More results for regenerating codes on graphs
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Abstract—We study regenerating codes in heterogeneous dis-
tributed storage systems including the node repair problem in
graphically constrained architectures. We show that the com-
munication cost of repair can be decreased by downloading the
amounts of data controlled by the distance of the helper to the
failed node. At the same time, given the flexible choice of the
repair degree, the optimal repair cost can always be attained
by relying on uniform downloads. We also give a construction
of codes that attain a general version of the cutset bound for
heterogeneous and graphically constrained systems. The codes
we construct also support data combining at intermediate nodes
during repair.

1. INTRODUCTION

Regenerating codes are designed to correct single or multi-
ple erasures from the information obtained from the nonerased
coordinates of the codeword. Using the terminology inspired
by distributed storage systems, a regenerating code recovers
a failed node (coordinate) by downloading data from the
surviving nodes of the encoding. Suppose that the code used
to protect the data has length n and that every coordinate is
placed on a separate storage node. To repair a failed node, the
system uses a subset of d < n — 1 helper nodes that transmit
information comprising some functions of their contents to
be used to recover the lost data. One of the goals of the
code design is to minimize the amount of data downloaded
to complete the repair. Following their introduction in [4],
regenerating codes have been studied in a large number of
papers devoted to both constructions and impossibility bounds
for the code parameters, see [11] for a recent overview of this
area.

1.1. Heterogeneous and graph-constrained storage systems.
Most earlier works on regenerating codes, with a few excep-
tions mentioned below, assume that any d of the surviving
n—1 nodes can serve as helpers, and the choice of a particular
helper set is not addressed in the code design. Existing
code constructions typically also assume that downloading
the same amount of data from each of the helpers minimizes
the communication complexity of repair, and in many cases
(e.g., for MSR codes) one can show that this is indeed true.
Constructions with nonuniform download are considered when
the transmission cost from different helpers to the failed node
is not the same, giving rise to heterogeneous regenerating
codes, studied for instance in [1], [14], [5], [2]. In [9], [10]
we considered a related but different problem when the nodes
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of the storage system are placed on the vertices of a graph,
and the repair information is downloaded along the edges of
the graph. The results in [9], [10], both for MSR and non-
MSR codes, rely on existing constructions of codes and are
therefore based on equal contribution of every helper node
(the uniform download assumption). While they show that it
is possible to perform repair with download cost smaller than
direct relaying through the intermediate nodes, sending the
repair data along a path of e edges from the helper to the
failed node incurs the cost proportional to e, which naturally
introduces heterogeneity based on the graphical distance. It
is therefore conceivable that allocating the download to the
helpers depending on their distance to the failed node may
further reduce the repair complexity. It is this point of view
that we explore in this paper.

Another facet of repair on graphs is the possibility of
replacing relaying with data processing at the intermediate
nodes on the path from the helper(s) to the failed node.
Exploiting this feature, [9], [10] suggested that the data may
be processed at this node instead of being relayed, which
in many cases results in reduced communication complexity.
This general procedure, termed intermediate processing (IP),
applies to linear regenerating codes, although using it for a
specific code family requires further analysis of its structure.

1.2. Main results. We prove that optimizing the communica-
tion complexity of repair in heterogeneous systems, including
graph-constrained storage architectures, involves finding the
optimal number of helper nodes based on their distance to
the failed node. We further show that, for a given number
d of helpers, it is possible to decrease the complexity by
downloading different amounts of data that depend on the
distance from the helpers to the failed node. At the same
time, there always exists a choice of d for which the uniform
download optimizes the communication complexity of repair.

We derive an extension of the cutset bound of [4] for
nonuniform downloads that generalizes results shown previ-
ously in special cases. We propose a simple stacking construc-
tion of codes that supports repair attaining this bound. While
proper algebraic constructions look elusive, a stacking idea,
drawing on the scheme of (multilevel) concatenated codes, fits
the system architecture, allowing for a universal construction
that adjusts the amount of information downloaded from the
helper nodes depending on the transmission cost between the
helper and the failed node.

In summary, these results contribute to a reasonably com-
plete understanding of node repair on graphs.

