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Abstract. Noise poses a challenge for learning dynamical-system models because already small
variations can distort the dynamics described by trajectory data. This work builds on operator
inference from scientific machine learning to infer low-dimensional models from high-dimensional
state trajectories polluted with noise. The presented analysis shows that, under certain conditions,
the inferred operators are unbiased estimators of the well-studied projection-based reduced operators
from traditional model reduction. Furthermore, the connection between operator inference and
projection-based model reduction enables bounding the mean-squared errors of predictions made
with the learned models with respect to traditional reduced models. The analysis also motivates an
active operator inference approach that judiciously samples high-dimensional trajectories with the
aim of achieving a low mean-squared error by reducing the effect of noise. Numerical experiments
with high-dimensional linear and nonlinear state dynamics demonstrate that predictions obtained
with active operator inference have orders of magnitude lower mean-squared errors than operator
inference with traditional, equidistantly sampled trajectory data.
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1. Introduction. Noise poses a challenge for learning dynamical-system mod-
els because already small variations can distort the dynamics described by trajectory
data. In this work, we build on operator inference [41] from scientific machine learn-
ing to derive low-dimensional dynamical-system models from high-dimensional, noisy
state trajectories. We introduce a sampling scheme to query the high-dimensional sys-
tems for data so that, under certain conditions, in particular if the high-dimensional
system dynamics are polynomially nonlinear, the inferred operators are unbiased esti-
mators of the well-studied reduced operators obtained via projection of the governing
equations of the high-dimensional systems in classical model reduction [1,8,46]. Ad-
ditionally, we show that the mean-squared error (MSE) of the states predicted with
the learned models can be bounded independently of the dimensions of the high-
dimensional systems and in terms of the noise-to-signal ratio of the trajectory data.
Motivated by the analysis, we propose active operator inference that queries high-
dimensional systems in a principled way to generate data with low noise-to-signal
ratios, which reduces by a factor of up to three the number of data samples that are
required from the high-dimensional systems to make accurate state predictions in our
numerical experiments. For the same number of data samples, active operator infer-
ence achieves orders of magnitude lower MSEs than traditional, equidistant-in-time
sampled trajectory data.

Learning models from data is an active research topic in the field of scientific ma-
chine learning. A prominent approach is to fit dynamical-system models to data via
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dynamic mode decomposition and Koopman-based methods [12,32, 45,52, 60, 66]. In
another research direction, sparse representations of governing equations are sought
with tools from sparse regression and compressive sensing [11,47,50,51]. There is
also work on non-intrusive model reduction that learns coefficients of low-dimensional
representations from data [22,23,26]. If frequency-domain or impulse-response data
are available, then data-driven modeling methods from the systems and control com-
munity are often used, such as the Loewner approach [2,3,6, 21,27, 33, 37], vector
fitting [18,24], and eigensystem realization [29, 31].

In terms of learning from noisy data, there is the work [58] that establishes prob-
abilistic recovery guarantees via compressive sensing of sparse systems. Noise-robust
data-driven discovery of governing equations is considered in [68, 69] using sparse
Bayesian regression. A strategy is proposed to subsample the data utilized in solv-
ing the regression problem with the goal of reducing the influence of noise on the
learned model. A signal-noise decomposition is pursued in [48] in which a neural
network is trained to discover the underlying dynamics while simultaneously esti-
mating the noise. In system identification, works such as [9, 13,35, 55,56, 64] derive
probabilistic error bounds for oftentimes linear models using tools from, e.g., random
matrix theory. The effect of the presence of noise and perturbations in frequency-
domain data have also been studied in data-driven interpolatory model reduction and
Loewner methods [7, 19,20, 34]. However, except for the interpolatory model reduc-
tion methods, which require frequency-domain data, no low-dimensional models are
considered in these works. In contrast, our approach based on operator inference
and re-projection [39,41] aims to learn low-dimensional models that are suited for
solving outer-loop applications such as design, control, and inverse problems. Oper-
ator inference can learn non-Markovian low-dimensional models [61] and it is also a
building block for other learning methods such as lift & learn introduced in [43,57],
which comes with a sensitivity analysis with respect to deterministic perturbations in
data [42, Chapter 4.3]. In [62], probabilistic a posteriori error bounds for operator-
inference models are derived for linear models; however, the bounds only hold when
data are free of noise. In the following, we exploit the bridge between data-driven
modeling with operator inference and traditional model reduction [1,8,46] to establish
probabilistic guarantees for learning from noisy data and to inform in a principled way
which data samples to query from the high-dimensional system to reduce the effect
of noise on the MSE of state predictions.

This manuscript is organized as follows. Section 2 discusses preliminaries about
learning low-dimensional dynamical-system models from data via operator inference
and re-projection. Section 3 describes the sampling and inference problem for learn-
ing models from noisy trajectories with the proposed approach. Then, bounds are
derived for the MSE of the inferred operators and of the state predictions with re-
spect to projection-based reduced models from traditional model reduction. A design
of experiments approach is proposed in Section 4, which leads to active operator in-
ference that selects data samples to reduce the effect of noise on the MSE of state
predictions. Numerical results presented in Section 5 are in agreement with the analy-
sis: the results indicate that active operator inference learns low-dimensional models
with MSEs that are orders of magnitude more accurate than with an uninformed
design of experiments.

2. Preliminaries. We review operator inference [41] for learning low-dimensional
models from data in Section 2.1. Section 2.2 describes operator inference with the
re-projection data sampling scheme [39] to recover projection-based reduced models
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from data.

2.1. Learning low-dimensional dynamical-system models from data with
operator inference. Let x1,...,xx € RN be states at time steps k = 1,..., K that
are obtained by exciting a dynamical system

(2.1) Th+1 :f(a:k,uk), /CZO,...,K—I,

at the control inputs ug, ..., ux_1 € RP and initial condition xy € RN. Let further
Y c RY be a subspace of the N-dimensional state space RY. The subspace V is
spanned by the orthonormal columns of the basis matrix V' = [vy,...,v,] € RVX",
For example, the subspace V can be obtained via principal component analysis (proper
orthogonal decomposition) applied to sampled state trajectories using the Euclidean
inner product on RV.

Operator inference introduced in [41] learns low-dimensional dynamical-system
models with polynomial nonlinear terms that best fit the temporal evolution of the
state in the subspace V with respect to the Euclidean norm in a least-squares sense.

Operator inference first projects the high-dimensional states xg,...,xx onto the
subspace V to obtain the projected states xg,...,Tx with & = VvTg, € R" for
k=0,..., K and then solves the least-squares problem
K— 2
(2.2) A min ?c + E’uk — Zpa1|
Ay B 2

k=

where ¢ € N is the polynomial order, Be R %P :ﬁ\lj € R™*™ with

—1
nJ:(n+] >7 j:17...7€,
J

and a“:fg is obtained for £k = 0,...,K by forming the Kronecker product j times
Ir ® -+ ® &, and retaining only the factors whose components are unique up to
permutation [41]. Note that if problem (2.2) is underdetermined, then regularization
as proposed in the context of operator inference in, e.g., [38,49,57] can be performed
to bias the operators towards, e.g., giving a stable low-dimensional model. It is chal-
lenging, however, to design regularization terms that lead to a meaningful bias. In the
following, we will avoid regularization and instead build on re-projection and sufficient
data as discussed in the following section.

