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Abstract. While machine-learning from data is becoming an ever more important part of science
and engineering, physical insights and first principles continue to provide critical information about
systems of interest. This work introduces a data-driven method for inferring models that encode
physical insights in form of structure and have the minimal order that is necessary to fit well the
training data. The models are formulated via solution matrices of specific instances of generalized
Sylvester equations that enforce interpolation of the training data and at the same relate the model
order to the rank of the solution matrices. The proposed method numerically solves the Sylvester
equations for minimal-rank solutions to obtain parsimonious models, which ensures that the training
data are fitted well while redundant degrees of freedom without conditions and sufficient data to
fix them are eliminated. To make the training computationally efficient, the rank minimization is
relaxed via weighted nuclear norms. Numerical experiments demonstrate that the combination of
structure preservation and order minimization leads to accurate models with orders of magnitude
fewer degrees of freedom than models of comparable prediction quality that are learned with structure
preservation alone.

1. Introduction. Learning models that describe the input-output response dy-
namics of systems from data is an ever more important building component in science
and engineering. At the same time, in many applications, there is at least some knowl-
edge available about the physics that are described by the systems of interest [13, 54].
Such physical insights often can be translated into structure, e.g., symmetries, time
delays, and high-order time derivatives, which can then be imposed on the models to
ensure physically meaningful input-output response predictions.

In this work, we introduce a method for inferring models that preserve the struc-
ture given by physical insights and, at the same time, minimizes the order of the
model—the number of degrees of freedom of the model parametrization—that is nec-
essary to fit well the training data. Critically, the order is determined during training
and does not have to be specified a priori. Minimizing the model order means that
our approach finds parsimonious models by adjusting the order during the training
so that input-output data are fitted well while redundant degrees of freedom with-
out conditions and sufficient data to fix them are eliminated. Correspondingly, the
learned models have few degrees of freedom and thus can be simulated quickly to
make predictions about the underlying systems. Additionally, the learned structured
input-output models can be realized as systems that describe dynamics of states in
the time domain and how they behave under control inputs, which is in contrast to
black-box models that only match the input-output behavior. Numerical experiments
demonstrate that the combination of structure preservation and order minimization
leads to accurate models with orders of magnitude fewer degrees of freedom than
models of comparable prediction quality that are learned with structure preservation
alone.

There is a wide range of literature on learning models of physical systems from
data. First, there are methods that learn models from state observations, such as
dynamic mode decomposition [24, 38, 44, 51], sparsity-based methods [10, 42, 41, 50],
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and operator inference [33, 35, 6, 52, 26, 49, 55, 5]. Closer to the approach introduced
in this work are methods from the systems and control community that learn models
from input-output data, such as the Loewner, AAA, and vector fitting techniques in
the frequency domain [1, 25, 2, 20, 4, 16, 15, 53, 30, 21], and time domain [23, 32].
Closest to our work is the approach introduced in [46], which fits structured models by
interpolating the training data. However, imposing the structure can mean that there
are more degrees of freedom than conditions to fix them. The authors of [46] introduce
additional constraints to close all degrees of freedom, which means that the learned
model is not parsimonious anymore by construction and so can require more degrees
of freedom than necessary for explaining the training data. Several works aim to learn
structured models by fitting model parameters via gradient-based learning methods
[27, 48, 47, 28]. However, these methods require that the number of parameters and,
thus, the order of the models is fixed a priori, and it cannot be adapted during the
training. Additionally, the success of these methods critically depends on the initial
guess of the model parameters, which can be challenging to obtain and typically relies
on heuristic arguments.

Our approach adapts the order of the model during training to obtain parsimo-
nious, structured models without redundant degrees of freedom. Building on model
reduction [39, 8, 43, 2], in particular the works [3, 7], the key ingredient is describ-
ing models that interpolate the given input-output data as solutions of generalized
Sylvester equations, which allows formulating the training problem as finding minimal-
rank matrices that solve specific instances of Sylvester equations. We then relax the
rank in the objective to the weighted nuclear norm so that the corresponding optimiza-
tion problems can be solved efficiently with of-the-shelf techniques [11, 17, 37, 22].
It is important to note that structure such as symmetry is encoded in the learned
model rather than merely being weakly enforced via penalization in the loss function.
In fact, in our numerical experiments, imposing structure onto the model allows the
optimizer to find even lower-order models that fit the data well than if the order of
the model alone is minimized without structure preservation. In our numerical exper-
iments, the proposed approach also outperforms standard techniques from black-box
machine learning in terms of prediction quality by roughly a factor of two on the same
training data sets.

The manuscript is structured as follows. In Section 2, we briefly discuss traditional
model reduction techniques [39, 8], in particular the interpolatory techniques proposed
in [3, 7] to construct low-order models of structured systems when high-dimensional
models are available. In Section 3, we carry over the interpolatory model reduction
techniques to the data-driven setting to formulate our approach that learns minimal-
order, structured models from data. Extensions of our approach to symmetric systems,
systems with parameters, and multiple inputs and multiple outputs are introduced in
Section 4. Section 5 considers computational aspects of our approach and proposes
a relaxation of the rank minimization via the weighted nuclear norm to make it
computationally tractable. In Section 6, we illustrate the efficiency of the proposed
methodology on various examples, and conclusions are drawn in Section 7.

2. Preliminaries. We briefly review systems that are given by structured input-
output maps, which are transfer functions in the case of dynamical systems.

