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Abstract

Photoinduced processes play a crucial role in a multitude of important molecular

phenomena. Accurately modeling these processes in an environment other than vac-

uum requires a detailed description of the electronic states involved as well as how

energy flows are coupled to the surroundings. Nonadiabatic effects must also be in-

cluded in order to describe the the exchange of energy between electronic and nuclear

degrees of freedom correctly. In this work, we revisit the ring-opening reaction 1,3-

cylohexadiene (CHD) in a solvent environment. Using our newly developed Interface

for Non-Adiabatic Quantum mechanics/molecular mechanics in Solvent (INAQS) we

trace the evolution of the reaction via hybrid quantum mechanics / molecular mechan-

ics (QM/MM) surface hopping with a focus on the solvent’s participation in the nona-

diabatic relaxation process and the long-time approach to equilibrium. We explicitly

include the MM solvent contribution to the nonadiabatic coupling vector—enabling

an accurate approach to equilibrium at long times—and find that in highly multi-

dimensional systems gradients can have little or nothing to do with the nonadiabatic

couplings.

Introduction

Photoinduced reactions are abundant in nature and play a role in a variety of important pro-

cesses including photon-absorption during the initial step of photosynthesis, 1 energy conver-

sion reactions,2 and the conformeric changes of light-sensitive receptor proteins that enable

humans to see their environment.3 The understanding of these processes is valuable not only

from an academic standpoint, but also to promote the development of more efficient tech-

nology, such as artificial light-harvesting systems. 1,4–6 To these ends, it is crucial that we

understand the relaxation pathways available to the excited states of such systems so that

we might learn how to hinder unwanted transitions or how to enhance desired routes.

Buoyed by recent software and hardware improvements, quantum chemistry has become
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an important tool for the investigation of chemical processes. However to date—due to

the unfavorable scaling of most electronic structure methods—a fully quantum chemical

treatment is largely still limited to molecular systems composed of fewer than 100 heavy

atoms, especially for molecular dynamics. While quantum mechanical studies of electronic

relaxation are possible for isolated chromophores, it is generally not feasible to include the

surrounding environment at the same level of theory. And yet, the environment may play a

pivotal role in the underlying dynamical process: either by sterically restricting the system’s

motion, by perturbing the underlying electronic states, or by modifying the routes through

which energy can flow out of (or into) the system. To include these environmental effects,

hybrid Quantum Mechanics / Molecular Mechanics (QM/MM) simulations provide a good

compromise between computational cost and accuracy. In most cases, the system is divided

into 1) an active site (chromophore), where the photoinduced reaction occurs and which is

treated at high level of electronic structure theory and 2) the remaining system, an envi-

ronment, which is treated classically. Analyzing photoinduced processes requires modeling

nonadiabatic effects (beyond Born-Oppenheimer) and tracking the flows of energy between

molecule and environment and nuclei and electrons. 7

To study nonadiabatic molecular dynamics in a complex environment, we have devel-

oped INAQS—the Interface for Non-Adiabatic Quantum mechanics/molecular mechanics in

Solvent—which extends Gromacs (or other existing MD codes) to perform nonadiabatic dy-

namics (such as Fewest Switches Surface Hopping), utilizing an interface to the electronic

structure code Q-Chem for performing QM/MM calculations under an electrostatic embed-

ding.8 In a previous publication,8 we reported on the structure of the INAQS package and

we demonstrated some of the package’s more common features (absorption spectra, umbrella

sampling, nonadiabatic dynamics) to study the ring-opening reaction of 1,3-cylohexadiene

(CHD). In this paper, we will focus on the nonadiabatic, photoinduced dynamics of CHD

using QM/MM surface hopping with particular attention paid to the inclusion of the solvent

in the nonadiabatic dynamics. Focusing on electronic relaxation in the condensed phase, we
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will analyze how the presence of a solvent leads to equilibration of a QM/MM system. In

particular, we focus on answering the following questions:

1. Can we use short time hopping as a predictor of long-time branching?

2. What is the nature of the (often-ignored) nuclear-electronic coupling in solvent?

3. What are the implications of nonadiabatic coupling computed over system and solvent

with respect to the approach to equilibration?

