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Abstract—A Lyapunov optimization (LO) approach is pro-
posed in this paper to minimize the operation costs of a DC
fast charging station (FCS). The LO method eliminates the need
for future forecasts, e.g., EV arrival time or required charging
energy, and reduces computation time. The FCS is equipped
with a battery energy storage system (ESS) to mitigate the costs
and the station’s strain on the grid during peak hours. However,
using LO can lead to underutilization of the ESS. To address this
issue, a reinforcement learning (RL) agent is trained to change
the desired energy level in the ESS such that it is close to the
optimal value. Lastly, simulation results demonstrate that the
RL-augmented LO method diminishes the costs by 30%.

Index Terms—DC fast charging station, Lyapunov optimiza-
tion, reinforcement learning, deep deterministic policy gradient,
energy storage system

I. INTRODUCTION

Electric vehicles (EVs) powered by renewable generation
have great potential to decrease the transportation sector’s car-
bon footprint [1]. Therefore, the U.S. bipartisan infrastructure
bill allocated $15 billion to develop low-emission buses and
ferries and build a nationwide network of plug-in EV chargers
[2]. Furthermore, in order to enable long-distance travel by
EVs and address users’ range anxiety, it is essential to establish
fast charging infrastructure [3]. Moreover, cost optimization
of fast charging stations (FCSs) is crucial to attract investors.
However, the optimization depends on uncertain user behavior,
such as arrival time, power and energy demand, etc. Fore-
casting such uncertain aspects of users’ random behavior is
challenging. Hence, we propose a Lyapunov optimization (LO)
approach to tackle the FCS optimization problem, eliminating
the need for future forecasts and drastically increasing com-
putation speed. Further, as demonstrated in the results, the LO

approach underutilizes the ESS, a crucial component to reduce
costs and FCS load on the grid during peak time. Hence,
the proposed LO strategy is augmented by a deep learning
algorithm based on reinforcement learning (RL) to resolve the
underutilization issue.

In recent years, many scholars have been conducting re-
search on FCS optimization. In [4], adaptable charging ports
are designed to maximize FCS’s profit. Relying on data
forecasting, the authors in [5] devise a strategy based on
which EV users decide whether to charge their batteries. A
novel mechanism is proposed in [6] to run an FCS under
limited available power while maximizing user quality of
service. In [7], FCS operation costs and EV waiting time
are minimized without using ESS or renewable generation
at the FCS. Notably, the works in [4]–[7] rely on forecast
information, which negatively impacts the optimal solution
as forecasting user behavior requires unrealistic assumptions
such as a known constant traveling speed or identical energy
consumption of all EVs as they travel. On the other hand, the
LO approach relaxes the need for future forecasts [8].

Introduced in [9], LO is an optimization approach that
decomposes the problem into many subproblems, each solved
for a single time step [10]. Additionally, LO does not require
future information as the underlying problem only depends on
the current time step. Besides, any constraint that depends on
several time steps, such as difference equations, is converted
into a virtual queue backlog. An LO model is investigated
in [8] to maximize FCS’s long-term profit. The researchers
in [11] use LO to optimize power allocation among charging
EVs in an FCS. Finally, in [12], the LO algorithm is employed
to control ESS utilization of a commercial building. However,
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Fig. 1. The components of the FCS along with the RL agent.

in the mentioned literature, the virtual queues follow a fixed
desired level. In contrast, the present work integrates an RL
agent to dynamically change the desired ESS energy level to
improve the LO results.

In this paper, we propose a novel optimization problem
based on LO where the operation cost of a DC FCS is
minimized. As illustrated in Fig. 1, the FCS is equipped with
a battery ESS and can directly purchase electricity from the
grid. The contributions and novelties of this work are twofold:
i) The LO algorithm eliminates the need for future forecasts. In
other words, the LO problem’s time steps are 5 minutes long,
for which we assume the forecast is not required and accurate
user behavior is known. ii) An RL agent is trained through
a deep deterministic policy gradient (DDPG) algorithm to
change the desired ESS energy level, denoted as Ed, such
that ESS energy, EESS

t , is close to the optimal value, denoted
as E∗

t . RL training is performed on historical data for which
perfect information is available (forecast is not required), and
E∗

t can be calculated by solving the problem via a mixed-
integer quadratic programming (MIQP) solver.