2.2. Recovering projection-based reduced models from data with op-
erator inference and re-projection. The re-projection data-sampling scheme in-
troduced in [39] judiciously excites the high-dimensional system (2.1) to generate a
re-projected trajectory Y = (¥, U] € R The following description follows
the version of re-projection described in [43, Section 3.2]. Let X = [&1,...,Zx]
be a matrix where each column contains an N-dimensional vector. For example,
in [39,43], it is proposed to generate X by first querying the high-dimensional system
(2.1) at an initial condition and inputs to sample the trajectory X = [z1,...,xK]
and then setting X = X. Let now U = [uy,...,uk| be an mput trajectory and let
X = [&y,...,%x] be the projected trajectory obtalned as X = VI'X from X. Re-
projection then computes Y = [yq,...,Yx] by querying the high-dimensional system

yk:f(Vik7'U/k), kila"'aKa
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toobtain ¥ = VTY. The re-pro jection scheme can be applied to black-box dynamical
systems that can be queried at arbitrary initial conditions in RY and inputs in R?.

As shown in [39,42], if the high-dimensional system (2.1) from which data are
sampled has polynomial form, i.e.,

¢
(2.3) flz,u) = ZAjiL'j + Bu,

j=1

and if there are sufficiently many data samples, then the solution of the least-squares
problem

(2.4) _min _J(Ay,...,A,B; X,Y,U)
A,..,A,B

with objective

2
¢ o~
Z¢:1 A;x] + Buy, — g,

K
(2.5) J(Ay,...,ALB; XY U)=)_
k=1 2

is unique and coincides with the projected operators
B=V'B,

(2.6) ~ -

Aj:V AJSJ(V®®V)RJ, i=1,...,¢,

where the matrices S; € RNi*N ? and R; c R™ X7 satisfy
2 =8i(z0 - ®2), Z® -@Z=RZ

forall z € RN, Z € R” and j = 1, ...,/ and the Kronecker product is applied j times.
Notice that the re-projected trajectory Y enters in the objective in the least-squares
problem (2.4), whereas only the projected trajectory X enters in problem (2.2).
In traditional model reduction, see, e.g., [1,8,46], the projected operators 21, e ;ig,

B are computed directly by computing the matrix-matrix products in the projection
step (2.6). Thus, such traditional model reduction methods are intrusive in the sense
that they require the high-dimensional operators Aq,..., Ay, B either in assembled
form or implicitly via matrix-vector products.

3. Learning low-dimensional models from noisy data. This work inves-
tigates operator inference and re-projection for learning low-dimensional models of
noisy dynamical systems,

(31) $k+1:f(mk,uk;)+€k’ kZO,...,K—l,

where &, ...,&x_; represent noise. The random vectors &;,...,&§,_, are indepen-
dent and each noise vector &, ~ N(0,02%I), for k =0,..., K — 1, is an N-dimensional
Gaussian random vector with a diagonal covariance matrix and standard deviation
o > 0 in all directions. Notice that the noise vectors &, ...,&x_; are independent;
however, the states @1, ...,k can be dependent. In the following, for ease of exposi-
tion, the noisy high-dimensional system (3.1) can be queried at any initial condition
in RV with any input in RP; however, the space of initial conditions and inputs can
be restricted to subsets of RY and RP if necessary.
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Fig. 1: Applying re-projection to query the noisy high-dimensional system (3.1) leads
to unbiased estimators of the projected operators (2.6), which are the very same
operators that are obtained with classical, intrusive model reduction.

Section 3.1 applies operator inference and re-projection to learn low-dimensional
models from noisy trajectories and derives conditions under which the inferred oper-
ators are unbiased estimators of the projection-based reduced operators. The MSE
of the learned low-dimensional operators is quantified in terms of the noise-to-signal
ratio. In Section 3.2, we derive bounds on the bias and the MSE of the predicted
states of the system described by the learned low-dimensional model with the learned
operators for linear and polynomially nonlinear dynamics, respectively. The bounds
scale with respect to the noise-to-signal ratio.

3.1. Operator inference with re-projection with noisy state trajecto-
ries. Let X be a dictionary of initial conditions, i.e., a matrix with N-dimensional
columns (cf. Section 2.2), and let U = [uq,...,uk| be an input trajectory. The
purpose of the columns of X is to excite the underlying system in the following data
generation scheme to obtain trajectories that are informative for inferring reduced op-
erators. This means that X is not necessarily a trajectory of length K obtained from
the underlying system. In particular, the columns of X are not necessarily random
but instead will be deterministic in most of the following. A similar situation is found
in frequency-domain system identification, where deterministic input signals such as
the chirp and ramp signal are used to excite systems [35,53]. In contrast, we focus
here on the time domain and therefore are interested in columns of X to excite the
underlying system in an informative way in the sense of a high signal-to-noise ratio.
We will make this more precise now. Additionally, later in Section 4, we will provide
an active learning approach for designing the columns of X.

Given X, we then apply re-projection to obtain Z = [z1,...,2k| by querying
the noisy high-dimensional system (3.1) as

(32) Zk:f(Vfék,Uk)‘f'Ek, k:17aK

where the columns of E = [£,,...,&]| are independent random noise vectors defined
above and X = [Z1,..., K] = VT X is the projection of X. The noisy re-projected
state trajectory is zZ=Vv"z = [21,...,2Kk|. Sampling the re-projected trajectory
Z can be interpreted as sampling bursts of length one of the high-dimensional noisy
system from the initial conditions given by the columns of X.

Remark 3.1. Following the re-projection scheme, the vector V&,_; at time step
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k — 1 is used to obtain z;_; and V&, at time step k to obtain zj, instead of using
the vector z;_1 at time k — 1 to query the system at time k for zx. This process of
generating vectors zj can be viewed as querying the high-dimensional system (3.1)
at k = 1,..., K separate, deterministic initial conditions V&, from the columns of
X, which is advantageous because noise remains independent and because it leads
to a fixed design regression problem in the following; cf. Remark 3.3. Such a data
generation process can be numerically realized by having a dictionary of potential
initial conditions, from which K are selected to form the columns of the matrix X
to query the high-dimensional system and only the state after the first time step of
each of the K queried trajectories is used; cf. active operator inference introduced
in Section 4. The following analysis bounds the error introduced by the noise added
when querying the high-dimensional system via this data generation process.

The corresponding operator-inference problem is

(3.3) _ min Aj(zl,...,ﬁg,E;X,Z,U)
A, ALB

where the noisy re-projected trajectory Z enters in the objective (2.5). To analyze
the solution of (3.3), it is beneficial to write (3.3) in matrix form as

T
(3.4) min| DO - 2|3,

o T v 2 v b o . .
where the data matrix is D = [X (X )7,..., (X )T, U"] with X = [&},...,&}]
for i = 2,...,¢. The operators :41, e ;4@, B that we seek are submatrices of O =
[Al, . Ag, B]T. The size of the data matrix D is K x M with M = p+ Z?:l n;.
Correspondmgly, the size of O is M x n.

We now characterize the solution of (3.4) with respect to the noise that is added
during the re-projection step. Recall that the procedure to generate Z is to query
the noisy high-dimensional system (3.1) at the columns of the projected trajectory
X , which is deterministic because X is deterministic. Thus, the data matrix D in
the regression problem (3.4) is deterministic while the noisy re-projected trajectory
Z is a random matrix.

Following standard results of least-squares regression, the following proposition
summarizes that operator inference together with re-projection leads to an unbiased
estimator of the projected operators (2.6) whose variance grows linearly with the
variance of the noise. Additionally, the upper bound of the MSE of the estimator
is controlled by the noise-to-signal ratio o/smin(D), where Spin(:) is the minimum
singular value of the matrix argument.

