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Abstract—The development of electric vehicle (EV) charging
stations has been a key consideration for enabling the evolution
of EV technology and continues to support the fosterage of
this technology. Notably, fast charging enhances the EV user’s
adaptability by reducing the charging time and supporting long-
mile travel. The optimal operation and erratic power demand of
a fast charging station (FCS) are still challenging. It is necessary
to understand EV charging scheduling and FCS management,
which can jointly overcome the problem of EV users on account
of optimal operation. However, joint optimization needs detailed
future information, which is a formidable task for prediction.
This paper aims to address the joint optimization issue using
combined game theory and the Lyapunov optimization approach.
This hybrid approach could ease the data forecast requirement
and minimize the operating costs of FCSs while optimally
dispatching EVs to FCSs and satisfying their energy demand.
Further, the problem is decomposed into three subproblems.
The first subproblem addresses a network of FCSs that try
to maximize their revenue through a dynamic pricing game
with EV customers who have different behavioral responses to
the prices. The pricing game determines the electricity selling
prices in a distributed manner as well as the energy demand
of users. Subsequently, EVs are assigned to local FCSs, taking
into account the distance from and the queue at the stations.
Finally, the third subproblem exploits Lyapunov optimization to
control the operation cost of each FCS, considering the impact of
demand charges. In this paper, the proposed method is validated
through a numerical analysis using the real data of FCSs in
Boulder, Colorado. Moreover, the presented results revealed that
the proposed method is efficient regarding dynamic pricing and
optimal allocation of EVs to stations.

Index Terms—EV Charging Scheduling, Fast Charging Station
Optimization, Game Theory, Lyapunov Optimization.

I. INTRODUCTION

VER the last few decades, the energy sector has under-

gone unprecedented transformation concerning several
factors, including energy security, energy equity, and environ-
mental sustainability. Indeed, several countries have fostered
their development in the transportation sector to achieve Net
Zero through electric vehicle (EV) technology [1]. Trans-
portation sectors driven by electricity could significantly help
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decrease gasoline use, and contrary to gasoline, EVs would be
plugged into the electric station, which creates pathways for
devising clean and sustainable energy. Moving to an electric
transportation system, the difficult part of EV technology lies
in the charging speed, whereas gasoline vehicles have a very
short refueling time. This difficulty is addressed through fast
charging stations (FCSs), which improve charging speed and
enable long-mile travel. In this respect, managing EV demand
and FCS supply through joint optimization of EV scheduling
and FCS management at the individual station level and across
a regional system of FCSs is critical [2]. However, joint
management of EV charging scheduling and FCSs requires
detailed future information, which is challenging to obtain.
Therefore, we propose a hybrid approach for optimizing EV
charging scheduling and FCS management to tackle the above
challenges while relaxing the need for future information.

As FCS is a significant part of EV technology, which
has increased the attention from academia over the last few
years, there have been a number of investigations involving
FCSs. The authors in [3] design an FCS with adaptable
charging ports aiming to maximize the station’s profit and
user satisfaction. However, fixed selling prices are considered
in [3]. The research in [4] develops a distributed EV charging
mechanism where EVs decide whether to charge their batteries
based on information, such as the charging probability of other
EVs, electricity prices, etc. However, the work in [4] relies on
predicted data and does not optimize the FCS management
problem. Ref. [5] presents a novel method to operate an FCS
with a power cap policy while maintaining a high quality of
service experienced by clients. A hybrid charging management
strategy to address the under-voltage problem caused by FCSs
at a radial distribution network is explored in [6]. EVs choose
to participate in the voltage regulation plan or not; they
receive a subsidy upon participation. The methodologies in
[5,6] assume fixed electricity prices, as opposed to dynamic
prices, and require considerable forecasted factors such as
arrival time, charging demand, and queue at stations. In [7], an
optimal charging planning strategy for an electric bus system
is proposed considering rapid on-route and terminal charging
infrastructure. It is demonstrated that increasing buses’ battery
capacity reduces the total system cost to some extent, while
after a certain threshold, the battery capacity does not affect
costs. The study is limited to electric buses and cannot be
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extended to other EV types. The work in [8] proposes an
approach to reduce the operation costs of an FCS and the
waiting time of EVs. However, Ref. [8] does not consider
energy storage system (ESS) or renewable generation at the
FCS.

Dynamic pricing is found to be effective in increasing FCS
profit [2]. In addition, joint optimization of FCS management
and EV charging scheduling deserves more attention, and its
potentials to improve the results require better exploration [9].
The researchers in [2] present a real-time management strategy
for a system of FCSs using dynamic pricing, where both EV
routing and FCS optimization problems are solved. However,
the study lacks consideration of the operation costs of FCSs.
The authors in [10] propose profit-optimal management of an
FCS considering energy storage unit. Despite using dynamic
pricing, EV allocation to stations is missing in [10] due to the
consideration of a single FCS. The proposed strategy in [11]
finds the best FCS for EVs to visit while trying to maximize
the profit of FCSs. The FCSs compete with each other using
dynamic prices determined in an auction-based fashion where
FCSs set a base selling price, and then EVs bid higher prices
to gain charging priority based on their arrival time. The
problem is designed so that no queue is built up at the stations,
but the catch is that EVs may finally purchase electricity at
higher prices than the offered prices by FCSs. The study in
[12] explores an approach based on game theory to manage
a charging station optimally. The first game dynamically
determines the selling prices considering user response to
prices. On the other hand, the second game distributes power
among charging EVs. Solely analyzing the approach in the
case of slow parking lot charging is the limitation of this
study. An optimal navigation planning algorithm is presented
in [13], where EVs are assigned to FCSs and charging ports
at each FCS through Harris Hawks optimization [14] and
fuzzy inference system, respectively. Recent work in [15]
investigates multi-agent DDPG reinforcement learning to solve
the problem of maximizing the revenue of FCSs, fulfilling the
charging demand of EVs, and optimally dispatching EVs to
stations. The study supposes the selling prices are fixed, and
the transportation model requires predicting EV flow.