II. PROBLEM FORMULATION

In this paper, a novel approach for optimizing the opera-
tional costs of an FCS equipped with an ESS is presented.
First, the optimization problem is defined in (1) considering
the cost of purchasing electricity from the grid, ESS utiliza-
tion cost, and the penalty corresponding to unsatisfied EV
demands. Subsequently, the proposed optimization problem in
(1) is cast into (12) to enable utilizing LO, which decomposes
the problem into many subproblems, one subproblem for each
time step. With the help of Theorems 1 and 2, it is proved that
the optimal solution of (12) is within a controllable boundary
around the global optimal solution of (1). The benefit of
exploiting LO is improving computation speed and removing
the need for forecast. However, the solution of the LO leads to
the underutilization of ESS, as is demonstrated in Section III.
Consequently, a deep learning approach based on a DDPG
algorithm is designed to dynamically change the desired
energy level in ESS and resolve the underutilization issue.
Further, it is shown in Section III that exploiting the proposed
RL approach improves the results. The FCS operation costs
optimization problem is as follows,

min
1

T
E

{
T∑

t=1

(
λtDt + CESS

t + CEV
t

)}
dt (1a)

subject to

zt,v = zt−1,v +
ηEVP

EV
t,v

Cv
dt, ∀t, v (1b)

zmin
v ≤ zt,v ≤ zmax

v , ∀t, v (1c)

P EV
t,v ≤ Pmax

v AEV
t,vbt,v, ∀t, v (1d)

xt =
∑
V

bt,v, ∀t (1e)

CESS
t = λESS (P c

t + P d
t

)
, ∀t (1f)

CEV
t =

NEV∑
v=1

(
ztarget
v − zt,v

)
Cv, ∀t, v (1g)

DD
t = P c

t − P d
t +

NEV∑
v=1

P EV
t,v , ∀t (1h)

P d
t ≤

NEV∑
v=1

P EV
t,v , ∀t (1i)

P c
t ≤ P ESSκESS

t , ∀t (1j)

P d
t ≤ P ESS(1− κESS

t ), ∀t (1k)

P EV
t,v , P

c
t , P

d
t ≥ 0, ∀t (1l)

EESS
t+1 = EESS

t +

(
ηESSP

c
t −

P d
t

ηESS

)
dt, ∀t (1m)

Emin ≤ EESS
t ≤ Emax, ∀t (1n)

EESS
T = EESS

1 = Ed, (1o)

where t is time step, v is EV index, T shows total time steps,
λt indicates electricity price in $/kWh, Dt is purchased power
from the grid in kW, CESS

t expresses the cost of utilizing ESS
[$/h], NEV indicates number of EVs, κESS

t is a binary variable
to differentiate between ESS charge and discharge, λESS is
operation cost of ESS [$/kWh], P EV

t,v shows EV charging power
[kW], Pmax

v is maximum EV charging power in kW, zt,v
indicates EV state of charge (SOC), Cv shows EV battery
capacity, ηEV denotes EV battery charging efficiency, zmin

v and
zmax
v are EV SOC limits, ztarget

v is EV target SOC, P c
t and

P d
t represent ESS charging and discharging powers [kW],

P ESS presents ESS (dis)charging power limit [kW], EESS
t states

ESS energy level at t in kWh, ηESS is ESS power transaction
efficiency, Emin and Emax are ESS energy limits [kWh]. AEV

t,v

is a binary input that is zero before EV arrival at the station
and is one from the time EV arrives at the station to the end
of the day, bt,v is a binary variable that is zero if EV is not
connected, and xt ∈ {0, 1, 2, 3, 4} is an integer variable that
shows how many chargers are occupied at time t. AEV

t,v ensures
EV charging power is zero when the EV has not arrived
yet. (1e) limits the maximum number of EVs connected to
the chargers to four. Denote the set of decision variables as
Πt = {P c

t , P
d
t , zt,v, P

EV
t,v , E

ESS
t , κESS

t }∀v ∈ V .
In order to cast problem (1) into the LO framework, (1b)

and (1m) should be rewritten in the form of virtual queues. In
this respect, the ESS depth of discharge (DOD) is defined as
queue backlog as follows,

QESS
t ≜ Ed − EESS

t . (2)



Using (1m), (2) can be expressed as

QESS
t+1 = QESS

t +

(
P d
t

ηESS
− P c

t ηESS

)
dt = QESS

t + ϱt, (3)

where ϱt =
(
P d
t /ηESS − P c

t ηESS
)
dt.

Likewise, to tackle Eq. (1b), the DOD of each EV battery
is defined as a queue backlog as,

QEV
t,v ≜ ztarget

v − zt,v, (4)

QEV
t+1,v = QEV

t,v + φt,v, (5)

where φt,v = −ηEVP
EV
t,v

Cv
dt.

