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Abstract

Rhodium-based manganese oxide frameworks were explored as a prototype for carbon
dioxide reactive capture and conversion. Three-dimensional frameworks of MnOx were utilized
as support structures to isolate Rh metal centers. V, Na, and Zn were introduced as counterions to
stabilize the structure and for their beneficial effect as promoters. With this multicomponent
catalyst, Rh active centers with MnOxs and varied counterions, we were able to selectively tune
the catalytic performance of the material via the choice of counterion and structure of the host
material. With cryptomelane-type tunnel manganese oxides octahedral molecular sieve (OMS?2),
we found that Rh-V-OMS?2 was highly stable even after 48 hours on stream with a reaction rate of
around 1.5x10% mol COa/grw/s, surpassing the net reactivity of other initially more active
combinations. Furthermore, during CO» hydrogenation, in situ XAFS showed that single Rh atoms
nucleated into nanoparticles/ sub-nanometer clusters with a coordination number of 5.5 or less.
Our finding of the correlation between the reaction rate and particle size offers the potential for
enhanced control over the reaction rate by tuning particle size. Our activity study with control
experiments demonstrates that the activities of the catalysts are proved due to the unique metal

support interaction offered by the Rh-X-MnO.
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1. Introduction

There is an urgent need to reduce the CO> concentration in the atmosphere since CO> is the
driving factor behind the climate crisis.[1-3] In general, there are four routes to mitigate the CO»
concentration, including direct reduction of CO, emission,[4, 5] CO2 capture and storage,[6-9]
direct utilization of CO[10, 11] and CO> conversion.[12, 13] Among these four routes, the
conversion of CO> can not only reduce CO; emission into the earth’s atmosphere but also produce
chemicals and energy products with high potential markets.[14] However, CO is kinetically and
thermodynamically stable, which is the significant hurdle that prevents CO; conversion,[15] which
can be reflected by its bond dissociation energy (393.5 kJ/mol).[16] To activate COa, it is necessary
to overcome the thermodynamic barrier, requiring active catalysts and adequate reaction

conditions for the conversion of CO; to value-added products.[11, 17]

To achieve CO; conversion, thermal catalysis receives significant attention due to its fast
kinetics, flexible combination of active components, and ease of integration into high-yield
systems.[ 18] The hydrogenation of CO, primarily produces CO, HCOOH, CH3OH, CHg4, higher
hydrocarbons, and oxygenates,[19] which are all entropically disfavored compared to CO> and
H».[20] For CO> hydrogenation, various catalysts are investigated.[21-23] Since altering the
catalysts’ nuclearity can alter the geometric and electronic properties and the associated reactivity

of metal species, there has been increased focus to control the catalysts with increasing atomic



precision.[24-26] Atomically dispersed single-atom active metal sites have attracted attention due
to their maximization of atom efficiency, especially for the scarce precious metal atoms. However,
for CO> hydrogenation, single-atom catalysts generally favor the Reverse Water Gas Shift
exclusively.[27-29] Noble metals, such as Ru, Rh, and Pd, are often utilized as effective catalysts
for CO; hydrogenation.[27, 30, 31] Among the noble metals, Rh is chosen as the primary metal
catalyst in this study due to its ability to dissociate H> and CO», its excellent activity and chemical
stability for CO> hydrogenation.[30, 32-35] However, under typical thermal reaction conditions,
single atoms on catalysts tend to agglomerate or migrate, and form nanoclusters or
nanoparticles.[36, 37] Therefore, the tunning of the size and shape of Rh has been investigated to

further control their properties.[38-41]

In our study, we are using a 3D porous manganese oxide structure as the catalyst
support,[42] since this highly uniform crystal has its unique porosity, high surface area, rich
tunable pore structure, flexibility in shape, and morphologies.[43-45] Additionally, manganese
oxide has attracted much attention due to its interesting catalytic properties and wide applications
in thermal catalysis.[46] MnOx was used as a promoter for CO; hydrogenation previously.[47, 48]
Specifically, as shown in Scheme. 1, cryptomelane-type tunnel manganese oxides octahedral
molecular sieve (OMS2) and layered birnessite (OL1) were utilized herein.[49] Octahedral layered
materials (OL1 or K-OL1) are analogs of the mineral birnessite formed by edge-sharing MnOg
octahedra resulting in layers or sheets which contain K* or Na* ions and water molecules in the
interlayers.[49] Potassium-containing manganese oxide octahedral molecular sieves (OMS2) are
synthetic analogs of naturally occurring tunnel-type manganese oxide mineral cryptomelane.[49]
The chemical composition of OMS2 is KMn*;Mn*Ois ¢ nH,O with K* cations and H,O

molecules in the tunnel site.[49] The main difference between OL1 and OMS?2 is that OL1 is a



