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Bit-parallel scanning techniques are characterized by their ability to accelerate compute through the process

known as early pruning. Early pruning techniques iterate over the bits of each value, searching for opportunities

to safely prune compute early, before processing each data value in its entirety. However, because of this

iterative evaluation, the effectiveness of early pruning depends on the relative position of bits that can

be used for pruning within each value. Due to this behavior, bit-parallel techniques have faced significant

challenges when processing skewed data, especially when values contain many leading zeroes. This problem is

further amplified by the inherent trade-off that bit-parallel techniques make between columnar scan and fetch

performance: a storage layer that supports early pruning requires multiple memory accesses to fetch a single

value. Thus, in the case of skewed data, bit-parallel techniques increase fetch latency without significantly

improving scan performance when compared to baseline columnar implementations.

To remedy this shortcoming, we transform the values in bit-parallel columns using novel encodings. We

propose the concept of forward encodings: a family of encodings that shift pruning-relevant bits closer to the

most significant bit. Using this concept, we propose two particular encodings: the Data Forward Encoding

and the Extended Data Forward Encoding. We demonstrate the impact of these encodings using multiple

real-world datasets. Across these datasets, forward encodings improve the current state-of-the-art bit-parallel

technique’s scan and fetch performance in many cases by 1.4x and 1.3x, respectively.
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1 INTRODUCTION
A critical property of an integer data type is its binary representation, which has largely remained

unchanged since the start of the computing field. The natural method to represent an integer in a

machine-amenable format is to use a base-2 positional representation and then interpret the number

using a signed notation, usually two’s complement [17]. The two’s complement representation has

been a crucial component of modern computing systems since it was proposed as part of the von

Neumann architecture [38]. As we will see in this paper, this encoding plays a critical role in the

performance of predicate-based columnar scan techniques – a common operation in data platforms

that has received much attention in the community [1, 4, 9, 15, 16, 18, 22, 23, 29, 34, 40].
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Fig. 1. The values 9 (Example 1), -9 (Example 2), and 8191 (Example 3) encoded in EDFE, along with the
process to decode each value back to an INT (explained in detail later) using C program syntax. We omit
masking operations applied to the upper and lower fields to make the examples more concise. The upper field
of each encoded value is highlighted in light gray. In Example 2 (-9), because the sign bit is set, the upper and
lower fields are inverted during the decoding process, and the final output is negated. In Example 3 (8191),
because the sign bit is cleared and the format bit is set, the only step to decode is to invert the format bit.

First, we observe that numbers may have multiple machine representations. As a more complex

example than the aforementioned integer representation, consider the IEEE 754 floating point

number representation. When read from left to right, it defines a set of discrete fields at fixed bit

positions (sign, exponent, significand) [14].

Second, building on this observation, we reimagine the encoding of integers to more resemble

a floating-point representation, but without losing precision or the natural ordering of integers.

Our reimagined integers are also compatible with existing binary comparison logic, allowing

their use as a replacement for existing integer types without significant changes to existing data

processing kernels. Due to these properties, our alternative integer encodings are a significant

departure from existing floating-point formats, as they do not call for dedicated floating-point

processors [14, 25, 39].

One such method we consider is illustrated in Figure 1. This new format is called the Extended
Data Forward Encoding (EDFE). EDFE re-encodes a two’s complement integer to minimize the

number of leading zeroes. Thus, EDFE is particularly amenable to bit-parallel columnar-scan

methods that rely on a property called early pruning to efficiently evaluate a predicate scan on an

integer-typed column. EDFE extends the simpler Data Forward Encoding (DFE) by adding a sign

and a format bit.

Example 1 in Figure 1 illustrates the EDFE decoding process (Section 3 presents the technique in

full). To decode a value in EDFE to a two’s complement integer, the value in the lower field is shifted

as a function of the upper field. The bit pattern in the lower field is always able to reconstruct the

entirety of the original value. This simplicity of encoding allows EDFE to be efficiently processed

using simple bit-manipulation operations instead of relying on dedicated hardware, facilitating a

lightweight encoding and decoding process that modern CPUs can perform in a few clock cycles.
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We emphasize the broad property of EDFE shifting bits towards the most significant bit (MSB).

This property is common to all encodings in this family, which we identify as forward encodings
(FEs). When using FEs instead of two’s complement representations, the bits likely to distinguish

between values are shifted toward the MSB. As shown in Figure 1, evaluating −9 < 9 < 8191 is

represented in INT as 0xFFF7 < 0x0009 < 0x1FFF, while in EDFE it becomes 0xEF7F < 0x1080 <

0x5FFF.
Forward encoding works particularly well with bit-parallel columnar scan methods [9, 16, 19,

22, 29, 34]. These methods often slice the bits in a sequence/column of integer values at the bit

level and store the column by the bit position. For example, in both the classic bit-sliced index [29]

and the BitWeaving/V [22] storage organizations, retrieving the first 64 bits of an integer column

returns the 64 MSBs of the first 64 column values.

Predicate evaluation using bit-parallel organizations benefits from early pruning, which allows a

scan to safely (early) terminate when sufficient bit slices have been evaluated to guarantee a correct

result. The simplest case is that of an equality predicate. A bit-parallel method compares a slice of

data bits with the corresponding slice in the predicate literal. If any data bits do not match, the

corresponding column value (and hence the record) will not match the predicate, irrespective of

additional data bits. However, integer columns often have many leading zeros, especially in the case

of skewed datasets. These leading zeros delay early pruning, as more bit slices must be scanned

before processing a prunable bit. Forward encodings are designed to address this weakness in two

ways: First, the set bits from the original value are shifted toward the MSB. Second, the upper field

captures the magnitude of a value while the remaining bits capture the details; as both fields can be

used for early pruning, many scans prune early after evaluating the first few bits of the upper field.

The improved columnar scan performance of bit-parallel techniques is based on rearranging

the bits of each value in a column. As the performance benefit of early pruning is based upon

accessing a portion of the underlying value, this access pattern must be facilitated by the column’s

data layout. However, because of this modified layout, retrieving a value from the column requires

additional memory reads. Broadly, bit-parallel techniques improve columnar scan performance at

the cost of fetch performance.

Previous bit-parallel scan acceleration techniques have primarily been evaluated using synthetic

benchmarks that usually generate uniform-random data [28, 36]. While uniform-random data is

useful for comparing techniques, it obfuscates the exact origin of scan performance improvements

that are influenced by the underlying data. Is a uniform distribution of bits necessary for early prun-

ing to function effectively? Does reliance on a uniform bit distribution necessitate that bit-parallel

techniques must always be used to store integers using the two’s complement representation? To

approach these questions, we perform our evaluation using multiple skewed, real-world datasets,

which we describe during our evaluation.

The encoding method of a value is orthogonal to the storage organization of a column. One could

take a column/batch of integer values and slice them at the bit level. Indeed, this is what methods

like bit-sliced indices [29] and BitWeaving/V [22] do. But, one could also slice at a different “vertical”

boundary – such as the byte level. This latter approach is adopted by ByteSlice [29], the current

state-of-the-art bit-parallel method. We evaluate our proposed encodings using BitWeaving/V and

ByteSlice to understand the impact of the choice of encoding on multiple storage organizations.

Collectively, the contributions of this paper are as follows:

(1) We propose reimagining the encoding of integer data types and present a new general method

of encoding integers called forward encoding. Besides the specific use cases discussed in

this paper, we intend for the paper to initiate a new way of thinking about the encoding of

integer data.
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(2) We propose two new forward encodings, DFE and EDFE, and explore their theoretical

properties.

(3) We note the orthogonality between encoding and storage organization. In this framework,

BitWeaving/V and ByteSlice use existing integer encodings with bit-sliced and byte-sliced

boundaries. We provide an intuitive method to characterize different ways of organizing

the bits in a column of integers. Using this characterization, we also explore each storage

organization’s trade-offs between columnar scan and fetch operation performance.

(4) We demonstrate the performance advantage of DFE and EDFE across multiple storage organi-

zations using skewed, real-world data. Averaging across several cases, we observe geometric

mean speed-ups of 1.47x and 1.33x for scan and fetch operations using the state-of-the-art

bit-parallel technique (ByteSlice). The performance of BitWeaving/V is improved as well

(1.55x and 1.19x), elevating it to be comparable with ByteSlice.

The remainder of this paper is organized as follows. First, we explore key background works in

Section 2 to establish a set of standard parameters that describe bit-parallel techniques (Section 2.2).

Next, we use these parameters to examine runtime discovered early stopping (a more precise

definition of early pruning) in Section 2.3. We discuss related work in Section 2.4. Section 3

describes the properties of forward encodings (Section 3.1) before discussing the specifics of DFE

(Sections 3.2) and EDFE (3.3). Then, we introduce a new concept called FE-enabled early stopping

in Section 3.4. In Sections 3.6 and 3.7, we explore usage considerations and trade-offs between our

proposed and existing encodings. We evaluate our proposed encodings in Section 4 and discuss the

results of our experiments in Section 5. Finally, Section 6 contains our concluding remarks.