ProrosiTION 3.2. If K > M and D is full rank, then the solution of problem
(3.4) is
O=I[A,,...,A,B" =0+ (D"D)"'D"(v'E)T
where O = [:41, .. Z@, ~] € RMxn - In particular, the inferred operators are unbi-
ased estimators of the pm]ectwn based reduced operators in the sense that IE[A = Aj

forj=1,...,0 and ]E[B] B. The columns © 01,...,0n of O are independent ran-
dom vectors that are distributed as 0; ~ N(Bi,az(DTD) Y fori=1,...,n where
01,...,0, € RM are the columns of O. In addition, the MSE is bounded as

(3.5) E[IO - O||3] < nM ("D)) |

smin(
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Proof. The following are standard arguments from least-squares regression: be-
cause the data matrix D is full rank and K > M, the solution of (3.4) is given by
the normal equations

—~ ST~ o T
O0=(D"D)"'D'Z =0+ (D"D)'D'=E",
where & = VTE. Since the random vectors &y,..., &, have zero mean, the expec-

tation of O is E[O] = O. Additionally, since VIV = I is the identity matrix, the

entries of Z are iid N (0,02) random variables which means that the columns of =
are independent Gaussian random vectors of dimension K with an identity covari-
ance matrix scaled by 2. Thus, the columns of O are Gaussian with covariance
o?(DT D)=, which leads to the MSE

o~ n M . 2
E[|O - 02 = 33 Varle?,] = ntr((D"D)")o? < Mn <D)> ,

i=1 j=1 Smin (
where ey, ..., e) are the canonical basis vectors of RM. The first equality follows
from the unbiasedness of O. d

The independence of the columns of the random matrix O leads to the indepen-
dence of the rows of each of the random matrices B and A; for j =1,...,¢. However,
since the covariance matrix o2(D” D)~! of 6? is not necessarily block diagonal, the
random matrices B and ﬁj for j =1,...,¢ are not necessarily independent.

In [42, Chapter 4.3], a sensitivity analysis of lift & learn is presented that just as
well applies to operator inference. The analysis leads to bounds with similar right-
hand sides as our bound (3.5) on the MSE; however, the analysis in [42] is restricted to
deterministic perturbations and no bounds of the error in the state predictions (as in
Section 3.2) are presented. Another option is to regularize the least-squares problem
underlying operator inference as proposed in [38,49,57] to impose a desired bias on
the operators; however, because of the assumption of having a full rank data matrix
and having data that are generated via re-projection, we can avoid regularization in
the following to work with unbiased operator estimators.

Regardless of how X is modeled, we pursue the version of the re-projection sam-
pling scheme in [43] instead of that introduced in [39] since it ensures that D and =
in the normal equations are independent. Indeed, other sampling schemes have been
proposed to overcome the dependence between the data matrix and the right-hand
side, see [16] for an example in system identification.

Remark 3.3. In the analysis above, we have only focused on the case when X
is deterministic which can be achieved, for example, by selecting the columns of X
from a fixed dictionary. This means that (3.4) is a fixed design regression problem
since the data matrix D is deterministic [25,44]. If instead X, is a realization of a
trajectory X of the noisy system (3.1), then the results above can be interpreted as

being conditioned on the realization X,., which leads to

2
~ ~ - - o
E[|O-O|%| X =X §nM<) )
10~ 01| X = X, <nd (5
where E[-|] denotes the conditional expectation. In a similar way, results can be
derived that are conditioned on a realization of V' of the basis matrix obtained from
trajectories of the noisy system. Unconditional results would rely on being able to
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characterize the distribution of the columns of X which is challenging due to the
nonlinearity of (3.1). For example, in system identification [16], a probabilistic bound
on |O — O| can be obtained for linear systems provided that the rows of D are
Gaussian random vectors.

3.2. Error of predicted states with respect to noise-to-signal ratio. We
now consider the random states Z1, ..., Zx predicted by the system described by the
learned model

l
(3.6) Bpp1 =y AL+ Bug, k=0,...,K-1,

with a deterministic initial state Zo € R"™, which potentially is different from the
training initial conditions used to generate the re-projected trajectory. Since the
operators B, A;,j =1,...,( are random matrices, Z) is a random vector for k > 1.
In the following, we bound the bias which is the expectation of the difference between
the states Z1,...,Zx and the deterministic states Zi,...,ZTx of the reduced model
from intrusive model reduction

4
(3.7) Thp1 =Y AT, +Buy, k=0,... K1,

j=1

with the operators E,ﬁj,j = 1,...,¢ defined in (2.6). Bounds for the MSE be-
tween the random states Z1,...,Zx and the deterministic states Z1,...,Tx are also
deduced.

3.2.1. Technical preliminaries. It will be useful to account for the difference
between the inferred operators and the operators from intrusive model reduction. Let
E; ,Eg ben xn; and n X p random matrices, respectively, such that

J

ﬁj:ZﬁEﬁj,j:L...,z, and B=B+ Ejp.

= can be described as follows. Define the

The distribution of the rows of E3 ,Eg

selection matrices P4, € R XM for j =1,...,¢ and Pg € RP*M which satisfy
~ AT ~ AT
Py, 0= Aj and PO =B .
For i = 1,...,n, the i-th row of E; and Eg are zero-mean multivariate Gaussian
J

random vectors with covariance matrices 2% 4. and 0?3 7> respectively, where ¥ =
J J
P4, (D"D)"'P} and $5 = Pp(D" D)"'Pg. Observe that

(3.8)
_ _ 1
IS, = | PR(D" D) PLIY2 < (D" D) Y? = \/smu( (D' D) 1) = D)

where spax(-) is the largest singular value of the matrix argument. Analogously, we
have

1
i=1,...,L

. v, < =
(3.9) | Aj|‘2_smin(D)’ J
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The following is a technical lemma derived from [63, Theorem 5.32 and Proposi-
tion 5.34] that provides an upper bound for the expected value of the powers of the
norm of a Gaussian random matrix, which will be utilized in the calculations below;
cf. Appendix A for the proof.

LEMMA 3.4 (see, e.g., Theorem 5.32 and Proposition 5.34 in [63]). Let G be an
n X p random matrix whose entries are independent standard normal random variables.
Forl e N,

(3.10) E[|Gl5] < (Vi + b+ 2V

3.2.2. Error in states for linear systems. In this section, we consider only
systems with £ = 1 and therefore drop the subscript in A, Al, A1 The operator-
inference model is wk+1 A:z:;€ + Bu;c and the model from intrusive model reduction
is Tp1 = Asck + Buk

PROPOSITION 3.5. Let o = Zg. Suppose that the conditions of Proposition 3.2
hold. If the high-dimensional system (3.1) from which data are sampled and the
learned low-dimensional model have linear state dependence, for k € N with k > 1,
the bias of the state predictions is bounded as

k P l
(3.11) B -l < Y6 (=0 )

1—2 mzn(

where 0 < Cy,...,Ck are constants that are not functions of o and sy (D). The
constants are

k-1 ,.
B\~ D\~
(312) i = 2+ 2YVi) [(l)nAV; ol + 3 () 1415 Z|Buk_1_z-||2]
=l

k-1 ; o 3 : i—l+1
+ 30 (L AN el (2vR + 2750 26— 15 D)) (Vi)
i=l—1

forl=2,... k.

Proof. Define the n X n random matrix G; as Gz = L 2_1/2ET and the p x n
random matrix G g as %EAl/zEITB. Observe that the entries of GA, G g are indepen-
dent standard random variables. At time step k, the solution to the reduced system

using the inferred operators is
(313) :? A 2130 + Z ﬁlé’ukflfi.

We now introduce the following notation: Let M, N be square matrices of the
same size. For m,i € N, denote by p1 (M, N;i,m—i),... ,p(?)(M,N;i,m—i) all the
(”:) possible matrix products with 4 multiplications of M and m — ¢ multiplications
of N. For example, if i = 1,m = 3 then p; (M, N;1,2) = MN? py(M,N;1,2) =
NMN, and p3(M,N;1,2) = N°M.

