes of 
mountain ranges. The majority of the region shows a tendency toward heavier tails under warming, though some regions, 
such as plateaus of eastern Oregon and Washington, and the crest of the Sierra Nevada, show a lightening of tails. Spatially, 
changes in long return-period precipitation amounts appear to partially result from changes in the shape of the tail of the 
distribution.

Keywords  Extreme precipitation · Single model initial condition large ensemble (SMILE) · Generalized extreme value · 
Shape parameter · Orography · Climate change · Western North America

1  Introduction

Much of the storm water infrastructure in the US is built to 
withstand runoff generated by precipitation amounts that, in 
a stable climate, would occur only once every 10–100 years 

on average (Lopez-Cantu and Samaras 2018), while dams 
are designed to withstand much rarer events (Hossain et al. 
2012). Quantifying the anthropogenic influence on extreme 
precipitation events at local-to-basin scales is therefore criti-
cal for understanding future flood hazard and its implications 
for water infrastructure.

Features of the landscape modulate the large-scale 
response of the hydrological cycle to anthropogenic green-
house gas forcing (Diffenbaugh et al. 2005), resulting in spa-
tially heterogeneous responses at meso- and finer scales in 
temperature (Rupp et al. 2017), winds (Letcher and Minder 
2015, 2017), and precipitation intensity (Wallace and Minder 
2021). The importance of topographic gradients to precipi-
tation, and the societal relevance of extreme precipitation 
events, has long motivated the study of forced changes in 
precipitation extremes by using global climate model output 
downscaled with finer resolution regional climate models 
that more accurately represent a region’s topography. Many 
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studies have been done around the globe, but, for brevity, 
as examples we list here those whose geographical focus 
included western United States (US), and still only a subset 
of those: Diffenbaugh et al. (2005), Dominguez et al. (2012), 
Singh et al. (2013), Wehner (2013), Ashfaq et al. (2016), 
Huang and Ullrich (2017), Prein et al. (2017), Li et al. 
(2019a), Huang et al. (2020), Lopez-Cantu et al. (2020), 
Wrzesien and Pavelsky (2020), Mahoney et al. (2021).

Overall, studies show an apparent influence of mountains 
on the spatial pattern of changes in extreme precipitation 
over the western US (Singh et al. 2013; Prein et al. 2017; 
Huang et al. 2020; Mahoney et al. 2021). In some more 
recent studies (Huang et al. 2020; Mahoney et al. 2021), 
a general pattern emerges of larger percentage increases 
(though not necessarily larger absolute increases) in the lee-
ward (eastward) side of major mountain ranges and smaller 
percentage increases on the windward (westward) side. This 
difference is often most conspicuous between the east and 
west sides of the Cascades in Washington and Oregon and 
the Sierra Nevada in California, north–south oriented moun-
tain ranges that run roughly perpendicular to dominant win-
ter wind directions.

However, attributing apparent changes in extreme pre-
cipitation to the imposed anthropogenic forcing in climate 
model experiments is hindered by the inherent internal vari-
ability of the climate system and by how well climate models 
simulate this internal variability (Deser et al. 2014; Poschlod 
and Ludwig 2021). Standard comparisons of, for example, 
two 30-year integrations (one reference state and one future 
state) from a downscaled global climate model poorly distin-
guish signal from noise. Examining the mean response from 
multi-model ensemble experiments (Dominguez et al. 2012; 
Wehner 2013; Ashfaq et al. 2016; Mahoney et al. 2021) 
partially addresses the problem by reducing the effect of 
internal variability and has the added benefit of likely cance-
ling some model errors. However, averaging across models 
may smooth over the very feature of interest here, which 
is the finer-scale spatial heterogeneity of forced response 
in extreme precipitation. This smoothing may arise from 
different representations of the land surface where spatial 
resolutions, surface parameters (e.g., albedo or roughness), 
and land-surface process representations differ across mod-
els. Even where resolutions are similar, regional models may 
use different grid configurations. Moreover, the location of 
key features of the atmospheric circulation (e.g., jet stream) 
that affect where extreme precipitation events occur, as well 
as how these features respond to forcing, may vary across 
models.

Pseudo-global warming experiments offer an alterna-
tive method for improving signal to noise (Prein et  al. 
2017; Wrzesien and Pavelsky 2020). In such experiments, 
a future climate is generated by adding a mean climate per-
turbation to the regional boundary conditions of a reference 

(historical) integration. This perturbation is based on 
expected changes in the mean conditions predicted by global 
climate model runs. Constraining the boundary conditions 
of the future integration to that of the reference integration 
(albeit with a perturbation) greatly reduces the influence of 
interval variability. The downside of this approach is that 
it does not capture potential changes in storm dynamics, 
including shifts in the location or intensity of the midlatitude 
storm tracks, which could have a large impact on the spatial 
change of precipitation extremes.

An obvious way to improve signal-to-noise is to gener-
ate a single-model initial-condition (IC) large ensemble 
(SMILE), which is generated by running many simulations 
of the same experiment repeatedly but with a different ini-
tial state for each simulation. However, as the resolution of 
regional climate models becomes finer, the computational 
requirements become burdensome. For this reason, early 
studies on extremes using IC ensembles had relatively small 
ensemble sizes (e.g., five members in Singh et al. 2013), 
but experiments using ~ 50-member ensembles are rapidly 
becoming more common (Scinocca et al. 2016; Innocenti 
et al. 2019; Wood and Ludwig 2020; Huang et al. 2020; 
Singh et al. 2021).