1.3 Regenerating codes. An [n,k,d,l, 5, M| regenerating
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code over a finite field F is a subspace € — F™ whose
codewords are viewed as n x [ matrices over F'. Each column
of the matrix is stored in a different storage node. It is
required that the data collector have the ability to recover the
original message of size M by accessing at most k nodes
and downloading their stored contents. Additionally, in case
any one of the nodes is erased, the [ lost symbols can be
recovered by contacting d,n — 1 > d > k surviving nodes
and downloading at most S symbols from each of them (the
number d of helpers is called the repair degree).

In this work, we consider node repair where helper nodes
can contribute different amounts of data for the repair. Various
special variations of this problem have been considered in the
literature before, see [1], [5], [14]. However, to the best of our
knowledge, a general storage vs bandwidth trade-off analysis
similar to the uniform download case as well as matching code
constructions have not been previously addressed.

We begin with the definition of generalized regenerating
codes (GRCs).

Definition 1.1: Let B = {3;}¢_, be a set of d posmve
integers. An [n, k,d,l, B, M] GRC encodes a file % of size
M symbols over F' by storing [ symbols in each of the n
nodes such that

1) (RECONSTRUCTION) by accessing any k out of n nodes,
the original file can be recovered;

2) (REPAIR) the contents of any node f € [n] can be
recovered by contacting a set D < [n]\{f},|D| = d
of nodes and downloading 3; symbols from node 771 (i)
for any bijective mapping 7 : D — [d].

The mapping 7 corresponds to the allocation of contributions
for repair to the set of the helpers, and it highlights the fact
that the assignments can be arbitrary as long they form the set
B. If all the B;’s are equal, we call such a repair scheme a
uniform download scheme.

2. NODE REPAIR IN HETEROGENEOUS STORAGE SYSTEMS

In this section, we present general forms of the communica-
tion complexity bounds for the nonuniform download case. We
begin with the cutset bound, which has previously appeared
in the literature for special cases (e.g., for two different levels
of download in [1]). We also present a general form of the
bound for minimum communication complexity of repair for
intermediate processing in graphically constrained systems.

2.1. The cutset bound. Suppose that the information stored at
the nodes is described by random variables W;, i € [n] that
have some joint distribution on (F')™ and satisty H(W;) =1
for all 4, where H () is the entropy. For a subset A c [n] we
write W4 = {W;,i € A}. We also assume that H(Z#|Wk) =
0 for any K < [n],|K| = k, which supports the data retrieval
property. Denote by D < [n]\{f} the set of helper nodes. Let
Slf be the information provided to the failed node f by the ith
helper node in the traditional fully connected repair scheme,

and let S4 = {S/ : i e A} for any A < D. By definition we
have H(Sf) Br(), and
H(Wi) = M.K < [n] || = "
H(S{ W) =0,ie D; H(W;|SE) =o0.
where B = {BJ}]:1 and 7 are introduced in Def. I.1.
Let An(B) = mingciq),|rj=r Qep Bi denote the sum of
r smallest elements from B. The following statement gives
a general bound for information transmission during repair,

extending the results in [13].
Theorem 2.1: For an [n, k,d,l, B, M| GRC,
k—1

M < ) minf{l, Ag_;(B)}. 2)

=0
Proof. For any f € [n], any D < [n]\{f},|D| = d and any
set A < D, we have
(Wf|SA75D\A) 0,
which implies

H(Wyl5%) = I(Wys S5, ,5%) < H(SE, ,|5%)
<H(SH ) < Y, H(S))
i€D\A
Z Br(i)
i€D\A

Since this is true for any bijective mapping 7, we conclude
that

H(W§|Wa) < HWy|Sh) < min{l, Ay_4/(B)}). (3)
Finally,
k—1
M < H(Wpy) ZH Wi Wiiz1)) Zmin{l Ad_i(B)}.

Remark 1: The spemal case of Theorem 2.1 was studied in
[1] for the case when B contains only two distinct values. It
can be easily verified that in this case, (2) recovers the main
result of [1], with a much shorter proof.

As in the case of homogeneous systems [4], the Mini-
mum Storage (MSR) point of the bound (2), is defined by
l=Ag k41(B).

