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Abstract 

Range anxiety and lack of adequate access to fast charging are 
proving to be important impediments to electric vehicle (EV) 
adoption. While many techniques to fast charging EV batteries 
(model-based & model-free) have been developed, they have focused 
on a single Lithium-ion cell. Extensions to battery packs are scarce, 
often considering simplified architectures (e.g., series-connected) for 
ease of modeling. Computational considerations have also restricted 
fast-charging simulations to small battery packs, e.g., four cells (for 
both series and parallel connected cells). Hence, in this paper, we 
pursue a model-free approach based on reinforcement learning (RL) 
to fast charge a large battery pack (comprising 444 cells). Each cell is 
characterized by an equivalent circuit model coupled with a second-
order lumped thermal model to simulate the battery behavior. After 
training the underlying RL, the developed model will be 
straightforward to implement with low computational complexity. In 
detail, we utilize a Proximal Policy Optimization (PPO) deep RL as 
the training algorithm. The RL is trained in such a way that the 
capacity loss due to fast charging is minimized. The pack's highest 
cell surface temperature is considered an RL state, along with the 
pack's state of charge. Finally, in a detailed case study, the results are 
compared with the constant current-constant voltage (CC-CV) 
approach, and the outperformance of the RL-based approach is 
demonstrated. Our proposed PPO model charges the battery as fast as 
a CC-CV with a 5C constant stage while maintaining the temperature 
as low as a CC-CV with a 4C constant stage. 

Introduction 

Powering electric vehicles (EVs) with renewable energy is the key 
solution to mitigate our carbon footprint, 28% of which is attributed 
to the transportation sector [1,2]. However, the main barrier against 
EV development is its charging speed, which is much slower than a 
conventional vehicle's refueling time [3]. Moreover, EVs struggle 
with battery heating during fast charging, which can lead to thermal 
runaway. Hence, battery temperature should be kept between 20-40℃ 
[4]. Consequently, numerous studies were carried out on optimizing 
battery fast charging. But the majority of the literature either focuses 
on cell level research or studies small battery packs. There is a lack of 
study  on the execution of fast charging optimization results on a 
large battery pack. Accordingly, this paper proposes an approach 
based on deep reinforcement learning (RL) to fast charge a battery 
pack consisting of 444 lithium-ion cells. 

In Ref. [5], an electro-thermal-aging model is developed to charge a 
battery pack. However, the model assumes identical cells, where cell 
aging and temperature differences are ignored. The study in [6] 
utilizes an electrochemical Doyle–Fuller–Newman model coupled 
with a thermal model to describe the battery, but the study is limited 
to one cell. Similarly, authors in [7] use an electrochemical model 
enhanced with a thermal and a degradation model to fast charge a 
battery pack using model predictive control (MPC). However, in the 
case study, they only used a battery pack with four cells and did not 
discuss how fast their proposed model could solve the optimization 
problem. The research in [8] exploits neural networks to find the 
optimal charging current using a set of pre-determined current values. 
However, the work in [8] is limited in three ways. First, it only 
considers five different values for charging the current C-rate. 
Second, the maximum C-rate in the list is 2.5C which is relatively 
small considering that the extremely fast charging target set by the 
US Department of Energy is 6C or more [9]. Third, the case study 
considers eight cells connected in series, which has only a few cells 
with no parallel connection.  

Model-free RL can be used to solve optimization problems by casting 
the problems into a Markov decision process format. A reward is 
used to train the RL agent to take the optimal actions, which would 
lead to the maximum cumulative reward. Since we center our work 
around a model-free RL in this work, our proposed model is 
independent of the system dynamics, and in turn, it is robust to 
system and model uncertainties. Ref. [10] demonstrates charging a 
single battery cell with the proposed RL algorithm outperforms MPC 
and CC-CV. However, the study is restricted to a cell and is not 
extended to the pack level. Likewise, Ref. [11] conducts research on 
a single lithium-ion cell that is optimally fast charged through an 
adaptive model-based RL algorithm. In addition, the study in [12] 
explores a balancing-aware fast charging of a battery pack using deep 
Q-network (DQN). Although the authors formulate the problem for a 
battery pack, the underlying case study only considers a pack of four 
cells. Moreover, the work in [12] employs DQN, which can only 
handle discrete action spaces. Hence, a finite set of action choices are 
available for the fast-charging algorithm, which differs from real-
world problems with continuous action spaces. 