Besides differences in experimental designs, a com-
parison of studies is complicated by the varied definition 
of “extreme”. Most studies define “extreme” as the 95th or 
99th percentile of daily precipitation, sometimes stratified by 
season (Diffenbaugh et al. 2005; Singh et al. 2013; Ashfaq 
et al. 2016; Wrzesien and Pavelsky 2020; Mahoney et al. 
2021). However, measured against precipitation events that 
have sudden and large impacts on the environment and for 
the design of flood management infrastructure, such levels 
of precipitation would not typically be considered extreme. 
Uniquely, Huang and Ullrich (2017) chose a fixed threshold 
amount (40 mm day−1) but the level of impact would vary 
greatly across space, so it is difficult to evaluate across a 
region as spatially heterogeneous as the western US. Fewer 
studies consider more extreme precipitation, such as the 
20, 50-year (Dominguez et al. 2012; Wehner 2013; Li et al. 
2019a), or even 100-year (Lopez-Cantu et al. 2020) return 
period of annual maximum of daily precipitation amounts. 
Yet, the “100-year” standard is widely used for more criti-
cal storm water infrastructure (Lopez-Cantu and Samaras 
2018; Wright et al. 2019) while more rare events are of 
interest and concern beyond just storm water infrastructure 
considerations.

Studies of changes to rare extreme precipitation intensi-
ties such as Dominguez et al. (2012), Wehner (2013), and 
Lopez-Cantu et al. (2020), used fitted theoretical distri-
butions, namely the generalized extreme value (GEV) or 
Pareto, to estimate return period values, sometimes extrapo-
lating to return periods beyond the length of the model inte-
gration (Dominguez et al. 2012; Lopez-Cantu et al. 2020). 
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However, there is some danger in using such theoretical 
distributions to estimate values for return periods that are 
longer than, or even of roughly the same length as, the model 
integration itself: The parameter that controls the shape of 
the distribution and, therefore, the heaviness of the right tail, 
is poorly constrained in sample sizes typically available for 
many climate modeling experiments (Papalexiou and Kout-
soyiannis 2013). Moreover, the theoretical distributions may 
provide a poor fit in some locations (Wehner 2013). Because 
of the large uncertainty due to small sample size, some stud-
ies do not allow the shape parameter to change under addi-
tional forcing (e.g., Brown et al. 2014; Fix et al. 2018), while 
others do (Dominguez et al. 2012; Wehner 2013; Lopez-
Cantu et al. 2020; Ban et al. 2020).

To examine very extreme precipitation and its sensitivity 
to climate change, we use a uniquely large (16,980 years) 
IC ensemble of dynamically downscaled global climate 
model simulations. By driving a regional climate model with 
a large global model ensemble, we include the effects of 
changing large-scale atmospheric variability and not just the 
changing mean-state climatology. The size of the ensemble 
permits examining precipitation amounts, and their changes 
under approximately 2 °C of global warming above a recent 
baseline period, during very rare events (e.g., 100-year 
return interval and even higher of annual maxima) with 
higher statistical certainty than previously done. Moreover, 
because the regional model resolves key mountain ranges of 
the western US, we examine the spatial pattern of changes 
in relation to topography. We give special attention to the 
GEV shape parameter, because of its utility as an index of 
the heaviness of the distribution tail and of its relevance to 
water infrastructure design.

2 � Methods

Precipitation was simulated with the Hadley Centre 
Regional Climate Model (HadRM3P; Jones et al. 2003) at 
0.22° × 0.22° horizontal resolution nested within the Hadley 
Centre Atmospheric Model (HadAM3P; Gordon et al. 2000) 
at 1.875° × 1.25° horizontal resolution with updated global 
and regional parameters (Hawkins et al. 2019; Li et al. 
2019c). Both the regional and global model use the UK Met 
Office Surface Exchange Scheme 2 (MOSES2; Essery and 
Clark 2003) for the land surface. The grid cell size of the 
regional model (~ 25 km) is not only fine enough to resolve 
major mountain ranges but also the smaller coastal ranges 
(Fig. 1) which are some of the rainiest locations in the US.

It is important to note that the HadAM-RM3P pairing 
is not coupled to a dynamic ocean model, and sea surface 
temperature (SST) and sea ice are prescribed as boundary 
conditions. Excluding coupling can lead to reduced variance 
in the precipitation distribution and thus bias the change 

signal in an extreme value (e.g., Fischer et al. 2018). Still, 
uncoupled models are valuable tools, which do not suffer 
from problematic biases in sea surface temperatures and are 
less computationally demanding (He and Soden 2016a, b), 
the latter being a critical feature for the model simulations 
used in this study. Furthermore, Li et al. (2014) showed 
coupling had marginal effect on changes in seasonal mean 
precipitation over California while Dong et al. (2020) found 
little effect on changes in extreme winter or summer seasonal 
precipitation over North America.

We used two large ensembles of simulations. The first 
represents baseline climate conditions and the second rep-
resents a future wherein the mean global surface tempera-
ture is on average 2.26 °C warmer than the baseline. Both 
ensembles span 29 years (baseline: October 1987–December 
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Fig. 1   Surface elevation in study area within the HadRM3P domain 
with features discussed in the text. Red dashed lines show the four 
transects, black-outlined polygons show the four regions identified by 
numbers “1” through “4”, solid dots show selected locations of major 
cities and mountains, dotted lines show selected mountain range 
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2016; future: October 2047–December 2076). Transient con-
centrations of greenhouse gases, aerosols, and chemically 
active gases were based on observed values before 2006 and 
on Representative Concentration Pathway 8.5 (Meinshausen 
et al. 2011) from 2006 forward. Operational Sea Surface 
Temperature and Sea Ice Analysis (OSTIA; Donlon et al. 
2012) provided the transient SSTs and sea ice fractions for 
the baseline period. For the future period, SSTs were gener-
ated using a “delta” (Δ) method: Smoothed transient changes 
in modeled SSTs (ΔSSTs) from the historical to the future 
period were added to the OSTIA SSTs. The ΔSSTs, and 
associated changes in sea ice fraction deltas, were derived 
from the global model CESM1-CAM5, following Hawkins 
et al. (2019). See, also, Ch. 3 in Hawkins (2019) for addi-
tional details on the modeling set-up, including spin-up and 
updates to the HadRM3P soil parameters.