We then have with A = A + E 4 that

k(1)

k —

A :E E pj(AaEﬁ;kflal)a
=0

j=1
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which we substitute into (3.13) at time step k, to obtain

*)
k l k—1 1
ZZ A E ]{ £B0+Zzzpj AEA, )Buk 1—1i
=0 j=1 i=0 1=0 j=1
e () e () .
(314) =D > pi(AEgk—LDZo+ > > > pi(A Ez;i—11)Buei;
=0 j=1 1=0 i=l j=1
k—1k-1 (1)
+ZZZPJ AEA7 - )E Uk —1—1
=0 =l j=1

where in the second equality, we used B=B+E 5 and interchanged the order of the
summation for the last two terms. Notice that for the state obtained with intrusive
model reduction we have

(5) k-1 (o)
(3.15) Tr=> pi(AEz:k 0@+ Y pj(A Eg:i,0)Bug_1_
j=1 i=0 j=1

which corresponds to the first 2 terms of (3.14) but with [ = 0 fixed. Thus, (3.15)
consists of all terms in (3.14) where the random matrices E 4, E'5 are absent. Hence,

g (%) k—1k—1 (1)
%k—ik:Zij(z,E;‘;k wg—i—ZZZp]AEA, )Bu;€ 1—i
1=1 j=1 1=1 i=l j=1
k—1k—1 (1)
+ ZZp]AEA,f NEgup—1-;.
1=0 i=l j=1

Additionally, when [ = 1, the terms E[p; (A, E4;k—1,1)] and E[p; (A, E4;i—1,1)] are
zero because E 4 has zero mean. Similarly, for [ = 0, the terms E[p; (;4, E;;i,0)E3]
are zero. This means that

(3.16) ||E[ kfiL‘k]||2<7'1+T2 + 73
where
G k—1k-1 (i)
=Y Y |Epj(A Ezik—1LDTolll2ma = > > IElpj(A, Ez:i— L) Bug_1_i]|2.
1=2 j=1 1=2 i=l j=1
k—1k-1 (1)
TS—ZZZ”EPJ A s ERit— )E Up—1-4][|2-
=1 i=l j=1

It remains to bound each of 71, 75, 73. Since
IEp; (A, E;k — 1,D&olll2 = [|Elp; (A, 0GESY 2k — 1, 1] |2
< ol B2 A5 Bl

< (m"(D)> VAL ZolloElI G415,
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we obtain

e o g ~
n<Y (1) (255) 1A IGlElIG L

k o b
< —— ) [IAlI5 7 IZoll2(2v/m + 21/ V1)!
=2 l smin(D)
by applying Lemma 3.4. Likewise,
k—1k—1 i o 1
A=) D 1
T2 S ;; (l) <Smm@) | Al | Bug—1—il[2E[||G 3|5
k—1k—1 i o 1 o B
<22 (z) <S(m> A5 | Bug—1-4|2(2v/n + 2V
1=2 1=l min

Finally,

. . it 1/2 . 1/2
IE[p; (A, E43i— L) Egue_1-illl2 < Elllpj(A, 0GE2Y% i — 1,10 GE DY Pup—1i|2]

1/2 1/2 A1i— i—
< o TR Y2153 2 ALy k-1 B G 151G 2]

I+1
<(U<D>) VAN fwimr—il B G 115 G5 2]
so that
k k—1 i o I o
(3.17) m < ;i:l,l (l B 1) (smm(D)> AL ey —illo

(2\/5 + Q3T \/m)i—l+l (it i)

because the Cauchy-Schwarz inequality and Lemma 3.4 lead to

(IG5 1G]] < VENGAIZ V(IG5 3
1 1—1+1
< (2\/E+272<H+1> 20— 1+ 1)) (Vn—++p+2).

The result follows by combining the upper bounds for 71, 72, 73. 0

COROLLARY 3.6. Let oy = @g. If £ =1 and high-dimensional system (3.1) from
which data are sampled is autonomous, then

- Mk o : 1 ~ i~
(3.18) ||E[wk—xk]||2s;<l) (=757 ) v+ 2 VIl ol

smin(

for k e N with k > 1.

Proof. The proof follows that of Proposition 3.5 noting that B , B and hence E B
are zero matrices. 0
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Several remarks are in order. As the time step k increases, i.e., as we move forward
in time, the bound (3.11) also increases, which is expected because the bias of the state
estimators of previous time steps is accumulated. Notice that the bound also depends
on n, the dimension of the reduced space, and on p, the dimension of the input. The
bound (3.11) further suggests that if the noise-to-signal ratio o/smin(D) < 1, the
term associated with (o/smin(D))? at time step k = 2 dominates the upper bound as
0/$min(D) — 0. Hence, we expect that for o/smin (D) sufficiently small, an order of
magnitude decrease in the noise-to-signal ratio yields at least a decrease of 2 orders
of magnitude in the bias of the predicted states.

3.2.3. Error of state predictions with polynomially nonlinear systems.
We now derive bounds for the bias ||E[Z; — Z1]||2 and the MSE E[||Z) — xx||3] of state
predictions where data are sampled from polynomially nonlinear systems.

We start by writing the state Zjy, at time step k& (which only involves the initial
condition and previous inputs) as a sum of vectors, each of which is formed as a
combination of matrix and Kronecker products.

LEMMA 3.7. The state ) at time step k,k € N, of the polynomially nonlinear
model (3.6) is

Qk
(319) ﬁk = E E lew-»jéJrl(EAl’""Eﬁg’Eg)’
=0 ji1,...,Je+1EN
Ji+tger1=l

where Qp, = (F—1)/(€—1) and j, ... j,,, is a sum of vectors in R™, where each term is
a combination of matriz and Kronecker products involving the deterministic quantities
To, Ug, ..., Uk_1,A1,..., Ay, B and the random matrices Ey ... ’Eﬁz’ Eg. Each
term in the sum Cj, .. j,,, consists of j; multiplications of Eﬁz forl=1,...,0 and
Je1 multiplications of Eg.

Proof. We recast the system (3.6) as

¢
(320) &:\;H_l :ZAij(§k®~~®£k)+Buk,
j=1
where S; € R" %" is a selection matrix such that S;(@p ® - ®@Ty) = @ for
j =1,...,4. Thus, the state ;11 at time step k + 1 is the result of recursively

applying (3.20) until the right-hand side contains only the initial condition &, and
the inputs ug,...,ug—_1. Since :4]- = Zij + E;‘j for j = 1,...,¢ and B =B+
Eg, the right-hand side is a sum of combinations of matrix and Kronecker prod-
ucts involving the deterministic vectors Zg,ug, ..., us_1, the deterministic matrices
;ll, cee ;lg, E, S1,...,8y and the random matrices Ei. ..., Eﬁe’Eﬁ' The right-
hand side can then be ordered with respect to the number of times there is a multi-
plication with a random matrix which is represented by the outer sum in (3.19). The
outer sum is further partitioned according to how often there is a multiplication involv-
ing E4 ,..., E?&p E 5 with corresponding frequencies of multiplications ji, ..., jey1
times. The frequencies j1, ..., je+1 serve as indices of the inner sum (3.19).

It remains to show that the state at time step k is obtained using at most @y
multiplications with a random matrix. We proceed via induction. When k =1,

4 0
Ty =) A;S;(@®---®@F0) + Bug+ » Ez S;i(@To® - @ Z) + Eguy,
j=1 j=1
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thereby implying that there is at most one (@1 = 1) random-matrix multiplication to
obtain Z;. Suppose that at time step k = m, obtaining the state &,, requires at most
Q,, random-matrix multiplications. At time step k& = m+ 1, the maximum number of
random-matrix multiplications is determined by the expression Ez S¢(Z/n® - -@%m).
From the induction step, Z,, has at most @, = ({™ — 1)/({ — 1) random matrix
multiplications which means that Z,,,1 has at most Q,,f +1 = (™ —1)/({ - 1) =
Q1 random matrix multiplications due to the £ Kronecker products of Z,, and the
random matrix E A, ]

The following proposition shows that the bound for the bias ||E[Z) —Z]||2 of state
predictions is still polynomial in terms of the noise-to-signal ratio even when data are
sampled from polynomially nonlinear systems and polynomially nonlinear models are
learned. In particular, when o/smin(D) < 1 and ¢/8min (D) — 0, the behavior of the
upper bound is dominated by the term associated with (o /smin(D))?.