2.1. Structured systems. Input-output maps, which for dynamical systems
are transfer functions, of a wide class of structured systems have the form

(2.1) H(s) = C (Z" ai(s)Ai)_l B,
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where
(2.2) Ay,... A, eR™" BecR™™ CecR*"

are system matrices, the functions «; : C* — C are assumed to be smooth meromor-
phic functions, and s € C? is a vector argument to these functions that can include
parameters of the system. Transfer functions of structured systems such as delay
systems, second-order systems, and affine parameter-dependent systems can be de-
scribed in the form (2.1). For example, for a single-delay system, «a;(s), as(s), and
a3 (s) can, respectively, be 1,s, and €™, where 7 is a delay. If the input-output map
(2.1) represents a non-parametric transfer function, then s is scalar and takes values
on the imaginary axis.

In the following, the transfer function H(s) is strictly proper, which means that

lim H(s)=0
lIs||—o00
holds. Furthermore, the functions «;,i = 1,...,q are linear and independent, and

thus, there cannot exist a non-zero vector f € C? for which

[a1(8),...,aq(8)] F =0, vs.

2.2. Intrusive construction of low-order structured models. We briefly
discuss the approach introduced in [7] for constructing low-order structured models.
For ease of exposition, we focus on single-input single-output (SISO) systems so that
Il = m = 1; extensions to multiple-input multiple-output (MIMO) systems are dis-
cussed later in Subsection 4.1. Furthermore, the functions «; : C — C have a scalar
argument s € C. The extension to a multi-variate s and a; : C? — C is just a technical
extension and is discussed in Subsection 4.3.

The aim of the model reduction approach described in [7] is to determine a low-
order model

-1

~ ~ q ~
(2.3) Hs) = (D) als)A:) B,
where ;&l eER™"i=1,...,q, Be R™*" and C € RIX". The order of the 1&1, cee jiq
matrices is r and the aim is to choose » much smaller than n, the order of the matrices
of the high-dimensional model (2.1), while ensuring accuracy within a tolerance tol
with respect to (2.1) via

(2.4) |H — H| < tol,

in an appropriate norm || - ||. The functions «; in (2.3) are the same as in (2.1).
The matrices Aq,..., A, € R™", B € R™*" C € R*" are constructed via Petrov-
Galerkin projection with the projection matrices V and W,

(2.5) A, =W'A,V, B=W'B, C=CV.

There are many ways to construct the projection matrices V and W; see, e.g., [3, 7,
9]. Tt is important to note that constructing the matrices as in (2.5) via projection
with V and W is intrusive because it requires having the matrices (2.2) of the high-
dimensional model available either in an assembled form or via a routine that provides
the vector-matrix product.
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2.3. Intrusive interpolatory model reduction. One widely used approach
to construct V and W is by enforcing interpolation conditions

(2.6) H(o;) =H(o;), i=1,...,r

at interpolation points o1,...,0, € C. As shown in [3], if 7 | a;(s)A; is invert-
ible for all s € {oy,...,0,}, then the low-order model (2.3) with the matrices (2.5)
obtained with the projection matrices

(2.72) V= [(SL, 0i(0)A) " B, (T, aslor)A) ' B,
(2.7b) W= [(TL, aslo)A) " C, L (DL aslon)A) T O
satisfies (2.6), provided Y7, a;(s)A; is also invertible for all s € {o1,...,0,}. More-
over, the derivative information at the interpolation points oq,..., o, is interpolated
as well,

d d ~

£H(Ji) = £H(U¢), i=1,...,m

When constructing the matrices A, ..., jAXq defined in (2.5) of the low-order model
(2.3) with the V and W matrices defined in (2.7), then the order r of the model, i.e.,

~

the size of the matrices f&l, ..., Ay, equals the number of interpolation conditions
(2.6). Thus, the number of given interpolation conditions in the form of the train-
ing data determines the order of the model (2.3) that is obtained with this process.
However, there can be another model of order ry;; < r that also interpolates the
data (2.6). In the following, we say that the order 7, is minimal if no matrices of a
lower order than ry;, exist that lead to a model (2.3) that satisfies the interpolation
conditions (2.6). In practice, to reduce the order of a model while maintaining good
approximate quality, once the matrices Kl, .. .f&q are determined with V and W,
they are often compressed via the singular value decomposition (SVD). The compres-
sion typically leads to models that slightly violate the interpolation conditions (2.6)
in favor of having lower order models that approximate the high-dimensional model
in the sense of (2.4).

The procedure to interpolatory model reduction outlined in this section is in-
trusive because the matrices of the high-dimensional model (2.2) are needed if the
projection matrices V and W and the model matrices f&l, ey f&q are assembled as
in (2.7) and (2.5), respectively.

3. Rank-minimizing and structured model inference (RSMI). We now
introduce rank-minimizing and structured model inference (RSMI) to find a structured

low-order system model with the following input-output map
~ ~ SO
(3.1) H(s) = C (Z" ozi(s)Ai) B

i=1

from input-output data of a system (2.1)

(3-2) {(01,H(01)), - .., (o, H(ow))}

and the functions aq,...,aq, but without access to the system matrices of the un-
known system (2.2).
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We build on a formulation of the projection matrices V and W defined in (2.7)
as solutions to generalized Sylvester equations, which we use to derive Sylvester equa-
tions for the matrices Ay,..., A, that depend on the training data (3.2) only. This
then motivates the objective function of the proposed RSMI approach for inferring
matrices Ay, ..., A, of minimal rank that satisfy the generalized Sylvester equations
and so give rise to a model that fits the training data well while ensuring a low-order
representation.