layered structure with the counterion situated between the layers, while OMS?2 is a tunnel structure
with the counterion situated with the tunnels. Brunauer-Emmett-Teller (BET) surface results of
OMS2 (81 m?/g) and OL1(43 m?/g) have been reported previously.[50] The N, adsorption-
desorption isotherms are classified as Type [Va, which is characteristic of mesoporous adsorbents
with monolayer-multilayer adsorption followed by pore condensation.[S0] Moreover, as
previously published, the surface area of multi-doped OMS2 is higher than single-doped
OMS?2.[51] In this study, we are using the 3D framework of OMS2 and OL1 as the host for our
Rh-based catalysts. However, the precise location of the Rh atoms within the OMS2/OL1 structure
is not fully understood, where the two possibilities for the location of Rh are: 1) K* are replaced
by Rh atoms outside the framework of the MnOg octahedron, 2) Mn ions in the framework of the
MnOs octahedron are replaced by Rh atoms. To control the nuclearity of Rh and stabilize the
MnOx structure, V was utilized as a counterion in this study. V is also considered an effective
promoter in the catalytic process and is known to promote CO dissociation, enhance particle
dispersion, limit the sintering of particles, and mitigate coking to subsequently improve the activity
of the catalysts with Ni-based nanoparticle catalysts in CO2 methanation.[52] The successful
incorporation of V into the OMS2 framework was reported.[53] To date, the combination of V-
promoted Rh catalyst with atomic dispersion within 3D structural MnOx support has not been
investigated in the context of CO2 hydrogenation. Additional counterions in the form of Na and
Zn were also explored herein due to their known enhancement for CO; hydrogenation and thus
serve as the control counterions.[54-56] Additionally, Na, Zn, and V can provide different extents
of electronic interactions since Na is generally 1+, Zn 2+ and 0, and V 5+/4+. In this study, four
sets of combinations of Rh-Na-OL1, Rh-Zn-OL1, Rh-Zn-OMS2, and Rh-V-OMS2 were

synthesized, and their structure-function relationship was thoroughly investigated for CO>



hydrogenation. The structure of the OL1 and OMS2 cannot be achieved without the counterion,
and Na, V, and Zn act as counterions as well instead of only traditional secondary metals.
Moreover, the role of Rh and the counterion, including Na, Zn, and V, in Rh-MnOxs is not well-
understood in the context of CO; hydrogenation. CO; hydrogenation is an electron-accepting
reaction process, which requires two hydrogen adatoms to convert CO> to CO and eight total

hydrogen adatoms to form CHa4, as shown in the following equations:

C02(9) + Hy(g) © CO(g) + H,0(g)

CO,(9) +4H,(9) — CH4(g) + 2H,0(9)

For CO; methanation over Rh-based catalysts, three possible mechanisms have been proposed: (i)
the formate-mediated CO; hydrogenation (associative pathway), (ii) the H-assisted CO:
dissociation followed by CO hydrogenation (RWGS +CO hydrogenation pathway), (iii) the direct
dissociation of CO; into CO and subsequently into C (direct C-O bond cleavage pathway).[32]
Despite many experimental studies on CO2 hydrogenation over Rh-based catalysts, there is no

consensus on the reaction mechanism of CO; reduction over Rh-MnOxs.
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Scheme 1. Structure of (a) OL1 and (b) OMS2.



Herein, a detailed study of the structure-function relationship for CO» hydrogenation over
highly controlled Rh sites embedded in MnOx as support was conducted, including the evaluation
of catalytic performance, temperature programmed reduction (H>-TPR), ex situ and in situ diffuse
reflectance infrared Fourier transform spectroscopy (DRIFTS), ex situ X-ray absorption fine
structure (XAFS) analysis, in situ XAFS and X-ray diffraction (XRD). In our study, Rh is proven
critical to drive the chemistry forward, and the activities of the catalysts are proven due to the
unique metal support interaction offered by the Rh-X-MnO. We identified the location of single
Rh atoms in the as-synthesized materials and the structure of the Rh clusters under reaction
conditions. In our structure-function relationship investigation, we have discovered a significant
correlation between the reaction rate and coordination number from the first Rh shell of the particle,
an indicator of the particle size, at the beginning stage of the reaction. This correlation offers the
potential for enhanced tuning over the reaction rate through the control of particle size. In addition,
the observed selectivity of different Rh-MnOxs is consistent with the surface species identified
during in situ CO2 hydrogenation DRIFTS. With spectroscopic understanding coupled with
detailed in situ analysis, we find the active site for CO2 hydrogenation over the Rh-MnOxs
catalysts is the Rh cluster sites, while the presence of Rh-X (X=V, Na, or Zn) bonding was not
found to be a relevant structural species. Our finding offers further insights into the control of the
selectivity of COz reduction toward different products of CH4 and CO through the utilization of

the different combinations of counterion and 3D MnOx structures.

2. Experimental Methods

2.1. Materials Preparation



Sodium manganese oxide materials having the synthetic birnessite structure Na-OL1 were
synthesized using the reduction method.[57] Tunnel-structured OMS2 materials were fabricated
via a reflux method for the oxidation of Mn?>" by KMnO4.[45] Na-OL1 was synthesized by
dissolving 6.32 g of KMnO4 and 48 g NaOH in 400 mL of DI water to make solution A. Then,
solution B was made by dissolving 22.48 g MnCl>*4H>O in 400 mL of DI water. Solution B was
added dropwise to solution A with vigorous stirring in an ice bath. The black precipitate was aged
at room temperature for 24 h, then washed and dried. The incorporation of Zn was done by ion
exchange with a 1M aqueous Zn(NO3)26H>0 solution for 7 days.

In a typical synthesis for OMS2 materials, 4.43 g of KMnO4 were dissolved in 75 mL of
DI water to make solution A. Solution B was made by dissolving 6.6 g of MnSO4*H>0 in 22.5 mL
of DI water, then adding 2 mL of concentrated HNOs3. Solution A was added slowly to solution B
and refluxed for 24 h at 100 °C. The resulting material was washed using copious amounts of DI
water, filtered, and dried. Doping of the OMS2 materials was done by adding 30 mL of a IM
solution of the desired dopant into the solution prior to refluxing, using Zn(NO3)2¢6H20 or VClI3
for the incorporation of Zn or V, respectively.