Previous studies rely on forecasted information, such as
arrival time and arrival state of charge (SOC), which suf-
fer from the limited accuracy of the existing forecast-based
methods. Further, the accuracy of the forecasted data impacts
the results of conventional optimization algorithms. Thus, the
Lyapunov optimization approach [16] is employed that relaxes
the need for future information and decomposes the problem
into subproblems such that the problem for each time step
is separately solved. Being independent of future forecasts
makes the solution robust to prediction inaccuracies, while
the decomposition lowers the compute time. Lyapunov opti-
mization approach has been employed in various studies for
optimization and control purposes. Ref. [17] applies Lyapunov
optimization to control the usage of the battery energy storage
of a commercial building. The authors in [18] propose a
Lyapunov optimization-based model to maximize a charging
station’s long-term profit through a dynamic pricing mech-
anism. However, the impact of demand charges, renewable
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Fig. 1. The components of each FCS in the system under study.
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generation, as well as ESS on the FCS profit is ignored. The
assignment of EVs to charging stations is proposed based on
the Lyapunov optimization technique in [19]. The goal is to
minimize the average time the user spends from requesting
the charging service to accessing it. In [20], the Lyapunov
optimization is used to optimally divide the available power
among charging EVs at an FCS.

Despite the development presented by the foregoing at-
tempts, the existing study mainly emphasized joint optimiza-
tion of EV charging planning, EV charging navigation, and
FCS cost minimization. As noted, separate studies have been
reported on EV charging scheduling and EV assignment to
stations on account of cost optimization. This lack of joint
optimization can create an imbalance between FCSs supply
and EVs demand [2]. On the other hand, FCS cost mini-
mization through EV charge planning and its navigation relies
on future forecasting, which needs large key information that
is challenging to predict. Considering the above challenges,
this paper proposes a combined approach to the optimization
problem as game theory and Lyapunov for EV charging
scheduling, navigation, and FCS cost (of purchasing power)
minimization. The key contribution of this paper is as follows:

e A hybrid game theory-Lyapunov optimization algorithm
is proposed that does not require future forecasting, and
the convergence of the Lyapunov optimization approach
is proved.

o The developed Lyapunov approach decomposes the orig-
inal FCS management problem into many subproblems,
where each subproblem has far fewer variables and can
be calculated very fast without relying on future forecast
data.

o Both energy and maximum demand charges are factored
in when modeling the FCS operation cost problem.
Hence, the problem is numerically analyzed for one
month to reflect the impact of demand charges on costs.

The remaining sections of the paper are structured as
follows. The problem formulation is introduced in Section II.
In Section III, extensive numerical results are explored and
discussed. Finally, conclusions are drawn in Section IV.

II. PROBLEM FORMULATION

In this paper, the dynamic pricing problem of a network
of FCSs is solved with a focus on minimizing the operation
cost of stations. Each FCS is equipped with a PV system
and an ESS, as shown in Fig. 1. The proposed problem of
this manuscript comprises three subproblems as visualized in
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Fig. 2. Step 1 is solved once, accounting for all EVs and FCSs. Step 2 and
Step 3 are separately solved for each EV and FCS, respectively. The solid
lines show the order of running subproblems, while the dashed lines point to
the subproblems where EVs/FCSs are targeted.
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Fig. 2. The first subproblem addresses the dynamic pricing
part of the model. Using a non-cooperative Stackelberg game,
the stations increase the selling price, and the requesting EVs
react to the higher price by reducing their charging demand.
Eventually, a selling price is found beyond which the overall
revenue of the FCSs would drop. In the second subproblem,
the EVs are allocated to the FCSs based on distance and
queue at each station. Lastly, the third subproblem deals
with minimizing the cost of purchasing power at each FCS.
The solution is obtained by utilizing Lyapunov optimization,
eliminating the need for future information about uncertain
model parameters.

A. Pricing Game Model

This subproblem determines the stations’ selling price and
the EV’s final energy demand. The objectives of FCSs and EVs
conflict in that each FCS aims to maximize its revenue, while
EVs intend to minimize the cost of purchasing electricity.
The interaction between EVs and FCSs is modeled by a non-
cooperative Stackelberg game where FCSs are leaders, and
EVs are followers. The procedure of the pricing game is as
follows. Firstly, we assume all FCSs belong to a company who
offers the same selling price. Therefore, the selling prices of
all FCSs are identical. Every EV that intends to visit a station
in the next time step submits its energy requirement, which is
a rough estimation of its energy need. At this point, the EV
has not chosen a station yet, and it may visit any station. On
the contrary, EVs planning to visit an FCS during the current
time step should adjust their demand according to the already
settled selling price. We focus on the customers visiting a
station in the following time step. The original approximate

energy requirement of such customers, E7 ;, is expressed as,

Eg,t = (ny,nd - Zn,t)Cnv (D

where 22 is SOC of nth EV at the end of charging session,
zn,¢ shows the initial SOC of nth EV whose charging event
occurs at time slot ¢, and C), is nth EV battery capacity.
The goal of each FCS is to maximize its profit, which is
stated as follows,
Nkt
Tei =Y (A Eni—NEn,), )

n=1

where I, represents the profit of kth FCS obtained during
t, Nj+ denotes the number of EVs that visit station % at time
slot ¢, \{ and ! are the price of electricity sold to the EVs
by the FCS and the purchasing price from the grid at time ¢,
respectively, and E, ; is the delivered energy to nth EV at ¢.