We note that while electronic properties like energies, gradients, wavefunction overlaps and

nonadiabatic couplings are nowadays routinely computed in the framework of an electro-

static embedding,9–13 to the authors’ knowledge, the computation of nonadiabatic couplings

on the MM sites are usually not. And so for the rescaling algorithm the question arises:

which solvent atoms (or more generally, which MM atoms) contribute kinetic energy to the

reservoir that dissipates the energy from a hop down or drives an electronic excitation up-

ward? Different groups and packages12–15 have answered this question in different ways, but

largely by pre-selecting a set of “important” atoms in the system (in most cases only the

QM atoms) and exclusively considering them for the rescaling algorithm; by contrast, IN-

AQS employs Q-Chem’s ab initio calculation of the nonadiabatic coupling vector on the MM

atoms and rescales the momenta of all components of the system on equal footing. With a

more accurate derivative coupling, one can then also ask: Can we use hopping as part of a

reaction coordinate when modeling relaxation?

In this manuscript, we explore the answers to these questions. The remainder of this

paper is organized as follows. First we review the theory of trajectory surface hopping and

its extension to a QM/MM framework and outline computational details for our dynamics

runs. The meat of our discussion then presents our results along with considerations of

branching, the effects of working in a system with many (solvent) degrees of freedom, and

some observations about the path towards equilibrium in terms of detailed balance. We

conclude with a summary of our major findings.
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Theory

Surface Hopping

Here, we provide a very brief review of trajectory surface hopping dynamics. 16 According

to Tully’s surface hopping approach,17 the nuclei move on a single adiabatic potential en-

ergy surface, similar to Born-Oppenheimer molecular dynamics, but stochastic transitions

between surfaces may occur as a function of the electronic degrees of freedom. The nuclear

dynamics are defined by Newton’s equations of motion:

M
¨⃗
R = −∇⃗Eλ, (1)

where R⃗ is the nuclear configuration vector, Eλ is the energy of the current active surface,

and M is the diagonal matrix containing the masses of all nuclei, mα:

(M)αµ,βν = δαβδµνmα α, β = {1..N} ; µ, ν = {1, 2, 3}.

There exist different flavors of surface hopping depending on how the hopping probability is

computed.15,17–19 INAQS adopts Tully’s fewest switches algorithm (FSSH), 17,18 with several

subtleties described in our previous paper.8 The electronic degrees of freedom are propagated

according to the time-dependent Schrödinger equation,

iℏ
∂

∂t
Ψ(t) = ĤΨ(t), (2)

with Ĥ the electronic Hamiltonian of the system and Ψ(t) the corresponding electronic

wavefunction at time t. To solve this equation Ψ is typically expanded in a set of adiabatic

basis functions {Φi},

Ψ(t) =
∑
i

ci(t)Φi(t). (3)
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Inserting the expansion (3) into the time-dependent Schrödinger equation (2) and integrat-

ing over the electronic degrees of freedom, yields the following equation of motion for the

coefficients of the electronic wavefunction ci:

iℏċi =
∑
j

cj

[
Vij − iℏ ˙⃗

R · d⃗ij
]
, (4)

where Vij = ⟨Φi|Ĥelec|Φj⟩ are the matrix elements of the electronic Hamiltonian, and d⃗ij =

⟨Φi| ∂

∂R⃗
|Φj⟩ are the nonadiabatic coupling vectors between adiabatic states Φi and Φj. As

described in our previous paper, within INAQS, we do not require the calculation of the nona-

diabatic coupling at every time step because we construct ˙⃗
R · d⃗ij = 1

dt
(log ⟨Ψ(t)|Ψ(t+ dt)⟩)ij

in terms of the overlap of the wavefunction with itself at previous times—a source of con-

siderable time-saving.

