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Abstract

Range anxiety and lack of adequate access to fast charging are
proving to be important impediments to electric vehicle (EV)
adoption. While many techniques to fast charging EV batteries
(model-based & model-free) have been developed, they have focused
on a single Lithium-ion cell. Extensions to battery packs are scarce,
often considering simplified architectures (e.g., series-connected) for
ease of modeling. Computational considerations have also restricted
fast-charging simulations to small battery packs, e.g., four cells (for
both series and parallel connected cells). Hence, in this paper, we
pursue a model-free approach based on reinforcement learning (RL)
to fast charge a large battery pack (comprising 444 cells). Each cell is
characterized by an equivalent circuit model coupled with a second-
order lumped thermal model to simulate the battery behavior. After
training the underlying RL, the developed model will be
straightforward to implement with low computational complexity. In
detail, we utilize a Proximal Policy Optimization (PPO) deep RL as
the training algorithm. The RL is trained in such a way that the
capacity loss due to fast charging is minimized. The pack's highest
cell surface temperature is considered an RL state, along with the
pack's state of charge. Finally, in a detailed case study, the results are
compared with the constant current-constant voltage (CC-CV)
approach, and the outperformance of the RL-based approach is
demonstrated. Our proposed PPO model charges the battery as fast as
a CC-CV with a 5C constant stage while maintaining the temperature
as low as a CC-CV with a 4C constant stage.

Introduction

Powering electric vehicles (EVs) with renewable energy is the key
solution to mitigate our carbon footprint, 28% of which is attributed
to the transportation sector [1,2]. However, the main barrier against
EV development is its charging speed, which is much slower than a
conventional vehicle's refueling time [3]. Moreover, EVs struggle
with battery heating during fast charging, which can lead to thermal
runaway. Hence, battery temperature should be kept between 20-40°C
[4]. Consequently, numerous studies were carried out on optimizing
battery fast charging. But the majority of the literature either focuses
on cell level research or studies small battery packs. There is a lack of
study on the execution of fast charging optimization results on a
large battery pack. Accordingly, this paper proposes an approach
based on deep reinforcement learning (RL) to fast charge a battery
pack consisting of 444 lithium-ion cells.
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In Ref. [5], an electro-thermal-aging model is developed to charge a
battery pack. However, the model assumes identical cells, where cell
aging and temperature differences are ignored. The study in [6]
utilizes an electrochemical Doyle-Fuller-Newman model coupled
with a thermal model to describe the battery, but the study is limited
to one cell. Similarly, authors in [7] use an electrochemical model
enhanced with a thermal and a degradation model to fast charge a
battery pack using model predictive control (MPC). However, in the
case study, they only used a battery pack with four cells and did not
discuss how fast their proposed model could solve the optimization
problem. The research in [8] exploits neural networks to find the
optimal charging current using a set of pre-determined current values.
However, the work in [8] is limited in three ways. First, it only
considers five different values for charging the current C-rate.
Second, the maximum C-rate in the list is 2.5C which is relatively
small considering that the extremely fast charging target set by the
US Department of Energy is 6C or more [9]. Third, the case study
considers eight cells connected in series, which has only a few cells
with no parallel connection.

Model-free RL can be used to solve optimization problems by casting
the problems into a Markov decision process format. A reward is
used to train the RL agent to take the optimal actions, which would
lead to the maximum cumulative reward. Since we center our work
around a model-free RL in this work, our proposed model is
independent of the system dynamics, and in turn, it is robust to
system and model uncertainties. Ref. [10] demonstrates charging a
single battery cell with the proposed RL algorithm outperforms MPC
and CC-CV. However, the study is restricted to a cell and is not
extended to the pack level. Likewise, Ref. [11] conducts research on
a single lithium-ion cell that is optimally fast charged through an
adaptive model-based RL algorithm. In addition, the study in [12]
explores a balancing-aware fast charging of a battery pack using deep
Q-network (DQN). Although the authors formulate the problem for a
battery pack, the underlying case study only considers a pack of four
cells. Moreover, the work in [12] employs DQN, which can only
handle discrete action spaces. Hence, a finite set of action choices are
available for the fast-charging algorithm, which differs from real-
world problems with continuous action spaces.