Simulations were done on the volunteer computing plat-
form weather@home (Massey et al. 2015; Guillod et al. 
2017) configured for western North America (Mote et al. 
2016). To facilitate parallel processing, simulations started 
in September of each year from 1986 to 2014 and from 2045 
to 2074, with each simulation spanning a 28-month block. 
We used only the second complete water year (WY: Octo-
ber–September) from each simulation.

Simulations were performed with three sets of model 
parameters with altered values for parameters affecting 
moisture fluxes, cloud formation, and precipitation (See 
Table S1). These values were identified as among the best 
performing parameterizations in Li et al. (2019c), selected to 
minimize biases in regional seasonal mean temperature and 
precipitation while still attempting to account for parameter 
uncertainty by spanning a region of parameter space. Inter-
ested readers are referred to Li et al. (2019c) and Hawkins 
et al. (2019) for the detailed parameter improvement pro-
cess. The three parameter sets were not chosen with a priori 
expectations of how they might lead to differences in daily 
precipitation extremes.

The IC ensembles were created by perturbing the global 
model’s potential temperature field when initializing the 
simulation. For the baseline period, 100 IC ensemble mem-
bers were generated per parameter set (300 members in total) 
per 28-month block. For the future period, 100 IC ensemble 
members per parameter set were completed per 28-month 
block except for three blocks ending in WYs 2050, 2060, 
and 2070 that had a different number of ensemble mem-
bers per parameter set, and all fewer than 100. Therefore, 
to balance the number of ensemble members per parameter 
set, we used a subset of the future runs for the three blocks 
ending in WYs 2050, 2060, and 2070. For each year and 
each parameter set, we used only the number of ensemble 
members equal to the number of runs for the parameter set 
that had the fewest runs, resulting in 81, 76, and 73 ensemble 
members per parameter set for WYs 2050, 2060, and 2070, 

and 100 ensemble members for all other WYs. The total 
sample consisted of 2,830 WYs per parameter set (or 8,490 
WYs in total) for the future period.

To have an equal the number of ensemble members in the 
baseline and future periods, we used only a subset of base-
line runs consisting of 2830 WYs per parameter set. Spe-
cifically, the selection consisted of 81, 76, and 73 ensemble 
members per parameter set for WYs 1990, 2000, and 2010, 
and 100 ensemble members for all other WYs. Setting the 
number of ensemble members in WYs 1990, 2000, and 2010 
to be the same as those in 2050, 2060, and 2070 is justified 
based on how future SSTs are generated: e.g., SSTs in WY 
2050 are derived from observed SSTs in WY 1990 plus an 
estimated anthropogenic response.

Simulated 24-h precipitation accumulations were 
archived at a fixed daily time step (00 to 24 UTC). For each 
ensemble member, we extracted the WY maximum daily 
precipitation (R) and estimated the value of R at various 
return periods ranging from 2 to 1000 years (or, equivalently, 
at exceedance probabilities ranging from 0.5 to 0.001) for 
the baseline and future periods separately. Because our sam-
ple size was large (n = 2830), we first estimated the return 
period values empirically.

We compared HadRM3P return period values to those 
from the 1/24°-resolution gridded daily precipitation from 
the PRISM Climate Group. However, because the record 
length of the gridded PRISM data is relatively short 
(41 years) and because the spatial interpolation is guided by 
the climatological (30-year) averages of monthly precipita-
tion (Daly et al. 2008), the PRISM data are not well suited 
for examining the shape of the far-right tail. Long-term sta-
tion records, despite their much-reduced spatial coverage, 
are more appropriate for examining properties of the tails of 
precipitation distributions. Therefore, we also acquired daily 
precipitation station data from the US National Weather Ser-
vice (NWS) Cooperative Observer Program (COOP; Wuertz 
et al. 2018) for all stations in the conterminous US west of 
−109 °E with records longer than 100 years (162 stations; 
see Table S2 for a list of the stations). For comparing right-
tail heaviness of modeled with observed precipitation, we 
used a non-parametric, dimensionless statistic: the ratio of 
the 20-year return period WY maximum daily precipita-
tion (RP20) to the 2-year return period WY maximum daily 
precipitation (RP2). This ratio was calculated directly from 
empirical quantile estimates. We chose RP20 for the numer-
ator to achieve a robust statistic from the observations after 
a visual inspection of the return period curves for the station 
observations showed RP values above RP20 to be noticeably 
impacted by sampling noise (see supplementary Fig. S1).

Despite the large sample size of our simulations, it was 
still useful to characterize the frequency distribution of R 
using a theoretical distribution, in part to compare with other 
studies. The generalized extreme value (GEV) distribution is 
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commonly used for block maxima precipitation. The GEV 
cumulative distribution G for variable x is

where μ, σ, and ξ are the location, scale, and shape param-
eters, respectively. Our interest is primarily in the shape 
parameter, which determines the heaviness of the right tail of 
the distribution (e.g., Papalexiou and Koutsoyiannis 2013). 
When ξ = 0, the right tail of the distribution is asymptotically 
exponential. Values of ξ > 0 produce heavy right tails (i.e., 
of power-law type without all moments finite), whereas ξ < 0 
leads to bounded right tails (i.e., G reaches 1 at finite x).