A. Reformulation

Exploiting the virtual queues in (2) and (4), we can trans-
form the original problem in (1) to a queue stability problem
(6), where constraints (1b) and (1m) are changed to stability
of virtual queues.

min
1

T
E

{
T∑

t=1

(
λtDt + CESS

t + CEV
t

)}
dt (6a)

subject to

(1d)-(1l),
stability of virtual queues Θt, ∀t (6b)

where Θt =
(
QESS

t , QEV
t,1, · · · , QEV

t,NEV

)
is the queue length

vector. Subsequently, LO is applied to (6) to design an adaptive
control policy. Problem (6) is decomposed into T subproblems
and solved for each time slot t separately, while the system
stability is guaranteed.

B. Lyapunov Optimization

Define the Lyapunov function as,

L[Θt] ≜
α

2

(
QESS

t

)2
+

β

2

NEV∑
v=1

(
QEV

t,v

)2
, (7)

which is a positive-definite function (α, β > 0) and is used to
define the Lyapunov drift [8] as,

∆[Θt] ≜ E{L[Θt+1]− L[Θt]|Θt}. (8)

Finally, the drift-plus-penalty term is defined as [11],

∆[Θt] + V E{ut|Θt}, (9)

ut =

(
λtDt + CEV

t + CESS
t

)
dt, (10)

where V is a non-negative constant that adjusts the weight
between minimizing the queue or the objective in (6a). Ac-
cording to the LO theory, if (8) has an upper bound for all
t, then minimizing the upper bound at each time slot t solves
problem (6). The following theorem derives the upper bound
for the Lyapunov drift.

Theorem 1. At any time slot t, the Lyapunov drift-plus-penalty
term has the following upper bound,

∆[Θt] + V E{ut|Θt} ≤ B + αQESS
t E{ϱt|Θt}

+ β

NEV∑
v=1

QEV
t,vE{φt,v|Θt}+ V E{ut|Θt}, (11)

where B is a positive constant as follows,

B =
α

2

[
P ESS

ηESS
dt

]2
+

βNEV

2
[Mdt]

2
,

M = max
v

{
Pmax
v ηEV

Cv

}
.

Proof. Using (7), we can write,

L[Θt+1]− L[Θt] =
α

2

((
QESS

t+1

)2 − (QESS
t

)2)
+

β

2

NEV∑
v=1

((
QEV

t+1,v

)2 − (QEV
t,v

)2)
.

With the help of (2) and (4), we obtain,

L[Θt+1]− L[Θt] =
α

2

(
EESS

t+1 − EESS
t

) (
EESS

t+1 + EESS
t − 2Ed

)
+

β

2

NEV∑
v=1

[
(zt+1,v − zt,v)

(
zt+1,v + zt,v − 2ztarget

v

)]
.

Combining (1m) and (3) as well as (1b) and (5) we have
EESS

t+1 = EESS
t − ϱt and zt+1,v = zt,v − φt,v . Leveraging (2)

and (4) we obtain,

L[Θt+1]− L[Θt] =
α

2
ϱt
(
ϱt + 2QESS

t

)
+

β

2

NEV∑
v=1

φt,v (φt,v+

2QEV
t,v

)
=

α

2
ϱ2t + αQESS

t ϱt + β

NEV∑
v=1

(
φ2
t,v

2
+QEV

t,vφt,v

)
.

Utilizing (1j)-(1k) and the definition of ϱt, we have,

−P ESSηESSdt ≤ ϱt ≤
P ESS

ηESS
dt.

Similarly, by (1d) and the definition of φt,v , we obtain,

−Pmax
v dt

Cv
ηEV ≤ φt,v ≤ 0

Since 0 < ηESS ≤ 1, then ϱ2t ≤
[
P ESSdt/ηESS

]2
. On the other

hand, φ2
t,v ≤ [Mdt]

2. Therefore,

L[Θt+1]− L[Θt] ≤ B + αQESS
t ϱt + β

NEV∑
v=1

QEV
t,vφt,v.