There is a lack of studies where a large battery pack is used in 
developing, simulating, or testing fast charging optimization 
algorithms. Thus, in this paper, we propose a deep RL approach to 
optimally fast charge a large battery pack. The said deep RL is 
trained through proximal policy optimization (PPO). PPO is selected 
for its simple implementation and fast training compared to some 
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other approaches, such as deep deterministic policy gradient. Finally, 
the contributions of this paper are as follows: i) A model-free deep 
RL is developed to fast charge a battery pack consisting of 444 cells, 
ii) Each cell in the pack is modeled by an electro-thermal model 
taking into consideration the temperature gradient among the cells 
and the discrepancy in the currents of parallel cells, and iii) In the 
simulations, we demonstrate the benefits of our model over CC-CV. 

Modeling 

This section describes the equivalent circuit model, the thermal 
model, and the aging model that are used in this paper.  

Battery model 

As shown in Figure 1, the battery is represented by a second-order 
equivalent circuit model comprising a voltage source, two resistor-
capacitor (RC) pairs, and a connection resistor. 

 

Figure 1. The battery model. 

The following differential equations govern the behavior of the 
second-order circuit model in Figure 1, 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑 =

𝐼𝐼(𝑡𝑡)
𝐶𝐶𝑏𝑏

, (1)  

𝑑𝑑𝑉𝑉1(𝑡𝑡)
𝑑𝑑𝑑𝑑 = −

𝑉𝑉1(𝑡𝑡)
𝑅𝑅1𝐶𝐶1

+
𝐼𝐼(𝑡𝑡)
𝐶𝐶1

, (2)  

𝑑𝑑𝑉𝑉2(𝑡𝑡)
𝑑𝑑𝑑𝑑 = −

𝑉𝑉2(𝑡𝑡)
𝑅𝑅2𝐶𝐶2

+
𝐼𝐼(𝑡𝑡)
𝐶𝐶2

, (3)  

𝑉𝑉𝑡𝑡(𝑡𝑡) = 𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑉𝑉1(𝑡𝑡) + 𝑉𝑉2(𝑡𝑡) + 𝑅𝑅0𝐼𝐼(𝑡𝑡), (4)  

where 𝐼𝐼(𝑡𝑡) indicates the current passing through the cell and 𝐼𝐼(𝑡𝑡) > 0 
when the cell is being charged, 𝑧𝑧(𝑡𝑡) denotes cell’s state of charge 
(SOC), 𝐶𝐶𝑏𝑏 is the capacity of the cell. Equation (1) expresses the 
relationship between current and SOC, where positive current 
increases SOC. Furthermore, (2) and (3) calculate the value of the 
polarization voltages 𝑉𝑉1(𝑡𝑡) and 𝑉𝑉2(𝑡𝑡). Lastly, (4) yields the cell's 
terminal voltage using the cell's open circuit voltage (OCV). Note 
that 𝑅𝑅0, 𝑅𝑅1, 𝑅𝑅2, 𝐶𝐶1, and 𝐶𝐶2 change by the cell's core temperature as 
well as SOC. On the other hand, 𝑂𝑂𝑂𝑂𝑂𝑂 is a function of the cell's SOC 
[13].  

Thermal model 

A two-state thermal model is employed to describe the thermal 
behavior of each cell. Further, the cell-to-cell heat exchange is also 
integrated into the model as follows,  

𝑑𝑑𝑇𝑇𝑐𝑐(𝑡𝑡)
𝑑𝑑𝑑𝑑 =

𝑇𝑇𝑠𝑠(𝑡𝑡) − 𝑇𝑇𝑐𝑐(𝑡𝑡)
𝑅𝑅𝑐𝑐𝐶𝐶𝑐𝑐

+
�𝐼𝐼(𝑡𝑡)�𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑉𝑉𝑡𝑡(𝑡𝑡)��

𝐶𝐶𝑐𝑐
 , (5)  