3.1. Model matrices as solutions of generalized Sylvester equations.
The projection matrices V and W in (2.7a) and (2.7b), respectively, solve the follow-
ing generalized Sylvester equations:

(3.3a) A VA +---+A, VA, =B1",

(3.3b) AIWA +- +ATWA,=C'17,

where A; = diag (a;(01),...,a;(on)) and 1 is a column vector of ones. Multiplying
(3.3a) and (3.3b) by the matrices W' and VT, respectively, from the left leads to
(3.4a) WTA VA +-+WTA VA, =W'BIL',

(3.4b) VIA/WA +-+ VIA /WA, =V'C'1".

Now, notice that WT A,V = Kl fori=1,...,q and
~ T ~
W'B=B=[H(o),....Hoy)| ., CV=C=[H(), . Hon)|-

Consequently, we can write (3.4) using only matrices that define a model:

(3.5a) AA+-+ AN, =H,1T,
(3.5b) ATA 4+ +AJA, =H,1",
where

.

HO- = H(O’l),...,H(UN)

It is important to note that (3.5) is independent of the system matrices of the unknown
model (2.1) from which data (3.2) are sampled. Thus, the solutions of the equations
(3.5) provide us directly with matrices (2.5) of models that interpolate the data (3.2),
without access to the high-dimensional matrices (2.2). This is in contrast to finding
the matrices Al, ceey Aq via projection as in (2.5), which is based on the projection
matrices V and W defined in (2.7) that are assembled with matrix-vector products
with the system matrices of the unknown model. However, directly solving equations
(3.5) for the matrices A, .. A leads to matrices that form a model of order that
scales with the number of data pomts N, which potentially is much higher than the
minimal order required to interpolate the data; see also the comments in Section 2.3.

3.2. Uniqueness of solution of generalized Sylvester equations. All ma-
trices Ay, .. A that solve (3.5) lead to models with map H that interpolate the

training data (3. 2) If ¢ = 2, it can be shown that the matrices A1 and A2 satisfy
the following Sylvester equations

(3.6a) AJA Ay — AT A A, = AJH, 1T — 1H]AJ,
(3.6b) AJ AoAy — AT ApAy = ATH, 1T —TH] AT,
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which have a unique solution if derivative information of H(s) at o; is available, see
[25, 46]. Note that the model described by the solution matrices of (3.6) can be
represented differently such as via basis transformations and potentially truncation.
It further is shown in [46] that the solution of (3.6) can be given analytically by
modifying the Loewner and shifted Loewner matrices [25]. For Rayleigh-damped
second-order systems, the analytical solution of (3.6) is discussed in [34], and for a
class of delay systems in [45].

In the more general case, when ¢ > 2, there are more degrees of freedom than
the number of equations, and thus, there can be arbitrarily many solutions; see the
discussion about the work [46] in the introduction in Section 1.

3.3. Rank minimization and structure preserving models. To motivate
our RSMI formulation, we first state a result from [7] about how the rank of matrices
with interpolating conditions relates to the order of models: Consider the training data
(3.2) and notice that the existence of H(oy),...,H(oxr) in the second component of
the tuples in (3.2) implies that

q
Z ai(s)A;
i=1

is invertible for all s € {o1,...,0a}. Let now V and W be the projection matrices
defined in (2.7), define the matrices

(3.72) A= {WTAlv,...,WTAqV} - [Kl,...,ﬁq} :
WTA,V A,

(3.7) Ar=1| = =11,
WTA,V A,

and set

(3.8) Tmin = min {rank(ﬁ), rank(ﬁT)} .

It is shown in [7] that there exists a model of order r,;, that interpolates the train-
ing data (3.2) and that the order 7y, is minimal. Moreover, an ryi,-order model
can be constructed from the matrices 1/3;1, e ,Aq satisfying (3.5) via projection onto
appropriate rmi,-dimensional subspaces; see [7] for more details.

The insights from the previous paragraph motivate us to look for solutions of the
Sylvester equations (3.5) that have minimal rank, which leads to the objective

(3.9 j(]&l, el Kq) = min {rank ([Kl, . ,Kq]) , rank ([AI, A K;]T)} ,

and the optimization problem

_min_ j(gl,...,gq)
Ay, A,
subject to KlAl +ee 4 Aqu —H,1T,

ATA 4+ +AJ A =H,1",

(RSMI)

where A;,i = 1,...,¢q and H, are defined in (3.3) and (3.5), respectively. Thus, in
(RSMI), we are seeking matrices Aq,..., A, such that they give rise to a low-order
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model that interpolates the training data because we know that the objective (3.9) of
(RSMI) minimizes the rank of (3.8), which also determines the order of the minimal

model. Consequently, once we identified Aq,..., A, with (RSMI), we can use them
to construct low-order models following [7].

3.4. An illustrative example. Consider a scalar delay example as follows:

(3.10) X(t) = —x(t) + 0.25x(t — 1) + u(t),

The transfer function of the above system is H(s) = (s + 1 — 0.25¢7%)~!. Let us
assume that we have two measurements H(oq) and H(o2) at o1 and o2. Using these
two data points, we would like to learn a model of the form:

Ez(t) = Az(t) + A z(t — 1) + Bu(t),

- y(t) = Calt)
ensuring
(3.12) Hz(O'i) = H(O’i),i S {1, 2},

where H,(s) = C (sE — A — e*SAT)_1 B. We now know that if the matrices E, A, A,
satisfy

(3.13a) E["L]+A[N]+A; [eial 5*02} - [EEZ;” L'
(3.13b) ET[",,]+AT[! 1k Al [eial 6—02} - [EEZ;” 1

and B =CT = [H(o;)",H(02)"]T, then the model given by the matrices E, A, A, B, CJj]
interpolates the data. However, there clearly are arbitrarily many solutions of (3.13)
for E,A A .