2.2. The IP repair bound. We now state the generalized
version of the IP bound, extending the results of [9], [10].

Lemma 2.2: Let f € [n] be the failed node. For a

(nonempty) subset of helper nodes £ < D, let Rf; be a

function of SJ, such that H(W;|RY, D\E) = 0. Then if
|E| =>d—k+1,
k—2
H(R]) =M — > min{l, Aq_;(B)}.
=0
Proof: Since we assumed thatH(Wf|RE,S’D\E) 0, all

the more it is true that

H(Wy| R, Wp\p) = 0. (4)
We have |[D\E| < k — 1. Consider a set A c E with |A4| =
k —1— |D\E|. Now,

H(Ry, Wp\p. Wa) = H(R, Wpp, Wy, Wa) 2 M, (5)
where the equality in (5) follows from (4) and the chain rule,
and the inequality follows from the reconstruction property
because |[D\E| + |A| + 1 = k. Next, observe that

H(Rpy, Wp\g, Wa) < H(RE) + H(Wpys, Wa),
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and so
H(R}) =M — HWp\g, Wa)
k—2

> M — 2 min{l, Ag—;(B)},

where the last inequality foliO\?vs from (3). [ ]
Corollary 2.3: For MSR codes, we have

H(RE) > 1= Ag—i1(B). (©6)

Proof: At the MSR point, we have | = Ay_;41(B) and

M = El, cf. (2). ]

This lemma bounds below the amount of data necessarily

obtained from a subset &£ < D irrespective of the processing

performed by the nodes in E, including the IP repair on
graphs.

Note that for fixed M, the bound above does not give any
improvement in terms of communication complexity over the
uniform [ case at the MSR point, since in both cases it is
equal to the per node storage parameter /.

2.3. A stacking code construction. In this section, we present
a construction of [n,k,d,l, B, M| GRCs. This construction
generalizes the construction of [5], and is reminiscent of
multilevel concatenated codes of [3]. We prove that for any
set B = {f; }?:1 the constructed code family is optimal in
two respects, namely (4) it saturates the MSR bound (2); (#4)
it is optimal for IP repair, meeting bound (6) with equality.

Given a repair degree d and a set of B = {§;}4_, integers,
we aim to construct a regenerating code that repairs any
failed node f by downloading at most 3; symbols from node
771(j) for any subset of helper nodes D < [n]\{f} and
any permutation 7 : D — [d]. Without loss of generality,
we assume that the set {f3;} is sorted in nondecreasing
order. Let 1 = (p1,..., pda—k+1) be the binary vector with
ti = L(g,5p,_,)» where B := 0. Let supp(u) be the set of
indices j with p; = 1.

Construction 2.1: Suppose that B = {f;}9_, and p
are as described above, and let S := {j : u; = 1}. For
each j € S take an MSR code ¢ with parameters

[nakadfj + 1vlj = (dij 7k+2)(6j 7ﬁj—1)7

(Bj — Bj-1), M; = ki;].

The [n, k,d,l, B, M] GRC code is formed by stacking
the codes {%}jes, where | = >, l; and M =
ZjeS Mj'

The intuition behind the construction is as follows. Upon
arranging the ;s in nondecreasing order, for every j such
that 8; > -1, we add to the stack an MSR code with per
node download equal to the gap 8; — 5;—1 and repair degree
d—j7+1.

Theorem 2.4: The code in Construction 2.1 is an [n, k,d)]
regenerating code that supports the repair of any node f from
a helper set D < [n]\{f}, |D| = d by downloading at most 3;
symbols of F' from node 71 () for any bijection 7 : D — [d].