To obtain dimensionless location and scale parameters 
that we could compare across all stations, we scaled precipi-
tation by the mean of the WY maximum daily precipitation 
R , i.e., x = R∕R (Koutsoyiannis 2004). The shape parameter 
is unaffected by the scaling.

Because GEV parameters have been shown to be sensitive 
to estimation method (e.g., Koutsoyiannis 2004), we fitted 
the GEV distribution using both an L-moments and a maxi-
mum likelihood (ML) method. Both methods were applied 
using the R package extRemes (Gilleland and Katz 2016). 
We also tested a generalized ML and a Bayesian method 
(both available in extRemes) but both were much slower and 
more susceptible to non-convergence, which were important 
factors given the large sample size and large number of loca-
tions (11,700 grid cells).

Various measures exist of how well GEV distributions fit 
observations (e.g., Laio 2004) but we wanted a direct meas-
ure of bias in the fitted GEV distribution along the far-right 
tail of the climate model data, particularly spanning return 
periods of 100–1000 years. We quantified right-tail bias as

where x denotes all n simulated precipitation amounts that 
have empirically estimated return periods between 100 and 
1000 years, x̂ are the GEV-predicted precipitation amounts 
at each of the same empirically estimated return periods, and 
i indexes the return periods.

3 � Results

3.1 � Comparison of large ensemble 
with observations

The spatial pattern of extreme precipitation in the west-
ern US is strongly influenced by the topography, as illus-
trated by the 10-year return period WY maximum daily 
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precipitation (RP10) in Fig. 2. Higher precipitation on the 
western and southwestern sides of mountains results from 
orographic enhancement and highest moisture transport 
coinciding with primarily westerly and southwesterly flow 
(e.g., Bracken et al. 2015). HadRM3P successfully repro-
duces the observed spatial pattern, albeit more coarsely due 
to the model’s ~ 25-km spatial resolution. However, Had-
RM3P tends to generate too much extreme precipitation on 
the windward side of mountain ranges (Fig. 2). The bias is 
particularly high in the Sierra Nevada of California. This 
excessive orographic enhancement is also evident in the wet 
season (October through April) mean precipitation (Ch. 3 in 
Hawkins 2019; Li et al. 2015) so it is not simply a feature of 
extreme precipitation events.

None of the three model parameterizations produced 
a distinctly lower bias than the others, nor did they show 
distinctly different spatial patterns (not shown). For these 
reasons, we present each statistic (e.g., the RP20) as an aver-
age of the three parameterizations, unless otherwise noted.

The simulated RP20/RP2 ratio shows a non-random spa-
tial pattern associated with major mountain ranges (Fig. 3). 
Lower values of RP20/RP2 are evident on the western side 
of, among others, the Sierra Nevada and Cascades Ranges, 
Rocky Mountains in both US and Canada, and Coast Moun-
tains of British Columbia (BC), where values tend to be 
between 1.5 and 2. The highest values by far are on the lee-
ward side of the Peninsular Ranges of Baja California, and 
eastward, where values are mostly between 3 and 5. Unfor-
tunately, the locations and quantity of the stations do not 
permit a thorough comparison with the observed spatial pat-
tern of RP20/RP2 (Fig. 3). However, simulated and observed 
RP20/RP2 values are positively and moderately correlated in 
space (Pearson correlation coefficient r = 0.49). Considering 
only grid cells containing station locations, median RP20/
RP2 is 1.98 and 1.87 in the simulations and observations, 
respectively. 95% of simulated values fall within 1.55 and 
2.91, compared to 1.55 and 2.47 in the observations.

3.2 � Spatial patterns in right tail shape

The GEV shape parameter derived from the large ensem-
ble is strongly associated with the windward and leeward 
aspects of major mountains, especially in those mountain 
ranges nearer the Pacific Ocean (see Fig. 4 with parameters 
estimated using L-moments). Negative values of ξ are most 
prominent along the windward side of the first two major 
orographic barriers to westerly/southwesterly flow, indicat-
ing that the tail of the distribution is bounded in these loca-
tions. East of these barriers, positive values (i.e., heavy tails) 
dominate, though negative values are still present along 
some western slopes of the Rocky Mountains. The largest 
positive values of ξ (those > 0.3) mostly occur on the leeward 
(eastward) side of the Peninsular Ranges of Baja California. 
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Compared to L-moments, ML estimates yet higher values 
of ξ in this region, (supplementary Fig. S2). Elsewhere, the 
spatial patterns of ξ produced from L-moments and ML are 
very similar.

In general, ML results in higher bias in the far-right tail 
compared to L-moments. In and around the Gulf of Cali-
fornia region in particular, the ML-fitted GEV largely over-
predicts the empirical values (see supplementary Fig. S3), 
so the high values of ξ over that region poorly characterize 
the actual heaviness of the right tail. Wehner (2013) and 
Ben Alaya et al. (2020a, b) also noted a poor fit of the GEV 
to simulations of the NARCCAP regional models and the 
Canadian Regional Climate Model (CanRCM4), respec-
tively, around the region of Baja California.

ML also resulted in larger differences in bias between 
the baseline and future periods (see supplementary Fig. 
S4). Given that substantial differences in bias between 
periods would reduce confidence in estimates of the 
shape parameter’s response to anthropogenic forcing, and 
that L-moments results in lower tail bias overall, we use 

L-moments estimates for the remainder of this analysis. Key 
figures showing results based on ML are provided in the 
Supplementary Information for comparison.