There is a lack of studies where a large battery pack is used in
developing, simulating, or testing fast charging optimization
algorithms. Thus, in this paper, we propose a deep RL approach to
optimally fast charge a large battery pack. The said deep RL is
trained through proximal policy optimization (PPO). PPO is selected
for its simple implementation and fast training compared to some



other approaches, such as deep deterministic policy gradient. Finally,
the contributions of this paper are as follows: i) A model-free deep
RL is developed to fast charge a battery pack consisting of 444 cells,
ii) Each cell in the pack is modeled by an electro-thermal model
taking into consideration the temperature gradient among the cells
and the discrepancy in the currents of parallel cells, and iii) In the
simulations, we demonstrate the benefits of our model over CC-CV.

Modeling

This section describes the equivalent circuit model, the thermal
model, and the aging model that are used in this paper.

Battery model

As shown in Figure 1, the battery is represented by a second-order
equivalent circuit model comprising a voltage source, two resistor-
capacitor (RC) pairs, and a connection resistor.
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Figure 1. The battery model.

The following differential equations govern the behavior of the
second-order circuit model in Figure 1,
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where I(t) indicates the current passing through the cell and I(t) > 0
when the cell is being charged, z(t) denotes cell’s state of charge
(SOC), Cy is the capacity of the cell. Equation (1) expresses the
relationship between current and SOC, where positive current
increases SOC. Furthermore, (2) and (3) calculate the value of the
polarization voltages V;(t) and V,(t). Lastly, (4) yields the cell's
terminal voltage using the cell's open circuit voltage (OCV). Note
that Ry, Ry, R,, C1, and C, change by the cell's core temperature as
well as SOC. On the other hand, OCV is a function of the cell's SOC
[13].
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Thermal model

A two-state thermal model is employed to describe the thermal
behavior of each cell. Further, the cell-to-cell heat exchange is also
integrated into the model as follows,
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where T¢(t), Tc(t), Ts(t), and T;(t) are ambient, cell's core, cell's
surface temperatures, and the surface temperature of neighbor cells,
respectively. Equations (5) and (6) show the cell's core and surface
temperature changes, respectively. The rate of core temperature
change in (5) is controlled by conduction resistance R, and core heat
capacity C.. On the other hand, surface temperature alteration in (6) is
influenced by convection resistance R, cell-to-cell heat transfer
resistance R,,, as well as surface heat capacity C;. Additionally, each
cell in the pack has N neighbor cells that affect the surface
temperature of the cell in question.

Aging model

The aging model characterizes the cell capacity loss through the
following lumped equation [14],
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where AQ(t) represents the percentage of capacity loss, E% is the
activation energy, T is the cell's core temperature, R = 8.314
[J/K/mol] is the universal gas constant, A, (t) shows cell ampere-hour
throughput, and y = 0.55. Moreover, (10) presents the values of B as
a function of the C-rate. If the C-rate value is something other than
C/2, 2C, 6C, or 10C, parameter B is interpolated. In addition, we
limit the output action of the RL agent to 0.5C and 10C such that
extrapolation is not required.

Methodology

This section outlines the states, action, and reward of the proposed
deep RL algorithm.



Markov decision process

Markov decision process (MDP) is a technique for modeling
sequential decision-making problems where control actions can partly
control the results. An MDP sequence is as follows. The system in
question or the environment is at state s. Then the agent takes action a
that takes the system from state s to state s’ with the probability
p(s’,r|s,a) and generates reward r(s, a, s"). When MDP is used for
an optimization problem, the goal is to maximize the cumulative
rewards. There are several approaches to solving an MDP, such as
dynamic programming and RL.

Environment

In our problem, the battery pack is considered as the environment. The
pack consists of Ny series connected batches of N, parallel cells. In
this study, Ns = 6 and N, = 74, which is the configuration used in
Tesla battery modules. Further, the considered lithium-ion cells are
A123 ANR26650M1. The RL agent interacts with the environment by
taking actions. The actions change the environment states according to
(1)-(10), and the environment outputs a reward which is used to train
the deep RL.