We now discuss two particular solutions. First, we set A; = 0 and solve (3.13)
for E and A. It means that we approximate the time-delay system with a rational
function. In this case, when we observe the rank of the matrix [E, A, A ], it is 2; hence,
we cannot recover the original system. But it interpolates the data. In contrast, if we
determine a model using the rank-based optimization problem, i.e.,

(3.14) min rank([E,A7ATD subject to (3.13),
E,AA,

then we can get the solution

— |H(o1) 11 [H(Ul) }
Ef[ H(UQ)} [1 1] H(o2) |

(3.15) A=-— {H(‘”)H(az)} t j [H(m)moz)}’

1 1

A, =0.25 [H(Ul) H(Uz):| L 1 [H(Ul)

H(U2)} )

It can be easily seen that rank ([E, A, A;]) = 1. After a compression step, as will be
shown later in Algorithm 1, we can recover a model of the original system.
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Algorithm 1 Obtaining low-order models via projection onto dominant subspaces.
Input: Samples H(o;),i € {1,..., N}, and functions a;(+).
1: Formulate and solve the rank minimization problem as in (RSMI) and denote its

solution by A, ..., A,
2: Compute SVDs of the following matrices:

A
Uz, V] = [Al, N .,Aq} ,and  UsS,V) =
Aq
3: Determine the order r such that

r (2) r (2)
max { Zi:l il) , Zi:l ZQ) } < tol,
2201 2203
(1) (4)

where 0, and o5’ are the i-th diagonal entries of 3; and 3.

4: Determine projection matrices: W = UY) and V = Vér), where UY) and Vgr)
denote the matrices that contain as columns the first » dominant vectors of Uy
and Vo, respectively.

5: Construct H, = [H(01),...,H(on)].

6: Construct the low-order model of the form (2.1) with matrices

A, =WTA,V,i=1,...,q B=W'H], C=H,V.

return ;&17 ..., A, B,C.

3.5. Algorithmic description of RSMI. We now present an algorithm to
construct lower-order models by projections on dominant left and right subspace once
the optimization problem (3.9) is solved. The algorithm is inspired from [7, Algo.
1]. The algorithm is sketched in Algorithm 1. In the first step, we solve the op-
timization problem (RSMI) to obtain Aj,...,A,. Step 2 computes singular values
decompositions of appropriately constructed matrices using A1, ..., Aq. It allows us
to determine a suitable order of a model that approximates well the given data in
Step 3. It is followed by determining dominant subspaces V and W in Step 4 that
allows us to construct the desired low-order model with matrices A;,...,A,,B,C in
Step 6.

4. Extensions of RSMI. In this section, we discuss several extensions to RSMI.

4.1. Systems with multiple inputs and multiple outputs. To extend RSMI
to MIMO systems, we build on the concept of tangential interpolation [19]. To that
end, for given data set (3.2) with H(o;) € C*™ i = 1,...,N now being | x m
matrices, we seek to identify a structured model of the form (3.1) such that

~

H(o))b; = H(o:)b;,  i=1,....N,

(4.1) - e .
¢, H(o;) =c; H(oy), i=1,...,N,

where b; € C™ and c¢; € C! are right and left tangential directions, respectively,
for i = 1,...,N. The interpolation conditions (4.1) lead to generalized Sylvester
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equations with different right-hand sides than (3.5),

[ c/H,,
(4.2a) AA+ -+ AN, = : B,

[ Hoy

[ bH],
(4.2b) ATA +-+A A, = c e,

b H,

where B = [by,...,by] and C = [c1,...,cpr]. Equations (4.2) are then used as con-
straints when minimizing the objective J defined in (3.9). The rest of the procedure
of RSMI, for example, solving optimization problems and constructing lower-order
models using dominant subspaces, remains the same as for the SISO case.

4.2. Symmetric systems. The input-output map is symmetric if, for the data,
it holds that H(s) = H' (s) for all s. We then typically want to preserve that sym-
metry by constraining the matrices in the RSMI optimization problem (RSMI) to be
symmetric. We derive the approach for the SISO case for ease of exposition, but it
readily generalizes to the MIMO case following Section 4.1.

First, note that the constraint A; = A for i = 1,...,¢q means that the two
constraints in (RSMI) coincide. Furthermore, the equality

o~

Ay
(4.3) rank ([1&1, ey f&qD = rank

~

Aq

holds. To avoid having to add the symmetry constraints explicitly as 111 = AZT, we
parametrize A; as A; = K,; + K;'— for i =1,...r. We then obtain the objective

js(K17~-~7Rq) :rank ([Rl +RI75RQ+R;]) .

Hence, the optimization problem becomes

_min_ js(f{l,...,Kq)
(sRSMI) Ky, Kq
subject to  (Ky +K{)A; +-+ + (K, + K] )A, =H,1",

with Aq,..., A, and H, defined as in the RSMI problem (RSMI). From the matrix K,
the matrix Ai = I~{Z + I~{ZT can be readily constructed for ¢ = 1,...,q. Furthermore,
Step 2 in Algorithm 1 simplifies because U1X1 V] = V,%,UJ, which means that
W =V in Step 4.

4.3. Systems with parameters. We developed RSMI for function «; : C —
C,i =1,...,q in (2.1) with scalar input s. Although the discussions so far readily

cover parametric cases, it is worthwhile to explicitly highlight that we can apply RSMI
for stationary parametric problems, which are of the form:

(1 (P)A1+ -+ aq(pP)Ag)) X(p) = B,

44 y(p) = CX(p).
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Hence, we can obtain structured models for parametric systems, which interpolate
the outputs at given parameter values and are of low order. In our numerical section,
we will illustrate this scenario using a thermal block example.