For the simulated precipitation, Fig. 5 provides example 
return period curves for six locations marked in Fig. 4 (see 
supplementary Fig. S5 for curves for the other 12 locations 
and Table S3 for a list of all 18 locations). Left column 
panels show windward aspect locations in (top to bottom) 
the Washington Cascades, Oregon Coast Range, and Sierra 
Nevada, all with ξ < 0. Right column panels show locations 
of major cities in the Willamette Valley of Oregon, Central 
Valley of California, and Salt River Valley in Arizona. These 
three valley locations, like most places in the study domain, 
have ξ > 0 and show no visual indication of asymptotically 
approaching a maximum precipitation value even by return 
intervals of a few thousand years.

How the variability across space in ξ seen in Fig. 4 mani-
fests as variability in very extreme return period values 
may not be intuitive, so we compared ξ to a statistic whose 
hydrological relevance is more directly understandable: the 
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Fig. 2   Empirical 10-year return period for water year (WY) maxi-
mum daily precipitation (RP10) from (left panel) the 1/24°-resolution 
PRISM dataset for WYs 1982–2020 and (right panel) the 0.22°-res-
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ratio of the 1000-year return period water year maximum 
daily precipitation (RP1000) to the 10-year return period 
water year maximum daily precipitation (RP10), or RP1000/
RP10. There is a strong spatial correlation between ξ and the 
empirical log(RP1000/RP10) (r = 0.95 over land), indicating 
that RP1000/RP10 is useful as a proxy for right tail shape.

Although there is an exact, analytical solution of RP1000/
RP10 as a function of the GEV parameters (e.g., Wehner 
et al. 2010), we found that the following linear equation is 
more easily interpretable and provides a satisfactory approx-
imation over the range of ξ across the study area:

with coefficients b0 and b1 estimated using standard least 
squares regression. Using all land cells in the regional 
model domain gives b1 = 2.84 and b0 = 0.64 with R2 = 0.90. 
The value of b0 implies that RP1000/RP10 is less than 
1.90 (greater than 1.90) for negative (positive) values of 

(3)log(RP1000∕RP10) = b1� + b0

ξ. Equation (3) also produces a 33% increase in RP1000/
RP10 for every 0.1 increase in ξ. Stated another way, a dif-
ference in ξ from −0.15 and 0.15 corresponds to an increase 
in RP1000/RP10 by a factor of 2.3. If we take ξ = −0.15 and 
0.15 as example values on the windward and leeward side, 
respectively, of a hypothetical mountain range, RP1000 is 
only 23% greater than RP10 on the windward side while 
RP1000 is 189% greater than RP10 on the leeward side.

3.3 � Changes in extreme precipitation under global 
warming

Changes in extreme precipitation vary markedly across 
the western US and the spatial pattern of these changes 
shows the imprint of topography. Using RP20 as an exam-
ple (Fig. 6), changes range from near zero to increases that 
exceed 40%. The largest percentage increases are in the 
southern Central Valley of California, Mojave Desert, and 
Imperial Valley south to the Gulf of California. Other areas 

Fig. 3   (Left panel) Ratio of empirical 20-year (RP20) to 2-year 
(RP2) return period water year maximum daily precipitation from 
the HadRM3P ensemble during the baseline period. Colors are sat-
urated above 3.0 to help distinguish the spatial heterogeneity across 
most of the domain. Circles mark station locations, color-shaded to 
their RP20/RP2 values. Black lines show selected mountain range 
divides (same as in Fig.  1). (Right panel) Frequency distribution of 

RP20/RP2 from observed precipitation at 162 stations, from the Had-
RM3P ensemble for the 162 grid cells containing the station coordi-
nates, and from the HadRM3P ensemble for all land grid cells. Note 
the width of the histogram bins are different for the ensemble and the 
observations to more effectively visualize the distributions. Also, for 
the HadRM3P ensemble, the ratio is of the average of RP20 to the 
average of RP2 of the three parameter sets
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along the coastal US with high increases relative to their 
surroundings include the Modoc Plateau in northeast Cali-
fornia, Willamette Valley in western Oregon, Puget Sound 
in western Washington, and Columbia Plateau in eastern 
Washington. In contrast, smaller increases are detected on 
the much wetter windward slopes of adjacent mountains 
which form the first (the coastal ranges from Washington 
to California) and second (Cascades and Sierra Nevada) 
major topographic barriers to the dominant southwesterly 
flow directions during most major precipitation events. It 
is worth noting that changes in lowlands east of the coastal 
mountain ranges tend to be of similar magnitude as those 
over the ocean.

However, this pattern of smaller percentage increases in 
wetter climates is not present everywhere throughout the 
interior. For example, the dry Idaho Snake River Valley 
shows smaller increases in RP20 than do the wetter Rocky 
Mountains immediately to the north and northwest.

The spatial patterns described above largely persist for 
other extreme return periods (see RP10 and RP100 in Fig. 7), 
although the percentage changes tend to increase with longer 
return periods (see supplementary Fig. S6), consistent with 
other results (Li et al. 2019b). The spatial similarity across 
return periods indicates that these patterns are robust and 
not just the result of selecting a particular return period. The 
patterns become less well-defined as return periods become 
longer (Fig. 7, going left to right), though we do not know 
how much this reflects a real difference in the response of 
the most extreme precipitation events versus simply a lower 
signal-to-noise ratio. It is notable, however, that the patterns 
in California and western Oregon and Washington are the 
most persistent across a wide range of return intervals (at 
least from RP10 to RP1000).