PROPOSITION 3.8. Let Ty = Tg. Suppose that the conditions of Proposition 3.2
hold. If the high-dimensional system (3.1) from which data are sampled and the
learned low-dimensional model are polynomially nonlinear, for k € N with k > 1,

it holds that
Qk o l

E@, —Zi]la <Y C | ——

el < 30 ()
for some constants 0 < C; < 00,1 = 2,...,Qx, which are not functions of o and D.
—1/2
A;
1,...,¢ and the p x n random matrix Gz as Gg = %E;mETE. Observe that the
entries of G4 for j = 1,...,f and G are independent standard normal random

Proof. Define the n; x n random matrix Gz as Gz = %E Eg for j =
J J J

variables, however, in general, the random matrices are dependent due to the depen-
dence between B, A;,j = 1,...,£. According to Lemma 3.7, the state Z; at time
step k is

Qk
(3.21) ;Ek:z Z Cirien (B4, Eq,, Eg).

1=0 ji,..,jet+1€EN
Jite+ier1=l

Since the system is polynomially nonlinear, the state obtained with intrusive model
reduction,

(322) %k :CO,...,O(EEIW'WE:&[?EB’)

is comprised of those terms for which no random matrix is present in the multiplica-
tions (I = 0). We now isolate the terms in (3.21) in which a single random matrix is
involved in the multiplication. By linearity of expectation and using that the random
matrices E g, E;‘S,s =1,...,¢ have zero mean,

E E lev'”vj1+1(E21"'"EA@’EE)] = 0.
J1s--de+1
Jit o Fjer1=1

Therefore, with the triangle and Jensen’s inequality follows

Qk
(3.23)  |E@-3ll2 <Y > E |G (Bayse Ba Bl -
=2 ji,....je+1€EN
Jittjer1=l
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It remains to bound E [||Cj1,...,jz+1(Egl7 . .,EgZ,EE)||2j|. We use that for matri-

ces A, B of appropriate dimensions, ||[AB|ls < ||Al2|/B]]2 and that [|[A @ Bz =
[|All2]|Bll2. Note also that ||S;|ls =1 for j = 1,...,¢. Recall that Zg,uo, ..., Uk_1,
:41, .. .,:45, B, S1,...,8¢ are deterministic quantities with finite norm. We thus
have, for some finite constant C(ji,...,j¢+1) > 0, the bound

(3.24)
E Hley-ugj[.+1(E;417 ) Eﬁl{a EE)”?}
<

C(jrs- - jer Bl Bz 12 | E g, 15 1 Bl )

. . 1/2,4 1/25 1/2.7 j j je
(s oy dern)a? T e |22 S L2 EIIG A, 15 - G g, I IG5

IN
Qi

p Jit o Ader ] ) p
5) Bl I - G, 1§ 1G5 4

Smin(

IN

O(jla'”vjf-i-l)(

where we utilized (3.8), (3.9).

Recursively applying the Cauchy-Schwarz inequality and invoking concentration
inequalities on |G gll2, [G 4 [l2;s = 1,...,£shows that E[|G 4 [|5" -+ |G 4, I IG5 ll2™"]
is finite. To illustrate this, consider

.|

(3.25) |E[||G;,1 1 G 1G]

< VBl G4, I EIG, I G, B 1G5 )

By invoking Lemma 3.4, we can obtain a bound for E[||G 3 |371]. The Cauchy-Schwarz

inequality is then applied to E[|G 3, |22 ... 1G3, |37 HGEH?HI] after which concen-
tration inequalities are invoked to bound I[*Z[||G;‘2||‘2U2]7 which is repeated ¢ times
until the expected value of products is decomposed into a product of expected val-
ues. The proposition then follows from (3.24) by summing over the indices for which
j1+"'+j(+1:lWithl:2,...,Qk. 0

We now derive a bound for the MSE of the predicted states, which shows that for
polynomially nonlinear systems, the MSE in the asymptotic regime o /smin(D) — 0
is dominated by (0/smin(D))?.

PROPOSITION 3.9. Let Ty = xy. Suppose that the conditions of Proposition 3.2
hold. If the high-dimensional system (3.1) from which data are sampled and the
learned low-dimensional model are polynomially nonlinear, then

2Qk l
~ o
El|Z, —ze|2] <Y O —— ] . 1<keN,
R DYIC I NE
for some constants 0 < él < oo,l =2,...,2Qk, which are not functions of o and D.

Proof. From (3.21) and (3.22), we obtain

Qr
ﬁk — Ty = Z Z Cj1.,...,je+1(

=1 j1,..,Je+1EN
Jittier1=l
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Thus, for some finite constant C(j1, ..., jey1) > 0,
2k — k2
Qk
< Z ”le,u-,jeﬂ(Ef&la""E,ZeaEE)HQ
=1 jl,...,jg+1€N
Jit+Fier1=l

Qx
<> > Clnevder)Bg 13 B4, X 1 Egl
=1 ji1,....,je+1EN
Jittier1=l

Qr N o Jiteties ] ] ]
<> > Clnevder) | —r 1G4, 113" 1G4, 121Gl
Smin(D) ! ¢

I=1 j1,....je+1EN
Jitetiepr=l

following calculations in (3.24) where Gﬁp ceey Gﬁg’ G g are the same random ma-
trices defined in the proof of Proposition 3.8. Note that in the above inequality, the
powers of the noise-to-signal ratio range from j;+-+-+jo41 = 1 to j1+- - -+ jer1 = Qp,
whereas in the proof of Proposition 3.8 the inequality (3.23) starts at j1+- - -+jer1 = 2.
The conclusion now follows by squaring both sides of the inequality, applying expecta-
tion, and performing calculations similar to (3.25) to show that the resulting constants
are finite. 0

4. Active operator inference for selecting training data. This section
proposes active operator inference, which selects from a dictionary at which initial
condition and inputs to sample the high-dimensional system for generating data with
low noise-to-signal ratios. The proposed active operator inference is motivated by the
bounds derived in Section 3.2, which show that the noise-to-signal ratio o /smin(D)
controls the MSE of the learned operators as well as the bias and the MSE of the
state dynamics.

Section 4.1 formalizes the dictionary whose elements are candidates for sampling
the high-dimensional system at. The proposed selection of elements of the dictionary
is described in Section 4.2 and builds on ideas from selecting points [40] in empirical
interpolation [5,14]. The computational procedure for active operator inference is
presented in Section 4.3, which summarizes the proposed workflow for learning low-
dimensional models from noisy data.

4.1. Dictionary of candidate states and inputs. Consider a dictionary D €
REXM of candidate states and inputs given by

v T v 2 v l
D= [XL7(XL)T5""(XL)T7U€]»

where X[ € R™*L U, € RP*L are defined identically as X7U in Section 3.1 but
with L states and inputs, i.e. Xy = [&1,...,%7] and Uy = [ug,...,uz]. Let
Py € {0,1}1%K be a selection operator that selects K < L rows of D via P D = D
so that D can serve as a data matrix in the sense of (3.4).