𝑑𝑑𝑇𝑇𝑠𝑠(𝑡𝑡)
𝑑𝑑𝑑𝑑 =

𝑇𝑇𝑓𝑓(𝑡𝑡) − 𝑇𝑇𝑠𝑠(𝑡𝑡)
𝑅𝑅𝑢𝑢𝐶𝐶𝑠𝑠

−
𝑇𝑇𝑠𝑠(𝑡𝑡) − 𝑇𝑇𝑐𝑐(𝑡𝑡)

𝑅𝑅𝑐𝑐𝐶𝐶𝑠𝑠

−
1

𝑅𝑅𝑚𝑚𝐶𝐶𝑠𝑠
�(𝑇𝑇𝑠𝑠(𝑡𝑡) − 𝑇𝑇𝑖𝑖(𝑡𝑡))
𝑁𝑁

𝑖𝑖=1

, 
(6)  

where 𝑇𝑇𝑓𝑓(𝑡𝑡), 𝑇𝑇𝑐𝑐(𝑡𝑡), 𝑇𝑇𝑠𝑠(𝑡𝑡), and 𝑇𝑇𝑖𝑖(𝑡𝑡) are ambient, cell's core, cell's 
surface temperatures, and the surface temperature of neighbor cells, 
respectively. Equations (5) and (6) show the cell's core and surface 
temperature changes, respectively. The rate of core temperature 
change in (5) is controlled by conduction resistance 𝑅𝑅𝑐𝑐 and core heat 
capacity 𝐶𝐶𝑐𝑐. On the other hand, surface temperature alteration in (6) is 
influenced by convection resistance 𝑅𝑅𝑢𝑢, cell-to-cell heat transfer 
resistance 𝑅𝑅𝑚𝑚, as well as surface heat capacity 𝐶𝐶𝑠𝑠. Additionally, each 
cell in the pack has 𝑁𝑁 neighbor cells that affect the surface 
temperature of the cell in question. 

Aging model 

The aging model characterizes the cell capacity loss through the 
following lumped equation [14], 

Δ𝑄𝑄(𝑡𝑡) = 𝐵𝐵𝑒𝑒−
𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅𝐴𝐴ℎ(𝑡𝑡)𝛾𝛾 (7)  

𝐸𝐸𝑎𝑎 = −31700 + 370.3 × C-rate (8)  

𝐴𝐴ℎ(𝑡𝑡) = �|𝐼𝐼(𝜏𝜏)|𝑑𝑑𝑑𝑑
𝑡𝑡

𝜏𝜏=0

 (9)  

𝐵𝐵 = �

31630, 𝐶𝐶/2
21681, 2𝐶𝐶
12934, 6𝐶𝐶
15512, 10𝐶𝐶

 (10)  

where Δ𝑄𝑄(𝑡𝑡) represents the percentage of capacity loss, 𝐸𝐸𝑎𝑎 is the 
activation energy, 𝑇𝑇 is the cell's core temperature, 𝑅𝑅 = 8.314 
[J/K/mol] is the universal gas constant, 𝐴𝐴ℎ(𝑡𝑡) shows cell ampere-hour 
throughput, and 𝛾𝛾 = 0.55. Moreover, (10) presents the values of 𝐵𝐵 as 
a function of the C-rate. If the C-rate value is something other than 
𝐶𝐶/2, 2𝐶𝐶, 6𝐶𝐶, or 10𝐶𝐶, parameter 𝐵𝐵 is interpolated. In addition, we 
limit the output action of the RL agent to 0.5C and 10C such that 
extrapolation is not required. 

Methodology  

This section outlines the states, action, and reward of the proposed 
deep RL algorithm. 
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Markov decision process 

Markov decision process (MDP) is a technique for modeling 
sequential decision-making problems where control actions can partly 
control the results. An MDP sequence is as follows. The system in 
question or the environment is at state 𝑠𝑠. Then the agent takes action 𝑎𝑎 
that takes the system from state 𝑠𝑠 to state 𝑠𝑠′ with the probability 
𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠,𝑎𝑎) and generates reward 𝑟𝑟(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′). When MDP is used for 
an optimization problem, the goal is to maximize the cumulative 
rewards. There are several approaches to solving an MDP, such as 
dynamic programming and RL. 