The association of percentage changes in extreme pre-
cipitation with orography within the first several hundreds 
of kilometers from the coast is clearly evident in a set of 
four latitudinal transects ranging from northern Washington 
to southern California (Fig. 8, right column). Moving from 
west to east, the magnitude of increase in RP20 declines near 
the coastline and along the windward slope of the first topo-
graphic barrier. Past the first topographic divide, the mag-
nitude of increase rises until reaching a maximum near the 
valley bottom, then declines once again along the windward 
slope of the second topographic barrier. Between the coast 
and the crest of the second topographic barrier, percentage 
changes in RP20 have a strong inverse relationship with the 
baseline RP20 (Fig. 9). Percentage changes in the dryer val-
ley bottoms are frequently more than double those in the 
wetter mountain ranges. Further east, the relationship of 
precipitation change with topography becomes less clearly 
defined (Fig. 8, right column). The patterns described above 
are similar for RP10, RP100, and RP1000, although percent-
age increase in precipitation tend to be larger at longer return 
periods (supplementary Fig. S7).

Like our results, Li et al. (2019a; see their Fig. S3) and Li 
et al. (2019b; see their Fig. S7) also show larger increases 
in southern California than elsewhere in the western US. 
However, their results show less fine-scale variability than 
we present, which is likely due in part to the coarser resolu-
tion of their model (CanRCM4 at 50-km resolution) and the 
spatial pooling of neighboring grid cells they do to reduce 
the uncertainty from internal variability. Within California, 
our results are also consistent with Huang et al. (2020), who 
examined changes in precipitation from extreme atmos-
pheric rivers in California based on the 40-member ensem-
ble of ten-year long integrations from the Community Earth 
System Model Large Ensemble Experiment (CESM-LENS) 
and multiple nesting of a Weather Research and Forecast-
ing Model (WRF) down to 3-km resolution, with anthropo-
genic forcings comparable to ours (RCP8.5; 1996–2005 vs. 
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Fig. 4   GEV shape parameter ξ from the large ensemble for the base-
line period with parameters estimated using L-moments. Green 
indicates a heavy right tail and brown indicates a bounded right tail. 
Black lines show selected mountain range divides and points indicate 
selected locations shown in other figures. Colors are saturated above 
ξ > 0.32 to help distinguish the spatial heterogeneity across most of 
the domain
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2071–2080). They report increases of 25–50% in the Cen-
tral Valley compared to 10–30% along the western slopes of 
the Sierra Nevada, which are similar to the ranges in Fig. 8 
(Region 4). As in Huang et al. (2020), we also found larger 
percentage increases in the southern Central Valley than in 
the northern Central Valley (Figs. 6 and 7).

These differential changes across space are statistically 
significant and the statistical power of a ~ 100-member 
ensemble is evident in Fig. 8. (Note: Unlike other figures 
that show averages of the changes from the three parameteri-
zations, Fig. 8 shows results from only one parameter set to 
isolate the effect of IC ensemble size. Differences between 
parameter sets generally fall within the sampling noise so 
are not discussed here.) Based on width of the bootstrapped 

95% confidence intervals (e.g., Rupp et al. 2017), we can 
detect changes from baseline in excess of about ± 5% using 
the large ensemble, though the width of confidence intervals 
varies somewhat in space. More importantly for this study 
of spatial patterns, we can similarly detect significant differ-
ences in response across space of at least ± 5%. In contrast, 
ten ensemble members would only detect changes greater 
than about ± 15 to 20%, whereas detection is effectively 
hopeless with a single ensemble member. It is important 
to note that the number of ensemble members required to 
achieve a certain confidence interval pertains to our setup 
without dynamic ocean coupling and we expect intervals 
would be wider in coupled model experiments and narrower 
in pseudo-global warming experiments.

Fig. 5   Return period (exceed-
ance) values of water year maxi-
mum daily scaled precipitation 
for the baseline (Base.) and 
future (+ 2.26 °C) period for 
grid cells at selected locations 
in mountains (left column) and 
valleys (right column). Heavy 
black lines show the empiri-
cal distributions and thinner 
gray lines show the fitted GEV 
distribution using L-moments. 
Note that Phoenix has a differ-
ent vertical scale than the other 
locations
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Changes in the shape of the extreme value distribution 
also show distinct non-random spatial patterns (Fig. 10; 
see supplementary Fig. S8 for results based on ML), with 
changes in ξ ranging from −0.09 to + 0.12 across the model 
domain. Decreases in ξ, indicative of tails becoming lighter, 
occur east of the Coast Mountains of BC, the Cascades, and 
along the spine of the Sierra Nevada. In the case of the Cas-
cades, decreases extend for several hundred kilometers east 
of the topographic divide. Other areas with decreases are 
not so clearly associated with the leeward side of a major 
north–south mountain range. These include the decreases 
west of the divide of the North Cascades where they extend 
into Canada, the Snake River Plain in Idaho, and the western 
part of the Rocky Mountains in central Idaho. Increases in 
ξ, indicative of tails becoming heavier, cover more of the 
domain than do decreases. The largest increases occur west 
of the Coast Mountains of BC, west of the Cascades, and 
in the Central Valley of California east of the Peninsular 
Ranges of Baja California.

We assume that the larger changes in the shape parameter 
are primarily a response to the increased anthropogenic forc-
ing between the baseline and future periods, but the change 
in the shape parameter could also be affected by different 
degrees of low-frequency non-stationarity within the two 
periods. The future period is subjected to a higher rate of 
increase in anthropogenic forcing within its 29-year period 
than is the baseline period, so it is conceivable that this dif-
ference alone could broaden the distribution in the future 
period, resulting in a larger ξ (i.e., more positive or less 
negative). As a test, we first calculated the land pixel linear 
trends in water year maximum daily precipitation within the 
baseline and future periods (supplementary Fig. S9). We 
reasoned that a higher absolute value of a linear trend with a 
period (i.e., greater non-stationarity) would lead to a broader 
distribution and possibly larger ξ and, therefore, the absolute 
value of the future trend minus the absolute value of the 
baseline trend (Fig. S9) would be positively correlated with 
the change in ξ if within-period non-stationarity were an 
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Fig. 6   (Left panel) Empirical 20-year return period water year maximum daily precipitation (RP20) for the baseline period. (Right panel) Per-
centage change in RP20 between the baseline and future (+ 2.26 °C) period. In both panels the average from the three parameter sets is shown
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important factor. We found no spatial correlation (r = 0.03) 
between this difference of absolute values of the trends and 
the change in ξ, implying that differences in non-stationarity 
between the periods have a negligible influence on the spa-
tial pattern of between-period changes in ξ.