Observation space

We consider two states for the RL in this study: the surface
temperature of the hottest cell in the pack and the SOC. We assume
that the pack is equipped with a BMS that keeps the cell's SOCs
balanced. As for the highest surface temperature, we assume that the
temperature is within [5°C, 45°C] as these are the temperature limits
for which the data of the parameter values in (1)-(4) is obtained [13].
In addition, the hottest surface temperature is at the center of the pack
due to the impact of neighbor cells. Lastly, the SOC is clearly limited
to [0,1].

Action space

The agent takes action to maximize the cumulative rewards. Hence, in
our problem, the charging current is the action that should be
determined to change the system's state, i.e., SOC. However, for
simplicity, we train the RL to output the current C-rate rather than the
current. As mentioned previously, the C-rate is limited to [0.5C, 10C].

Reward

The reward signal r(s, a,s") indicates the desirability of transitioning
from state s to s’ by taking action a. In other words, the reward
expresses the objective function of the optimization problem, which is
defined as follows,

R(t) = —w,|z(¢) — zm*|
— w, max{TM%*(t) — T™", 0} (11)
— w3AQM (1),

where z™** = 0.8 is the target SOC level at which the charging
process stops, T."%*(t) denotes the core temperature of the hottest cell
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in the pack, TM™" indicates the minimum core temperature above
which the RL is penalized, and w;, i € {1,2,3} is the weighting factor.
The reward function is defined in such a way to be non-positive, i.e.,
R(t) <0.

Results and analysis

In this section, the performance of the proposed model-free RL is
evaluated and benchmarked against two different CC-CV charging
profiles with different constant current stages of 4C and 5C,
respectively. Moreover, every charging cycle charges the battery from
20% to 80% of SOC. The battery comprises 444 cells, including six
series strings of 74 parallel cells. In addition, two tests are performed.
In the first one, the battery pack is fast charged for one cycle, and the
process is repeated three times, once with the proposed RL strategy,
once with the CC-CV with 4C constant current stage, and once with
the CC-CV with 6C constant current stage. In this test, we assume that
a fresh battery is being charged for the very first time. Thus, at the
beginning of the charging session, the battery's ampere-hour
throughput is zero or all three cases. In the second test, the fresh
battery pack is charged and discharged for 1000 cycles using the
proposed approach and the two abovementioned CC-CV algorithms.
Consequently, the first test is used to mainly investigate the
temperature rise and speed of charging in each case. On the other
hand, the second test reveals the cell aging after 1000
charge/discharge cycles.

Figure 2 and Figure 3 illustrate the results of charging the battery pack
with the proposed methodology. Initially, the battery is soaked at the
ambient temperature. As seen, the charging session takes 425 seconds
to end. Since the number of cells is enormous, the legend is in the
form of a color bar. The charging current is monotonically decreasing
from 5.32C to 3.96C. Furthermore, the core temperature of the cells
increases from the ambient temperature to around 36°C with
maximum and minimum core temperatures of 36.77°C and 35.10°C,
respectively. Similarly, the surface temperature of the cells starts from
the ambient temperature to around 33°C with maximum and minimum
cell surface temperatures of 34.61°C and 32.68°C, respectively. The
surface temperature gradient is higher than that of core temperature,
seeing that the surface of the cells is directly in contact with the
ambient. In addition, the variations in the cells' charging current are
visible due to temperature differences. Further, the cells' capacities
have dropped by 0.15%. It merits mentioning that the capacity fade is
exponential. At the early charging cycles, the capacity drop is quicker.
As the cell ages, the reduction of capacity per cycle slows down. After
the first cycle, the maximum and minimum cell capacity drop are
0.1531% and 0.1433%, respectively. Finally, Figure 3 shows the
heatmap of the cells at the end of the charging process, where bright
and dark colors indicate higher and lower temperatures, respectively.