2 BACKGROUND AND RELATEDWORK
This section describes key bit-parallel techniques and identifies a set of standard parameters to

compare bit-parallel methods. Using these parameters, we explore the critical components that

make early pruning effective. We also explore a number of related works in this space, including

hardware implementations of early pruning and alternative bit representations (codes) of integers.

2.1 Existing Bit-Parallel Techniques
Bit-parallel techniques have achieved significant reach since their inception [9, 16, 19, 22, 29, 34].

Broadly, these methods recognize that reorganizing the bits of multiple values can lead to increased

storage and processing efficiency.

We consider the bit-sliced index [29] the starting point of many bit-parallel techniques. This

initial technique was extended in a variety of directions [9, 15, 22, 34]. In particular, we emphasize

the later contribution of early pruning [22]. Early pruning allows bit-parallel techniques to identify

opportunities to compute results without accessing every bit of each processed value. The properties

behind early pruning are crucial to the behavior of modern bit-parallel, predicate-based, columnar

scan techniques.

We select two background works to emphasize fundamental mechanisms common to bit-parallel

techniques: BitWeaving/V [22] and ByteSlice [9]. We choose these two particular techniques for two

reasons: First, ByteSlice is the current state-of-the-art bit-parallel technique. Second, the authors

of the ByteSlice paper evaluate ByteSlice against BitWeaving/V to demonstrate the differences

between literal bit-parallel (bit width 𝑏 = 1) and byte-parallel (𝑏 = 8) storage layers. These two

techniques serve as a baseline to compare multiple forms of bit-parallelism when performing

columnar scan and fetch operations.

As our proposed encodings are heavily influenced by early pruning, we explore the behavior of

early pruning in a dedicated portion of this section. However, before we can thoroughly investigate

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 257. Publication date: December 2023.



Rethinking the Encoding of Integers for Scans on Skewed Data 257:5

Variable Name V. Value Definition
Bit Width 𝑏 Parameter The bit-width of each data value in the original column. This parameter is data-

dependent.

Group Size 𝑔 Parameter The number of segments of data values that are processed in parallel. This pa-

rameter is specified by the implementation of the bit-parallel technique.

Strata Width 𝑠 Parameter The smallest number of actionable bits per data value. This parameter is defined

by the bit-parallel technique.

Strata Count 𝑐 𝑐 = 𝑏/𝑠 The number of strata that each data value is broken into.

Parallelism Size 𝑤 𝑤 = 𝑔 × 𝑠 The number of data bits that are processed in parallel. This value is influenced by

the available compute resources.

Table 1. Variables used to categorize bit-parallel techniques.

early pruning in prior work, we need to establish a standard set of parameters to describe existing

bit-parallel techniques. From this foundation, we can explore the impact of early pruning.

2.2 Generalization of Techniques
Prior bit-parallel works use different terms to identify their bit-parallel techniques. We unify the

existing terminology using a precise set of terms, which we tabulate in Table 1.

We define a bit-parallel technique as a technique that processes 𝑠 bits of 𝑔 values in a combined

processing step. The parameter 𝑠 identifies the “strata width,” which indicates the number of bits

processed per value in a parallel context. A “byte-parallel” technique specifically identifies a bit-

parallel method with a strata width parameter 𝑠 = 8. The parameter 𝑔 (group size) identifies how

many individual segments of data values are processed in parallel. We define𝑔 as an implementation

detail of each method; in many cases, the theory behind the overall technique remains the same

when 𝑔 is modified.

When a bit-parallel method loads a column of data, it processes values with a bit width of 𝑏. All

other terms that describe bit-parallel techniques can be derived from 𝑏, 𝑔, and 𝑠 .

The number of strata each value is broken into is defined as the “strata count” 𝑐 = 𝑏/𝑠 . A higher

value of 𝑐 allows for more early stopping (early pruning) opportunities during processing. However,

higher values of 𝑐 generally incur a higher overhead cost when recombining strata to restore the

original value.

The number of bits processed in parallel at each step is the parallelism size 𝑤 = 𝑔 × 𝑠 . The
parallelism size of bit-parallel techniques is generally implementation dependent, influenced by

not only the same considerations that influence the group size 𝑔 but also the available compute and

storage resources.

Using this framework, we can systematically characterize various terms used to describe bit-

parallel techniques.

“Bit-parallel,” “byte-parallel,” and “N-bit-parallel” all refer to a bit-parallel storage technique

with a strata width 𝑠 denoted by the name. We still use bit-parallel and bit-stratified as general

descriptors for bit-stratified storage organizations. The strata width will be explicitly stated when

necessary for clarity.

“Early stopping,” “early pruning,” and “early termination” all refer to an algorithm that stops

before processing all bits in every processed value. Because the early stopping condition is evaluated

between strata to determine if a stop can occur, we describe these behaviors as “runtime discovered

early stopping.” In contrast, an algorithm that determines the bit-location of an early stop before

scanning begins has performed a “planned early stop.”

We note that a stratum is intended as the smallest width of actionable bits in the context of early

stopping. Strata width is usually, but not necessarily, linked to the particular implementation of the
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Fig. 2. Stopping probabilities when performing a predicate-based scan on the SSB column LO_QUANTITY,
using a value of 15, at multiple group sizes (g). A (non-early) stop occurs when all bits of a value have been
processed.

storage layer orchestrated by a bit-parallel method. For example, BitWeaving/V implemented using

a “bit group size” of 4 is identified as having a strata width of 𝑠 = 4, while ByteSlice has a strata

width of 𝑠 = 8 [9, 22].

The performance of columnar scans and fetches is significantly impacted by the strata width

of a given bit-parallel technique. Reducing the strata width makes it possible to perform an early

stop after processing a smaller number of bits. Depending on the group size parameter and the

exact query, the average number of bits processed by the columnar scan may be reduced. However,

reducing the strata width will usually increase the latency of fetching values from a bit-parallel

column, as each stratum retrieved may require its own memory access.

2.3 (Runtime Discovered) Early Stopping
Having identified a standard set of parameters to describe bit-parallel techniques, we can now more

deeply discuss the behavior of runtime discovered early stopping.

A bit-parallel technique processes 𝑔 (group size) elements at each processing step. A discovered

early stop can only occur when the early stopping condition for the entire group 𝑔 is met. For

all integer comparison operations, this condition is “data strata not equal to the corresponding

predicate strata.” A model of this behavior has been explored in previous work [9, 22], which we

summarize here. Assuming a set of uniformly distributed values of 𝑏 bits in length, the probability

of a value to allow for early stopping after 𝑖𝑏 bits have been evaluated is P(𝑖𝑏) = 1 − ( 1
2
)𝑖𝑏 . This

behavior is plainly understood, as each additional bit examined will remove half of the remaining

values. This construction can be expanded to include 𝑔 and a “fill factor” term 𝑓 , which corresponds

to the fraction of values present compared to the total cardinality of the number of bits. This

expanded form expresses the previous probability as P(𝑖𝑏, 𝑔, 𝑓 ) = (1 − ( 1
2
)𝑖𝑏 )𝑔𝑓 .

While this model is accurate, its assumptions carry a significant caveat that impedes its general

case usage: The fill factor reflects a random removal of elements from the overall cardinality.

In practice, fill factors are regularly skewed. For example, consider the LO_QUANTITY column

from the Star Schema Benchmark (SSB) [28], which contains values in the range [1, 50] and is

stored using 6 bits. The skewed fill reduces the value of evaluating an early stopping condition at

some bit indices. To represent this impact, we replace the
1

2
term with 𝐼 (𝑏), where 𝐼 represents a
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function mapping the probability of bit 𝑏 in the predicate being equal to bit 𝑏 across all values in

the scanned column’s data. For example, given the LO_QUANTITY column and a query value of 15,

𝐼 (𝑏) = {0.62, 0.62, 0.48, 0.48, 0.5, 0.5}. After this modification, our early stopping model becomes:

P(𝑏,𝑔) = (1 −∏𝑏
𝑖=1 𝐼 (𝑏))𝑔.

Our model allows for an arbitrary extension of the bit representation of values with “leading

zero” padding, which are bits that do not allow for any discovered early stopping opportunities.

For example, extending the LO_QUANTITY column from 6 to 8 bits impacts the original example

of a query predicate value of 15 as follows: 𝐼 (𝑏) ={1, 1, 0.62, 0.62, 0.48, 0.48, 0.5, 0.5}. These leading
zeroes pose a fundamental challenge to existing bit-parallel methods, as they require processing

but do not contribute to runtime discovered early stopping opportunities.

To illustrate the impact of our early stopping model, we apply the query “LESS THAN 15” to the

previously discussed LO_QUANTITY column sized at 8 bits. We vary the group size 𝑔 and depict

the results in Figure 2. Points below 1e−15 are omitted from the figure. In general, large values of 𝑔

negatively impact runtime discovered early stopping. By the next to last bit (bit index 1), only 0.3%

of values have been early stopped when using a parallelism group size of 𝑔 = 128. Once large values

of 𝑔 are reached, runtime discovered early stopping rarely finds opportunities to stop, significantly

reducing its overall impact.