By taking conditional expectations from both hand-sides with
respect to Θt and adding V E{ut|Θt} to both hand-sides,

∆[Θt] + V E{ut|Θt} ≤ B + αQESS
t E{ϱt|Θt}+

β

NEV∑
v=1

QEV
t,vE{φt,v|Θt}+ V E{ut|Θt},

where ∆[Θt] is substituted using (8). ■

We can minimize the upper bound of the drift-plus-penalty
in (11) through the following problem,

min β

NEV∑
v=1

QEV
t,vφt,v + αQESS

t ϱt + V ut, (12)



Algorithm 1 Minimizing FCS Operation Cost

Initialize: QESS
1 ← Ed − EESS

1 and QEV
1,v ← ztarget

v − z1,v, ∀v
1: for t ∈ [1, T ] do
2: solve problem (12) and find outputs for t
3: ϱt =

(
P d
t /ηESS − P c

t ηESS
)
dt

4: φt,v = −P EV
t,v ηEVdt/Cv

5: QESS
t ← QESS

t + ϱt
6: QEV

t,v ← QEV
t,v + φt,v, ∀v

7: end for

subject to (1d)-(1l),

In addition, we demonstrate all queues in Θt are bounded, and
(6b) holds. By replacing ut, QEV

t,v , QESS
t , φt,v , and ϱt in (12)

and rearranging, the objective function becomes,(
V
(
λt + λESS

t

)
− αηESSQ

ESS
t

)
dtP c

t +(
V
(
−λt + λESS

t

)
+

α

ηESS
QESS

t

)
dtP d

t +

NEV∑
v=1

(
V (ztarget

v − zt,v)Cv + V λtP
EV
v,t − β

QEV
v ηEV

Cv
P EV
t,v

)
dt.

Based on (1j) and (1k), either P c
t or P d

t is always zero.
Therefore, since the problem is minimization, ESS will be
charged or discharged under the following conditions, which
yield QESS

t boundaries,{
P c
t ≥ 0, P d

t = 0, if QESS
t ≥ V λt+λESS

αηESS
,

P c
t = 0, P d

t ≥ 0, if QESS
t ≤ V λt−λESS

α ηESS,

QESS
t ≤ min

{
V
λt + λESS

αηESS
+

P ESS

ηESS
dt, Ed − Emin

}
, (13a)

QESS
t ≥ max

{
V
λt − λESS

α
ηESS − P ESSηESSdt, E

d − Emax
}
.

(13b)

Similarly, QEV
t,v boundaries are,

min

{
V λtCv

βηEV
, ztarget

v − zt,v

}
≤ QEV

t,v ≤ ztarget
v − zt,v.

Since (12) is independently solved for each time slot t,
the solving procedure can be implemented via Algorithm 1.
Subsequently, the following theorem proves the solution of
Algorithm 1 converges to the global optimal solution of (1),
denoted as p∗.

Theorem 2. For all T > 1, the optimal solution of (12),
denoted by Π̂t, and the optimal solution of (1), denoted by
Π∗

t , satisfy the following inequality,

1

T

T∑
t=1

E {ût} ≤
B1

V
+ p∗, (14)

where p∗ is the optimal objective function value of (1), ût is
calculated by (10) using Π̂t, and B1 is

B1 = B + βNEVMdt+
1

T
E{L[Θ̂1]}

Proof. For Πt satisfying the constraints of (1), define At =
P d
t dt/ηESS and ξt = P c

t ηESSdt. Consequently, based on (3)
and (1m) we derive QESS

t+1 = QESS
t + At − ξt and EESS

t+1 =
EESS

t − At + ξt, respectively. By taking expectation on (1m)
and summing over {1, 2, · · · , T}, we have

E{EESS
T } − E{EESS

1 } =
T∑

t=1

(−E{At}+ E{ξt}) . (15)

Using (1o) and dividing (15) by T we obtain

1

T

T∑
t=1

E{At} =
1

T

T∑
t=1

E{ξt}. (16)

This implies that all feasible solutions Πt satisfying the
constraints of (1) will satisfy the constraint (16). Now, by
replacing (1m) with (16), we define a new problem as

min
1

T

T∑
t=1

E {ut}

subject to (1d)-(1l), (16) (17)

Moreover, because all Πt satisfying the constraints of (1) will
also satisfy (16) and thus all constraints of (17), problem (17)
can be called a relaxed version of problem (1) in the sense
that the optimal solution of (1) is a feasible solution of (17),
and the optimal objective of (17) is less than or equal to the
optimal objective value of (1). Assume p̃ denotes the optimal
objective function value of (17) under the optimal solution Π̃t,

p̃ =
1

T

T∑
t=1

E {ũt} ≤ p∗ =
1

T

T∑
t=1

E {u∗
t } , (18)

where ũt and u∗
t are calculated by the optimal solutions of (17)

and (1) using (10), respectively. On the other hand, because
(12) minimizes the upper bound of the drift-plus-penalty term,
the solutions of (12) yield the minimum of β