In addition, each EV tries to minimize its associated charg-
ing cost. In order to model EV price-sensitive behavior, the
following utility function is employed [12],

1
O =~ 5 SniFh + (N0

where S, ; is the client’s sensitivity to selling price, and A"
displays the maximum acceptable price beyond which the
driver opts out of utilizing the charging station. By taking the
derivative of (3) with respect to E,, ¢, the point where {2,, ; is
maximum is found,

A?)En,ta (3)

s — X

Sn,t .
Hereafter, it is assumed that user behavior is optimal, i.e.,
B, = Ej;t. Note that E,, ; < E; ,. This charging energy
is computed based on EV sensitivity to prices and dynamic
pricing. The user’s price sensitivity is presented as,
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where S? is the base sensitivity of the EV driver, A’ indicates
the minimum price when the EV driver becomes sensitive to
the selling price by reducing its energy demand, and B, ;
denotes the behavioral response of the EV to the prices. In
(4d), three behavioral responses are considered, namely, high
sensitive (HS), medium sensitive (MS), and low sensitive (LS).
Lastly, note that a,, ¢, B, ¢ € [0, 1].

By substituting (4b) and (4c) into (4a), the following ex-
pression is obtained for the settled energy demand of nth EV
based on A’ and the electricity selling price as follows,

Amax __ ys
E )\:r:ax )\Zt) (Zznd - Z"vt)C”Bnat’ Af > )‘2 (5)
n,t — n  ‘\n )
(Z%nd = 2n,t)Cn, Af < )‘Ir)z
which is equivalent to
\max _ ys
-, 0< By <1
En,t = Sn,t . (6)
(Z;nd - Zn,t)cna Bn,t =1

The concavity of {2, ; and the linearity of I, ; ensures the
existence and uniqueness of the Nash equilibrium [21]. The
dynamic pricing game can be iteratively solved as represented
in Algorithm 1.



Algorithm 1 Pricing Game

Initialization:
1: price = initial price
2: set A\
3: F t = 0
Loop:
1: while True do
2: price < price + A\
for all EVs do
collect E,, ; from user
end for
if I} is reduced then
return previous E,, ; and price < price — A\
terminate
9: end if
10: end while

® NN hEw

The pseudocode of the iterative process to obtain the Nash
equilibrium is outlined in Algorithm 1. The algorithm is
initialized by setting the selling price and considering a step
size to change it. The initial prices are not less than the
purchasing prices because that would mean negative profit,
i.e., loss, for the FCS. In line 3 of initialization, [} = ) 6 Lkt
We use the sum of the profit of all FCSs because, at this point,
EVs are not assigned to stations. In other words, each EV may
visit any station. Afterward, the selling price is raised by A\,
the energy demand of EVs is updated, and I is recomputed.
The iterative procedure continues until the maximum I3 is
reached. Note that A\ is the increment in the sales price \f,
and it is consistent with the time step. That is, A\{ cannot be
less than the electricity price at that time step, while A\ is a
small increment of ¢0.1/kWh used to update the sales price,
i.e.,, Aj <= A{+AM\ in each iteration. It is worth mentioning that
Algorithm 1 does not require the possibly private information
of EVs, such as SOC.

Algorithm 1 can be executed automatically through an app.
The consumer only needs to set their price sensitivity level,
i.e., select one of the options in Eq. (4d), and choose the
maximum price at which they are willing to charge, i.e., An**.
After announcing that the said customer wants to visit a station
in the next hour and determining the initial demand E , in
(1), the program within the app updates the energy demand
until maximum [ is reached.

B. EV Assignment to FCSs

This subsection allocates EVs to FCSs according to the
distance between the EV and FCS and the station queue.
Similar to the previous subproblem, the problem is solved
iteratively. It is assumed that there are no queues at the stations
at the beginning of the day. Then, customers start to submit
their requests to visit the stations. The assignment of EVs to
stations is performed with the help of the multinomial logit
model that finds the best station to which an EV is assigned
based on the value of 7, [2]. The selected station has the

highest 7, 1,
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where 31 and f» are weighting coefficients, d,, ;, shows the
distance between nth EV and kth FCS, g indicates the queue
at station k, and N, denotes the total number of stations that
nth EV can reach based on its remaining battery charge. Note
that (7) is independent from the electricity price as all FCSs
offer identical selling prices.

C. Operation Cost Minimization

In this subsection, we employ the Lyapunov optimization
approach to minimize the costs incurred by the FCSs for
purchasing power. Additionally, this subsection focuses only
on managing a single station, as the previous section has
allocated EVs to each station. Thus, the presented algorithm
in this subsection is performed separately for each FCS.
Lyapunov optimization relaxes the need for future information
and further decomposes the problem into subproblems that are
independently solved [20]. The former property of this method
is beneficial in cases where the future cannot be accurately
predicted, while the latter characteristic enhances the speed of
solving the problem. More importantly, Lyapunov optimization
mathematically guarantees its suboptimal solution is within a
controllable boundary around the global optimal solution.