5. Relaxation of rank-minimization problem. The objective (RSMI) de-
pends on the rank of a matrix. Directly solving rank-minimization problems is chal-
lenging because they lead to non-convex NP-hard optimization problems. In this
section, we build on relaxations of rank-minimization problems based on the nuclear
norm [17, 18, 37], which is the sum of singular values. This results in optimization
problems that can be solved efficiently with gradient-based methods. However, even
though the nuclear norm leads to the best convex relaxation of rank-minimization
objectives, the solutions to the relaxed problems are not close enough to the origi-
nal problem. To address this issue, the concept of the weighted nuclear norm was
proposed in [22], which, in practice, often yields a solution closer to the original rank-
minimization problem.

5.1. Weighted nuclear-norm formulation of RSMI. The weighted nuclear
norm of a matrix T € R™"*™ with m > n and weight weight w € R” is

n
||T||w7* = Z W;04,
i=1

where o; are the singular values of the matrix T with ;41 > o;, and w; is the ith
component of the vector w [22, 29]. We consider a vector w with w; > w;—1,7 =
2,...,n. Defining the vector w with non-decreasing weights gives larger weights to
smaller singular values. As a result, the smaller singular values in the course of the
optimization tend to be even smaller due to a higher weight and so are nudged closer
to the solution of the rank-minimization problem. The weighted nuclear norm with
non-decreasing vector w is also a convex function [22]. Note that w = [1,...,1]T
is a feasible non-decreasing weight vector, which coincides with the classical nuclear
norm.
Based on the weighted nuclear norm, we formulate the objective 7, as

(tRSMI) T (Ar,..., A N) = A|[Ar, .o Agllwes + AM[AT o AT [fw, et
IR1(AL, ..., Al + |[Ra(Ar,..., Ay
with the terms
Ri(Ay,...,A) =A1 A+ -+ AN, —H, 1T,

(5.1) N L _
Ro(Ar,... A =AA+ -+ AJA, —H,1T,

that are obtained from the constraints in (RSMI) with the Lagrange multiplier A.

The weight vectors influence the optimization process. Typically, a good choice for
the weight vector can be based on the singular values of the solution, and the weights
can be updated iteratively during the optimization. In our setting of identifying input-
output maps of systems, the singular vectors corresponding to the most significant
singular values are important for capturing the system dynamics. In contrast, the
singular vectors corresponding to small singular values carry little information about
the system dynamics and, thus, typically can be safely ignored. We, therefore, define
the weights inversely proportional to the singular values in the following. Such a
scheme has been initially discussed in [56], which is inspired by the re-weighting
scheme proposed in [12] for weighted {1 problems to obtain sparse solutions.
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Algorithm 2 An iterative scheme to solve the relaxed RSMI problem.

Input: Samples H(c;),: € {1,..., N}, functions a;(-), number of iterations (iters),

regularizing parameters A, AX(1) \(iters)
1: Solve the optimization problem (rRSMI) with regularizing parameter A©) and the
constant weight vector w = [1,...,1]. Denote the solution as ;&go), cey ./1((10).
2: fori=1,... iters do
3: Compute singular values s1,..., sy of [Agi_l), cey Aéi_l)].

>

Define the j-th component of the weight vector w as
w; = min{max_val,1l./(s; +¢€)}.

The threshold ¢ is a small number to avoid division by zero and max_val
prevents too high values in the weight vector.

5: Solve (rRSMI) with regularizing parameter A(?) and the weight vector.
w. Denote the solution as A(li), ceey A((;)

6: end for

A(liters) o A(iters).

return q

Example A©) 1r
Delay heat rod model 5x 1073 | 5 x 1073
Fishtail robot 5x 1073 | 1x 1072
Parametric thermal block | 5 x 1072 | 5 x 1073

Table 1: Parameters used in the numerical experiments.

5.2. Algorithm to solve relaxed RSMI problem. In Algorithm 2, we show a
computational procedure for solving the relaxed optimization problem of RSMI based
on the weighted-nuclear norm subject to linear constraints. In the first step, we solve
(rRSMI) with a constant weight vector w = [1,..., 1] because we do not have a good
choice for the weight vector at the beginning. In Steps 3 and 4, at iteration i, we

update the weight vector w based on the current solution Aéi), . ,11((;). For this,
we compute the singular values of the matrix [Ag), ce A,(;)] and define the weight

vector to have as components the inverse of the singular values plus a safety threshold
for avoiding division by zero. With the updated weighting vector, we solve (rRSMI)
again and continue the iterations. We also can vary the regularizing parameter with
each iteration. Typically, we use regularization parameters that are non-decreasing
with iterations; see numerical results in Section 6. Once we have a solution, then we
can obtain a lower-order model using Steps 2-6 of Algorithm 1.

Remark 5.1. It is often desirable to obtain models with matrices with real entries
only, but interpolation points o; and training data {o;, H(o;)} can be complex. If the
data comes from a real model and training data are closed under conjugation, one
can transform the inferred model into a real model as described in, e.g., [46].

6. Numerical Experiments. In this section, we illustrate RSMI on three nu-
merical examples.
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6.1. Implementation details. We make use of the PyTorch library [31] to
compute gradients with automatic differentiation and optimize with NAdam [14]. To
compute ||R;|| in (rRSMI), we use a combination of {1 and le-norms with an equal
weight as in

(6.1) IRill = l[vect(Ra)lli, + llvect(R)]z,

where vect(+) is the vectorization of a matrix.