This early stopping behavior has been identified by the authors of ByteSlice and serves as part

of the motivation to use byte-parallel (𝑏 = 8) storage instead of smaller bit-parallel (𝑏 < 8) storage

configurations [9]. We agree that, as is, there are significant limitations to runtime discovered early

stopping when working with large group sizes 𝑔. These results motivate an analysis into techniques

that can complement runtime discovered early stopping.

2.4 Related Work
Bit-parallel computing techniques are deeply intertwined with our proposed encodings [9, 16, 19,

22, 23, 29]. These techniques have resulted in several successful implementations [3, 11, 30, 31].

While we focus on two specific implementations of bit-parallel techniques in this work (BitWeav-

ing/V [22] and ByteSlice [9]), our generalization of bit-parallelism and the concept of a bit-stratified

storage layer is a broadly applicable framework that could be applied to many existing bit-parallel

implementations.

Further, recent work has investigated specialized hardware designed to perform bit-parallel

compute [20, 35, 40–44]. Some of these recent works have implemented bit-parallel techniques

within compute-capable memory units [20, 35, 41]. We find that our generalization of bit-parallel

techniques can accurately describe these methods. As these techniques operate on parallelism sizes

(𝑤 ) significantly wider than those used by CPUs, our analysis of runtime discovered early stopping

(Section 2.3) is also pertinent to these techniques.

Application-specific encodings have found success in a variety of environments [7, 10, 12, 21, 25,

32, 39]. These encodings were proposed to address the needs of a specific application, just as DFE

and EDFE are focused on improving bit-parallel techniques when processing skewed data. Further,

methods that automatically select an optimal type or encoding amplify the benefits of additional

encoding options [13, 15].

3 ENCODING
In this section, we explore the motivations behind the design of forward encodings (FEs). Then,

we propose two FEs: Data Forward Encoding (DFE) and Extended Data Forward Encoding (EDFE).

DFE is intended as a simple implementation of a forward encoding to demonstrate the properties

of an FE. In contrast, EDFE is usable as a general-purpose encoding that extends the DFE. After
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Fig. 3. The value 9 encoded in DFE. The upper field is highlighted in light gray. Note that the natural bit
representation of 9 is 1001, which is present (shifted) in the lower field once the hidden bit (1) is made explicit.

describing the encodings, we explore how forward encodings enable new opportunities for early

stopping. Finally, we examine the trade-offs between existing representations of integers, DFE, and

EDFE.

3.1 Forward Encodings
In this section, we explore the concept of forward encodings. Then, we demonstrate how forward

encodings enable a new set of early stopping opportunities.

A forward encoding (FE) is broadly intended to shift the bits that could be used for runtime

discovered early stopping towards the most significant bit. Our design of forward encodings takes

significant inspiration from floating-point formats that demarcate regions of a longer word as

independent fields. However, in contrast to floating-point formats, FEs are still fundamentally

integer encodings: forward encodings maintain full number precision and compatibility with

integer comparison operations. Thus, while FEs share properties with floating-point encodings,

they have a fundamentally different set of behaviors.

Previously, we demonstrated decoding several values from EDFE to their INT form (Figure 1).

We use one of these values (9) as an example to showcase the decoding process of the data forward

encoding (DFE). The DFE of 9 is shown in Figure 3. Note that the DFE of 9 has an upper field value

of 𝑢𝑝𝑝𝑒𝑟 = 4.

First, the bit pattern representing 9 (1001) is always readily available once the hidden bit (1) is

made explicit. This allows for a simple decoding process: (𝑙𝑜𝑤𝑒𝑟 | (1 ≪ 12)) ≫ (13 − 𝑢𝑝𝑝𝑒𝑟 ) = 9.

Second, we note that the upper field decremented by one (𝑢𝑝𝑝𝑒𝑟 − 1 = 3) is the number of salient
bits (starting from the MSB) in the lower field: Outside of these first three bits, all other bits will be

Value INT DFE EDFE
8191 0001111111111111 1101111111111111 0101111111111111

2048 0000100000000000 1100000000000000 0100100000000000

2047 0000011111111111 1011111111111100 0010111111111111

9 0000000000001001 0100001000000000 0001000010000000

3 0000000000000011 0010100000000000 0000101000000000

2 0000000000000010 0010000000000000 0000100000000000

1 0000000000000001 0001000000000000 0000010000000000

0 0000000000000000 0000000000000000 0000000000000000

Table 2. Examples of integer values and their 16 bit representations using INT, DFE, and EDFE. The upper
fields of DFE and EDFE are highlighted in light gray.
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Algorithm 1: DFE Encoding Algorithm

input : Integer 𝑛 represented using 𝑏 bits.

1 if 𝑛 = 0 then
/* Encoding zero. Return zero. */

2 return 0;

3 else
4 𝑐𝑙𝑧 ← 𝐶𝑜𝑢𝑛𝑡𝐿𝑒𝑎𝑑𝑖𝑛𝑔𝑍𝑒𝑟𝑜𝑒𝑠 (𝑛);
5 𝑙𝑒𝑛(𝑢) ←

⌈
log

2
(𝑏)

⌉
;

6 𝑙𝑒𝑛(𝑙) ← 𝑏 −
⌈
log

2
(𝑏)

⌉
;

7 if 𝑐𝑙𝑧 < 𝑙𝑒𝑛(𝑢) − 1 then
/* Number out of bounds for encoding. */

8 throw 𝐸𝑟𝑟𝑜𝑟𝑂𝑢𝑡𝑂 𝑓 𝐵𝑜𝑢𝑛𝑑𝑠;

9 else
/* Upper field records the shift. */

10 𝑢 ← (𝑏 − 𝑐𝑙𝑧) ≪ 𝑙𝑒𝑛(𝑙);
/* Lower field preserves the value. */

11 𝑙 ← 𝑛 ≪ (𝑐𝑙𝑧 − 𝑙𝑒𝑛(𝑢) + 1);
12 𝑙_𝑚𝑎𝑠𝑘 ← (1 ≪ 𝑙𝑒𝑛(𝑙)) − 1;

/* Combine fields with a bitwise OR. */

13 return 𝑢 | (𝑙 & 𝑙_𝑚𝑎𝑠𝑘);
14 end
15 end

shifted out during the decoding process and thus have no impact on the decoded value. Thus, in

effect, DFE has trailing zeroes instead of leading zeroes.

The trailing zeroes of DFE are common to all forward encodings. FEs have non-impactful trailing
zeroes instead of impactful leading zeroes. In the context of bit-parallel techniques, this has a

profound impact: Information from the upper field can be used to set a maximum bound on the

total number of strata that must be processed. Further, this maximum bound can also be used for

comparisons, allowing the scan predicate to apply a maximum strata boundary on a columnar scan

(described in Section 3.4). In the following sections, we explore how DFE and EDFE implement the

properties of forward encodings.

3.2 Data Forward Encoding
In this section, we present the Data Forward Encoding (DFE). The algorithm to encode a value

from an integer to its DFE encoded form is shown in Algorithm 1. We include examples of encoded

values in Table 2.

Before we sketch our proof for Algorithm 1, we walk through an example of encoding and

decoding. We also use this opportunity to link DFE to the properties of forward encodings illustrated

previously.

We present the DFE representation of the value 9 in both Figure 3 and Table 2. Before we explain

DFE, consider a simple idea: Imagine shifting a non-zero UINT (unsigned integer) value to the left

until the MSB of the shifted value is 1. As the shifting process has guaranteed that this (new) MSB

bit is always 1, we can assume this bit’s value without storing it.
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This process is precisely what occurs when encoding a value in DFE. The original value is shifted

so that the first set bit is aligned with the MSB of the lower field. As this bit is always known to be

1, it can be omitted. Thus, for the DFE value of 9, by including the “hidden bit,” we see that the

base-2 representation of 9 1001 has been shifted to the MSB of the lower field. By hiding this bit,

we double the representable range.

Conceptually, the hidden bit resides between the lower and upper fields. In this context, the

value stored in the upper field is similarly intuitive: the upper field records the number of salient

bits in the lower field, starting with the hidden bit. Consider the example of encoding 9: the upper

field has a value of 4; thus, the lower field and hidden bit together are 4 bits long. The first three

bits of the lower field are 001, which, when augmented with the hidden bit, becomes 1001. It is
trivial to decode 9 in DFE back to the original INT encoding through the use of bit manipulation:

(𝑙𝑜𝑤𝑒𝑟 | (1 ≪ 12)) ≫ (13 − 𝑢𝑝𝑝𝑒𝑟 ) = 9.

To support Algorithm 1, we provide sketches of proofs that identify the key components of this

alternative encoding.

Definition 3.1. A value of 0 has a DFE of 0.

Theorem 3.2. Given a word length of 𝑏 bits, DFE is a reversible encoding for all values 𝑛 where
𝑛 ≤ 2

𝑏−⌈log
2
𝑏⌉+1 − 1 and 𝑛 ≥ 0.