When a hop between adiabatic surfaces i and j occurs, the momenta are rescaled along

the nonadiabatic coupling vector to conserve energy:

P⃗ ′ = P⃗ + α d⃗ij ,

α = −
d⃗ ⊺
ijM

−1P⃗

d⃗ ⊺
ijM

−1d⃗ij
+ σ(d⃗ ⊺

ijM
−1P⃗ )

( d⃗ ⊺
ijM

−1P⃗

d⃗ ⊺
ijM

−1d⃗ij

)2

− 2∆V

d⃗ ⊺
ijM

−1d⃗ij

1/2

,

(5)

where the sign function σ(x) = −1 if x < 0 and 1 otherwise, and ∆V = Ej − Ei.

QM/MM Surface Hopping

While trajectory surface hopping is a relatively computationally cheap scheme for nonadia-

batic dynamics, it can only be applied to small and medium sized molecules due to the high

cost of electronic structure calculations. To study larger systems and/or account for the ef-

fects of the environment, one typically turns to hybrid quantum/classical approaches. 1,20–23

In QM/MM approaches the total energy of the system S, can be written as the sum of

the energy of the inner QM region I treated at QM level of theory EQM(I), the energy
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of the outer environment O treated at MM level of theory EMM(O), and their interaction,

EQM−MM(I,O):21

E(S) = EQM(I) + EMM(O) + EQM−MM(I,O). (6)

A variety of different QM/MM schemes have been developed, 1,23,24 but for simplicity we

restrict our discussion to mechanical and electrostatic embedding schemes, as these are im-

plemented in INAQS. For mechanical embedding, the interaction term, EQM−MM(I,O), is

specified by classical forcefield terms containing appropriate bonded and non-bonded inter-

actions (Coulombic and Lennard-Jones). For electrostatic embedding, the classical charge-

charge interactions between the MM atoms and the QM atoms are replaced by interaction

between the MM charges and the QM electronic density via a nuclei-like 1-electron term in

the electronic Hamiltonian:

ĤQM−MM =
∑
α

−Qα∥∥∥R⃗α − ˆ⃗r
∥∥∥ , (7)

where Qα is the charge of the MM atom α at position R⃗α and ˆ⃗r is the electron position

operator.

Surface hopping for hybrid QM/MM schemes formally changes nothing as far as the prop-

agation of the nuclear or electronic degrees of freedom; these quantities are propagated just as

in vacuum simulations. The only difference now is that the properties—energies, gradients,

derivative couplings, wavefunction overlaps—are computed within the QM/MM framework

that includes the additional 1-electron term above and the nuclei are thus propagated on the

adiabatic surfaces of the combined QM/MM system.
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Nonadiabatic Coupling Vector

Under a mechanical embedding, there is no polarization of the electronic density by the MM

subsystem; thus there is no contribution to the nonadiabatic coupling from the MM system.

However for an electrostatic embedding the picture changes: the electronic density now

interacts with the MM environment through Eq. 7. Therefore, changes in the coordinates of

the MM system can introduce a coupling between two electronic states.

The Hellmann-Feynman expression for the nonadiabatic coupling vector between states

i and j with respect to nuclear coordinate α is given by:

d⃗αij =

〈
Ψi

∣∣∣∇⃗αĤ
∣∣∣Ψj

〉
Ej − Ei

. (8)

Thus, taking the gradient of the electronic operator coupling the QM and MM regions (Eq.

7), we find the derivative coupling for the MM sites:

(Ej − Ei) · d⃗αij = −Qα

〈
Ψi

∣∣∣∣∣∣∣
R⃗α − ˆ⃗r∥∥∥R⃗α − ˆ⃗r

∥∥∥3
∣∣∣∣∣∣∣Ψj

〉
. (9)

An implementation of Eq. 9 for configuration interactions singlets (CIS) and time-dependent

density functional theory (TDDFT) and their spin-flip (SF) variants is available in Q-Chem

6.0.9 The relative contribution of the derivative coupling on the solvent and the implications

of neglecting the MM components of the derivative coupling (especially with respect to the

approach to equilibrium) will be discussed below.