Rh** ion exchanges were performed at 70 °C for 24 h using 1 g of material dispersed in 40
mL of a 0.05 M solution of Rh(NO3)3*H>O. The material was then centrifuged and washed with
DI water. After Rh** ion exchange, the materials were dried at 100 °C for 4 hr under air and used

as is.

2.2. CO: Hydrogenation

Gas phase CO» hydrogenation was conducted in a quartz tube reactor secured with quartz

plugs. Ha2, CO2, and N> were used in a ratio of 4:1:1, respectively, at 1 atm pressure with a total



flow of 30 mL/min of the feed gas, with a weight hourly space velocity (WHSV) of 60,000
mL/gea/hr. 30 mg of powder catalysts, sieved to 40-60 microns, were utilized. For experiments at
varied temperatures, the catalysts were loaded into the reactor as-synthesized and ramped from
150-450 °C with a ramp rate of 10 °C/min and held at each 50 °C interval for 2 hours to collect 5-
6 steady-state measurements per temperature. A GC equipped with TCD/FID effluent analysis, in
addition to an on-stream MS for product visualization, was used for the quantification of products.
Error was extracted from duplicate measurements. Time on-stream tests were conducted for ~48
hours in an isothermal reactor with H2, CO, and N> with the ratio of 4:1:1 at 300°C, at 1 atm
pressure, with a total flow of 30 mL/min of feed gas, with a WHSV of 60,000 mL-gcat™!-hr'!. A
secondary set of tests was done where an initial H» pretreatment was done at 300 °C for 1 hr with
a 10 °C/min ramp rate under 10%H2/N> with a total flow rate of 50 mL/min to probe the effects of
the reducing environment on catalytic performance. Following the reduction, CO> hydrogenation
was run isothermally at 300 °C for 3 hr using the same reaction conditions as listed for the time on

stream tests.

2.3. Temperature Programmed Reduction

Prior to measurement, the catalysts were dehydrated in a pure 50 mL/min N> flow at 120°C
for one hour. After dehydration, the temperature was increased from room temperature to 700°C
with a ramp rate of 10°C/min under a flow of 10% H:> in N> with a total flow rate of 50 mL/min.
The hydrogen trace, m/z 2, was followed with Mass Spectroscopy using a SRS RGA 100 detector
equipped with an electron multiplier, where the m/z 2 trace was allowed to equilibrate for
approximately 1 hr at room temperature under 10%H2/N> prior to measurement to minimize

background shifting.



2.4. DRIFTS Measurements

In situ DRIFTS spectra were collected in Kubelka-Munk (K-M) mode using an FTIR
spectrometer (Bruker Vertex 70) equipped with a Harrick Praying Mantis cell, an MCT detector,
and a mass spectrometer for product visualization (SRS, RGA 100). In situ CO> Hydrogenation
DRIFTS data was collected at both 200 and 300°C, with corresponding background spectra
collected at the specified temperature under He. Feed gas was 4:1:1 of Hz: CO2: He with a total
flow rate of 40 mL/min. For CO-DRIFTS, the sample was purged in He for 1 hr, then 10% CO/He
was fed for 15 minutes, followed by a He purge for 15 minutes, all at 25°C and 1 atm pressure.

All gases used have 99.999% purity.

2.5. X-Ray Absorption Fine Structure Spectroscopy (XAFS)

Ex situ XAFS was conducted at beamline 8-ID (ISS) at NSLS-II. XAFS samples were
pressed into 1 mm thick pellets, diluted to ~2 wt% Rh in boron nitride for XAFS analysis with
PIPs fluorescence and transmission detector. Rh K-edge, V K-edge, and Zn K-edge data were
collected. In situ XAFS was collected at Beamline 7-BM (QAS) at NSLS-II. Nashner-Adler cell
was used for in situ CO; hydrogenation, as shown in Fig. S1. Catalyst was pressed into 1 mm thick
pellets. A gas mixture of 4:1:1 ratio of H»: CO»: He with 30 mL/min total flow rate ran through
the system. The temperature was increased from RT to 200°C at 10°C/min and stayed at 200°C
for one hour. After one hour at 200°C, the temperature was increased to 300°C at 10°C/min and
then reduced to RT. Rh foil data was collected for calibration in tandem using the reference
ionization detector. XAFS data at Rh K-edge were collected during this process from RT before

reaction to the end for each of these Rh-MnOxs catalysts.



2.6. Powder X-Ray Diffraction (XRD)
X-Ray diffraction was carried out using a Rigaku Ultima powder X-Ray diffractometer

using a Cu k-a (1.54 nm) operated at 40 kV and 44 mA.

2.7. Transmission Electron Microscopy (TEM) and Elemental Distribution Mapping (TEM-
EDS)

Transmission electron microscopy imaging was done by depositing the catalysts onto Cu
grids via drop-casting and drying the resultant material onto the grid. Images were collected on a

FEI Talos F200X at an accelerating voltage of 200 kV.