Sketch of Proof. Given a value 𝑛 that is represented using a word length of 𝑏, we note that⌈
log

2
𝑏
⌉
= 𝑙𝑒𝑛(𝑢) is the number of bits required to represent 𝑏. In this construction, 𝑙𝑒𝑛(𝑢) bits are

used to express the “upper” field (𝑢) using a subset of fixed position bits in the existing word. The

rest of the word is used for the “lower” field (𝑙), the length of which is 𝑏 − 𝑙𝑒𝑛(𝑢) = 𝑙𝑒𝑛(𝑙). The
values of 𝑢 and 𝑙 are stored using 𝑙𝑒𝑛(𝑢) and 𝑙𝑒𝑛(𝑙) bits from the word, respectively. We place these

bits at positions relative to a word of size 𝑏 using a few logical shift operations.

𝑢 = (𝑏 −𝐶𝐿𝑍 (𝑛)) ≪ 𝑙𝑒𝑛(𝑙)
𝑙 = (𝑛 ≪ (𝐶𝐿𝑍 (𝑛) − 𝑙𝑒𝑛(𝑢) + 1))&((1 ≪ 𝑙𝑒𝑛(𝑙)) − 1)
𝐷𝐹𝐸 (𝑛) = 𝑢 |𝑙
As also seen in Algorithm 1, prior to combining 𝑢 and 𝑙 into a single size 𝑏 value, we apply

a mask to 𝑙 . This mask removes the leading bit of 𝑙 ; per Definition 3.1 and the behavior of the

𝐶𝐿𝑍 function, this removed leading bit is always 1. DFE can represent values of up to length

𝑏 − 𝑙𝑒𝑛(𝑢) + 1 = 𝑙𝑒𝑛(𝑙) + 1, equal to a maximum value of 2
𝑏−⌈log

2
𝑏⌉+1 − 1.

To decode a value in DFE, we determine a shift and a value by reversing the process to construct

the upper and lower fields.

𝑛𝑠 = 𝐷𝐹𝐸 (𝑛)&((1 ≪ 𝑙𝑒𝑛(𝑙)) − 1) | (1 ≪ 𝑙𝑒𝑛(𝑙))
𝑛𝑣 = (𝑙𝑒𝑛(𝑙) + 1) − (𝐷𝐹𝐸 (𝑛) ≫ 𝑙𝑒𝑛(𝑙))
𝑛 = 𝑛𝑣 ≫ 𝑛𝑆
Note that 𝑛𝑣 is restored bit pattern of the original value 𝑛: applying the shift 𝑛𝑠 to 𝑛𝑣 results in 𝑛.

We require that all shifts are logical shifts that shift in zeroes. If an arithmetic shift is used, then

masks must be applied to set the shifted-in bits to zero.

As 𝑛 has been defined to have an upper bound of 2
𝑏−⌈log

2
𝑏⌉+1 − 1, 𝑛 can always be represented

using 𝑙𝑒𝑛(𝑙) + 1 bits.
The value 𝑛 has never been lost, only shifted around within the existing 𝑏 bits of the word. This

behavior demonstrates that DFE is as much of a bit-representation remapping as it is a unique

encoding. This mapping purposefully reduces the representable space of values to create additional

early stopping opportunities closer to the MSB. As the mapping has been demonstrated to be

reversible for values within the predefined bounds, DFE is a reversible encoding within the given

bounds of 𝑛. □
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Theorem 3.3. Given two values 𝑥 and 𝑦 and the DFE encoding function 𝐷𝐹𝐸 (), for any comparison
operation • ∈ {<, ≤, >, ≥,=,≠}, 𝐷𝐹𝐸 (𝑥) • 𝐷𝐹𝐸 (𝑦) ↔ 𝑥 • 𝑦.

Sketch of Proof. First, we note that we have defined the encoded value of 0 to be 0. We identify

the encoded value of 0 as our base case.

As𝑢 is constructed using𝑏−𝐶𝐿𝑍 (𝑛), we note that as𝐶𝐿𝑍 (𝑛) decreases,𝑢 increases (Theorem 3.2).

Further, 𝑙 is constructed using a shift of 𝐶𝐿𝑍 (𝑛) − 𝑙𝑒𝑛(𝑢) + 1. By observation, incrementing 𝑛 by

one has one of two effects: Either 𝑢 is incremented by one and 𝑙 = 0 (as the only set bit in 𝑙 is

now the hidden bit) or the pre-shift value of 𝑙 is incremented by one. Given these cases, we see

that the sequence of possible values of 𝐷𝐹𝐸 (𝑛) forms a sequence of monotonically increasing

numbers, provided that the consecutive values of 𝑛 are also monotonically increasing. Thus, for

any comparison operation • ∈ {<, ≤, >, ≥,=,≠}, 𝐷𝐹𝐸 (𝑥) • 𝐷𝐹𝐸 (𝑦) ↔ 𝑥 • 𝑦. □

We note that DFE is an encoding that can be used with various bit widths. The significant change

between each width is the size of the upper field (

⌈
log

2
(𝑏)

⌉
), as the upper field must contain enough

bits to fully record any applied shift for the bit width in question. For example, DFE16, which is

used in Table 2, has an upper field size of 4, while DFE32 would have an upper field size of 5.

Further, while the upper field must meet a minimum size requirement to support lower fields

of increasing size, there is no requirement that the combined field size is always a machine word.

This leads to the ability to form columns encoded in DFE9, where the last 7 bits of the lower field

of DFE16 have been removed.

Bit packing at these exotic bit sizes is common in many storage formats, including Parquet [2],

making the FE methods compatible with existing bit-based methods that store values using arbitrary

bit sizes based on the representation needs of the stored column.

3.3 Extended Data Forward Encoding
As identified in Algorithm 1, DFE cannot represent values with fewer than

⌈
log

2
(𝑏)

⌉
− 1 leading

zeroes or negative numbers.

To remedy these shortcomings, we propose the “Extended Data Forward Encoding” (EDFE) as

an extension to DFE. The EDFE addresses these issues by modifying the encoding process. This

algorithm is shown in Algorithm 2.

Examining Algorithm 2, we see many similarities with the process to encode values in DFE

(Algorithm 1). Table 2 and Figure 1 both show the result of encoding 9 in EDFE. This encoded form

is intentionally similar to the encoding of 9 in DFE. EDFE includes two extensions to DFE: a “sign

indicator” bit and a “format” bit.

To give an intuitive understanding of these two additions, we explore some of the values in

Figure 1 (some of which are also included in Table 2). We emphasize how the additions to EDFE

preserve its integer comparison functionality.

First, we examine the EDFE of 8191. For values that require more salient bits than what can be

represented using the lower field, we bypass the encoding process and toggle the format bit. In

this case, decoding is trivial: the format bit is inverted, restoring the integer to the original two’s

complement representation. As setting the format bit is based on a value threshold and the format

bit is placed before the upper field, comparison functionality is preserved.

Next, we examine the values for 9 and −9. The EDFE encoded value of −9 is the bit inversion
of the EDFE of 9. This is intentionally similar to the ones’ complement integer representation, as

the bit inversion extends the comparison properties of the positive number range to the negative

number range [17].

As EDFE represents two significant changes from the DFE, it requires a separate proof sketch.
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Algorithm 2: EDFE Encoding Algorithm

input : Integer 𝑛 represented using 𝑏 bits.

1 if 𝑛 = 0 then
/* Encoding zero. Return zero. */

2 return 0;

3 else
4 𝑎𝑏𝑠 ← 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑉𝑎𝑙𝑢𝑒 (𝑛);
5 𝑐𝑙𝑧 ← 𝐶𝑜𝑢𝑛𝑡𝐿𝑒𝑎𝑑𝑖𝑛𝑔𝑍𝑒𝑟𝑜𝑒𝑠 (𝑎𝑏𝑠);
6 𝑙𝑒𝑛(𝑢) ←

⌈
log

2
(𝑏)

⌉
;

7 𝑙𝑒𝑛(𝑙) ← 𝑏 −
⌈
log

2
(𝑏)

⌉
;

8 if 𝑐𝑙𝑧 ≤ 1 then
/* Number out of bounds for encoding. */

9 throw 𝐸𝑟𝑟𝑜𝑟𝑂𝑢𝑡𝑂 𝑓 𝐵𝑜𝑢𝑛𝑑𝑠;

10 else if 𝑐𝑙𝑧 ≤ 𝑙𝑒𝑛(𝑢) then
/* Large number case. Invert format bit (using an XOR operation). */

11 return 𝑛 ∧ (1 ≪ (𝑏 − 2));
12 else

/* Small number case. Similar to DFE. */

13 𝑢 ← (𝑏 − 𝑐𝑙𝑧) ≪ (𝑙𝑒𝑛(𝑙) − 2);
14 𝑙 ← 𝑎𝑏𝑠 ≪ (𝑐𝑙𝑧 − 𝑙𝑒𝑛(𝑢) − 1);
15 𝑙_𝑚𝑎𝑠𝑘 ← (1 ≪ (𝑙𝑒𝑛(𝑙) − 2)) − 1;
16 if 𝑛 < 0 then

/* Negative Number case. Invert bits. */

17 return ∼(𝑢 | (𝑙 & 𝑙_𝑚𝑎𝑠𝑘));
18 else
19 return 𝑢 | (𝑙 & 𝑙_𝑚𝑎𝑠𝑘);
20 end
21 end
22 end

Theorem 3.4. Given a word length of 𝑏 bits, EDFE is a reversible encoding for all values 𝑛 where
−1 × (2𝑏−2 − 1) ≤ 𝑛 ≤ 2

𝑏−2 − 1 that obeys the comparison behavior of DFE (for any comparison
operation • ∈ {<, ≤, >, ≥,=,≠}, 𝐷𝐹𝐸 (𝑥) • 𝐷𝐹𝐸 (𝑦) ↔ 𝑥 • 𝑦).