4 � Discussion

4.1 � Heaviness of the tail

The first main result of our analysis is the windward/leeward 
spatial structure of the shape of the distribution tail arising 
in the large ensemble, particularly apparent along the west 
coast of the US and Canada. In the interior of the US, the 
windward/leeward pattern is less apparent and heavy tails 
dominate. In the interior, extreme precipitation events are 
less centered on the winter months when stratiform systems 
dominate and are more distributed across warmer months 
(supplementary Fig. S10) where convection plays a larger 
role and the direction of moisture transport during extreme 
events is not as singularly oriented (i.e., westerly and south-
westerly) throughout the year (Kunkel et al. 1999; Bracken 
et al. 2015).

There are few similar studies against which to compare 
our findings for the western US. Ben Alaya et al. (2020a, 
b) used a smaller (35-member) ensemble from a regional 

climate model to estimate the GEV shape parameter ξ across 
North America. The coarser resolution of their climate 
model (0.44°) and the greater spatial extent of their analysis 
domain reveal less spatial detail (see their Fig. 1) but a rela-
tionship between ξ and topography is still visible. For exam-
ple, similar to our results, negative values of ξ are prominent 
west of the Sierra Nevada, Cascade, and Coast Mountains 
(BC) while the largest values of ξ occur on Baja Califor-
nia and surroundings. Fix et al. (2018), using a 30-member 
ensemble of 1°-resolution global climate runs, also show 
negative values of ξ in California (except for southernmost 
end), western Oregon, and most of Washington and Idaho, 
with mainly positive values elsewhere in the western US. 
However, neither Fix et al. (2018) nor Ben Alaya et al. 
(2020a, b) discuss the spatial pattern of ξ, or its causes, 
across the western US.

Using daily observations from a large number of stations 
around the globe, Ragulina and Reitan (2017) found a sta-
tistical relationship between ξ and elevation. However, they 
only used 17 stations in the western US (median ξ of 0.07), 
where they did not find statistical evidence against simply 
assuming a regionally constant value of ξ. Their findings 
generally support prior studies arguing for applying a posi-
tive value of ξ globally (Papalexiou and Koutsoyiannis 2013) 
if not even a universal value (of roughly 0.1) (Koutsoyian-
nis 2004; Wilson and Toumi 2005), given the difficulty in 
constraining ξ for any single station.
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In contrast, Dyrrdal et al. (2016), using observation-based 
gridded data, found a tendency for negative values of ξ to 
occur in wetter regions of Norway, typically the windward 

(west) side of the Norwegian mountain range. They sug-
gested the influence of orographic enhancement as a mecha-
nistic argument for the spatially varying ξ across Norway. 
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Fig. 8   (Left column) Empirical 20-year return period water year 
maximum daily precipitation (RP20) for the baseline and future 
(+ 2.26 °C) period from simulations using parameter set #1 along the 
four longitudinal transects shown in Fig. 1. (Right column) Percent-
age change from the baseline to the future period along the same four 

transects (dark line). Dark, medium, and light blue shading show the 
95% confidence intervals using 1, 10, and ~ 100 ensemble members 
per year, respectively. Also shown is elevation along each transect. 
Note that the precipitation and elevation y-axis ranges differ for each 
transect
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Given that extremes in orographic enhancement are influ-
enced by the wind speed orthogonal to the mountain range, 
it follows that the shape of the distribution of extremes wind 
speeds will be a control on ξ. The relative roles of extremes 
in wind speed and water vapor in determining the shape of 
the precipitation tail merit further study.

In a global study of over 22,000 station records, 
Cavanaugh et al. (2015) concluded that mixing of different 
precipitation types—i.e., those generated by different types 

of weather systems—produces heavier power-law tails. They 
highlight California as an example, attributing the lighter 
(more exponential) tails there to the dominance of one pre-
cipitation type (frontal systems). They also ascribe heavy 
tails in winter to the Cascades, which they attribute to a mix-
ing of systems. This latter conclusion is questionable, how-
ever, given the dearth of long-term stations in the mountains 
and very low signal-to-noise obscuring differences across 
distances less than 1000 km. We also find generally heavier 
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Fig. 9   Change (%) in the 20-year return period water year maximum 
daily precipitation (RP20) vs. the baseline RP20 from the large-
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east of the valleys. Values shown are the average of the return levels 
from the three parameter sets
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tails in the interior west where precipitation types are more 
mixed, so repeating our analysis by season to help isolate the 
dominate precipitation type may yield insight.

4.2 � Spatial variability in changes of extreme 
precipitation

Our second main result is the spatial structure of the percent-
age change in extreme precipitation under global warming. 
This spatial structure is important because it affects where 
runoff generation may be more impacted. As an example, 
discharge in large West Coast rivers, such as the Willamette 
River in western Oregon, derive most of their flood waters 
from the windward side of the major north–south oriented 
mountain ranges. Projected percentage changes in extreme 
precipitation are lower on these windward slopes than in sur-
rounding areas, suggesting the effects of changing intensity 
will have a smaller effect on such rivers. In smaller lowland 
basins, including those with drainage from the leeward sides 

of coastal mountains, and in most urban areas, percentage 
increases in precipitation are much larger, implying a larger 
increase in risk of localized flooding in such areas. These 
impacts, however, do not consider the effects of changing 
precipitation phase from snow to rain, which are expected 
to contribute greatly to increases in extreme river discharge 
in the region (Chegwidden et al. 2020).