3. Results and Discussion

3.1.  Structure and morphology of Rh-X-(OL1/OMS2)

The loading of Rh and the counterion varies between OMS2 and OL1, as shown in Table.
S1, due to the intrinsic differences in the extent of Rh and counterion needed to maintain the
structure of the material. As-synthesized OL1 samples, Rh-Na-OL1 and Rh-Zn-OLI1, had
morphologies of sheet, based on the scanning transmission electron microscope (STEM) images
shown in Fig. 1(a), Fig. S2(a) and (b). The as-synthesized OMS2 samples, Rh-Zn-OMS2 and Rh-
V-OMS?2, had only one wire morphology, as shown in Fig. 1(b), Fig. S2(c) and (d). In both OLI1
and OMS2 samples, Rh and all other species were well-dispersed over the 3D MnOx structure,

based on the element mapping images in Fig. S3 to Fig. S6.
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In the as-synthesized OL1 samples, there was the crystalline structure of the birnessite-
MnO,, a typical layered manganese oxide structure, since only peaks characteristic for birnessite-
MnO,[56, 58, 59] were observed from XRD, as shown in Fig. 1(c) and 1(d). There were crystalline
diffraction peaks from tetragonal cryptomelane composed with MnO; octahedra in all Rh-OMS2
samples since only the peaks characteristic for OMS2[51, 60-62] were observed, as shown in Fig.
I(e) and 1(f). The coexistence of MnO: of birnessite and cryptomelane has been shown in other
comparable systems using OMS2 and OL1 materials for various types of reactive systems, where
the macrostructure of birnessite and cryptomelane yields multiple diffraction peaks. These results
imply that the crystalline structures of birnessite in OL1 and cryptomelane in OMS2 were well
preserved with the mixing of Rh and counterions.[60] The fact that no additional peaks assigned
to other crystalline phases were detected suggested that the Rh and counterions were incorporated

into the birnessite matrix in OL1 and the cryptomelane matrix in OMS2.[60]
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Figure 1. TEM images of as-synthesized (a) Rh-Na-OL1 and (b) Rh-Zn-OMS2. XRD results for the as-synthesized samples of (c)
Rh-Na-OL1, (d) Rh-Zn-OL1, (¢) Rh-Zn-OMS2, and (f) Rh-V-OMS2.

3.2.  Catalytic Performance of Rh-X-(OL1/OMS2)

The catalytic performance of CO; hydrogenation was evaluated over the Rh-based catalysts
and shown in Fig. 2. The CO: conversion and the selectivity towards CH4 and CO are shown over
a temperature range of 150-450 °C, where the carbon balance for all tests is closed to unity. Rh-
V-OMS?2 vyielded a high selectivity towards CO of ~90% from 200°C to 450°C. Comparing
different MnOxs support, Rh-Zn-OL1 in Fig.2(d) and Rh-Zn-OMS?2 in Fig. 2(b), Rh-Zn-OL1 gave
higher CH4 selectivity, showing that OL1 promotes the diffusion of H» to form higher
hydrogenated products in the form of CH4 instead of CO. Comparing between OL1 samples, Rh-
Na-OL1 and Rh-Zn-OL1, Rh-Na-OL1 has the highest CH4 selectivity of 98% at 250°C, and Rh-

Zn-OL1 has a main CO selectivity and highest of 95% at 450°C instead. There were distinct
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differences in product selectivity based on the counterion species, indicating that the nature of the
active site is heavily influenced by the counterion, showing that its influence goes beyond
structural effects. Zn is known to be a beneficial promoter for the dissociative CO» hydrogenation
pathway, resulting in the formation of methoxy and CO intermediates that are favorable to
methanol formation,[63] while Na is known to favor methanation and is a well-known promoter
for CO2 hydrogenation.[64, 65] For Rh-V-OMS2, Rh-Zn-OMS2, and Rh-Zn-OLI1, the CO»
hydrogenation favors CO production, supporting the RWGS+ CO pathway proposed for the CO;
hydrogenation for these three samples. Additionally, in the absence of Rh active sites, the baseline
V-K-OMS?2 and Zn-K-OMS2 show negligible catalytic performance for CO2 hydrogenation (Fig.
S7), which means the Rh is critical to drive the chemistry forward and changes in the activity as a

function of counterion can be attributed to Rh synergies under reaction conditions.
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Figure 2. CO2 hydrogenation from 150-450 °C of (a) Rh-V-OMS2, (b) Rh-Zn-OMS2, (c) Rh-Na-OL1, and (d) Rh-Zn-OL1.
Conditions: 4:1:1 of Hz: CO2: N2 feed composition, 30 mg catalyst, 60,000 mL/gcat/hr WHSV, 30 mL/min total flowrate, 1 atm

pressure, GC equipped with TCD/FID effluent analysis.

3.3. Reducibility of Rh-X-(OL1/0MS2)

As CO> hydrogenation is a highly reducing environment, to understand the reducibility of
our catalysts and to find the most efficient reduction conditions for CO> hydrogenation, H>
temperature programmed reduction (H2-TPR) was conducted. The data collected from the samples