Sketch of Proof. EDFE extends DFE. This extension is implemented via a right shift by 2 on the

upper and lower fields, creating space for two additional bits. The most significant bit is identified

as the “sign indicator” bit. The bit following the most significant bit is identified as the “format” bit.

Both the sign indicator bit and the format bit are cleared for positive values small enough to be

encoded similarly to DFE.

If a value is negative, the EDFE is computed using the magnitude of the value to encode. As the

last step in the encoding, all bits of the encoded value are inverted, setting the sign indicator bit. In

this way, the sign indicator bit allows for compatibility with signed integer comparison hardware.

If a value’s magnitude is too large for a DFE-like encoding (i.e.𝐶𝐿𝑍 (𝐴𝐵𝑆 (𝑛)) ≤ 𝑙𝑒𝑛(𝑢)), the value
is encoded by inverting the format bit. As this is a magnitude-based threshold, EDFE values still

form a monotonically increasing sequence, preserving the properties of the DFE for comparisons.
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To prove that EDFE maintains the comparison properties of DFE, we sketch a proof by exhaustion.

There are four cases, based on both the sign and the magnitude of the value to be encoded.

Case 1: Positive, inactive format bypass (Algorithm 2, lines 12, 19). This case is the DFE-like case;

no behavior is changed.

Case 2: Positive, active format bypass (lines 10, 11). As the format bit is closer to the MSB than

the upper field, integer comparisons interpret format-set EDFE values as larger than format-unset

EDFE values. As the format bit is set by a threshold based on magnitude (via the leading zero count),

it holds true that format-set EDFE values will always be larger than format-unset EDFE values.

Case 3: Negative, inactive format bypass (lines 12, 17). We note that the bit-inversion step is

shared between EDFE and the process to encode values as a ones’ complement negative integer. Due

to this similarity, using the MSB as the sign bit allows for using existing signed integer comparison

hardware.

Case 4: Negative, active format bypass (lines 10, 11). As the value is already a negative integer

(MSB is set), toggling the format bit applies the same thresholding as before. This toggling still

obeys integer comparison rules, as the toggling is based on the magnitude of the value: all EDFE

values where the format bit has not been toggled (is set for negative values) are greater than EDFE

values where the format bit has been toggled (is not set for negative values).

Thus, while the feature set of the DFE has been expanded into the EDFE, all of the previously

existing properties regarding the correct semantics of comparison operations are preserved. □

3.4 FE-enabled Early Stopping
The upper field can be used to generate two kinds of stopping opportunities: planning a stop before

performing a predicate-based scan and discovering a stop while fetching a value.

FEs exchange the padded leading zeroes for trailing zeroes, a behavior seen in Table 2. However,

these zeroes are not equivalent: Trailing zeroes in DFE do not impact the result of comparisons.

This is the foundation for our definition of FEs having non-impactful trailing zeroes, as opposed to

the impactful leading zeroes present in existing integer encodings.

For any value encoded in DFE, 𝑙𝑡 = 𝑙𝑒𝑛(𝑢) +𝑢 − 1 bits, starting from the most significant bit, must

be processed to reconstruct the original value. We reiterate that 𝑢 contains the number of salient

bits in the lower field (starting with the hidden bit). Thus, 𝑢 − 1 is the number of bits that must be

read in addition to the upper field. For any two values 𝑎 and 𝑏 in an FE, they can be compared using

𝑚𝑖𝑛(𝑙𝑡 (𝑎), 𝑙𝑡 (𝑏)) bits. In the case of a columnar scan, 𝑙𝑡 can be calculated for the predicate before

any values are loaded, allowing a bit-parallel scan to plan how many strata must be processed. This

behavior enables the planning of early stops before a scan begins, reducing the number of strata

evaluated without relying on a runtime discovered early stopping condition.

While impactful leading zeroes cannot be skipped without impacting the result of a comparison,

non-impactful zeroes will not change the result of a comparison, regardless of whether or not they

have been processed. This property is the basis for FE-enabled early stopping, which is comple-

mentary to the existing early stopping technique. FE-enabled early stops can be applied to both

predicate-based scans and fetch operations. First, the FE-enabled stop for scans is implemented as

a planned stop, where the predicate value determines a stop location using 𝑙𝑡 before the scan begins.

Second, the FE-enabled stop for fetches is implemented as a runtime discovered early stop with a

modified stopping condition: 𝑙𝑡 determines the maximum number of strata required to reconstruct

a value. We explore both kinds of FE-enabled early stops in this section.

First, we present an example of an FE-enabled planned stop when evaluating a predicate-based

columnar scan. Consider a column containing uniform-random distributed values {0, 1, 2, 3, 9}
encoded in DFE, where we apply a filtering operation of “LESS THAN 2.” The minimum number of

bits to reconstruct a value in DFE is 𝑙𝑡 = 𝑙𝑒𝑛(𝑢) + 𝑢 − 1, as we must read both the upper field and
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all salient bits of the lower field. As seen in Table 2, our predicate value of 2 has an upper field of

𝑢 = 2 and thus requires 𝑙𝑒𝑛(𝑢) + 1 = 5 bits to represent the value fully in 16-bit form. However, for

a comparison between any two DFE encoded values 𝑎 and 𝑏, the number of bits required from each

value is min(𝑙𝑡 (𝑎), 𝑙𝑡 (𝑏)). For example, when comparing our predicate value 2 against a data value

of 9, only the first min(5, 7) = 5 bits from each value are required to perform the computation.

While 9 is not fully representable using only 5 bits, existing binary comparisons will still identify

that 00100 < 01000, leading to a correct comparison result. Similarly, using 7 bits to represent the

value 2 does not change the comparison result (0010000 < 0100001). This example showcases the

core property of non-impactful trailing zeroes and how the usage of DFE/EDFE allows for reducing

the reliance on discovered early stopping to reduce the number of processed strata.

We now show how the properties explored by the example can be broadly applied to create

additional early stops in bit-parallel predicate-based scan and fetch operations.

Given some data array 𝑑 encoded in DFE16 (𝑏 = 16) and the query 𝑑 > 𝑐 , we iterate over each

element in 𝑑 . Due to the properties of non-impactful trailing zeroes, we know that the maximum

number of bits required to perform all comparisons is 𝑙𝑡 (𝑐). In the case of DFE16 (𝑙𝑒𝑛(𝑢) = 4) and

𝑐 = 2 (𝑙𝑡 = 5), 5 bits of each 16 bit value are processed. In contrast, 𝑐 = 9 determines that 7 bits of

each value are processed. We identify this behavior as predicate-determined early stopping, where

the maximum number of bits to process per value is known before the scan begins.

Minimizing the number of loaded bits can also be adapted to fit fetch operations, using a runtime

discovered early stop, albeit in a different form than existing runtime discovered early stops. By

loading 𝑢 before loading any bits in 𝑙 , the number of 𝑙 bits to be read can be determined during

the fetch process. As 𝑙𝑒𝑛(𝑢) and 𝑙𝑒𝑛(𝑙) are determined by the type of the array, a bit-parallel fetch

can be broken down into a set of required reads and optional reads depending on the strata width,

where the optional reads are performed based on 𝑢. This process also functions when reading

multiple 𝑢 in parallel. For example, an upper bound of 𝑢 across many values can either be calculated

at runtime (possibly by applying a vertical bit-wise OR across a group of 𝑢 values) or be stored

as metadata during column construction. As only trailing zeroes reside after the salient bits of a

forward encoded value, reading a few more bits of each value, while not perfectly efficient, still

reduces the average number of bits processed per value.

3.5 Encoding/Decoding Implementation
The algorithms that describe the encoding process for (E)DFE are purposefully designed to map

directly to modern CPU instructions. Using scalar operations, GCC 12.3 compiles decoding DFE32

to INT27 to 9 instructions (4 if the zero branch is taken). Decoding EDFE32 to INT31 is 10, 17, or

18 instructions depending on branching (format, sign). Encoding INT27 to DFE32 is at most 21

instructions, and encoding INT31 to EDFE32 is at most 26. Further, these scalar kernels can be

directly mapped to SIMD; for example, the AVX512 instructions that perform “SRLV”/“SLLV” and

“LZCNT” operations can be directly applied to the discussed kernels.

3.6 Usage of FEs
Forward encodings are lossless encodings. To facilitate a lossless transformation, the upper field

requires allocating additional bits. For example, a column that requires 28 bits to be represented

as a two’s complement integer would require 32 bits in DFE and EDFE. The additional bits of

overhead are used by the upper field to store the salient bit count before the data bits, which

benefits bit-parallel scan and fetch operations on skewed data.