Using all rows of D to form the data matrix D leads to the minimal noise-to-
signal ratio o/smin(D) over all possible selections, which follows by considering the
addition of a row as a rank-one update to a matrix together with Weyl’s theorem:;
see [40, Section 5.1] for a proof. Note that D has to have full rank; see Proposition 3.2.
However, using all rows of D to construct the data matrix D in the least squares
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problem (3.4) is computationally expensive as the high-dimensional system has to be
queried for each of the L initial conditions and inputs. We therefore propose in the
following subsection an approach to subselect rows of D with the aim of having a
small noise-to-signal ratio with only a few rows of D.

4.2. A design of experiments approach via oversampled empirical in-
terpolation. Propositions 3.5, 3.8, and 3.9 demonstrate that a low noise-to-signal
ratio o/smin(D) is desirable. Since the standard deviation o is fixed, we propose a
design of experiments strategy that forms a data matrix D by selecting rows of D
so that $min(D) is large. To find a selection of rows, we follow the procedure pro-
posed in [40] that pursues an equivalent objective for selecting points for empirical
interpolation and gappy proper orthogonal decomposition [5, 14, 17]; see [4,15,36,54]
for other design of experiment approaches based on similar linear-algebra concepts.
Set K > M. The method introduced in [40] constructs a selection matrix Py which
selects K rows of D with the objective of maximizing sy, (P kD). First, the selection
matrix Py, € RM*M g initialized with the approach introduced in [17]. Then, new
rows of D are selected in a greedy fashion. To describe the greedy update, suppose
we have the selection matrix P,,, which selects m rows of D, with M < m < K. Let
the SVD of PLD be PLD = ®,,%,, %! where ®,, € R™*M is the matrix of left-
singular vectors, 3,, € RM*M is the diagonal matrix of singular values ng)7 ey 85\7)
in descending order, and ¥,, € RM*M ig the matrix of right-singular vectors. Define
the gap g = (s\7 )2 — (s{7))2 and set d = O! d’l, where d; € RM is a candidate
row of D that has not been selected by P,,. Further, let e € RM be the canonical
basis vector with all entries 0 except for the last component that is set to 1. It is
shown in [28], see also the discussion in [40], that

(4.1)
1 - - -
Suin P D = sain(PRDP > 5 (074 12013 =l + 1,18~ dg(ea, )

which suggests that the new row d; should be selected that maximizes the lower
bound (4.1). This greedy step is then repeated until the desired number of rows K is
reached.

Based on the just described greedy scheme, we use a modified greedy update rule,
which was proposed in an earlier preprint version of [40]: we choose the new row d
that maximizes

(4.2) (e7d,)?,

which is obtained by simplifying the lower bound (4.1).

Choosing the new row d by maximizing the lower bound (4.1) was tested in [40]
for the case where the columns of D are orthonormal. Since this condition does not
necessarily hold in our setting, the lower bound in (4.1) for the greedy update can
lead to cancellation errors especially when 4g(e”d,)? is small, which has been first
observed in [65].

We note that QDEIM [17] was also applied in [67] to subselect rows from the data
matrix to improve its condition number for operator inference. The approach above is
a generalization since it allows one to subselect K > M rows instead of being limited
to M rows, the number of columns in D, as in [67].

4.3. Active operator inference. The proposed active operator inference ap-
proach to learn low-dimensional models from noisy data is summarized in Algo-
rithm 4.1. The inputs of the algorithm are the dictionary D and the number of times K
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Algorithm 4.1 Active operator inference based on QDEIM [17] and oversampling [40]

1: procedure AOPINF(D, K)

2 Initialize Pj; with QDEIM [17]

3 form=M,..., K —1do > Follow [40] with criterion (4.2)
4: Compute the SVD of P D = &, %, 91

5: Find the row d of D not in P’ D such that d, = @ﬁd{ maximizes (4.2)
6

7

8

9

Update P,, to P41
Construct D via PLD = D }
Perform re-projection as in (3.2) to generate Z
Solve the least-squares problem (3.4) to obtain ;41, cee ;12, B
return A,..., A, B

to query the high-dimensional system, i.e., the number of rows of the data matrix D.
Line 2 of Algorithm 4.1 initializes the sampling matrix via QDEIM [17] by computing
the QR decomposition of DT with pivoting. For m € {M, M +1,..., K —1}, the SVD
of P1 D is obtained in line 4 and the candidate row d, of D that maximizes (4.2) is
selected in in lines 5-6 to update P,, to P,,+1. In lines 7-9, re-projection (3.2) is
performed using the projected states and the inputs in the data matrix D = PIT<D to
obtain the re-projected trajectory Z. The least-squares problem (3.4) is then solved
to learn the low-dimensional operators.

Note that the high-dimensional system gets queried only at the subselected rows
of the dictionary and thus, at a typically much lower number of initial conditions
than the number of rows in the dictionary. This means that the proposed active
operator inference approach can be helpful if querying the high-dimensional system
is expensive, which makes it intractable to query the high-dimensional system at all
initial conditions given in the dictionary D but tractable to query the system at the
few subselected initial conditions from D that are collected as columns in X.

5. Numerical experiments. We now numerically demonstrate that the pro-
posed active operator inference leads to predicted states with orders of magnitude
lower biases and MSEs than an uninformed equidistant-in-time selection of data sam-
ples. Additionally, we demonstrate that the bias and MSE of predicted states decay
with the noise-to-signal ratio in agreement with the analysis developed in Section 3.2.
Numerical results for a linear state dynamics are shown in Section 5.1 and for qua-
dratic dynamics in Section 5.2. In all experiments within one example, we use the
same basis matrix V', which ensures consistent comparisons among different noise-to-
signal ratios.

5.1. Heat transfer problem for cooling of steel profiles. The model and
problem setup are described in Section 5.1.1 and the numerical results are presented
in Section 5.1.2.

5.1.1. Model of cooling steel profiles. We describe a mathematical model for
the cooling process of steel rail profiles in a rolling mill following [10]. Set  C R? as
the spatial domain and denote by z(mn,t) the temperature at the spatial point 1 € Q



18 W.IT. UY, Y. WANG, Y. WEN, B. PEHERSTORFER

and time ¢ > 0. The heat transfer model is

dr(nt) A
(51) T - Cpr(nat)a (nat) €0 x [O,T},
S(ui(t) —x(n,t)) for mel;j=1,...,7,

Va(n,t)-n =
z(m.1)-n {0 for neTy,

x(n, 0) = 500,

where A is the heat conductivity, ¢ the specific heat capacity, p the profile density,
the heat transfer coefficient, I';, j = 0, ..., 7 are segments of the domain boundary 02
such that 99 = U;:()Fj and u;(t),j =1,...,7 is the external temperature applied to
each boundary segment. The domain is visualized in Figure 1 of [10]. The values of
the constants are chosen as A = 26.4, ¢ = 7620, p = 654, k = 69.696.

Equation (5.1) is spatially discretized using the finite element method with linear
triangular elements, temporally discretized with implicit Euler with step size 0t =
0.01, and the noise term &, is added to the fully discrete system to yield the high-
dimensional system (3.1) with right-hand side function (2.3) with £ = 1, where x}, €
RN, N = 1357 and u, € RP,p = 7. We utilized the Python' code based on the
FEniCS Project to generate the computational mesh and the system matrices; see
also [10]. More specifically, the semi-discrete system is

Mi(t) = Gz(t) + Hu(t)

where x(t) € RN u(t) € RP, M,G € RVN*N and H € RV*P, Using implicit Euler,
the fully discrete high-dimensional system has the form

Tpy1 = Az + Buy, k=0,...,K —1,

where A = (M — §tG)"'M and B = 6t(M — 6tG)"*H. The basis matrix V is
computed from snapshots mza“ﬂk =0,...,L,L = 10000, of the high-dimensional
system driven by the control input uEaSis whose i-th component, ¢ = 1,...,7 is given
by 500(1 — tanh(kédt/i?)) + 2507, 5. Here, v; 0 = 0 while 7; . for k > 0 is a realization
of a uniform random variable on [0,1]. The realization of the control trajectory is
then fixed and used as the control input u',zaSiS, k=0,...,L—1. The projected states
VTmEaSiS and the input u',gaSis for K =0,...,L — 1 constitute the 10000 rows of the
dictionary D € REx(n+p),

Data is obtained by querying the system with noise, which is
(52) mk+1:Amk+BUk+€k, k:O,...,K—17

with &, being a zero-mean Gaussian vector with diagonal covariance and standard
deviation o that we vary and therefore specify later. The noisy system (5.2) is queried
at initial conditions given by the columns of X, which are selected from the dictio-
nary D. Note that (5.2) has the same form as system (3.1) and that querying (5.2)
introduces noise in the observed trajectories. We generate data from the time-discrete
system rather than from the underlying time-continuous system to avoid mixing er-
rors from other sources and so to be able to focus on the error induced by noise. We
refer to [41], where operator inference has been applied to data from time-continuous
systems.