The pattern of differential windward-leeward changes 
from the west coast through the first and second major 
roughly north-to-south oriented topographic barriers is 
consistent with results from idealized experiments (Siler 
and Roe 2014; Shi and Durran 2015, 2016) and experi-
ments using the actual topography at fine (3-km) resolution 
(Huang et al. 2020). Several mechanisms may contribute to 
this result. For example, Siler and Roe (2014) argue that, 
due to simple thermodynamics, the pattern of windward 
condensation will shift upward with warming. This may in 
turn contribute to a downstream shift in the spatial pattern of 
surface precipitation, resulting in larger fractional increases 
in the lee of a mountain range. In addition, other studies have 
identified changes in mountain-wave dynamics as a potential 
reason for weak changes in precipitation on windward slopes 
(Shi and Durran 2015). More complex patterns of change 
in the interior may reflect a more diverse range of moisture 
sources and flow directions. Further research is needed to 
fully understand the spatial pattern of extreme precipitation 
change and its governing mechanisms.

Changes in the GEV shape parameter also show non-ran-
dom structure, with large variations in changes in ξ across 
relatively short distances (e.g., from west to east across 
the Cascades divide). With projected changes in ξ ranging 
mainly from about −0.05 to + 0.1, the impacts are conse-
quential. As noted above, a 0.1 increase in ξ implies about 
a 33% increase in RP1000:10. Also, the spatial pattern of 
changes in ξ (Fig. 10) bears resemblance to the percentage 
change in RP100 (Fig. 7), suggesting that the changes in ξ 
contribute in part to the spatial pattern of changes in extreme 
precipitation. Spatially, changes in ξ are positively correlated 
(r = 0.38) with percentage changes in RP100.

The simulated changes in ξ under global warming con-
tradict Wilson and Toumi (2005) who, based on theoretical 
reasoning and an analysis of long-term records around the 
globe, argued that the shape of tail should be largely unaf-
fected by climate change. Our findings, along with others 
showing a projected increase in heavy-tailed distributions 
over northeastern North America (Innocenti et al. 2019), 
indicate that the dynamic mechanisms driving projected 
changes in tail shape merit further investigation.

One limitation of this study is that it relies on just a single 
climate model (albeit with three different sets of parameteri-
zations). This model generally does well at representing the 
spatial pattern of precipitation across the western US, but it 
is not without biases. In particular, it tends to overestimate 
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Fig. 10   Change in GEV shape parameter (future—baseline) with 
parameters estimated using L-moments. Green indicates a change 
towards a heavier right tail and brown indicates a change toward a 
lighter or bounded right tail. Black lines indicate selected mountain 
range divides and points indicated selected locations shown in other 
figures. Colors are saturated above 0.08 to help distinguish the spatial 
heterogeneity across most of the domain
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the degree to which precipitation is enhanced by orography, 
especially in the Cascades and Sierra Nevada. We do not 
know whether or how this bias in orographic precipitation 
might impact the spatial pattern of ξ and its response to 
global warming. Additional simulations with a wider range 
of climate models and parameterizations would be needed 
to evaluate the robustness of our results.

5 � Conclusions

Results from a large ensemble of dynamically downscaled 
climate simulations reveals non-random spatial variability in 
the heaviness of the tail of the distribution of extreme daily 
precipitation. This variability has a very distinct windward 
vs. leeward pattern along the coastal mountains, the Sierra 
Nevada, and Cascades. This pattern is also present, but less 
strongly defined, in much of the Rocky Mountains. As char-
acterized by the GEV shape parameter ξ, tails tend to be 
bounded (ξ < 0) on windward slopes and power-law (ξ > 0) 
elsewhere.

Anthropogenic forcing increases extreme precipitation 
(i.e., the 10 to 1000-year return interval intensity) across 
the western US, but the amount of increase varies from 
near zero to more than 40% at the grid cell scale, using the 
20-year return period as an example. Nearer to the coast, 
the largest percentage increases tend to occur leeward of 
mountain ranges, but this pattern is not consistent through-
out the interior west, where the direction of vapor transport 
is less consistent. At least a portion of the increase appears 
to be enhanced by a shift towards a heavier tail in most of 
the western US but dampened by a shift towards a less heavy 
tail in some areas (e.g., much of eastern Oregon and Wash-
ington, the Sierra Nevada, and Coast Mountains of BC).

The 25-km resolution climate model we used param-
eterizes convection, but general consistency of results in 
changes in extreme perception in California using a much 
higher resolution convective-permitting model (Huang et al. 
2020) suggests much can still be learned by running coarser 
models, particularly where orography is important. With 
coarser models, the ability to generate very large ensembles 
becomes more feasible, so conducting both lower-resolution/
large ensemble experiments and higher-resolution/small 
ensemble experiments can yield complementary insights 
(Lopez-Cantu et al. 2020). Computational requirements can 
be reduced as well by using, for example, pooling of neigh-
boring grid cells (Li et al. 2019b) or pattern recognition 
(Wills et al. 2020) to extract forced responses from internal 
variability using smaller ensembles.

We report mainly on the spatial variability of extreme 
precipitation and its response to ~ 2 °C warming. While we 
note some potential mechanisms that might contribute to this 
response, further research is needed to better understand its 

causes. Methods to decompose responses into their thermo-
dynamic and dynamic causes (Li et al. 2019a; Ben Alaya 
et al. 2020b), for example, may shed light on how mountains 
modulate the shape of the precipitation distribution and its 
response to global warming.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00382-​022-​06214-3.
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