1) Formulation: Since FCS costs depend on demand charge
and energy charge, the objective function is constructed con-
sidering total station energy demand and maximum power
demand. The problem is formulated in a general format as
follows. For station k we have,

T
) 1
min TIE{AttZ;/\fPt + M max [Pt =1,---,T] ¢,
(8a)
subject to
NP
Pt:zpi,t—P[+Pf—Ptd7 vt (8b)
i=1

N;

Z Ejlvto'n,i - nPi,tAta Vtvl (80)

n=1

N, N Nyt

Z Z E;,to—n,i = Z En,tv vt (8d)

i=1 n=1 n=1

NP

S oni=1 Vn (8¢)

i=1
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Emin < EtESS < Emax, Vit (81()

Pd
EtEﬁ =EPS ¢+ (Ptcn — ;) At, Vit ¢2))



where P, PY, P/, P,;, E!, and o, ; are the problem’s
decision variables. E{-} means expectation, ¢ shows time, P,
is the FCS power demand, A% indicates demand charge rate
in $/kW, N, is the number of charging ports at the FCS, P; ;
represents the charging power of an EV drawn from the ith
charging port, P/ expresses the renewable power generation
during ¢ at the FCS, Pf and Py are charging and discharging
power of ESS, respectively, N! is the number of EVs that
connect to port ¢ to be charged, tht displays the energy
demand of n-th EV that uses port , PtR exhibits the maximum
renewable generation Py displays the available power of the
station at t, P? ', indicates the available power of charging port
1 at time instance ¢, P™ denotes (dis)charging limit of ESS,
EESS presents the energy stored in ESS which is limited to
E™n and E™* and the charging and discharging efficiencies
of ESS are assumed to be equal and both are 7.

The objective function in (8) is the expectation of monthly
station costs. The loss cost of ESS is not considered in (8)
because it is much smaller than electricity purchasing price
(see Fig. 6 of [22]). Constraints (8b) state the station power is
equal to the sum of the powers of all charging ports and the
charging power of ESS minus the delivered renewable power
and discharging power of the ESS. Moreover, (8c) states that
the energy demand of all EVs who use port ¢ is equal to the
energy absorbed from that port, while (8d) expresses the total
energy drawn from all ports equals the energy demand of EVs
who visit station k. In addition, (8¢) and (8f) guarantee each
EV is charged through one charging port. Constraints (8g) to
(8j) limit the renewable generation power to P, station power
to P?, charging port power to P, f, and ESS (dis)charging
power to P™¥* respectively. Fmally, constraints (81) formulate
the remaining energy of ESS.

In order to cast the problem into the framework of the
Lyapunov optimization, the ESS depth of discharge (DOD)
is defined as queue backlog as follows,

Qi & ™ — B>, ©)

which, using (81), can be expressed as

P c
Q11 = Q¢ + 7—Pt77 At

where o; = PAAt/n — PfnAt.

Furthermore, the objective function in (8a) should be mod-
ified to be used in the Lyapunov optimization. Hence, the im-
mediate cost is calculated for each time slot as the following,

(1)

where the first part calculates the energy charge of the current
time slot, and the second part finds the demand charge increase
due to the station’s power demand at time slot ¢. In the second
term, P/ shows the maximum power so far drawn by the
FCS during the current billing cycle, which can be expressed
as Pf"° = max [P/}, P,_1]. By summing over all time slots,
(11) becomes

= Q¢+ 01, (10)

ug & NV PAt + A max [P, — Pf*,0],

T T
ZutzAtZ)\fPt—F/\dmaX[Pt|t: 1,---

t=1 t=1

T]. (12)

Therefore, %E{Zthl ut} equals the objective function in
(8a). In the following, we will define a Lyapunov function,
form the Lyapunov drift-plus-penalty term, find the upper
bound of the drift-plus-penalty term, and define problem (17)
that minimizes the upper bound of the drift-plus-penalty term
through Algorithm 2. Then, we prove that solving problem
(17) through Algorithm 2, for each time slot separately,
converges to the true optimal solution of (8) and satisfies
constraints (81).
2) Lyapunov Optimization: Next, the Lyapunov function is
defined as the following quadratic function,
LIQ: £ %Qi (13)
which is a positive-definite function and is used to define the
Lyapunov drift [18] as,

AlQd] 2 E{L[Qi+1] — L[Qu]|Q:},

which presents the temporally expected change of the Lya-
punov function. Finally, the drift-plus-penalty term is defined
as [18],

(14)

AlQ¢] + VIE{ut Q4 },

where V' is a non-negative constant that adjusts the weight
between minimizing the queue or the power demand of the
station. According to the Lyapunov optimization theory, if the
Lyapunov drift function in (14) has an upper bound for all ¢,
then minimizing the upper bound at each time slot ¢ solves
problem (8).

The following theorem derives the upper bound for the
Lyapunov drift.

(15)

Theorem 1. At any time slot t, the Lyapunov drift-plus-penalty
term has the following upper bound,

AlQe]+VE{u|Q:} < B+Q:E{0¢|Q:}+VE{u:|Q:+}, (16)

where B is a positive constant as follows,

1 Pmax 2
B { At} .
21 n

Proof. Using (13), we can write,
L(Qi 1] — L[Q:] =
With the help of (9), we obtain,

(QF1 — Q7) -

| =

HQua] = HQu = 3 (5= E)* (5 '
= L[S — (BB — 2 (ESS — 1ES)
(R ) (B854 P 2.

Combining (81) and (10), we have Eff_? EESS — gy, thus,

LQi41] — L[Q¢] = (Qt _ ZEESS + 2Emdx) .