∑NEV
v=1 Q

EV
t,v ·φt,v+

αQESS
t · ϱt + V · ut, which equals to the following,

β

NEV∑
v=1

Q̂EV
t,v · φ̂t,v + αQ̂ESS

t

(
Ât − ξ̂t

)
+ V · ût, (19)

where Ât and ξ̂t correspond to the values of At and ξt
evaluated at Π̂t, respectively. Evaluating the objective of (12)
with any other values satisfying the constraints of (12) (i.e.,
(1d)-(1l)) results in a value that is greater than or equal to
(19). Note that the solution Π̃t of the relaxed problem (17)
also satisfies (1d)-(1l), thus

β

NEV∑
v=1

Q̂EV
t,v · φ̂t,v + αQ̂ESS

t

(
Ât − ξ̂t

)
+ V · ût ≤

β

NEV∑
v=1

Q̃EV
t,v · φ̃t,v + αQ̃ESS

t

(
Ãt − ξ̃t

)
+ V · ũt, (20)

where Ãt and ξ̃t correspond to the values of At and ξt
evaluated at Π̂t, respectively. By taking expectations with
respect to Θ̂t of (19) and Plugging the result in (11),

∆[Θ̂t] + V E{ût|Θ̂t} ≤ B + αQ̂ESS
t E{Ât − ξ̂t|Θ̂t}+



β

NEV∑
v=1

Q̂EV
t,vE{φ̂t,v|Θ̂t}+ V E{ût|Θ̂t}.

By taking expectations from both hand sides, we obtain

E{∆[Θ̂t]}+ V E{ût} ≤ B + αE{Q̂ESS
t }E{Ât − ξ̂t}+

β

NEV∑
v=1

E{Q̂EV
t,v}E{φ̂t,v}+ V E{ût}. (21)

Using (20), (21), and (8) and by summing both hand sides
over all time slots, we obtain the following,

E{L[Θ̂T+1]} − E{L[Θ̂1]}+ V
T∑

t=1

E{ût} ≤ V
T∑

t=1

E{ũt}+

TB + α
T∑

t=1

E{Q̃ESS
t }E{Ãt − ξ̃t}+ β

T∑
t=1

NEV∑
v=1

E{Q̃EV
t,v}E{φ̃t,v}.

Since L[Θt] is a positive definite function, we can drop
E{L[Θ̂T+1]} from the left-hand side of the inequality. By
rearranging, dividing by TV , and using (16) and (18),

1

T

T∑
t=1

E{ût} ≤
B

V
+ p∗ +

β

TV

T∑
t=1

NEV∑
v=1

E{Q̃EV
t,v}E{φ̃t,v}

+
1

TV
E{L[Θ̂1]}

As mentioned in the proof of Theorem 1, φ̃t,v ≤ Mdt.
Besides, according to (4), Q̃EV

t,v ≤ 1. Hence,

1

T

T∑
t=1

E{ût} ≤
B1

V
+ p∗,

which is identical to (14). ■

C. Dynamic ESS Desired Energy Level

The QESS
t bounds in (13) render underutilization of ESS as

shown in Fig. 2b. To resolve the issue, an RL agent is trained
using the DDPG algorithm to change the ESS desired energy
level, Ed, per time step. The RL agent learns to change Ed

based on time of day, current electricity price, energy level in
ESS, and EV demand. The training is executed on historical
data. To generate reward signals during training, E∗

t is found
for training data via an MIQP solver.

1) Environment: The environment is the FCS. For each
time step, Algorithm. 1 receives RL action and finds P c

t and
P d
t . Then, a reward is generated based on the updated EESS

t .
2) State Space: The state space comprises the current hour,

electricity price λt, ESS energy level EESS
t , and the charging

EVs’ demands. The states are,[
hour
24

λt

100
EESS

t

Emax

∑NEV
v=1

P EV
t,v

4×150

]T
,

where the values are normalized by division by their maxi-
mums. EV charging power is divided by 4× 150 as there are
four 150 kW chargers at the station.

3) Action Space: The RL action determines the updated
value for the desired ESS energy level Ed. Based on the new
Ed, QESS

t is updated.

4) Reward Signal: During training, the reward signal is
calculated using E∗

t , denoted as E∗
t , obtained by solving

problem (1) for June 2023. Since June 2023 is past, we assume
perfect knowledge of electricity prices and user behavior. The
reward function is as follows,

Rt = −
∥∥E∗

t − EESS
t

∥∥
Emax .