We compare models obtained with three different approaches:

Benchmark approach. We construct a structured model with no regularization
by setting A(®) = 0 in (rRSMI) and iters to 0 in Algorithm 2. We take 50,000
optimization iterations with an initial learning rate 1r which is reduced by the factor
of 5 after every 12,500-th update. This approach serves as our benchmark, and it is
closely related to the approach discussed in [46] for the identification of structured
systems. We denote this approach by benchmark in the following.

RSMI with nuclear norm. We learn structured models with (rRSMI) with the
constant-weight nuclear norm and with regularization parameter as given in Table 1.
The rest of the setup is the same as in the previous graph. We denote this approach
by rRSMI(eq wts).

RSMI with weighted nuclear norm. In this approach, we employ a weighted nu-
clear norm in (rRSMI). We first construct a model in Step 1 in Algorithm 2 with
A0 = Areg and learning rate given in Table 1. Then, in Step 6 of Algorithm 2 and
the 4-th iteration, we use A = X\(9) /i, A motivation to gradually decrease the regu-
larization parameter is that we slowly give more weight to satisfying the interpolation
conditions. But note that smaller singular values tend to stay small due to their high
weight, which is inversely proportional to the singular value. Together with decreas-
ing the regularization parameter, in Step 6, we also reduce the initial learning rate by
a factor of two. Furthermore, max_val in Algorithm 2 is set to 10*. We denote this
approach by rRSMI.

6.2. Delay heat rod model. Consider the heating road example with delay
described in [46]. We construct a state-space model of order n = 101 by setting the
same parameters as in [46]. The system has delay 7 = 1. The transfer function of the
system is of the form:

(6.2) H(s) =C(sE— A - A,e ™) ' B.

For training data, we consider N' = 150 points o1,...,0x on the imaginary axis
in the frequency range [10~1,103] and the corresponding outputs H(o1), ..., H(ox).
Using these training data, we aim to learn a dynamical-system model with a transfer
function that interpolates the training data. We construct interpolating models using
the three approaches benchmark, rRSMI (eq-wts), and rRSMI.

6.2.1. Results. In Figure 1a, we plot the singular values of the matrices of the
models obtained by the three approaches. Note that all models aim to interpolate
the training data and encode the same structure. The decay of the singular values
corresponding to the models obtained from the three approaches indicates how much
the models can be compressed, determining if there exist lower-order models that can
also interpolate well.

The singular values corresponding to the model obtained with benchmark decay
slowly, which implies that the model cannot be compressed well. In contrast, the
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(a) Decay of singular values. (b) Transfer function comparison.

Fig. 1: Delay heat rod problem: Plot (a) shows the decay of the singular values
corresponding to the models obtained with benchmark, rRSMI(eq_wts), and rRSMI.
The singular values corresponding to the model obtained with rRSMI decays fastest,
which means that it can be compressed most. Plot (b) shows the error of the learned
models after compressing them to order r = 3, where the rRSMI model obtains the
lowest error.

model learned with our approach rRSMI(eq-wts) leads to a faster decay of the sin-
gular values, and thus the learned model can be compressed while approximating
the training data well. The decay of the singular values is even faster for the model
learned with rRSMI that relies on the weighted nuclear norm for regularization. This
implies that the model obtained with rRSMI is the most compressible, resulting in the
lowest order.

We now construct low-order models by truncating the original models obtained
with benchmark, rRSMI(eq_wts), and rRSMI. We truncate after the first three most
significant singular values. As a result, we obtain models of order three that have the
same delay structure as (6.2). We determine the quality of these models on test data,
which are different from the training data. We consider 250 frequency points in the
interval [1072,10%] on a logarithm scale, which is also outside of the domain of the
training data. We compare the obtained truncated models with the ground truth in
Figure 1b. The plots show that the model obtained with our approach rRSMI provides
a low-dimensional model with the lowest error on the training and test data. Figure 2
shows the median error over all test data points, where the model obtained with the
proposed rRSMI approach achieves orders of magnitude lower errors than the model
obtained with benchmark approach that has no rank-minimization constraints.

6.2.2. Imposing symmetry onto matrices. We repeat the analog experi-
ments to Subsection 6.2.1 but impose symmetry as described in Subsection 4.2. We
first examine the decay of singular values shown in Figure 3a, which again indicates
a similar trend as in the non-symmetric case. The first singular vector corresponding
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\ = benchmark = rRSMI(eq.wts) % TRSMI

no symmetry 4.53 -10~°
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Fig. 2: Delay heat rod model: The plot shows that models learned with our approach
rRSMI achieve orders of magnitude lower median errors over the test data points.
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(a) Decay of singular values. (b) Transfer function comparison.

Fig. 3: Delay heat rod model: Plot (a) shows that imposing symmetry leads to a faster
decay of the singular values corresponding to the model learned with our approach
rRSMI, compared to not imposing symmetry as shown in Figure 1. The faster decay
means that the model can be compressed to just one dimension » = 1 and still provides
accurate predictions on test data, as shown in plot (b).

to the model obtained with rRSMI captures more than 99% energy. Thus, we con-
struct one-dimensional models by truncating the models obtained with benchmark,
rRSMI (eq_wts), and rRSMI after the first mode and compare their performance on
the test data in Figure 3b. Our approach rRSMI yields the model with the lowest
median error, which is below 10~* and shown in Figure 2.