Leveraging (9), we have 2™ — ZEESS = 2@, thus,

LiQ] = *Qt (0r +2Qy) = 1@? + Qro:-

LQ41] — 5



Algorithm 2 Minimizing FCS Operation Cost
Inputs: V, P, At, n, P™x, Emax, Emin, and EESS
Outputs: P, P2, P!, P,; and E!,
Initialization: Q, « E™* — EEss

1: for t € [1,7] do

2: find P¢, P2, PI, P, and Efm

3: 0; = PAAL/n — PfnAt

4 update P/

5: Qt < Q¢ + o

6: end for

by solving (17)

Utilizing (8j) and the definition of o;, we have,

max

At.

—P™nAt < g <

Since 0 < 77 < 1, then g2 < [P™™At/n]”

L[Qus1] — L[Q:] < B+ Q0.

By taking conditional expectations from both hand-sides with
respect to ()¢, we arrive at,

E{L[Q:+1] — L[Q:]|Q¢} < B + Q¢E{0¢|Q:}.

Using (14) and adding VE{u,|Q.} to both hand-sides of the
inequality, yields,

AlQ] + VE{w,|Qi} < B+ QiE{0:|Q:} + VE{u:|Q:}.
|

. Therefore,

We can minimize the upper bound of the drift-plus-penalty
in (16) through the following problem,
min

Qior + Vg, (17)

subject to (8b)-(8k).

Since (17) is independently solved for each time slot ¢, the
solving procedure can be implemented through Algorithm 2,
where for each time slot ¢, (; is a fixed value. In other words,
problem (17) is solved for each ¢ by fixing @);. Once the values
of P;; are obtained, (); is updated for the next time slot, i.c.,
Q41 is calculated.

In the following, we demonstrate that constraint (81) is met
by the solution of problem (17), which is solved through
Algorithm 2.

PIAt

Qi1 =Qr+ 0= Q¢ +

— PfnAt.

By replacing (9) and rearranging, we obtain (81)

PAAt
Emax _ EE&S-% — pmax _ EESS + t o Ptc'I]At,

PAAt
SS
ER = t—.

EFSS 4 PfnAt —

Subsequently, the next theorem proves the solution of Algo-
rithm 2 converges to the true optimal solution of (8), denoted

as p*.

Theorem 2. For all T > 1, the optimal solution of (17),
denoted by { P¢, P2}, and the optimal solution of (8), denoted
by {Pg*, P}, satisfy the following inequality,

1 & B
N EB{aw) <= 4p° 18
72 Elid s 3w (18)
where p* is the optimal objective function value of (8) and i,
is calculated by (11) using {Pf¢, PA} and
1 A 1

B, =B+ TE{L[QI]} + ;E’”‘”‘Pm‘”At. (19)
Proof. For {P{, Pf} satisfying the constraints of (8), define
Ay = P2At/n and & = PfnAt. Consequently, based on

(10) and (81) we derive Q111 = Q¢ + Ay — & and Efﬁ =

EFSS — Ay + &, respectively. By taking expectation on (81)
and summing over {1,2,--- , T}, we have
T
E{EFS} —B{ES} = > (-B{A} +E{&}), (20)
t=1

where the alteration of the left-hand side is due to the law
of telescoping sums. This implies that all feasible solutions
{P&, Pf} satisfying the constraints of (8) will satisfy the
constraint (20). Now, by replacing (81) with (20), we define
the following new optimization problem

1 T
T ;E{Ut}

subject to (8b)-(8k), (20)

(21a)

It is worth mentioning that since expectation of sum is sum
of expectation, from (12) we have,
’ T} } 9

which means the objective of (21) is identical to (8a). More-
over, because all { P?, Pf} satisfying the constraints of (8) will
also satisfy (20) and thus all constraints of (21), problem (21)
can be called a relaxed version of problem (8) in the sense
that the optimal solution of (8) is a feasible solution of (21),
and the optimal objective of (21) is less than or equal to the
optimal objective value of (8). Assume p denotes the optimal
objective function value of (21) under the optimal solution
{P¢, P2}, thus, p < p*. Hence,

T T
Z]E{Ut} ZE{AtZ)\fPt—i—)\dmax[Ptﬁ: 1,

t=1 t=1

T
S B}, @)
t=1
where u; and u; are calculated by the optimal solutions of
(21) and (8) using (11), respectively. Additionally, because
(17) minimizes the upper bound of the drift-plus-penalty term,
the solutions of (17) yield the minimum of Q; - 0t + V - uy,
which equals to the following,

Qt'@t+v'at:Qt<At_ét)+V'ﬂta

1 T
NZTZE{%}SP*Z
t=1

(23)

where A, and §t correspond to the values of A; and &
evaluated at { P¢, P4}, respectively. Evaluating Q; - o, +V - uy
with any other values satisfying the constraints of (17) (i.e.,



(8b)-(8k)) results in a value that is greater than or equal to
(23). Note that the solution {P¢, P2} of the relaxed problem
(21) also satisfies (8b)-(8k), thus

Qu(Ai=&)+V i <Q(A=&)+V i, @4
where A, and ft correspond to the values of A; and &
evaluated at {Ptf,Pt‘i}, respectively. By taking expectations
with respect to () of (23), we have

Q:E{ Ay — & Qi) + VE{i1|Q: )
Plugging the result into (16) yields
A[Qi] + VE{i|Qt} < B+ QiE{A; — &|Q:} + VE{i|Q¢}.
By taking expectations from both hand sides, we obtain

E{A[Qi]} + VE{@} < B+E{Q)E{A, — &} + VE{a,},

(25
where the condition with respect to Q; is removed through the
law of iterated expectations. Using (24) and (25), we obtain
the following

E{A[Q:]} + VE{i;} < B+ E{Q:}E{A; — &} + VE{a,}
< B4+ E{Q,}E{A4; — &} + VE{i,}.