Lhttps://gitlab.mpi-magdeburg.mpg.de/models /fenicsrail /- /tree/master/
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Fig. 2: Cooling of steel profiles (Section 5.1). The estimated bias and MSE decay by
2 orders of magnitude per 1 order of magnitude decrease in the noise-to-signal ratio
in the asymptotic regime. The results are in agreement with Propositions 3.5 and 3.9.

In the simulations below, we consider 5 equally spaced values in the logarithm
scale for the standard deviation o of the noise between 1 x 1072 and 1 x 10~!. The test
control input u{*" at time step k € N has components given by 500(1 — tanh(kdt/i?))
fori=1,...,7.

5.1.2. Results. We learn a low-dimensional model of dimension n = 7 and
n = 10 from noisy data. For n = 7, active operator inference is applied to select 15
rows from D, which leads to a data matrix D with sy, (D) &~ 1.661. For n = 10, 25
rows are selected resulting in sy (D) ~ 0.8713. Denote by ﬁfSt the predicted state at
time step k of the low-dimensional model with inferred operators ;1, B corresponding

to the test input u®t. Likewise, let ;™" be the low-dimensional state from intrusive

model reduction for the same input. Recall that ;" is deterministic while Z;**" is a
random vector.

Figure 2 shows a Monte Carlo estimate of the bias ||E[Z;>" —,~"]||2 and the MSE
E[|| 2" — Z.7|13] as a function of the noise-to-signal ratio o/smi, (D) for various time
steps k. We use 7.5x107 samples to approximate the expected value with Monte Carlo.
The plots illustrate that in the asymptotic regime, when o/smin(D) — 0, an order
decrease in the noise-to-signal ratio leads to a decrease of two orders of magnitude in
the approximation of the bias and the MSE, which agrees with Propositions 3.5 and
3.9. Notice that for n = 10, the behavior of the bias and the MSE for the largest
noise value o is already dominated by constants, rather than the noise-to-signal ratio,
which explains the quicker error increase.

We now compare active operator inference, which carefully selects rows of the data
matrix D to keep the noise-to-signal ratio low, with a traditional sample selection
that queries the high-dimensional system equidistantly in time, i.e., picks columns
corresponding to equidistant times from the dictionary D. The high-dimensional
system is sampled every 667t time units for n = 7 and 400§t time units for n = 10.
Figure 3 compares the minimum singular value of the data matrix for both approaches
over the number of queries to the high-dimensional system. Equidistant sampling
requires up to 3 times as many queries to the high-dimensional system to achieve
the same noise-to-signal ratio as active operator inference in our experiment. The
selection of active operator inference is initialized with QDEIM; see Section 4.1. The
QDEIM alone can select only as many rows as there are columns. In case of dimension
n = 7, there are M = 14 columns, in which case QDEIM selects K = 14 rows and
achieves a minimal singular value of approximately 1.1497. In contrast, with active
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Fig. 3: Cooling of steel profiles (Section 5.1). To achieve the same noise-to-signal ratio,
active operator inference requires almost 3 times fewer queries to the high-dimensional
system than a traditional selection of equidistant-in-time samples.
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Fig. 4: Cooling of steel profiles (Section 5.1). Active operator inference yields pre-
dictions which have a lower bias compared to the predictions delivered by sampling
equidistantly in time in the dictionary. The reduction in the estimated bias achieved
by active operator inference is up to 1.5 orders in magnitude.

operator inference, we can select more than M rows and so increase the minimal
singular value. By just selecting K = M + 1 = 15 rows, active operator inference
achieves roughly 1.661 for the smallest singular value, which can be further increased
by increasing K as shown in Figure 3. Similarly, for dimension n = 10, QDEIM alone
selects M = 17 rows and achieves a smallest singular value of about 0.3423, whereas
the proposed active operator inference approach increases the smallest singular value
to about 0.8713 by selecting K = 25 rows.

The estimate of the bias |[E[Z}™" — Z,°™"]||2 for 0 = 1 x 1072 for the equidistant
and active operator inference approach is presented in Figure 4. The results show
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Fig. 5: Cooling of steel profiles (Section 5.1). The predictions obtained with active
operator inference have a lower MSE than those obtained from equidistant-in-time
samples.

that active operator inference yields a reduction in the estimated bias of up to 1.5
orders of magnitude.

The MSE E[||2}*" — Z,=°||3] for equidistant vs. active operator inference is shown
in the left panel of Figure 5 for n = 10. Lastly, we consider the MSE of the predicted
state further in time. The right panel of Figure 5 plots the estimated MSE of the
predicted state at 10000 time steps for n = 10 using 10 Monte Carlo samples only. An
order decay in the noise standard deviation leads to 2 orders decay in the estimated
MSE. For fixed o, the model learned through active operator inference achieves a
smaller MSE.

In Figure 6 we visualize the 15 high-dimensional states corresponding to the rows
of D selected according to the design of experiments schemes we compare for n = 7.
The respective inputs are not shown. By examining the segments of the steel profile
boundary with Robin condition, the equidistant scheme tends to select more states
with lower temperature at the boundary, many of which correspond to later time
steps. In contrast, active operator inference selects more states at the beginning of
the cooling process, where there is a stronger variation from one time step to the next.

5.2. Diffusive Lotka-Volterra model for population dynamics of fish
species. Section 5.2.1 discusses the model and the problem setup while Section 5.2.2
summarizes the results of the numerical experiments.

5.2.1. Model description. Consider the population dynamics of three species
of fish species in the Danube river [30]. At time ¢ > 0 and distance 7 from the mouth of
the river, set x1(n,t), z2(n,t), x3(n,t) to be the density of forage fishes, German carp,
and predators, respectively. For n € [0,7] and t € [0,7T], a diffusive Lotka-Volterra

le-04
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Fig. 6: Cooling of steel profiles (Section 5.1). High-dimensional states selected by
sampling equidistant times (left) and by active operator inference (right) from the
dictionary for n = 7. For equidistant sampling, a majority of the states selected
have cooler temperatures at the domain boundary with Robin condition. In contrast,
active operator inference selects more states at the beginning of the cooling process,
which leads to more accurate models in our experiments.
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Fig. 7: Population dynamics of fish species (Section 5.2). For this quadratic system, an
order of magnitude decay in the noise-to-signal ratio causes a two orders of magnitude
decay in the estimated bias and MSE, demonstrating the bound of Propositions 3.8
and 3.9.

model that describes the interaction between the species is given by

) 1 0? ,t
(5.3) 3318(;] ) =d; x817§727 ) + xl(al — ATy — 0,31:3)
Oxa(n, t 0? t
an(: ) _ do xggg ) + x2(as — asrs)
) ,t 0? ,t
1‘3((;’:] ) =ds 1‘8375727 ) + 1‘3(a6I1 + arxro — (18)

subject to the Neumann boundary condition ax’éf’t) = 83”"8(”’” =0fori=1,2,3. The
values of the constants are a; = 1.01,a2 = 0.93,a3 = 0.1,a4 = 0.19,a5 = 0.2,a¢6 =
1,a7 = 0.05,a3 = 0.2,d; = 0.01,d2 = 0.03,ds = 0.009.