are shown in Fig. 3. The peak around 100°C is attributed to the reduction of well-dispersed Rh>O3,
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signaling the transition from Rh*" to Rh®.[66-70] From Fig. 3, the reduction temperatures of Rh-
MnOxs are in the order of Rh-Zn-OL1 < Rh-Na-OL1< Rh-Zn-OMS2< Rh-V-OMS2. Notably, all
the catalysts show a reduction feature < 100°C followed by a more pronounced reduction event at
~120 °C, where this event is due to the reduction of highly dispersed RhOx species. The broad
shoulder centered at approximately 140°C is attributed to the reduction of the MnO,, the
supporting material, via the excess spillover of the activated hydrogen from the metallic
rhodium.[71] In the absence of Rh, the base OMS2 materials show a reduction temperature of
approximately 300°C, where the Zn-K-OMS?2 is more reducible than the V-K-OMS2, the latter
showing a secondary reduction event at 350°C (Fig. S8). This low temperature of MnO- reduction
indicates there is a strong metal support interaction between Rh and MnOxs with readily available
hydrogen spillover.[71, 72] However, the reducibility of Rh is mostly governed by the nature of
the supporting OL1 or OMS2, where both OMS?2 catalysts yield a comparable trend, similarly for
both OL1 species, which suggests the mobility of Hz species is influenced by the ordered structure
of the base support. Both OL1 samples were reduced at a lower temperature, therefore showing
OL1 is more reducible than OMS2. Additionally, a broadband reduction was observed above
200 °C, which may be due to the aggregation of MnO species or the growth of Rh particles. The
fact that there was no broadband above 200°C in Rh-V-OMS2, compared with other Rh-MnOxs,

suggests minimal aggregation of MnO in the ordered structure of Rh-V-OMS2.
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Figure 3. Hydrogen temperature programmed reduction (H2-TPR) over the Rh-MnOx catalysts. Conditions: 10%H2/N2, 50 mL/min
total flow, 100mg catalysts, 120 °C in pure N2 dehydration for 1hr pretreatment, 10 °C/min ramp rate, utilizing a Mass Spectrometer

detector following hydrogen (m/2=2) consumption.

3.4. Extended Time-on-Stream CO: Hydrogenation

The stability of the catalyst during reaction is a key parameter to evaluate the performance
of the catalyst. To understand the stability of the catalysts, a time-on-stream test was conducted at
300°C for 48 hours, as this temperature showed the most promising differences between the
catalysts. Based on the stability tests shown in Fig. 4(a), Rh-V-OMS2 had the highest stability in
both the overall reaction rate and the product distribution over the whole 48 hours shown in Fig.
4(b). This phenomenon can be explained by the more stable structure provided by the combination
of Rh, V, and OMS2 compared with other samples, as shown in Fig. S9. As shown in Fig. S10,
the elemental distribution of all species in Rh-V-OMS2 remained well intact, compared with other
Rh-MnOxs, which showed more considerable change in the structure shown from Fig. S11 to S13.
Additional tests were done where an initial H> pretreatment was done at 300 °C for 1 hr prior to

the reaction to probe the direct influence of changing the structure of the materials before reaction,
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as shown in Fig. S14. The H» pretreatment had no discernable influence on the catalytic
performance for all catalysts and was within the error of the original as-synthesized reaction runs.
However, the H» treatment was sufficient to change the ordered structure of all materials into the
base MnO structure, as shown in XRD results in Fig. S15, showing the root differences in the
catalysts are not due to the transition of ordered structure to MnO, but rather the unique metal

support interactions offered by the Rh-X-MnO moiety.

Compared with Rh-V-OMS2, Rh-Zn-OMS?2 initially showed a stable reaction rate, then a
sharp decline in activity around 20 hr shown in Fig. 4(a), which is likely due to the slow formation
of a MnCQOs species as COz hydrogenation can gradually build up carbon (Fig. S15). As a reference
sample with a low concentration of Na, Rh-Na-OL1 shows a sharp decline in reactivity upon the
first 12 hours, where post-reaction STEM imaging shows an average particle of only ~1.9 nm,
showing that the loss in activity is likely not due to appreciable particle size growth. However, the
loss of activity is likely due to the rapid incorporation of COz into the host structure, shown by the
formation of MnCO3 in the post-reaction diffraction, where Na has a strong affinity to capture and
incorporate COz into its lattice. The H» pretreatment test also reveals that the loss of activity is not
due to the structural changes of the material, where the OL1 structure was already converted into
MnO after pretreatment, as shown in Fig. S15, and an identical trend in deactivation was still
observed, showing it is unique to the reaction conditions. Rh-Zn-OL1 showed the lowest net
reactivity among all catalysts, with a corresponding activity after the H» pretreatment. However,
Rh-Zn-OL1 did not form a distinct MnCO3 phase, showing no carbon incorporation into the lattice.
However, while the net reactivity of Rh-Zn-OL1 was low, it possessed remarkable stability,
showing only a nominal decrease in reaction rate after 48 hr. While all catalysts show a nominal

particle size distribution of about 1.8 + 0.2 nm of Rh, as shown in Fig. S16, all of the counterion
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and additional elements present in the OMS2/OL1 catalyst remain highly dispersed, showing no
aggregation for any species (Fig. S10-13). Furthermore, to show that the system is not mass
transfer limited, a Weisz Prater Criterion analysis was performed (shown in Supplemental
Information), where the criterion was satisfied, verifying that none of the catalyst are limited by

internal mass transfer at any point during the reaction.
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Figure 4. Stability test results for Rh-X-MnOx following (a) the rate of CO2 reaction normalized to rhodium content and (b) Product
distribution of Rh-V-OMS?2 over the stability test showing CO2 conversion and individual CO and CHa selectivity. Conditions:
300°C isothermal reactor, 4:1:1 of H2: CO2: N2 feed composition, 30 mg catalyst, 60,000 mL/gcat/hr WHSV, 30 mL/min total flow

rate, 1 atm pressure, GC equipped with TCD/FID effluent analysis.