Proof: Observe that the length n and the data reconstruc-
tion parameter k are the same for all the component codes

Only
partici-
pates in

repair

of €1

Participates
in repair
of €1
and 6>

6 [n,k,d]

@ [n,k,d—1]

6y [n,k,d— 3]

Node 1 Node 2 Node 3 Failed Node

Fig. 1. Stacked MSR construction for S = {1,2,4,---} (an example)

and hence inherited directly. To prove the repair property, fix
a helper set D and a permutation 7 such that {{3;} are in non-
decreasing order. Node 7~ 1(j) participates in the recovery of
node f only in the component codes {%), : p < j} and hence
it sends a total of Zz):l(ﬁp — Bp—1) = B symbols. [ |

The component codes can be chosen from a variety of
known MSR constructions. Since the parameters of these outer
codes depend on the given set {/3;}, a convenient choice is
the Product-Matrix codes [12], which in their basic version
work by downloading a single symbol from every helper. By
stacking several codewords of these codes we can obtain any
of the component codes ¢; as in Fig. 1, thereby matching
any set of per-node download values as required by the
construction.

Next, we show that this construction attains the minimum
possible node size for the given parameters.

Proposition 2.5: Codes of Construction 2.1 meet the bound
(2) with equality at the MSR point.

Proof: The node size for the code of this construction

equals
d—k+1

I= > [d—j—k+2)(8—Bi-1)
=1
dik+1 d—k+1

= Z i(Ba—i—k+2 — Ba—i—k+1) = Z Bi.
; =1

Since f; 22[32_1 for all j, summing the ﬁrstl d of the §;s
gives the minimum value over all mappings 7. Thus, the sum
on the last line equals A4_41(B), matching (2). [ |
Moreover, since the codes in Construction 2.1 are formed
of F-linear MSR codes, they are themselves F'-linear and
therefore support IP repair. We will show that they minimize
the amount of data sent by any subset of d — k + 1 nodes.

Proposition 2.6: Codes of Construction 2.1 meet the lower
bound (6) with equality.

Proof: For a given j and a code % it is possible to per-
form IP repair. Specifically, any subset of at least d —j — k+ 2
nodes can perform intermediate processing for €; to compress
their repair data to [; symbols of F. Therefore overall, the
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subset nodes of size d — k + 1 or more can perform IP repair,
compressing their data to Y| jes lj = | symbols. ]

3. REPAIR ON GRAPHS WITH NONUNIFORM
CONTRIBUTIONS

In this section, we highlight the advantages of the above
code construction by specializing it to repair on graphs. The
basic problem addresses the communication complexity of
node repair under the assumption that communication between
the nodes is constrained by a (connected) graph G(V,FE)
where V is a set of n distinct vertices and the cost of sending
a unit of information from any node ¢ to any node j is
determined by the graph distance p(i,j) in G. The nontrivial
situation arises when the helper nodes contacted during the
repair process of a failed node are not in the immediate
neighborhood of that node. In [9], it was shown that it is
possible to do better than simple relaying of helper data in case
of such multi-layered repair under certain conditions. Here we
address the general situation of possibly unequal contributions
of the nodes, extending the earlier uniform download analysis.

For a failed node f € [n], let D be a set of d helper
nodes closest to it in terms of the graph distance. Let G p
be the subgraph spanned by {f} U D in G and let Ty p
be a spanning tree of this subgraph with f as the root.
Let ¢ = maxpep p(f,h) be the height of the tree. Since
there can be multiple possible choices of G'f p and Tt p, to
make the analysis general, we assume certain regularity in the
underlying graph G. More precisely, we assume that for every
node f € [n], there exists a spanning tree T of G'¢,p for some
choice of D.

Example 1: As an example, suppose G(V, E) is a connected
t-regular graph. One way to guarantee the existence of the tree
T is to consider graphs with girth g, in which case a ball of
radius |g/2| — 1 around any vertex is a tree with ¢ immediate
neighbors of the center and #(t — 1)*~! vertices in layer i. A
line of work starting with Margulis’s paper [7] yielded con-
structions of such graph families with g = C(n,t)log,_; n,
where n is the number of vertices and C'(n,t) is a constant.