The upper field must grow to accommodate the number of salient bits (Section 3.2). However,

this leads to smaller integer widths allocating a proportionally larger fraction of their overall size to
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the upper field (DFE8: 𝑙𝑒𝑛(𝑢) = 3), while larger integer widths require proportionally fewer upper

field bits (DFE64: 𝑙𝑒𝑛(𝑢) = 6). The format bit in EDFE assists in mitigating this drawback.

3.7 Trade-offs of FEs
DFE and EDFE preserve the validity of existing comparison techniques. Techniques based on these

properties, such as existing bit parallel work, can perform both scan and fetch operations using

DFE and EDFE without technique-level modifications.

Comparing DFE and EDFE, we find that the extensions that EDFE provides come at the cost of

increasing encoding and decoding complexity. However, supporting signed values is necessary for

usage outside of constrained environments. Thus, while the DFE is more performant in applicable

circumstances, these situations may not align with the needs of an application looking to better

leverage bit-parallel techniques. Similarly, DFE reduces the number of scanned bits compared to

EDFE in situations that do not benefit from the usage of a format or sign bit. Thus, we find that both

encodings have their own respective use cases depending on the needs of the target application.

One could imagine a single system using existing integer encodings, DFE, and EDFE on the same

platform, where the system selects the most appropriate encoding to use in each situation.

The concept of automatic typing and data encoding is well explored by other work [13, 15] and is

broadly related to block-based storage layers [2, 5, 33]. There has been a recent surge in block-based

storage formats, such as Parquet [2] and Arrow [33]; even one of the datasets we use as part of

the evaluation of DFE and EDFE is distributed using the Parquet format [27]. One could envision

that the choice of encoding (INT, DFE, or EDFE) is added as block-level metadata. As DFE and

EDFE can be used with a variety of bit widths, these alternative encodings can be freely applied on

top of existing data. Further, in data systems where in-place updates are allowed, a block could be

converted between encodings if beneficial.

FE-native arithmetic is expensive when using integer hardware; a limitation shared by floating-

point representations. However, encoding to (and decoding from) FEs is demonstrably lightweight

(see Section 4.6), minimizing the need for dedicated FE compute units.

Finally, we recognize that using an alternative integer representation is a significant departure

from existing computing ideas. Given how the existing integer implementation has not changed

in over 50 years [38], this change opens a new set of challenges. However, we emphasize that

forward encodings are intended for use when deemed beneficial by the data platform, similar to

other alternative encodings used by modern systems [10, 21, 25, 39].

4 EVALUATION
Throughout this paper, we have emphasized that DFE and EDFE are intended to complement

existing bit-parallel data processing techniques. We selected two background works to establish

a core set of properties shared between bit-parallel techniques (Section 2.1). These background

techniques use different strata widths (𝑠 = 4 for BitWeaving/V using a bit group size of 4, and

𝑠 = 8 for ByteSlice). We compare these two bit-parallel methods with a columnar baseline, which

we implement using a contiguous in-memory array. Consistent with existing results, ByteSlice

outperforms BitWeaving/V in all cases [9]. However, as our results will demonstrate, both DFE and

EDFE can significantly reduce the performance gap between these two bit-parallel techniques.

Our experiments aim to address the following questions:

Q1. What is the performance benefit of using forward encodings to accelerate bit-parallel scans?

How impactful is setting an early stopping bound using 𝑙𝑡? (Sections 4.2 and 4.3.)

Q2. What is the fetch performance of forward encoded columns? Does the salient bit count

optimization outweigh the cost of decoding values? (Section 4.4.)
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Q3. What is the impact of the usage of forward encodings on the compressibility of a column?

(Section 4.5.)

Q4. What is the cost to encode to or decode from an FE? (Section 4.6.)

Each experiment shares several standard parameters, which we identify in the remainder of this

section.

Our experiments were run on a CloudLab c220g5 machine [6]. All experiments were run using a

single CPU (an Intel Xeon Silver 4114). Unless otherwise stated, our experiments use all 20 threads

of the CPU. All datasets used in our evaluation fit in the available main memory of this machine

(192 GB). Each experiment was run ten times to generate an average result. The variance between

experiments was negligible; thus, to aid readability, we do not include error bars in our figures.

4.1 Datasets
To evaluate the impact of forward encodings, we perform a series of microbenchmarks on selected

columns from three real-world datasets: individual contributions to political campaigns in the

US [8], taxi data from New York City, USA [27], and energy consumption readings from households

in London, UK [37]. We refer to these datasets as the “FEC,” “Taxi,” and “Home” datasets respectively.

We describe the selected columns from these datasets in Table 3 and depict the distribution of each

column in Figure 4. These datasets represent real-world data with skewed values, which is the

target for forward encodings. The seven selected columns, from across the three datasets, facilitate

a quantitative evaluation of how effectively forward encodings improve bit-parallel techniques

when processing skewed data. As an example of the skewed nature of the chosen columns, while

many taxi rides are short trips within NYC, some riders arrange long-distance (over 100miles) trips

with drivers for negotiated rates. Similarly, of the approximately 63 million individual political

campaign contributions from 2021 to 2022, there were 778 individual contributions of 1 million

USD or more.

We apply a minimal amount of cleaning to the datasets. As we evaluate both DFE and EDFE,

we remove all negative values from the selected columns (the Home dataset did not have negative

values). We also removed all rows from the Taxi dataset that were missing values. To store the

columns as unsigned integers, we apply unit transformations to fixed precision decimals (such as

Dataset Column Units 90% 99% 99.9% 99.99% Max INT DFE EDFE
FEC Transaction Amount

(Amt)

Dollars 112 2k 5.8k 100k 125M 27 31 32

Home Milliwatts per Half

Hour (mW)

Milliwatts 481k 1.49M 2.8M 4.67M 10.76M 24 28 30

Taxi Trip Distance (Dist) 0.01 Miles 896 2.02k 2.92k 5.8k 38.97M 26 30 32

Taxi Fare Amount (Fare) Cents 3.1k 6.46k 11.85k 25k 40.11M 26 30 32

Taxi Tip Amount (Tip) Cents 575 1.49k 2.5k 6k 140.02k 18 22 24

Taxi Tolls Amount (Tolls) Cents 0 655 1.9k 2.83k 91.19k 17 21 23

Taxi Total Amount Cents 4.33k 8.18k 14.43k 28.44k 40.11M 26 30 32

(Total)

Table 3. The evaluated columns from each dataset. The 90th, 99th, 99.9th, and 99.99th percentile values of
each column and the maximum value per column are included. We also include the minimum number of bits
required to represent each column using each evaluated encoding (INT, DFE, EDFE), based on each column’s
maximum value.
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Fig. 4. The distribution of 10,000 samples from each explored column across the three datasets. Each sample
is drawn as a mostly transparent circle; visible points indicate the overlap of samples.

dollars and cents to cents). We replicated each dataset multiple times, resulting in each column

having a size of about 400 million elements.

Note that removing negative elements from the datasets impacts the performance of EDFE, as

branch prediction is able to quickly learn that the sign bit is never set when processing an EDFE

encoded value. However, this impact is minor due to the small number of instructions required to

encode to and decode from (E)DFE.

The distributions of the skewed columns are shown in Figure 4. This figure was generated by

normalizing and then sampling each column 10,000 times. We use sampling to showcase the heavily

skewed nature of the entire dataset, as opposed to each column being fairly normal except for a

few outliers. For example, the tolls column of the Taxi dataset (Taxi.Tolls) is skewed due to about

92% of the values in the column being equal to zero. Of the remaining 8% of values, we clearly see

a number of repeated values; one such value is $6.55 (represented as 655), the current “E-ZPass”

fare rate for multiple bridges and tunnels around NYC [26]. The other columns showcase similar

behavior, with varying degrees of skew and multimodal-ness. As we demonstrate throughout the

rest of our evaluation, forward encodings allow bit-parallel columns to process skewed data more

efficiently.

The three real-world datasets we use differ from the previous evaluations of bit-parallel tech-

niques, usually performed using TPC-H or SSB [28, 36]. Earlier, we explored the behavior of runtime

discovered early stopping when processing the “LO_QUANTITY” column from SSB (Section 2.3),

which contains values in the range of [1, 50]. As previously shown by the early stopping model of

the LO_QUANTITY column, each additional bit evaluated causes many records to discover a stop,

irrespective of the exact query predicate. This behavior does not extend to columns containing

skewed data using the two’s complement integer representation, as the large outlier values require

a large representation range and thus necessitate the usage of leading zeroes in the non-outlier

data values. Thus, while each column is stored using the minimum number of bits per encoding

(Table 3), the representation ranges of these bit counts far exceed the median value of each column.

In these cases, runtime discovered early stopping (traditional early pruning) is significantly less

effective, necessitating alternative mechanisms to provide stopping opportunities for bit-parallel

columns.
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Fig. 5. Average scan performance of the “data greater than constant” query applied to each column using 20
threads, separated into individual figures by filter selectivity.