Now, using (14) and by summing both hand sides over all
time slots, we arrive at the following,

T
E{L[Qr41]} —B{L[Q:]} +V D _E{a} <

=1
T T

TB+Y E{QEB{A, - &} +V Y Eli}.
=1 =1

Since L[Q:] is a positive definite function, we can drop
E{L[Qr+1]} from the left-hand side of the inequality, thus,

T
—E{L[Q1]} + V) E{i} <

=1
T T

TB + ZE{Qt}E{z‘L —&I+V Z]E{ﬁt}
=1 =1

Noting that Q; < E™* A, — &
max {A:} = P™At/n, we have,

T
> E{Qu}E{A; — &} < TE™P™ At/

t=1

< max{A4;}, and

Therefore, we obtain,

T
—E{L[Q1]} + V) E{a} <
t=1
T T
TB+ —E™P"™At+V Y E{i}.
g t=1
which by rearranging and dividing by 7'V,
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Fig. 3. Arrival histogram of EVs based on FCSs in Boulder city in Colorado.
The data is gathered from 2018 to 2022 [23].
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Based on (22) and (19), we have
T
1 B,
— E E{g,} < =— *
thl {ut}_ V +pa

which is identical to (18). It is worth noting that as V
increases, the left-hand side of (18) converges to p*. |

The summary of theorems 1 and 2 means that instead of
solving problem (8), we can minimize the upper bound of the
drift-plus-penalty term for each time slot. The result will be a
suboptimal solution with at most O(1/V) deviation from the
true optimal solution.

Ultimately, the proposed approach in this paper boils down
to Algorithm 1, Algorithm 2, and Eq. (7). Firstly, Algorithm 1
finds the selling electricity price and energy demand of EVs
for each time slot. Then, Eq. (7) assigns each EV to the best
FCS. Lastly, Algorithm 2 minimizes the cost of purchasing
power for each station by determining the charging power
of EVs at each charging port, the charging and discharging
power of ESS, and the generated renewable power. Note that
Algorithm 1 integrates all the FCSs, while Algorithm 2 is
independently executed for each station.

III. SIMULATION RESULTS AND ANALYSIS

This section presents simulation results to evaluate the pro-
posed approach. In simulations, 20 DC fast charging stations
are considered, where each FCS is equipped with 20 charging
ports with a power rating of 350 kW. Moreover, the data of
charging stations in Boulder city in Colorado is used, which
spans from 2018 to 2022 [23]. The data are further used
to find the EV arrival time distribution, as shown in Fig. 3,
which is, in turn, exploited to simulate EV charging request
scenarios. Since the data belongs to Boulder city, for the sake
of coherence, the location of 20 charging stations in Boulder
is chosen to calculate the distance each EV has to travel to
reach an FCS. These locations are marked in Fig. 4, which is
obtained from Google Maps.

Since the problem is decomposed and solved for each time
step separately, we assume EV arrival, energy demand, and
solar PV availability are known. EV energy demand is known
through the pricing game, and we assume EVs follow the value
obtained in the pricing game step. In addition, we assume EVs
can report their arrival in the Lyapunov optimization step, or
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Fig. 4. The locations of 20 selected stations on the map.

EV arrival can be forecasted with acceptable accuracy. Either
way, EV arrivals for the current interval are a known input.
A similar argument applies to solar PV availability, assuming
that solar PV generation is accurately forecasted for the current
time step.

The hourly electricity prices at which FCSs purchase energy
from the grid are obtained from PJM’s hourly real-time prices
[24]. We consider a case with high EV penetration where
10,000 electric cars visit the 20 charging stations during the
day. The 10,000 EVs are selected from 10 top-selling EVs in
2022. Every EV is assigned a different probability of selection
according to its U.S. sales percentage in 2022 [25].

EV population is distributed around the city based on traffic
count data in Boulder city [26]. As Fig. 5 displays, three types
of traffic count are used, namely, Arterial Counts Program
(ART), Boulder Valley Counts Program (BVP), and Turning
Movement Counts (TMC). The red, blue, and green spots
represent ART, BVP, and TMC. In this paper, ART is used
to simulate EVs’ locations around the city. Assume that EV
traffic flow follows the overall traffic flow. Each EV’s location
is randomly generated with the help of ART. First, one ART
point is randomly selected based on its selection probability,
where the traffic count in each red point is utilized to find
the selection probability. Then Gaussian noise is added to
the coordinates of the selected red point to simulate EV’s
location. The result is presented in Fig. 6, where the blue dots
show EVs’ simulated locations, the red circles represent ART
measuring points, and the green stars are 20 selected FCSs.

The first part of the problem, which is based on game theory,
is discretized in such a way that each time slot is one hour. In
addition, although the prices are dynamic, all the FCSs have
similar selling prices. Hence, the allocation of EVs to stations
is performed based on distance and queue at FCSs.
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g. 5. City of boulder traffic count data.
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Fig. 7. Pricing game results. The results are monthly averages. (a) The hourly
cost of purchasing electricity from the grid and the selling price to EVs. (b)
The average hourly cost per charging session.
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Fig. 8. Allocation of EVs to stations for a test day. (a) Illustrates the energy
demand from each station throughout the day. (b) Shows the number of EVs
that visit each FCS every hour of the day.