Suppose that T contains d; helper nodes at depth ¢ from the
root with } . d; = d. With this assumption, the repair proce-
dure for MSR codes that optimizes the overall communication
complexity of repair with uniform download was found in
[9]. It involves transporting the helper data towards the failed
node, i.e., the root of the tree, along the edges of the tree,
whereby nodes having more than d—k+1 children process the
information and send ! symbols relying on the IP technique.
Let J be the set of nodes in T with at least d — k + 1 children
and let J; be the set of nodes in J at distance ¢ from the root,
so that J = v;J;. For an i ¢ J, let P(i) denote the nearest
parent of node ¢ in J, and if no such parent exists, then let
P(i) = f. Define an [n, k,l,d, 8, M] MSR code on the graph,
then the total communication complexity of the repair process
is:

AT = 1+ D) e, P(0)B. @)

e JJ\{f} i€ D\J

We begin with the following observation.

Claim: The set J does not change when we switch from the
uniform download model to the nonuniform one and vice
versa. Furthermore, every node in J keeps transmitting [
symbols by relying on the IP procedure.

Indeed, if a node has d — & + 1 or more children in the
tree, they jointly must transmit at least [ symbols for repair
because of the bound (6), irrespective of whether the /3;’s are
equal or different. Lemma 2.6 further implies that this bound
is achievable by the stacking construction.

Assume now that nodes in layer ¢ each contribute J;
symbols for repair with 8y > (B2 > --- > ;. This can
be accomplished by using an [n,k,d,l, B, M] code from
Construction 2.1 with the set B formed of (3;’s, each appearing
d; times, for all 7 € [t]. Let ¢; = ﬁ ﬁl Furthermore, let ¢’
be the largest number such that Z di>d—k+1 It can
be checked that the vector 1 of Construction 2.1 in this case

is given by
t
/’I’ = 61 + Z eZL’i7
i=t/

where z; = ZE:Z d;j + 1 and e, € {0,1}47*+1 is a vector
with a single 1 in position x (this is the indicator of the set of
growth points in the sequence of the smallest d — k + 1 entries
in the set B.).

The total communication complexity in the nonuniform

contribution model is given by the following expression:
t

MNo= 2 1+ 2 pG2P6)6- ®
ie\{f}  i=1jeDi\J;

Theorem 3.1: Using Construction 2.1 for the repair tree 7T,
the nonuniform contribution scheme achieves the overall repair
bandwidth given in Eq. (8). It attains savings over the uniform
contribution model whenever

W

i=1jeD;\J;

))d; >0 )

subject to
t'+1 t'+1

Zd6+d k—i—l—Zd )3y = 0. (10)

Proof Condmon (9) follows by tcomparlng expressions
(8) and (7). To obtain (10), recall our notation Ay 1 defined
before Theorem 2.1. For the graph case considered, it has the
following form:

t t
Agkpr= Y, difi+(d=k+1— ) d&)Bv =1,

i=t/+1 i=t'+1
where the last equality follows from Theorem 2.1. Rewriting
this using the J;’s, we obtain Eq. (10). |

We illustrate this theorem in Example 2 below. Note that the
set JJ may not include all the nodes capable of performing IP.
Indeed, for a choice of B = {3;}, any node in the repair
tree that accumulates the repair data of a set A such that
Diea Bi = 1 can gainfully perform IP. Hence, the minimum
communication complexity of repair can potentially be even
lower than Eq. (8).
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4. OPTIMIZING THE HELPER DATA AND THE REPAIR
DEGREE

The above analysis suggests that for the case of repair on
graphs, lowering the contribution of the farthest away nodes
at the expense of increasing the contributions from the nearer
nodes may reduce the amount of communication. This gives
rise to the question of the limits of this exchange. In the
limiting case, one might stop accessing data from the farthest
nodes altogether, effectively decreasing the repair degree d of
the repair process. The universal constructions of regenerating
codes proposed in [15], [6] support the option of dynamically
adjusting the repair degree d. In this section, we show that this
added flexibility indeed minimizes the overall communication
bandwidth.