4.2 Scan Performance
To evaluate the performance impact of forward encodings on columnar scans, we perform multiple

scans using the following query:

SELECT count(*) FROM column WHERE (column > threshold)

The threshold is a constant query parameter that results in a query with 10%, 1%, or 0.1%

selectivity. For example, the 10%, 1%, and 0.1% selectivity thresholds for the campaign contribution

transaction amount (FEC.Amt) are $112, $2000, and $5800 USD, respectively. We specifically use

the “greater than” operator because we are concerned with processing the outlier data from the

aforementioned datasets.

We include our overall scan results in Figure 5, where each scan was performed using 20 threads.

Overall, ByteSlice with DFE is the best-performing technique. This is not particularly surprising, as

it combines the state-of-the-art bit-parallel technique with the forward encoding that emphasizes

performance over wider applicability. In the 20-thread configuration, ByteSlice with DFE has an

average geometric mean speed-up over ByteSlice of 1.47x. In contrast, ByteSlice with EDFE has

an average geo. mean speed-up of 1.29x. This is primarily due to the extra two bits, which do not

benefit runtime discovered early stopping for the selected datasets.

BitWeaving/V, implemented with a strata width (“bit group size”) of 𝑠 = 4 requires more memory

reads than ByteSlice (𝑠 = 8) to process the upper field of each value. Because of this difference

in storage organization, ByteSlice+DFE usually outperforms BitWeaving/V+DFE. In addition, the

smaller strata width is also more impacted by the skewed data, as the increased number of strata
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Fig. 6. Geometric mean of scan performance of all evaluated columns, across all selectivity and threading
configurations
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Fig. 7. Average scan performance of each column using 20 threads when the alternative “lower than” query
is applied, separated into individual figures by filter selectivity.

can incur more memory accesses when relying solely on runtime discovered early stopping.

BitWeaving/V+DFE has an average speed-up of 1.54x over BitWeaving/V (both using 20 threads),

while BitWeaving/V+EDFE has a respective speed-up of 1.35x. These results match our expectations;

due to BitWeaving/V’s smaller strata width, the planned stop skips more BitWeaving/V strata than

ByteSlice strata.

We also vary the number of threads used to perform each scan-based filter. The results from

these experiments are shown in Figure 6, which depicts the geometric mean performance of each

columnar scan across multiple thread configurations at each selectivity threshold. The performance

stagnation between 10 and 20 threads is due to the used CPU only having 10 physical cores with

two logical cores each; using the second logical core of each physical core does not improve the scan

performance of the evaluated techniques. This result is expected, as scan operations are generally

limited more by memory performance than CPU performance. Further, this behavior results in

“free” CPU cycles that can be used for tasks such as decoding while waiting for memory transfers.

We measure the utilization of these otherwise unused cycles in Section 4.6.

We note that the evaluated scans selected values above the 90%, 99%, and 99.9% percentiles, as

opposed to queries that select beneath the 10%, 1%, and 0.1% percentiles. We depict the results of

these “lower than” queries in Figure 7. While smaller values have fewer salient bits, the skewed

distributions of the columns result in many of these small values being present in a tight cluster.

This clustering of values significantly impacts the performance of existing bit-parallel techniques as
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Fig. 8. Average scan performance of each skewed, synthetic dataset using 20 threads, separated into individual
figures by the skew parameter for each Zipf distribution.
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it impairs traditional runtime discovered early stopping. In contrast, the salient bit count prevents

a lack of discovered early stopping opportunities from significantly decreasing scan performance.

4.3 Synthetic Data Scan Performance
We also perform scans on synthetic columns with skewed distributions. We generate columns of

400M elements using one uniform-random and three Zipf (skew of 1, 2, and 3) distributions of

values in the range [1,1M]. We perform a scan-based filter operation on the column with the query

“greater than 100.”

The results from the experiments on synthetic, skewed columns are shown in Figure 8. The

speed-up of using (E)DFE increases as the skew increases. Across all storage configurations, DFE

speed-ups ranged from 1.4x to 2.2x, while EDFE speed-ups ranged from 1.4x to 1.8x. These results

align with our expectations due to the impact of parallelism group size 𝑔 on scans: the less skewed

distributions have a larger percentage of distribution occupied by values equal to the scan predicate

(100), and thus require a larger fraction of the groups to be evaluated without the benefit of runtime

discovered early stopping. However, while the speed-up of applying (E)DFE to the uniform random

column was lower (about 1.7x for BitWeaving/V and 1.5x for ByteSlice), the time to complete the

query for FE-encoded columns containing the uniform-random distribution was similar to the

Zipf-3 distribution, at around 12ms; the speed-up was reduced because BitWeaving/V and ByteSlice

performed significantly better when the columns were not skewed (20ms and 17ms vs. 32ms and

27ms for BitWeaving/V and ByteSlice, respectively). These results mirror the initial exploration of

runtime discovered early stopping, as illustrated by our original model (Section 2.3).

We also scan a column of uniform-random distributed values in the range [1, 50] using the same

experimental setup as before (Section 4.2). This scan is similar to experiments performed in existing

work [9, 22]. The distribution of this column is the same as the previously explored SSB column

“LO_QUANTITY” (Section 2.3). We perform a scan-based filter operation at 10% selectivity (column

> 45). This result is depicted in Figure 9. We note that the bit width of the column is 6, 9, and 8 for

INT, DFE, and EDFE, respectively.

ByteSlice and ByteSlice+EDFE have similar performance, as both methods use the same stratifi-

cation (one 8-bit stratum), in contrast to the two strata that ByteSlice+DFE uses. As DFE requires

an additional stratum to be processed when using both BitWeaving/V and ByteSlice, it cannot

outperform the INT encoding. Further, BitWeaving/V+EDFE incurs significant overhead when
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Fig. 9. Average scan performance of the synthetic
uniform-random column using each storage format.
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testing the format bit to determine whether the second stratum should be loaded. This behavior

incurs branch misses and randomizes the strata access pattern, resulting in additional overhead

that does not improve performance over streaming the full 8 bits of all values from memory. Prior

work has identified this behavior as a source of decreased performance [22].

Broadly, we include these results because forward encodings are designed for the specific case of

processing skewed datasets with bit-parallel techniques. On a uniform-random dataset, ByteSlice

using EDFE offers no performance improvement over ByteSlice using the existing integer encoding,

though we note that it does not decrease performance either. Existing bit-parallel techniques have

contributed numerous ways to process uniform-random datasets; bit-parallel techniques currently

lack the ability to efficiently process skewed columns, as showcased by our other results. These

results on a uniform-random dataset demonstrate that our encodings improve the performance of

scanning and fetching from skewed datasets without a significant decrease in performance when

applying the same operations to columns without skew.

4.4 Fetch Performance
Our fetch microbenchmark is implemented using the following steps: randomly generate a row ID,

fetch the corresponding element, and then decode the value to INT (if necessary). We randomly

fetch one million elements from each column to evaluate the fetch performance of forwarded

encoded columns. This benchmark poses a significant challenge for bit-parallel storage formats: by

rearranging bits in memory to be more amenable to columnar scans, additional memory reads must

be performed to reconstruct the original values. Thus, storage formats that use more strata have a

higher average fetch latency. However, as we will demonstrate, the usage of the salient bit count

allows for some strata to be bypassed during the fetch operation, as those strata do not contain

salient bits for the particular fetched value. Explicitly flushing the CPU cache did not significantly

impact the fetch benchmark results.

The results of our fetch microbenchmark are depicted in Figure 10. We emphasize the fetch results

from the “Taxi.Tip” column. Note that 99% of the values in this column are under approximately $15

(Table 3, 1493), which requires 11, 15, or 17 bits to represent using INT, DFE, or EDFE respectively.

Thus, while the INT column requires fewer bits to represent all values (18 vs. 22/24 for DFE/EDFE),

99% of fetches using DFE/EDFE require only 15/17 bits instead of 18 bits. However, because

BitWeaving/V and ByteSlice use strata widths of 4 and 8, respectively, increasing the bits fetched

from 15 to 17 causes an additional stratum to be accessed. Thus, DFE, but not EDFE, improves the

fetch performance of the Taxi.Tip column.

While ByteSlice using DFE is always the best-performing fetch configuration, the exact results

depend on the average number of strata required to reconstruct the original value. Broadly, the

salient bit count of forward encodings can significantly improve the fetch performance of skewed

Col. BL b.INT b.DFE b.EDFE B.INT B.DFE B.EDFE
F.Amt 4.25 4.14 3.58 3.67 4.27 4.42 4.19

H.mW 2.34 2.01 1.83 1.82 2.11 2.03 2.07

T.Dist 2.41 3.09 2.53 2.55 3.02 3.02 2.86

T.Fare 3.60 2.79 2.54 2.53 3.27 3.29 3.40

T.Tip 3.10 3.38 2.81 2.87 3.66 3.42 3.33

T.Tolls 24.11 11.06 9.36 10.67 12.29 17.76 17.23

T.Total 2.45 2.54 2.27 2.29 2.62 2.61 2.50

Table 4. The compression ratio of each evaluated column, using each storage format when compressed using
zstd. “BL” is the baseline columnar method, “b” refers to BitWeaving/V-stored columns, and “B” refers to
columns stored in the ByteSlice format. The best compression technique for each column is in bold.
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bit-parallel columns. DFE provides a geometric mean fetch performance improvement of 1.33x

and 1.19x for ByteSlice and BitWeaving/V, respectively. While EDFE does not offer a significant

performance improvement (2% and 4% for the respective techniques), these results are expected

due to the cost of retrieving the sign and format bit.