A. Pricing Game

Fig. 7 depicts the result of determining the prices of every
hour of the test day through Algorithm 1. The results in Fig. 7
are monthly averages for each hour. Fig. 7 (a) displays the
hourly cleared selling price as opposed to the purchasing price
from the grid. While the electricity cost varies throughout the
day from around 10 ¢/kWh to around 18 ¢/kWh, the selling
prices fluctuate around 20 ¢/kWh. The results are obtained
by setting the maximum acceptable prices by each customer
to a randomly selected value between 25 and 30 ¢/kWh. On
the other hand, the minimum price beyond which an EV user
becomes sensitive to the selling prices, )\fl, 1S set between
15 and 20 ¢/kWh. These values adjust the user behavior so
that the final cleared prices fall well below 40 and 70 ¢/kWh,
which is the average cost of charging an EV in public charging
stations [27]. Note that, the cleared price is the electricity price
at which the station purchases the electricity from the grid or
the market. The selling price is the price at which the energy
is sold to EVs by the FCS. Furthermore, Fig. 7 (a) shows the
peak and trough of the cleared selling prices that follow those
of the electricity cost. Thus, the selling prices drop with the
decrease of the electricity cost even though the electricity cost
is not integrated into the customer sensitivity model. Fig. 7
(b) represents the average hourly cost per charging session,
calculated by averaging the sum of money each customer pays
to charge their EV in each time slot. It is noticeable that a
reduction in the average amount of money the user pays for a
charging session follows the increase in selling prices. In other
words, since customers lower their charging demand as selling
prices rise, the average payment by users drops. However, due
to the high number of customers in peak hours, the FCSs still
gain maximum profit.

B. EV Assignment to FCSs

A test day results of allocating EVs to stations are plotted
in Fig. 8, where the hourly energy demand from each station
during the day and the total number of EVs allocated to each
station per hour are depicted. As seen in Fig. 8§, the FCSs are
busy from 09:00 am to 05:00 pm because EV charging demand

e Average Number of EVs

Average Demand (kWh)

=30
-125
—20

Station

Fig. 9. The daily average energy demand from each station and the average
number of EVs visiting every FCS. The results are monthly averages.

is high in this span. Moreover, according to the heatmaps,
stations 18, 13, and 4 are the busiest FCSs in terms of energy
demand and the number of visiting EVs. Comparing these
results with Fig. 4 and Fig. 6, it is clear that stations 18, 13,
and 4 are located in regions where no other FCS is nearby,
and two or three red spots surround each of them. Hence, the
customers prefer to wait in the queue rather than travel miles
to another station. Regarding crowdedness, from the heatmaps,
FCSs 18, 13, and 4 are followed by stations 2, 5, and 12.
It can be verified from Fig. 4 that there are few stations in
the vicinity of the said FCSs. Moreover, it is noticeable from
the heatmaps that stations 1, 19, and 20 do not host as many
customers as stations 2, 5, and 12, while they have comparable
requested demand. This is because fewer EVs with higher
demand visited stations 1, 19, and 20. Since the high-demand
users occupied the chargers, the remaining customers were
assigned to other FCSs.

The maximum energy request is equal to 2.09 MWh.
It occurs between 12:00 pm and 01:00 pm at station 18,
corresponding to 68 EVs intending to visit station 18, where
68 is the maximum number of cars visiting an FCS during
the day. Note that the order of energy demand does not
necessarily follow the number of EVs that visit a station.
For example, between 10:00 am and 11:00 am, the energy
demand at stations 19 and 20 are 1034 kWh and 1082 kWh,
respectively. However, the number of EVs who visit stations
19 and 20 in the same hour is 37 and 36, respectively. Fig. 9
represents the average daily demand from each FCS and the
average daily number of vehicles that visited each station. As
seen, the EVs are equally allocated to the FCSs close to each
other, while farther away stations experience a higher number
of visits.

C. Cost Minimization

In this step, the operation cost of each FCS is minimized
through Algorithm 2. This algorithm’s results are controlled
by coefficient V', which is a user input. It is reported that the
demand charges account for 73.7% of the average monthly bill
of charging stations in the United States [28]. Therefore, de-
mand charges are also integrated into the problem formulation.
The proposed Lyapunov optimization is a trade-off between
minimizing the operation cost and the DOD queue at the
stations. The trade-off is controlled via arbitrary coefficient
vV >ao.

In this regard, Fig. 10 presents the impact of coefficient
V' on the net profit of the FCSs and the maximum power

EVs
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Fig. 10. The impact of coefficient V' on results. (a) The variation of the net
profit of each FCS as V' changes. (b) The alterations of the maximum power
that each FCS draws in the billing cycle, i.e., one month, as V' changes.

that each FCS draws from the grid during the one-month
billing cycle. As expected, the increase in V' enhances the
profit while reducing the maximum drawn power. The reason
lies in the fact that the Lyapunov optimization attempts to
lower the costs, including demand charges; thus, the maximum
drawn power is reduced. Fig. 10 (a) illustrates the increase in
profit as V rises. However, the profit improvement stops at
roughly V' =~ 5000, where the results begin to deteriorate due
to the violation of the ESS capacity limit by queue backlog
size. Besides, Fig. 10 (b) displays the evolution of maximum
drawn power with V' where the highest power is drawn if
V = 1. Note that this power level only occurs in one time slot,
and this plot does not illustrate the average power demand.
Moreover, increasing V' from 1 to 10 leads to a drop in
maximum drawn power. Furthermore, higher values of V', up
to the V' ~ 5000 threshold, have an imperceptible effect on
the maximum drawn power. Afterward, the maximum drawn
power increases with V. Comparing results in Fig. 10 (b), we
observe that in most cases, by increasing V', a power demand
reduction of 500 kW is seen (bringing the maximum power
demand to less than 2.5 MW). A drop of 500 kW may lead
to $5000 decreased monthly electricity bill, seeing that the
average demand charges across the U.S. are $10/kW [28].
However, it is achieved at the cost of higher operation of ESS,
which results in its degradation. Lastly, it is noticeable that,
regardless of the value of V, the stations’ profits are not much
different, which indicates that Section III-B properly assigned
EVs to FCSs. Interestingly, station profit was not a factor in
allocating EVs to FCSs, yet they are assigned in a way that the
overall profit is divided among stations fairly homogeneously.