3.5. Surface Carbonyl Chemistry over Rh-X-(OL1/OMS2)

To understand the surface chemistry of the material under controlled reaction conditions,
diffuse reflectance infrared Fourier transforms spectroscopy (DRIFTS) was utilized.[73-75] CO-
DRIFTS studies were carried out to investigate the adsorption sites on Rh species over the Rh-
MnOx catalysts. The DRIFTS results for Rh-MnOxs are shown in Fig. 5. The peak around 2110

cm’! is assigned to the adsorption of CO on atop-Rh?" species.[76] The peaks at 2095 and 2018

cm! can be assigned to the absorption of symmetric and asymmetric CO dimer on Rh,
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respectively.[76] The absence of the peak from Rh’ in Rh-V-OMS2, Rh-Na-OL1, and Rh-Zn-OL1
indicates that Rh atoms were highly dispersed and cationic in these three samples. In the case of
Rh-Zn-OMS2, there is a slight formation of atop Rh® CO binding at 2055 cm™', which is likely
attributed to the reduction of the Rh under CO environment, as shown in Fig. 5, where minority
defect Rh,03 species can be readily reduced by CO to form trace Rh’-CO atop sites. While all
catalysts possess the Rh?>" and Rh!*, albeit in distinct ratios, both OMS2-based catalysts show slight
metallic Rh® species. This is likely the reduction of unstable rhodium oxide species situated in
defect sites, while the OL1 catalysts show only Rh?*"/Rh!* species. The presence of both Rh?* and
Rh!'* suggests a bimodal distribution of Rh, where Rh!* species are generally attributed to highly

dispersed single-atom Rh species, while Rh** may result from small clusters of thodium oxide.
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Figure 5. CO Adsorption DRIFTS over Rh-MnOxs after He purge. Conditions: 10% CO/He feed for 15 minutes followed by He

purge for 15 minutes, 50 mL/min total flow, 25 °C, 1 atm, 4cm™! resolution, MCT detector.

3.6.  Structural Analysis of as-synthesized Rh-X-(OL1/OMS2)
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To extract the structure of the as-synthesized materials, ex situ XAFS spectra were
collected. Rh K-edge data were collected. As shown in Fig. 6(a), there is an apparent deviation
between the XANES spectra of Rh-MnOxs samples and XANES of Rh foil, indicating the obvious
oxidation of Rh atoms in the catalysts. As shown in Fig. 6(a), the edges of Rh-MnOxs are at the
same position as RhyO3, indicating Rh-MnOxs have the same oxidation number as Rh2O3. These
results are distinct from CO-DRIFTS due to the fact that CO induces surface reduction, while
XAFS is a bulk technique, and the fact that Rh**/Rh** does not show strong CO bindings modes

at room temperature.

From the R-space spectra of the four Rh-MnOx samples in Fig. 6(b), the first peaks from
Rh-MnOxs are at the same position as the Rh-O peak of Rh20s3, suggesting that the first shell of
Rh-MnOxs is Rh-O. Additionally, before EXAFS fitting, to further confirm the bond type in the
samples, wavelet transform (WT) was applied to the spectra from Rh-MnOxs, Rh foil, and Rh2O3
as references. Wavelet transform is a powerful technique, inherited from the signal processing
field, for the identification of the overlapped contributions coming from different neighbor atoms,
since if two or more groups of different atoms are localized at close distances around the absorber,
their contributions in the direct space R overlap, becoming indistinguishable.[77-79] As the WT
results shown in Fig. S17, the first two features around 1.5 A from Rh-MnOx samples are similar
to the ones from Rh2Os. This result indicates that the first shell from Rh-MnOx samples is the
same as in Rh203, which is Rh-O. Therefore, Rh-O path was used in EXAFS fitting for the first
shell. From EXAFS fitting, the coordination numbers (CN) of Rh-O from the first shell of all Rh-
MnOxs are consistent with 6-7 for all Rh-MnOx samples, as shown in Table 1. This result provided
support for the hypothesis that Rh atoms were replacing the Mn ions in the MnOg octahedral

structures. Insertion of precious metals, such as Co, Ag, Ru, and Pt have all been reported to
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substitutionally inserted into MnO> octahedron within OMS-2 heterostructures[80-84] within the
OMS-2 structure. The K is not likely to be replaced within the framework due to the mismatch
of the size difference between Rh** (0.67 A) and K (1.65 A). However, the differences between
Rh and Mn are much more comparable at 0.67 A and 0.67-0.72 A for Rh*" and Mn“",
respectively.[80] For the second shell, EXAFS fitting of Rh-Rh, Rh-Mn, Rh-Zn, and Rh-V for
corresponding samples was discussed in detail in Note S1. in the supporting information. Based
on the EXAFS fitting results (Rh-Rh model was the worst) and the concentration of the elements
in the fresh sample (Zn and V are minority elements relative to Mn), Rh-Mn was proposed to be
the most reasonable model for the second shell. The EXAFS fitting utilizing this model supports
the claim that Rh is well dispersed in the MnOx, as shown in Fig. S19 and Table 1. However, the
possibility of highly dispersed RhOx species existing outside of the MnOx heterostructures cannot
be ruled out solely by EXAFS. The relatively low values of the Rh-Mn mean square displacements
and coordination numbers (Table 1) are their lower bounds due to the correlation of these quantities

in the fit.
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Figure 6. (a) XANES spectra for Rh K-edge of Rh-MnOxs. (b) R-space spectra for Rh K-edge. (¢) Scheme of Rh inside oxide

octahedra framework.
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Table 1. EXAFS fitting results for pristine Rh-X-MnOx. Uncertainties in the last significant digits

are given in parentheses.