We explicitly compare the performance of the models that impose symmetry ver-
sus the models obtained without symmetry constraints. We do this only for the models
obtained with the rRSMI approach. What we observe is a faster decay of singular val-
ues of the models obtained with rRSMI when the symmetry in matrices is imposed,
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Fig. 4: Delay heat rod model: The plots show the faster decay of the singular values
corresponding to models learned with rRSMI with symmetry constraints. Compression
to just one dimension leads to a model with two orders of magnitude lower error on
test data if symmetries are enforced.

see Figure 4a. Therefore, we obtain lower dimensional models with rRSMI in this
example with symmetry constraints. We now compare the model obtained with trun-
cating after the first mode with symmetry imposed to the truncated model without
symmetry; see Figure 4b. We observe that the symmetry constraint leads to almost
two orders of magnitude lower error in this example.

6.3. Fishtail robot. In our second example, we consider an artificial fishtail
robotic model from [40] as shown in Figure 5a. The state-space model from which we
generate data has a second-order structure of the form:

M(t) + Dx(t) + Kx(t) = Bu(t),

(6.3) y(t) = Cx(1),

and its state has dimension = 700,000. In our setting, we have only available 100
measurements of the transfer function at the frequencies in the interval [101, 3 x 102
as shown in Figure 5b. We have normalized the transfer function by dividing by the
maximum absolute value; otherwise ||H(s)]| is in the range of 107 and thus becomes
numerically too small for the considered frequency range.

6.3.1. Results. We leverage that transfer functions of second-order systems
have the form

(6.4) H,, = C(s°M +sD +K) ' B.

We employ the benchmark, rRSMI (eq_wts), and rRSMI approaches to construct inter-
polating models. Before doing so, we scale the function s? and s by factor ya and yp.
The reason for this is that while assembling the matrices for s?> when the frequency
interval is [10!,3 x 10%], the corresponding matrix becomes dominating, especially
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(a) A semantic figure of the fishtail robot
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Fig. 5: Fishtail robot: The plots show a sketch of the robot and the training data.
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(a) The decay of singular values. (b) Transfer function comparison.

Fig. 6: Fishtail Robot: Plot (a) shows that the singular values corresponding to the
model learned with our approach rRSMI decay fastest, which indicates that the model
can be compressed well. Plot (b) shows the prediction error on data of the learned
models when compressed to order r = 7, where our approach leads to the lowest error.

for high frequencies. As a result, the optimization problems become computationally
harder to solve. In such scenarios, scaling can help the optimizer. However, note that
the scaling does not affect the transfer function, as it is invariant under scaling,

(6.5) H,, =C (M +sD+K) 'B=C (WMSZM 4 psD + f{)_l B,

where M = M/ym and D = D/yp and K = K. Therefore, we seek to learn M,f)
and K with the scaled ay(s) = yps2 and as(s) = yps. For this example, we choose
vm = 1073 and yp = 10~ 1'°. We identify the interpolating realizations using all three
approaches, as in the previous example.

We plot the singular values corresponding to the learned models in Figure 6a.
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Fig. 7: Fishtail robot: The median error on the data is orders of magnitude lower for
models learned with our approach rRSMI than without rank-minimization as in the
benchmark approach.

The singular values exhibit similar behavior as in the previous example, in the sense
that the singular values corresponding to the model learned with our rRSMI approach
decay fastest. This indicates that the model learned with rRSMI can be compressed
efficiently to a lower-order model without significant loss of accuracy. We truncate
after the first » = 7 dominating singular values and so obtain models of order seven.
We compare the truncated models on the training data in Figures 6b and 7. Again,
rRSMI yields the model with the lowest median error among all models, showing the
robustness of the rRSMI approach to learn lower-order models that approximately
interpolate the data.

6.3.2. Imposing symmetry. Having symmetry in the matrices M, D, and K
is of high interest in mechanical systems. We, therefore, enforce symmetry in these
matrices while learning them with the benchmark, rRSMI(eq-wts), and rRSMI ap-
proaches. The rest of the setup is the same as in the previous experiment. The
singular values corresponding to the models learned with symmetry constraints are
shown in Figure 8a. Again, the model obtained with rRSMI shows the fastest decay
of the singular values. Moreover, with symmetry imposed, the decay is even faster
than in the case without symmetry. Consequently, we truncate earlier and obtain a
model of lower order than when symmetry is not imposed. We construct models of
the order r = 5 using all three methods benchmark, rRSMI (eq_wts), rRSMI by projec-
tion using the corresponding dominant subspaces spanned by the left singular vectors
and compare the error of the truncated models in Figures 7 and 8b. Our proposed
approach rRSMI leads to the model with the lowest median error by more than one
order of magnitude.

6.4. Thermal block example. We now consider a 2 x 2 thermal block, whose
solution is described by the Poisson equation with the following diffusion term:
(6.6)
n(¢,p) = p1X<O

)2(0 +p2X(Oé)X( ,1)(0 +p3X(%71)2(C) +p4X(O’%)X(%71) (©),

1 1
) 2 2

where p; € [0.1,10],i € {1,...,4} and Xx is the indicator function of the set X. This
is a widely used benchmark example [36] and has also been studied in [27]. Having
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Fig. 8: Fishtail robot: Plot (a) shows that imposing symmetry helps to achieve a
faster decay of the singular values corresponding to the learned models, which means
the models can be compressed while remaining predictive. Plot (b) shows after com-
pression to order r = 5, the model obtained with our approach rRSMI achieves the
lowest error in this experiment.

discretized the Poisson equation, we get a model of the form:

(Ao +p1A1 +p2As + p3Asz + psAy) x(p) = B,

(6.7)

y(p) = Cx(p).
For more details on the governing equation, we refer to [27, 36]. We collect the data by
considering four equidistant points in [0.1,10] for each p;,i = 1,...,4. Consequently,

we get a total of 4* = 256 training data points. For the construction of the models, we
uniformly draw 200 data points from the training data and determine a suitable order
of lower-order models by validating the learned models on the 56 left-out data points.
We additionally construct another test data set for this example by considering five
equidistant points in [0.1, 10] for each p;,i = 1,...4, which leads to a total of 5* = 625
test points.