Environment 

In our problem, the battery pack is considered as the environment. The 
pack consists of 𝑁𝑁𝑠𝑠 series connected batches of 𝑁𝑁𝑝𝑝 parallel cells. In 
this study, 𝑁𝑁𝑠𝑠 = 6 and 𝑁𝑁𝑝𝑝 = 74, which is the configuration used in 
Tesla battery modules. Further, the considered lithium-ion cells are 
A123 ANR26650M1. The RL agent interacts with the environment by 
taking actions. The actions change the environment states according to 
(1)-(10), and the environment outputs a reward which is used to train 
the deep RL. 

Observation space 

We consider two states for the RL in this study: the surface 
temperature of the hottest cell in the pack and the SOC. We assume 
that the pack is equipped with a BMS that keeps the cell's SOCs 
balanced. As for the highest surface temperature, we assume that the 
temperature is within [5℃, 45℃] as these are the temperature limits 
for which the data of the parameter values in (1)-(4) is obtained [13]. 
In addition, the hottest surface temperature is at the center of the pack 
due to the impact of neighbor cells. Lastly, the SOC is clearly limited 
to [0,1]. 

Action space 

The agent takes action to maximize the cumulative rewards. Hence, in 
our problem, the charging current is the action that should be 
determined to change the system's state, i.e., SOC. However, for 
simplicity, we train the RL to output the current C-rate rather than the 
current. As mentioned previously, the C-rate is limited to [0.5C, 10C].  

Reward  

The reward signal 𝑟𝑟(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) indicates the desirability of transitioning 
from state 𝑠𝑠 to 𝑠𝑠′ by taking action 𝑎𝑎. In other words, the reward 
expresses the objective function of the optimization problem, which is 
defined as follows, 

𝑅𝑅(𝑡𝑡) = −𝜔𝜔1|𝑧𝑧(𝑡𝑡) − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚|
− 𝜔𝜔2 max�𝑇𝑇𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) − 𝑇𝑇𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 , 0�
− 𝜔𝜔3ΔQ𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡), 

(11)  

where 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 = 0.8 is the target SOC level at which the charging 
process stops, 𝑇𝑇𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) denotes the core temperature of the hottest cell 

in the pack, 𝑇𝑇𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 indicates the minimum core temperature above 
which the RL is penalized, and 𝜔𝜔𝑖𝑖 , 𝑖𝑖 ∈ {1,2,3} is the weighting factor. 
The reward function is defined in such a way to be non-positive, i.e., 
𝑅𝑅(𝑡𝑡) ≤ 0. 

Results and analysis 

In this section, the performance of the proposed model-free RL is 
evaluated and benchmarked against two different CC-CV charging 
profiles with different constant current stages of 4C and 5C, 
respectively. Moreover, every charging cycle charges the battery from 
20% to 80% of SOC. The battery comprises 444 cells, including six 
series strings of 74 parallel cells. In addition, two tests are performed. 
In the first one, the battery pack is fast charged for one cycle, and the 
process is repeated three times, once with the proposed RL strategy, 
once with the CC-CV with 4C constant current stage, and once with 
the CC-CV with 6C constant current stage. In this test, we assume that 
a fresh battery is being charged for the very first time. Thus, at the 
beginning of the charging session, the battery's ampere-hour 
throughput is zero or all three cases. In the second test, the fresh 
battery pack is charged and discharged for 1000 cycles using the 
proposed approach and the two abovementioned CC-CV algorithms. 
Consequently, the first test is used to mainly investigate the 
temperature rise and speed of charging in each case. On the other 
hand, the second test reveals the cell aging after 1000 
charge/discharge cycles. 

Figure 2 and Figure 3 illustrate the results of charging the battery pack 
with the proposed methodology. Initially, the battery is soaked at the 
ambient temperature. As seen, the charging session takes 425 seconds 
to end. Since the number of cells is enormous, the legend is in the 
form of a color bar. The charging current is monotonically decreasing 
from 5.32C to 3.96C. Furthermore, the core temperature of the cells 
increases from the ambient temperature to around 36℃ with 
maximum and minimum core temperatures of 36.77℃ and 35.10℃, 
respectively. Similarly, the surface temperature of the cells starts from 
the ambient temperature to around 33℃ with maximum and minimum 
cell surface temperatures of 34.61℃ and 32.68℃, respectively. The 
surface temperature gradient is higher than that of core temperature, 
seeing that the surface of the cells is directly in contact with the 
ambient. In addition, the variations in the cells' charging current are 
visible due to temperature differences. Further, the cells' capacities 
have dropped by 0.15%. It merits mentioning that the capacity fade is 
exponential. At the early charging cycles, the capacity drop is quicker. 
As the cell ages, the reduction of capacity per cycle slows down. After 
the first cycle, the maximum and minimum cell capacity drop are 
0.1531% and 0.1433%, respectively. Finally, Figure 3 shows the 
heatmap of the cells at the end of the charging process, where bright 
and dark colors indicate higher and lower temperatures, respectively. 