Rh K-edge
Sample Reduced
Contributions CN R(A) o’ (A?) AE (eV) R-factor
Name x
Rh-O 6.3(6) | 2.02(1) | 0.0016(7)
Rh-Na-OL1 -1.4(1.1) 42 0.03
Rh-Mn 1.0(5) | 2.92(1) | 0.0001(23)
Rh-O 6.6(6) | 2.02(1) | 0.0025(8)
Rh-Zn-OL1 -1.1(1.2) | 1028 0.03
Rh-Mn 0.9(6) | 2.92(2) | 0.0006(28)
Rh-O 6.6(6) | 2.02(1) | 0.0026(8)
Rh-Zn-OMS2 -1.1(1.1) 2137 0.02
Rh-Mn 0.6(5) | 2.92(2) | 0.0008(40)
Rh-O 6.6(6) | 2.02(1) | 0.0027(8)
Rh-V-OMS2 -1.1(1.1) 2234 0.02
Rh-Mn 0.9(6) | 2.92(2) | 0.0014(34)
Zn K-edge
Rh-Zn-OL1 Zn-0 6.4(4) | 2.02(1) | 0.0088(12) | 1.8(7) 1199 | 0.002
Rh-Zn-OMS2 Zn-0 6.5(5) | 1.99(1) | 0.0077(13) | 1.1(8) 146 0.003

* Rh K-edge: 2.0 <k <16 A1 Ak=2.0 A", 1.0<R<2.85A. ZnK-edge: 2.0 <k <12 A"l Ak=2
AT 1.0<R<4.0A.

To extract the structural information of the counterion, XAFS data from V K-edge and Zn
K-edge were also collected. To determine quantitative and accurate oxidation state and symmetry
information for vanadium, correlations between normalized pre-edge peak area and its centroid
position have been identified as the most reliable method.[85, 86] Based on Fig. S20(f), V atoms

in Rh-V-OMS?2 have a similar oxidation number of 4%, consistent with previous literature,[46] and
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a similar octahedral structure with VO,. This result suggests that V atoms were also replacing Mn
atoms in the MnOg octahedral structures. Rh-Zn-OL1, Rh-Zn-OMS?2, as well as reference ZnO,
and Zn foil were measured at Zn K-edge. From their XANES spectra in Fig. S20(b), Rh-Zn-OL1
and Rn-Zn-OMS?2 have higher oxidation numbers than ZnO since the edge positions of these two
samples are on the right of the edge of ZnO. The features of XANES of fresh Rh-Zn-OL1 and Rh-
Zn-OMS?2 from Zn K-edge differ greatly from ZnO. Because we could not extract the second shell
(Zn-Mn or Zn-Zn) information reliably from the Zn EXAFS data, we limited the EXAFS analysis
to the first shell only (Zn-O contributions). The EXAFS fitting results are shown in Table 1 and
Fig. S21(a) to (d). The coordination number in the first shell of Zn-O from EXAFS fitting is around
6 in all Zn samples, suggesting the Zn is insert into MnO> octahedron within OMS-2

heterostructures. Additional details are discussed in the supporting information Note S1.

3.7. Insitu Extended Fine Structure of Rh-X-(OL1/0OMS2)

To track the local structure change surrounding the absorbing atoms during CO:
hydrogenation, in situ XAFS data were collected for these catalysts. In Fig. 7, the spectra from red
to yellow are the in situ XANES spectra from the beginning to the end of the reaction. The green
spectrum is from Rh foil. From Fig. 7, a clear change in the spectra towards metallic Rh during
CO; hydrogenation throughout the process for all Rh-MnOxs is observed. Fig. S22 shows the
EXAFS spectra during the process, with K-space spectra shown in Fig. S23. Rh-O bonds were
fully reduced in all samples at the end of the reaction, and Rh-Rh bonds increased, confirmed by
the EXAFS fitting results shown in Fig. S24 and Table. S3 to Table S6. As shown in Fig. 8, the
number of Rh-O bonds in Rh-MnOxs reduced from around 5.5 to zero, indicating that all the
samples were fully reduced after reaction. The number of Rh-Rh bonds in Rh-Na-OL1 increased

to around 5.5 after the reduction, suggesting that the nucleation of Rh atoms happened during the
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reduction. Since there was no oxygen left in the sample, the number of Rh atoms was the total
number of atoms in the nanoparticle, which suggests a homogeneous material. Therefore, the
coordination number in the nanoparticles is the total metal-metal coordination number.[87] Based
on the correlation between the coordination number and the number of atoms in the most
commonly used nanoparticles, when the coordination number of the first layer is around 5.5, the
number of atoms in the nanoparticle was calculated to be 13.[88] Since there is a positive
correlation between the coordination number of the first shell and the number of atoms, when the
coordination number is less than 5.5, the number of atoms in the cluster should be less than 13. In
Rh-Zn-OL1 and Rh-Zn-OMS2, the CN of Rh-Rh increased to 3.1 and 4.0 correspondingly,
indicating Rh atoms nucleated into sub-nanometer clusters at the end of the reaction. The
coordination number extracted from in situ XAFS are indicative of the true particle size under
reaction conditions, where post-reaction XRD and STEM show high dispersion after the catalyst
was exposed to air after reaction, where Rh is highly oxophilic and likely immediately oxidized in

the presence of air.
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OMS?2 during the in situ CO2 hydrogenation experiments.