5) Deep Deterministic Policy Gradient: DDPG generates a
continuous action that maximizes Q-function Qϕ(s, a), which
is obtained through gradient ascent over,

max
θ

E {Qϕ (s, µθ(s))} .

Further, during training, Q-learning in DDPG is performed by
minimizing the following loss via gradient decent [13], [14],

L(ϕ) = E

{(
Qϕ(s, a)− (r + γ(1− d)Qϕt

(s′, µθt(s
′)))

)2
}
.

III. RESULTS AND DISCUSSION

In this section, the proposed augmented LO method with
RL is applied to a DC FCS with four 150 kW charging ports,
which is in accordance with the Federal Highway Administra-
tion’s minimum number of required charging points in an FCS
[15]. Further, the FCS has a 500 kWh ESS with a maximum
charging/discharging power of 200 kW. On the other hand,
the electricity prices are obtained from the NYISO electricity
market [16]. In addition, it is assumed that a maximum of 100
EVs visit the FCS daily, comprising fifteen different types of
EVs with the highest sales in 2021 and 2022 [17]. Moreover,
EV arrival time is simulated based on historical data in [18].

The RL agent is trained using June 2023 data, and the
trained RL is evaluated on the last week of May 2023. Table. I
represents the results of applying LO on the train and test days
with or without using the trained RL to adjust Ed. The first
row of Table. I is June 2023 averaged results. The following
seven rows present the results for each test day during the
last week of May 2023. The first column, “Optimal solution,”
presents global optimal solution which is the operation cost,
i.e., (1a) excluding CEV

t , obtained by solving the problem with
an MIQP solver, assuming perfect information is available.
The two middle columns titled “LO without RL” and “LO with
RL” show the results of solving the problem with LO when Ed

is fixed and when Ed is adjusted by RL, respectively. Finally,
the last column shows the percentage improvement when RL
is used compared to the global optimal solution.

Fig. 2 illustrates detailed results for test day #2. As seen
in Fig. 2b, when RL is not used, the ESS is not charged
when prices are low and discharged when prices are high.
This behavior stems from the QESS

t bounds in (13). In fact,
based on λt values for the day, the smallest lower and
greatest upper bounds of QESS

t are −14.81 and 18.87 [kWh],
respectively. It means that if QESS

t becomes smaller than
Ed − 14.81 = 250 − 14.81, ESS will be charged in the next
time step. Similarly, if QESS

t becomes greater than 250+18.87,
ESS will be discharged in the following time step. Adjusting
Ed with the help of RL resolves this limitation.



Fig. 2. Test day #2 (05/26/2023). a) Power flow from grid to EVs (averaged every 5 minutes) as well as electricity price. b) EESS
t when RL is not used

to adjust Ed. c) EESS
t when Ed is adjusted by RL (the blue line). The adjustment reduces the overall cost of the day by 11.98%. The red line is E∗

t from
the global optimal solution. d) EVs’ initial and final demand in terms of SOC percentage. e) Charger occupation and queue length at the FCS. f) Each EV’s
charging and queuing duration. Note that subplots (d), (e), and (f) are the same for both cases, i.e., with or without RL adjustment.

TABLE I
RESULTS FOR THE TRAINING MONTH AND THE TEST WEEK

Optimal
solution

LO without
RL

LO with
RL

Improvement

June 2023
Average 58.9553 78.8494 74.7662 20.52%

Test day 1 43.0842 58.5527 53.4648 32.89%
Test day 2 51.5378 66.2411 64.4798 11.98%
Test day 3 39.2181 54.1628 50.512 24.43%
Test day 4 40.0221 56.5487 50.9714 33.74%
Test day 5 48.5916 67.7079 61.0943 34.60%
Test day 6 53.5637 78.0473 68.2638 39.96%
Test day 7 69.2387 97.4979 89.3151 28.96%
Average 49.3223 68.394 62.5859 30.45%

IV. CONCLUSION

This paper presents a novel technique based on an RL-
augmented LO approach for minimizing DC FCS operation
costs. The FCS under study has a battery ESS whose charg-
ing and discharging powers should be optimized. The LO
algorithm handles the optimization problem without the need
for future information. However, the LO framework instigates
underutilization of ESS. To address this issue, an RL agent is
trained through the DDPG algorithm to alter the desired energy
level in ESS, which resolves the underutilization issue. Lastly,
in simulation results, it is demonstrated that the proposed
approach reduces the costs by 30% compared to the results
of solving the problem with LO alone.
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