4.5 Compressiblity
We evaluate the compressibility of the proposed encodings when using both bit-parallel and byte-

parallel storage formats. We compress each of the used dataset columns using Zstandard (zstd)

at compression level 3 [24]. These results are shown in Table 4. There is no clear-cut choice of

storage format most suitable for compression when using zstd alone. Note that we calculate our

compression ratio against the baseline columnar representation, which advantages the columns

that use fewer bits to represent the uncompressed values. Overall, the best choice of compression

format relies on the complex interactions between a column’s data, bit-parallel storage format, and

encoding.

As a second experiment, we also compress the columns by applying either run-length (RLE)

or delta encoding to the columns before zstd, the results of which are shown in Tables 5 and 6,

respectively. Applying run-length or delta encoding before compression does not significantly

impact the results. We note that the evaluated datasets are fairly antagonistic to RLE due to the large

number of unique values in each dataset. For example, the average run length of the Taxi.Distance

column is about 1.01, which effectively doubles the column size by repeatedly storing runs of

length 1. Both RLE and Delta compression demonstrate two related behaviors of alternative integer

encodings. First, RLE and other techniques that compress a series of integers as a stream of symbols

(dictionary, move-to-front, etc.) are not impacted by the exact value of the underlying integer but

rather by the repetition of the symbol. Thus, changing the bit representation of a value does not

significantly impact the overall performance of RLE compression. Second, while delta compression

is impacted by the distance between values, the recorded distances can be interpreted as a pattern

of symbols, regardless of the exact bit representation of each delta.

Col. BL b.INT b.DFE b.EDFE B.INT B.DFE B.EDFE
F.Amt 6.88 6.24 5.59 5.49 6.69 6.02 6.10

H.mW 4.52 3.52 3.33 3.33 3.33 3.25 3.26

T.Dist 4.31 5.44 4.59 4.51 4.92 4.53 4.68

T.Fare 5.36 4.87 4.56 4.51 4.85 4.92 5.37
T.Tip 4.76 5.52 4.86 4.84 5.30 5.32 5.34

T.Tolls 10.86 7.93 14.78 16.03 8.49 34.87 29.52

T.Total 4.28 4.51 4.16 4.18 4.21 4.16 4.10

Table 5. The compression ratio of each column after compressing using run-length encoding then zstd.

Col. BL b.INT b.DFE b.EDFE B.INT B.DFE B.EDFE
F.Amt 3.44 2.46 3.33 3.30 2.78 3.70 3.76
H.mW 2.32 1.83 1.84 1.75 2.09 1.98 1.97

T.Dist 2.19 2.19 2.51 2.43 2.35 2.68 2.61

T.Fare 3.15 2.07 2.48 2.32 2.59 2.79 3.00

T.Tip 2.45 2.61 2.46 2.38 2.76 2.73 2.75

T.Tolls 22.66 6.34 6.34 6.14 11.51 16.65 16.00

T.Total 1.91 1.95 2.27 2.12 2.14 2.35 2.29

Table 6. The compression ratio of each column after compressing using delta encoding then zstd.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 257. Publication date: December 2023.



Rethinking the Encoding of Integers for Scans on Skewed Data 257:23

Overall, applying run-length and delta encodings to each of the evaluated columns before

compressing with zstd does not lead to one technique being more compressible than the others.

4.6 Encode and Decode Performance
We compare our proposed FEs with existing integer encoding techniques to better frame the

performance cost of (E)DFE encode and decode operations. We evaluate DFE and EDFE against a

unary code, the Elias 𝛿 , 𝛾 , and 𝜔 codes [7], as well as Rice codes with turntable parameters of 4

and 8 [32]. We evaluate a uniform random distribution with values in the range [1, 50], similar to

the previously described LO_QUANTITY column. First, we record the time it takes to encode the

entire column. Then, we randomly fetch 10M (2.5% of the column) values.

For lightweight encodings like (E)DFE, the encoding and decoding process can often be “free”

when it is performed in otherwise wasted cycles, such as during the time spent waiting for memory.

Compared to an unencoded baseline, DFE and unary encodings incurred no significant amount of

overhead during decoding. 𝛾 and Rice 4/8 both had decoding overheads in the range of 2.5% to 3.5%.

𝛿 , EDFE, and 𝜔 had the largest encoding overheads, of 12%, 35%, and 108% respectively. Encoding

performance is similar, where 𝛾 , unary, and Rice 8 encodings did not incur a significant overhead.

𝛿 , DFE, and Rice 4 added an additional 5%, 6%, and 9% encoding overhead, respectively. EDFE and

𝜔 incurred the largest encoding overheads of 19% and 55%. Overall, while encoding and decoding

DFE is faster than EDFE, both are lightweight codes with costs comparable to other integer codes.

However, these alternative encodings are not FEs. The Elias codes do not preserve compatibility

with integer comparison hardware. The unary component of Rice codes limits their applicability to

columns with skewed values; while using large divisors limits the size of the unary component,

the increased number of remainder bits results in more integer-like early stopping behavior. Thus,

while we compare the cost to encode and decode (E)DFE against a number of existing encodings,

we also note that each is tailored for its own specific use cases.

5 DISCUSSION
Before we performed our evaluation, we established four questions that our experiments were

intended to explore:

A1. Forward encodings limit the maximum number of strata that must be evaluated when perform-

ing a scan-based filter operation using a constant predicate. When the filtering predicate is

small compared to the maximum value that can be represented by the bit width of the column,

many strata can be skipped.

A2. The salient bit count is applicable to both scan and fetch operations. As 𝑙𝑡 controls the number

of strata retrieved, the memory accesses required to perform a fetch on a forward encoded

column are based on the value fetched and the strata width of the column rather than the

overall strata count. In the case of significantly skewed datasets, the additional strata that non-

FE columns must process harm performance, a penalty that is not incurred by (E)DFE-encoded

columns.

A3. Forward encodings are not significantly more or less compressible than existing integer

encodings.

A4. Encoding and decoding (E)DFE has a performance cost similar to other integer codes.

As the scan-related results demonstrate, forward encodings improve the performance of bit-

parallel scanning techniques by reducing their data sensitivity. The previously explored early

stopping model (Section 2.3) predicts that early pruning may be ineffective depending on the

bit-distributions of values in a column. These predictions held when exploring our selected skewed

datasets (both real-world and synthetic), as the bits composing each value did not equally contribute
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opportunities for runtime discovered early stopping. Forward encodings address this data sensitivity

by expanding early stopping to include planned early stops. The salient bit count 𝑙𝑡 sets an upper

bound on the number of strata that must be evaluated, reducing the average number of bits examined

during the scan. Beyond reducing the execution time of scan-based filtering, this upper bound

also helps stabilize the performance of scans on bit-parallel columns by reducing predicate-based

variability in query execution time.

By selecting a strata size to use when splitting data vertically, bit-parallel techniques introduce a

complex relationship between the bit-representation of the data and the performance of database

operators. Forward encodings reduce the variability of many bit-parallel storage configurations

by using the salient bit count, providing a speed-up by elevating the performance of non-ideal

cases. While we focus on skewed distributions, our previously explored early stopping model is an

effective tool when exploring other data distributions.

6 CONCLUSIONS AND FUTURE WORK
Runtime discovered early stopping is a core component of modern bit-parallel techniques. In this

work, we explored a new family of integer encodings (forward encodings) that shift the salient bits

of existing integer representations closer to the MSB, which enables more efficient early stopping

in bit-parallel methods. Further, forward encodings (FEs) also enable additional opportunities for

early stopping, such as planning a stop before performing a predicate-based scan or discovering an

early stop during a fetch operation. These alternative stopping methods significantly improve the

performance of bit-parallel techniques when processing skewed data, where the existing runtime

discovered early stopping technique (known as early pruning) is ineffective.

We have also proposed a systematic way to think about encodings and storage organization.

Using this framework, we proposed two FEs: DFE and EDFE. These forward encodings allow for a

new set of interactions with bit-parallel techniques while preserving compatibility with existing

integer comparison operations. Further, all optimizations performed by existing techniques are

applicable when using FEs, allowing for DFE and EDFE’s use as replacements for existing integer

representations in bit-stratified methods.

In our evaluation, we demonstrated how forward encodings improve the performance of two

existing bit-parallel storage formats when processing skewed data. While the research directions

of encoding and bit-parallel techniques are orthogonal, the choice of encoding profoundly impacts

bit-parallel methods due to the influence encodings have on early stopping.

Besides the two FEs we introduce, it seems possible to design additional forward encodings. By

rethinking the encoding of integer types, we hope to encourage future research into reimagining

how FE-basedmethodsmight be applicable in speeding up computations in data applications beyond

just the predicate-based columnar scans and fetch operations that we consider. Given the complex

interactions between encoding, storage format, and data distribution, there is ample opportunity for

database engines to create significant performance improvements through automated optimization

techniques that select the best combination of these orthogonal, yet connected, parameters.
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