Since the coordination numbers were obtained from EXAFS fitting and there is a positive
correlation between the coordination number and the number of atoms in the cluster,[88] the
number of atoms in the clusters in each sample can be calculated. Therefore, the coordination
numbers from EXAFS fitting from the sample at 300°C for around 20 mins were used, and the
number of atoms was calculated, as shown in Table. S7. The calculation is discussed in Note. S2.
The mean interatomic distances (MIAD)[89, 90] of each sample were also calculated and shown

in Table. S7 to represent the size of the clusters. The particle sizes calculated from the information
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obtained from EXAFS fitting from the samples at 300°C for around 20 mins were mapped with
the reaction rate of these four samples at 300°C reaction for around 20 mins. When the particle
size 1s larger, the reaction rate is higher, as shown in Fig. S27, at the beginning of the reaction
when the MnOx structure has not decomposed yet. This is in agreement with the literature, which
found that for CO» hydrogenation, Rh clusters and small nanoparticles favored higher reaction
rates than isolated single atoms.[91-93] More literature comparisons can be found in Table. S8 for
CO; Hydrogenation.[92, 94-98] Our catalytic system of Rh-X-(OL1/OMS2) provides a potential
innovative method to create clusters with low-nanoscale clusters from single Rh atoms. One of the
advantages of the Rh-X-OMS materials is their inherent CO> sorption properties, which when
coupled to their stable catalytic performance can lead to innovative combined capture and

conversion catalysts, which is unique and novel to these materials.[99]

3.8. CO: Hydrogenation DRIFTS

During CO; hydrogenation DRIFTS, both OL1 and OMS2 sample sets yield similar
carbonyl surface species, between 2200-1800 cm™!, likely due to comparable interactions with
MnO across OL1 and OMS2, shown in Fig. 9(a). The absence of the secondary bridge/hollow Rh-
CO species on OL1 samples indicates a higher Rh dispersion on the surface of OL1 samples, which
contributes to the dominance of linear CO on metallic Rh®. Based on Fig. 9(b), there is mainly
formate (~1595 cm™') dominant on Rh-Na-OL1. This bridged formate, as shown in Fig. S28 by the
corresponding bridged formate C-H stretching at 2825 ¢cm™,[100] is likely the intermediate for
methanation and is consistent with the main CHy selectivity from Rh-Na-OL1 shown in Fig. 2(c).
Formate-mediated methanation is likely to occur through an initial rate-limited formation of

HCOO* surface species, then rapidly dissociates into CO* and OH*, which subsequently rapidly
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forms CH4 and H>O as the main products.[101] On the surface of Rh-Zn-OMS2, Rh-Zn-OL1, and
Rh-V-OMS2, there are predominantly monodentate/bidentate carbonate species, which suggests
the likelihood of a direct CO» dissociation pathway into CO which is not mediated by formate,
consistent with the fact that methane formation is suppressed on this catalyst. In the C-H stretching
region in Fig. S28, between 3000-2600 cm’!, we can observe the presence of gas phase methane
over Rh-Na-OL1 and Rh-V-OMS2, showing they promote CH4 formation. However, consistent
with the lack of formate bands on all other catalysts, Rh-Na-OL1 is the only one which shows a
corresponding C-H stretch associated with formate species, specifically bridged formate.[100, 102]
The peaks found at 2760 and 2680 cm™ are attributed to the C-H stretching. In summary, the
selectivity is consistent with the surface species we found during in situ CO> hydrogenation
DRFITS, where the formation of methane was followed via the associative formate pathway, while
the catalyst that favored CO via the RWGS showed no formate on the surface, likely indicating
that formate was rapidly consumed and dissociated into CO and OH via the dissociative

mechanism.
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Figure 9. In situ CO2 hydrogenation DRIFTS for Rh-X-MnOx showing the (a) Rh carbonyls region and (b) surface carbonates
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4. Conclusions

We have evaluated multicomponent catalysts composed of Rh, different counterions, and
MnOx frameworks for the CO> hydrogenation reaction. When different counterions were used,
there were distinct differences in product selectivity based on the counterion species. Rh-V-OMS2
remained stable after 48 hrs, surpassing the net reactivity of other initially more active
combinations. Compared with OMS2, while the OL1 structure can provide a more reducing
environment with more CH4 production and instantaneous high reactivity, OL1 structures did not
have good stability for extended reaction times. The structure-function relationship in Rh-MnOxs
was investigated, where the surface species attributed to both the methanation and RWGS pathway
were identified via DRIFTS, and the structure was observed to be Rh clusters via in situ XAFS.
The catalysts transitioned from Rh atoms with atomic dispersion after synthesis to small clusters
and eventually nucleated into nanoparticles. We also found a positive correlation between the
reaction rate and the particle size. Importantly, with detailed kinetic measurements and
spectroscopic techniques, the addition of V not only stabilized the structure of the OMS2 host
material but also sustained remarkable selectivity towards CO via the RWGS pathway for over 48
hrs. The nucleation of single-atom Rh into clusters indicates that the combination of single-atom
Rh and MnOxs can provide us with Rh catalysis of low nanoscale or sub-nanoscale clusters, which
has been proven more effective than single-atom catalysts and nanoparticles from previous

publications.
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