Figure 4 depicts the results of charging the battery pack by CC-CV 
with a constant current stage of 4C. Compared to the results of the 
proposed approach in Figure 4, the core and surface temperatures are 
slightly lower, but 525 seconds is required to finish the charging 
session and reach 80% of SOC. The maximum and minimum cell core 
temperatures are 36.13℃ and 34.50℃, respectively, while the 
maximum and minimum cell surface temperatures are 34.32℃ and 
32.23℃, respectively. On average, the core and surface temperatures 
of the cells are 0.495℃ less than those of PPO results.  
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Figure 3. The heatmap of the cells core and surface temperatures. The bright 
color indicates hot cells, as opposed to the dark color, which shows cells with 
lower temperatures. 

Figure 5 displays the results of charging the pack through a CC-CV 
with a 5C constant current stage. Identical to the proposed approach, 
Figure 5 shows the charging session ends after 425 seconds. However, 
the temperatures are elevated, and the degradation deteriorates. The 
cell core maximum and minimum temperatures rise to 39.01℃ and 
37.30℃, respectively, and the surface maximum and minimum 
temperatures at the end of the charging session are 36.58℃ and 

34.35℃, respectively. Consequently, on average, the cells are 2.02℃ 
hotter compared to the PPO case. 

Lastly, Figure 6 exhibits average cell capacity change after 1000 fast 
charging cycles for PPO and CC-CV with 5C constant current stage. 
The result of PPO is compared with that of CC-CV with 5C as the 
constant current stage seeing that both approaches charge the battery 
in 425 seconds. In the case of PPO, the average cell capacity drops 
from 2.1 to 1.9614 [Ah], while the capacity drops to 1.9530 [Ah] if the 
battery is charged with the said CC-CV approach. In other words, in 
the case of PPO, the capacity drop was 6.6%, as opposed to the 7% 
drop in the CC-CV case. It is worth noting that a 0.4% improvement 
in capacity reduction is roughly equivalent to 60 charging sessions 
assuming the vehicle is charged once a week on average. Therefore, 
the lifetime of the battery pack is extended by about one year, as there 
are 52 weeks in a year. Hence, the proposed deep RL-based approach 
can charge the battery as fast as a CC-CV with a 5C constant current 
stage and mitigate battery degradation.  

Conclusions 

Figure 2. The results of charging the battery pack with the proposed approach based using PPO. 
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This paper proposes a novel approach to fast charge a large battery 
pack through deep RL. First, the battery pack is modeled utilizing a 
second-order equivalent circuit model, a two-state thermal model 
which accounts for the cell-to-cell heat transfer, and a lumped aging 

model that describes the capacity fade of the battery. The model is 
used to characterize each battery pack cell, while the pack comprises 
444 A123 ANR26650M1 lithium-ion cells. In addition, the cells are 
arranged in six series strings of 74 parallel cells. The underlying deep 

Figure 4. The results of charging the battery pack through CC-CV approach with 4C constant current stage. 

Figure 5. The results of charging the battery pack through CC-CV approach with 5C constant current stage. 
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The PPO algorithm trains RL. Ultimately, the well-trained agent can 
charge the battery as fast as a CC-CV with a 5C constant current 
stage while keeping the average cell temperature 2.02℃ cooler. 
Furthermore, after 1000 fast charging cycles, the average capacity 
fade of the cells is 0.4% less in the RL-based charging case than the 
CC-CV with a 5C constant current stage. Moreover, the proposed RL 
methodology is also compared with a CC-CV with a 4C constant 
current stage. The results demonstrate that PPO charges the battery 
pack 100 seconds faster while the average battery temperature 
increases by 0.495℃.  
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Figure 6. Capacity drop after 1000 fast charging cycles. 