The profit improvement stems from the optimal exploitation
of the ESS and renewable generation. Table I shows the
monthly average of ESS DOD, average PV generation, and
expected profit at stations. The ESS capacity is considered

TABLE I
THE IMPACT OF COEFFICIENT V ON ESS UTILIZATION, PV GENERATION,
AND PROFIT
v Avg. []l;]‘SVSh]DOD Avg.[klthg}en. Avg. Profit

1 10.31 197.04 $12,631
10 10.22 197.05 $18,088
100 11.47 197.69 $18,442
1000 113.29 205.83 $20,682
2000 243.29 209.53 $21,625
3000 369.74 211.53 $22,252
4000 497.38 212.75 $22,592
5000 624.70 213.65 $22,629
6000 750.34 214.16 $22,153
7000 850.69 214.36 $21,362
10000 992.08 214.67 $18,917

TABLE II

COMPARISON OF THE PROPOSED APPROACH WITH THE BENCHMARK

Proposed Approach Benchmark
Average price/hour $5.14 $7.28
Lost customers 590 (daily avg.) 0
Avg. Maximum Drawn 1977 [kW] 2550 [kW]
Power
Avg. Demand Charges $19,770 $25,500

Average system profit
Average FCS profit
Avg. profit per charger

87.34 [$/MWh]
4.37 [$/MWh]
0.22 [$/MWh]

0.87 [$/MWh]

72.21 [$/MWh]
3.61 [$/MWh]
0.18 [$/MWh]

0.73 [$/MWh]

Avg. profit per 100
customers

1000 kWh at each station, and the daily average available
PV generation is 213 kWh. As discussed earlier, the best
performance is attained with V' = 5000. In addition, according
to the Lyapunov optimization theory, increasing V' renders the
problem (17) to converge to the optimal solution of (8) at
the cost of a larger queue backlog. Consequently, as seen in
Table I, values of V' greater than zero yield higher utilization
of ESS and PV generation. However, after the threshold of
V' = 5000, over-utilization of ESS occurs, and the profit
deteriorates.

D. Comparison with Benchmark

In this section, the proposed approach is compared with a
benchmark model as follows. In the benchmark model, the
pricing game is removed, and the electricity is sold to the
customers at a fixed price. The selling price is 0.05 [$/kWh]
higher than the hourly electricity cost. For example, if FCSs
buy electricity for 0.1 [$/kWh], they sell energy to users at
0.15 [$/kWh]. The 0.05 [$/kWh] margin is selected since the
difference between electricity cost and selling price in the
proposed approach is around 0.05 [$/kWh] in Fig. 7. Similar
to the proposed approach, EVs in the benchmark model,
are assigned to FCSs using the multinomial logit model in
(7), and the operation cost is minimized through Lyapunov
optimization.

Table II represents the comparison between the proposed
algorithm and the benchmark model. As seen in Table II, the



average hourly price for a charging session is increased from
$5.14 in the proposed approach to $7.28 in the benchmark
model. Moreover, there are no lost customers in the benchmark
approach because customers are assumed to purchase elec-
tricity regardless of the price. Further, the average maximum
drawn power across all stations is increased by 13.8% from
1977 to 2550 [kW], leading to a similar percentage increase
in demand charges. In addition, the average system profit is
dropped when using the benchmark model. Note that since
the price sensitivity of the users is removed in the benchmark
approach, the final amount of energy purchased by each user
may be different than the final amount of energy purchased
by the same user when their price sensitivity is accounted for
in the proposed approach. Therefore, in order to compare the
profits obtained by the proposed approach and the benchmark
algorithm, the profits are normalized by the total energy
demand from the users. For instance, in the case of the
proposed approach, the total average daily demand for EVs is
259.1 [MWh]. Thus, the normalized $22,629 profit becomes
22629/259.1 = 87.34. Finally, by dividing the normalized
profit by the number of FCSs, total number of chargers in
all FCSs, and number of customers, the average FCS profit,
average profit per charger, and average profit per customer are
obtained.

IV. CONCLUSION

This paper studies the charging scheduling and charging
navigation of EVs as well as the operation cost minimization
of FCSs. The problem is decomposed into three subproblems
to help enhance the computation speed and remove depen-
dency on future information. The first subproblem determines
the hourly selling prices and EV energy demands through
a pricing game for a network of FCSs by integrating user
behavioral responses into the model. The second subproblem
assigns EVs to nearby FCSs with the help of a multinomial
logit model, while the third subproblem leverages the Lya-
punov optimization to minimize the operation cost of FCSs.
The proposed algorithm is fast due to its decomposed nature
and requires around 10 minutes to run the simulation for a
month, and the charging scheduling of 10,000 EVs is planned
daily. The dynamic pricing subproblem yields low selling
prices; subsequently, the Lyapunov optimization guarantees
high station revenue. Lastly, the proposed model is bench-
marked against a recent study to showcase its performance.

The work of this manuscript can be extended in the fol-
lowing ways for future work. First, the competition among
different FCS companies can be considered by integrating
rival companies’ prices. Further, the proposed approach can
be studied under limited available power at FCSs, where
the available power should be optimally distributed among
charging EVs. In addition, users can be prioritized such that
those with top priorities, such as law enforcement vehicles or
ambulances, are permitted to jump in the queue.
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