The differential equation (5.3) is spatially discretized at 100 equidistant points
in [0, 7]. To temporally discretize (5.3), we apply the Crank-Nicolson method to the
diffusion term using second-order central finite difference scheme [59, Table 3.2.2] and
evaluate the nonlinear term explicitly in time with step size §t = 0.01, resulting in
an implicit-explicit scheme. The noise term &, is then added to the fully discrete
system which leads to the autonomous system (3.1) in which the right-hand side is
given by (2.3) with £ = 2 where z;, € RN, N = 300.

Set ©} = aq/as, x5 = (a1a5 — azaq)/(agas), x5 = (ag — arx})/ag. Observe that
(21,22, 23) = (27, x5, x3) is a spatially homogeneous equilibrium point of (5.3). The
basis matrix V is obtained from snapshots 22" of the high-dimensional system ini-
tiated at the following 6 conditions z}4%%(n,0) = 27 + 1 sin(67y2:1) /10, £5%5(n, 0) =
x5 +y3i cos(4y4in) /10, 2555 (), 0) = x5 4754 sin(2y6:m) /10,7 = 1,.. ., 6, where for each
iy Y14y - - -, V6i are realizations of a uniform random variable on [0, 1]. The realizations
of the initial conditions are then fixed and treated as deterministic quantities. For each
initial condition, the high-dimensional system is simulated until 7" = 50 resulting in
30000 elements in D. These initial states represent perturbations around the spatially
homogeneous equilibrium. The standard deviations of the noise o are 5 equidistant
values in the logarithm scale between 1 x 10~% and 1 x 10~2. For prediction, the initial
condition we use is given by z{°*(n, 0) = x} +sin(61)/10, 5 (n, 0) = x5+ cos(4n)/10,
and z5(n,0) = x% + sin(2n)/10.

5.2.2. Results. Active operator inference is applied to select 100 rows for n =
12, leading to a data matrix with s, (D) & 0.2794. For n = 15, 150 rows are selected,
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Fig. 8: Population dynamics of fish species (Section 5.2). Active operator inference
requires up to two times fewer queries to the high-dimensional system for generating
data than a traditional equidistant-in-time sampling process.

which results in sp;n (D) & 0.0552. Monte Carlo estimates of the bias and MSE are
shown in Figure 7. The number of Monte Carlo samples used is 5 x 107. The plots
are consistent with the analysis in Proposition 3.8 and 3.9, particularly for quadratic
systems, since we observe that an order decay in the noise-to-signal ratio leads to
two orders decay in the estimated bias and MSE. The missing value in Figure 7(a)
represents a large bias in 5';:“ which we do not plot and is caused by the accumulation
of errors in the learned reduced operators over time. It represents a non-asymptotic
regime in which the constants in the bias dominate the behavior of the noise-to-signal
ratio. In Figure 7(b) and 7(c), results for larger values of o are not shown in the plot
for the same reason.

We now compare active operator inference to a traditional equidistant-in-time
sampling from the dictionary. The high-dimensional system is sampled every 3000t
time units for n = 12 and 2006t units for n = 15. The minimum singular value of the
data matrix resulting from both approaches is compared in Figure 8. In this example,
active operator inference reduces the number of times the high-dimensional system is
queried by up to roughly a factor of two compared to equidistant sampling to achieve
the same minimal singular value of approximately 0.3 (n = 12) and 0.06 (n = 15).
For reference, with QDEIM alone, only M rows can be selected, which means for
the minimal singular value that suyi,(P3;D) =~ 0.0943 for n = 12 (M = 90) and
$min(P3;D) ~ 0.0212 for n = 15 (M = 135). In contrast, active operator inference
with K = 100 and K = 150 rows, achieves roughly 0.2794 and 0.0552 for dimension
n = 12 and n = 15, respectively.

The estimated bias and the MSE for both approaches at ¢ = 1 x 1072 is shown in
Figure 9 and in the left panel of Figure 10. We also plot the estimated MSE at T" = 50
using 10 Monte Carlo samples for n = 15 in the right panel of Figure 10. Results are
not plotted if the corresponding models numerically led to unstable behavior with un-
bounded errors. Active operator inference provides reasonable numerical predictions
in all cases, whereas equidistant sampling quickly leads to models that show unstable
behavior. This behavior is amplified for increasing dimension n. Overall, the results
indicate that for polynomially nonlinear systems it becomes even more important
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Fig. 9: Population dynamics of fish species (Section 5.2). Selecting the data matrix
by sampling equidistant in time quickly leads to numerical instabilities in the learned
models while the selection obtained with active operator inference leads to models
that show stable and accurate behavior in this example.

than for linear systems to carefully query the high-dimensional system. Indeed, we
have empirically observed that active operator inference selects states which exhibit
substantial variation across time. For example, Figure 11 plots the high-dimensional
states for 23(n) corresponding to the 150 rows in the data matrix selected by equidis-
tant in time sampling and active operator inference for n = 15. As can be observed,
active operator inference results in states which have a better coverage of the state
space.

We now consider the case where the elements of the dictionary D are generated
as a fixed realization obtained by querying (3.1) with ¢ = 1 x 1073 to obtain !,
Active operator inference and equidistant in time sampling are performed to select
the dictionary of initial conditions X that are used to construct the data matrix with
Smin (D) of roughly 0.1107 and 0.0112, respectively. Figure 12 compares the estimated
bias and MSE under both approaches for various time points conditioned on X. The
results are consistent with those shown in previous examples in that active operator
inference yields stabler models with lower errors.

6. Conclusions. In this work, we established probabilistic guarantees on predic-
tions made with low-dimensional models learned from noisy data, which motivated an
active data sampling approach to reduce the effect of noise. The key ingredient of the
analysis and the numerical approach was building a bridge from data-driven modeling
via operator inference and re-projection to classical projection-based model reduction.
Thus, the proposed approach can be seen as an example of scientific machine learning
that demonstrates the benefits of merging traditional scientific computing concepts
such as model reduction with learning methods to effectively leverage data. There are
several future research directions in the context of learning reduced models from noisy
data such as methods for chaotic systems and systems with non-polynomial nonlinear
terms.
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Appendix A. Proof of Lemma 3.4.
By using the triangle inequality for the norm E[| - |/]'/!,
ElG1E)"" = (B 1G] - ElGl:) +Ele))]])
< (E[ji6l: - ElGlal]) " + EliGl
(1) < (2[jIGl: - ElGll]) " + Vi v
where we have used the bound [63, Theorem 5.32].
Denote by I'(-) the gamma function. Recall that that I'(z+1) < 2 for > 0 and

I'(xz + 1) = 2I'(z). To bound the first term in the right hand side of the inequality
(1.1), we proceed as follows. For ¢ > 0,
> t) dt

o0 2 o0 -2
< QZ/ t=te /2 at = 2l/ (2u) = e “du
0 0
— l2l/2/ ul/27167u du — 2l/2+1£r é — 2l/2+1r £ 4 1
; 27 \2 2

1/2
< 9l/2+1 (l> — opl/2
- 2

where we utilized the concentration inequality [63, Proposition 5.34] and properties of

1/
the gamma function mentioned above. This implies that (E [\ G2 — E[||G]|2] |l]) <
21/13/1 and the conclusion follows from (1.1).

e [liGll - BiGll] =t [~ 7 (fil. - =G
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