6.4.1. Results. We employ the benchmark, rRSMI(eq.wts), and rRSMI ap-
proaches to construct models using the training data. The singular values are shown
in Figure 9a, which exhibit similar decay behavior as in the previous example: The
model obtained with rRSMI achieves a faster decay than the models obtained with
either benchmark or rRSMI(eq-wts). We compress the model to order r = 10 and
show the error of the models in Figure 9b. The median errors on the test data for
realizations obtained using benchmark, rRSMI(eq_wts), and rRSMI are reported in
Figure 10. The rRSMI approach again yields a model that achieves an order of mag-
nitude lower median error than the other approaches rRSMI (eq_wts) and benchmark.

6.4.2. Imposing symmetry. We now learn models with symmetric matrices
A;i€{0,...,4}. Therest of the setup is the same as in the experiment without sym-
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Fig. 9: Thermal block example: Plot (a) shows the decay of the singular values, which
is fastest for the model learned with rRSMI. Plot (b) shows the error on test data after
compression to order r = 10, where the model obtained with rRSMI achieves the lowest
€rror.

|=benchmark = TRSMI(eqwts)  mmTRSMI |

T \\\\H‘ T T \\\\H‘ T T \\\\H‘ T T \\\\H‘ T T \\\\H‘
no symmetry 5.34-10—%
. 8.47-1073 =
constraint (r = 10) 1.44-1072
with symmetry
. 8.45-10~3 =
constraint (r = 10) 1.35- 1072
Lol Lol Lol | |
1074 1073 1072 107! 10°

Median error

Fig. 10: Thermal block example: The proposed approach rRSMI leads to models that
achieve almost two orders of magnitude lower median errors on test data compared
to models obtained with rank minimization as in benchmark.

metry constraints. Analogous to previous experiments, imposing symmetry leads to a
quicker decay of the singular values, and the model obtained with rRSMI has again the
fastest decay. In contrast, the models obtained with benchmark and rRSMI (eq-wts) arel]
hardly compressible and prone to over-fitting to the training data. We construct mod-
els of order r = 10 via projection onto the subspace spanned by the first r left-singular
vectors and report the error of the models on the test data in Figures 10 and 11. The
model obtained with our approach rRSMI achieves the lowest median error by more
than one order of magnitude.
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Fig. 11: Thermal block example: Imposing symmetry helps to obtain a faster decay
of the singular values with rRSMI, which leads to a lower error in predictions on test
data.

6.4.3. Comparison with deep neural networks. We compare our rRSMI ap-
proach to a machine-learning method that fits a deep neural network to the input-
output data. The machine-learning approach is a black box because it ignores the
structure. The network architecture is fully connected. To train the network, we use
the same training, validation, and testing data sets as for our rRSMI approach. To
choose the hyper-parameters, in particular the number of hidden nodes and layers, we
perform a grid search in [4, 8,16, 32] x [1, 2, 3], where [4, 8,16, 32] and [1, 2, 3] are pos-
sible numbers of nodes and layers, respectively. We then select the hyper-parameters
that lead to the lowest error on the validation data set. In our case, we use one hid-
den layer and eight nodes. Figure 12 shows the error of the trained network on the
test data and compares it to the error obtained with the model of » = 10 with our
rRSMI approach with symmetry imposed. Our approach leads to a model that has a
lower median error by a factor of two.

7. Conclusions. The proposed RSMI approach has two key properties that
make it stand out: First, it leverages physical insights that are often given in the
form of structure, such as symmetries, time delays, and degrees of time derivatives.
The proposed RSMI approach bakes in such physical insights by imposing the corre-
sponding structure onto the model. Critically, the structure is encoded in the model
so that it cannot be violated rather than being weakly enforced via penalization terms.
Additionally, the learned structured input-output models can be realized as systems
that describe dynamics of states in the time domain and how they behave under con-
trol inputs, which is in contrast to black-box models that only match the input-output
behavior. The second key property of RSMI is that the order of the inferred model,
i.e., the number of degrees of freedom, is a training variable that is minimized during
the optimization. The order of the model, therefore, is determined during training
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Fig. 12: Thermal block example: Plot (a) shows the outputs predicted by our approach
rRSMI and by a neural network and compares them to the truth. Plot (b) compares the
median error on the test data, where our approach achieves a factor two improvement
over the network in this example.

and does not have to be fixed based on heuristics a priori, as is typical in many other
data-driven modeling approaches. By minimizing the order, RSMI learns models that
are parsimonious because redundant degrees of freedom are eliminated when there are
not sufficiently many training samples available to fix them. The numerical experi-
ments demonstrate that the combination of structure preservation and optimizing the
model order leads to models with low degrees of freedom while achieving high predic-
tion capabilities. More broadly speaking, the results indicate that optimizing over the
model architecture during the training can lead to more accurate predictions while
keeping the number of degrees of freedom of the learned models low. There is a range
of future research directions. For example, we have used (weighted-) nuclear norm
minimization schemes as a proxies of rank-minimization problems. In the future, we
would like to explore other relaxations and computationally efficient approaches to
obtain a approximate solutioons to the rank-minimization problems.
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