Figure 4 depicts the results of charging the battery pack by CC-CV
with a constant current stage of 4C. Compared to the results of the
proposed approach in Figure 4, the core and surface temperatures are
slightly lower, but 525 seconds is required to finish the charging
session and reach 80% of SOC. The maximum and minimum cell core
temperatures are 36.13°C and 34.50°C, respectively, while the
maximum and minimum cell surface temperatures are 34.32°C and
32.23°C, respectively. On average, the core and surface temperatures
of the cells are 0.495°C less than those of PPO results.
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Figure 2. The results of charging the battery pack with the proposed approach based using PPO.
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Figure 3. The heatmap of the cells core and surface temperatures. The bright
color indicates hot cells, as opposed to the dark color, which shows cells with
lower temperatures.

Figure 5 displays the results of charging the pack through a CC-CV
with a 5C constant current stage. Identical to the proposed approach,
Figure 5 shows the charging session ends after 425 seconds. However,
the temperatures are elevated, and the degradation deteriorates. The
cell core maximum and minimum temperatures rise to 39.01°C and
37.30°C, respectively, and the surface maximum and minimum
temperatures at the end of the charging session are 36.58°C and

Page 4 of 6

34.35°C, respectively. Consequently, on average, the cells are 2.02°C
hotter compared to the PPO case.

Lastly, Figure 6 exhibits average cell capacity change after 1000 fast
charging cycles for PPO and CC-CV with 5C constant current stage.
The result of PPO is compared with that of CC-CV with 5C as the
constant current stage seeing that both approaches charge the battery
in 425 seconds. In the case of PPO, the average cell capacity drops
from 2.1 to 1.9614 [Ah], while the capacity drops to 1.9530 [Ah] if the
battery is charged with the said CC-CV approach. In other words, in
the case of PPO, the capacity drop was 6.6%, as opposed to the 7%
drop in the CC-CV case. It is worth noting that a 0.4% improvement
in capacity reduction is roughly equivalent to 60 charging sessions
assuming the vehicle is charged once a week on average. Therefore,
the lifetime of the battery pack is extended by about one year, as there
are 52 weeks in a year. Hence, the proposed deep RL-based approach
can charge the battery as fast as a CC-CV with a 5C constant current
stage and mitigate battery degradation.

Conclusions



S0C

Cell Capacity

80 100.00
60! 99.95
400
= # 99.90
40 350
99.85
201 ¢ | | 99.80 | >0
0 100 200 300 400 500 Y00 0.2 0.4 0.6 0.8 1.0 -
Time [s] Time [s] 2508
£
=
40.0 Core Temperature Surface Temperature 2003
36
37.5 150
34
35.01
_ _32 100
U325 1=
30
30.0 50
28
27.5
26
25.0
0 100 200 300 400 500 0 100 200 300 400 500
Time [s] Time [s]
Figure 4. The results of charging the battery pack through CC-CV approach with 4C constant current stage.
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Figure 5. The results of charging the battery pack through CC-CV approach with SC constant current stage.

This paper proposes a novel approach to fast charge a large battery
pack through deep RL. First, the battery pack is modeled utilizing a
second-order equivalent circuit model, a two-state thermal model
which accounts for the cell-to-cell heat transfer, and a lumped aging
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model that describes the capacity fade of the battery. The model is
used to characterize each battery pack cell, while the pack comprises
444 A123 ANR26650M1 lithium-ion cells. In addition, the cells are
arranged in six series strings of 74 parallel cells. The underlying deep
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Figure 6. Capacity drop after 1000 fast charging cycles.

The PPO algorithm trains RL. Ultimately, the well-trained agent can
charge the battery as fast as a CC-CV with a 5C constant current
stage while keeping the average cell temperature 2.02°C cooler.
Furthermore, after 1000 fast charging cycles, the average capacity
fade of the cells is 0.4% less in the RL-based charging case than the
CC-CV with a 5C constant current stage. Moreover, the proposed RL
methodology is also compared with a CC-CV with a 4C constant
current stage. The results demonstrate that PPO charges the battery
pack 100 seconds faster while the average battery temperature
increases by 0.495°C.
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