The optimal choice of [3;’s can be found by formulating the
graph repair problem as an optimization problem, as suggested
in [5] for heterogeneous systems. For this, without loss of
generality, we take n to be the failed node and set D = [n—1].
Assume that node ¢ € D contributes 3; symbols for the repair
of f, adding that now some of the 3;’s can be 0. By Theorem
2.1, we have that [ = A,,_x(B), which imposes constraints on
our choice of 3;’s. The objective function of our minimization
problem is given by the expression in Eq. (8). Note that letting
some [3;’s to be 0 does not change the set J, since due to the
constraint [ = A,,_x(B), each node in J can still perform IP.
Since the first term in Eq. (8) is independent of the choice of
Bi’s, the optimization problem can be stated in the following
simple form:

min Z blﬁz
i€D\J
subject to ¥ B; =1, VA< [n—1],|A|=n—k (1D
€A

0§51<l, ZE[’I’L—IL
where the costs b; can be calculated from the structure of 7.
Without loss of generality, we shall assume that the costs b;’s
are arranged in non-increasing order, i.e., by = by = --- =
b,—1. With these assumptions, we restate Lemma 1 from [5]
for our purposes.
Lemma 4.1: If {87} is an optimal solution for the above
optimization problem, then
1) B <pB¥<---<fB*, and
2) ﬁ;‘ =g , forall i >n—k.
The authors in [5] further claimed that the optimal solution
of the above optimization problem takes the form given in
the next theorem. The proof does not seem to appear in the
published literature, so we have included it in the preprint
version [8].
Theorem 4.2: ( [5], Theorem 1]) There exists an optimal
solution of the above LP such that
g 0 I1<i<n-d-1
! #ﬂl n—d<i<n-—1
for some d in the range k < d <n —1.
Example 2: We give an example to show that for a given
repair degree d, the nonuniform assignment yields commu-
nication savings guaranteed by Theorem 3.1, and that at the

(12)

same time, the maximum savings can be attained by adjusting
the repair degree and switching to the uniform assignment.

Consider the t-regular Cayley graphs mentioned in Example
1. Suppose that the repair tree J is formed of a layers, where
a < lg/2] — 1, then d; = t(t — 1)"1i < a — 1 and
dy = d— 39" #(t — 1)1, Suppose further that d, + d,_1 >
d — k + 1. To simplify the analysis, we are not including IP
since it is somewhat independent of the current discussion
and can be easily incorporated into it. The overall repair
bandwidth for a uniform contribution repair scheme for an
[n,k,d,1,3 = 5=, M] MSR code is A = BY | id;.
Now let us switch to the nonuniform contribution repair
scheme with helper nodes at layer i contributing 3; symbols
each, with (;’s nonincreasing. From Theorem 3.1, we have that
dods+(d—k+1—dy)da—1 = 0, with 6; = 8 — f3;, and repair
bandwidth under this scheme is ARy = Y7, id;3;. Note that
if 6, > 0 then §,_1 <0 and §; < 6,1 forall i < a— 2, so
we let §; = da 0, for all 7 < a — 1 and observe that

; _ d—k+1—d, " .
the savings in the nonuniform setting are
a

Ag - AI?I.U = Z id;0;
i=1
(15(1 a1 .
- #MI( Yia—i)di —a(k - 1)),

i=1
In summary, using the nonuniform scheme results in savings
whenever the expression in the parentheses is positive, which
is possible for small k.

Now suppose that we have the freedom of choosing the
repair degree d. Observe that as we increase d, = 5 — S,
above, the savings in overall bandwidth increase with the
maximum attained when 0, = f or 8, = 0. At this point,

Bi=B—bar =B+

ava
d—k+1—-d,
l l 1
S d—d,—k+1 d—k+1
where d’ = d—d, is the new repair degree, since the nodes in
the ath layer are effectively excluded, and every helper node
in layers a — 1 and below contributes equally.

<i1<a-—1,

5. CONCLUSION

In this paper, we have analyzed the repair problem with
the assumption that different helper nodes may contribute
differently towards the repair process. We established per-
formance bounds for such a nonuniform contribution model
and constructed a matching family of regenerating codes.
In some cases, node repair with nonuniform contributions
results in smaller communication complexity than the pre-
viously analyzed uniform model [9]. At the same time, if
the repair degree can be dynamically adjusted (or if the
graph is sufficiently regular), then the added complexity of
adopting a nonuniform contribution model can be avoided. An
interesting open question is to design a code construction for
the nonuniform contribution model without using the stacking
method which suffers from a large per-node storage.
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