Methods

In our previous work, we presented INAQS, a new software package that enables the study

of nonadiabatic molecular dynamics within a QM/MM framework, and demonstrated its

application to the study of the ring-opening of 1,3-cyclohexadiene (CHD) to hexatriene (HT)
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with umbrella sampling, spectra calculation, and nonadiabatic surface hoping dynamics. In

this work we will revisit the CHD → HT ring opening reaction, Scheme 1, but focus our

attention exclusively on the nonadiabatic dynamics and the influence of the solvent on the

relaxation process and highlight the impact of computing nonadiabatic coupling vectors on

the solvent molecules.

6
5

Scheme 1: The ring-opening reaction of CHD proceeds by breaking the single bond between
carbons 5 and 6.

The calculations follow our previous paper8 and will only be briefly outlined. During dy-

namics, all properties were computed with the spin-flip variant 25 of TDDFT (SF-TDDFT)

using the BHHLYP functional and cc-pVDZ basis set. Solvent parameters and equilibrated

slabs were taken from Caleman et al.26 Classical parameters for equilibrating CHD molecule

were generated using Q-Force27 at the cam-B3LYP/cc-pVDZ level of theory. The system

was equilibrated by classical MD using the Gromacs software package for 2 ns. From the

equilibration run, 51 independent configurations in each environment were selected for the

trajectory surface hopping runs and were further relaxed via a 2 ps QM/MM equilibration

to allow the system to adapt to the new Hamiltonian before the excited dynamics began.

Following relaxation, all trajectories were well equilibrated with the exception of 8 trajecto-

ries in ethanol, where the internal energy of CHD was greater than 850K; these trajectories

were excluded from further analysis. The 51 trajectories (less 8 for ethanol) were then

propagated with nuclear time step 0.5 fs and electronic time step no greater than 0.025 fs for

500 fs. Velocity rescaling and reversal (Eq. 5) are computed using the nonadiabatic coupling

vector on all atoms including solvent (Option 3 below). Other details of the surface hopping

algorithm are given in our previous papers. 8,18
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Results

As shown in our previous work, the nonadiabatic ring-opening of CHD in vacuum computed

via SF-TDDFT by INAQS correspond well to previous work at a higher level of theory

(CASPT2/cc-pVDZ)28 and show physically reasonable trends in the presence of ethanol and

toluene solvents.8 After photo-excitation to the bright S1 state of CHD, the molecule relaxes

to its ground state in approximately 200 fs after which either the closed CHD structure is

retained or a ring-opening occurs and hexatriene (HT) is formed.

Early-Time Hopping Structures and Dynamics as Predictors of Long-

Time Branching

While the overall (long-time) dynamics described above are largely consistent in vacuum,

toluene, or ethanol, a new set of information can be found by looking at the surface hopping

trajectories in the vicinity of a hop. For ring opening systems like CHD, a natural reaction

coordinate might be the length of the bond to be broken with a dividing surface at the

saddle along that coordinate, R‡
c-c. While one can consider the flux through such a surface

to determine the rate of reaction, it isn’t clear how to predict branching ratios. We then

ask: do different solvents promote different hopping geometries and/or different short-time

dynamics?

On the left-hand column of Fig. 1, we plot the distance between the 5th and 6th carbon

atoms (Rc−c) as a function of time. Note that the zero of time (t = 0) is here taken to

be the moment of the downward hop (where the molecule is near the conical intersection),

after which the system commits to one of the wells on the ground state potential energy

surface; the zero of time is not the time since excitation, decay from which occurs with

a time constant of 40 fs in vacuum and 50 fs in either solvent. From this data, we can

clearly see the two available reaction pathways: the molecule can either (i) relax into its

vibrationally excited ground state remaining in the closed, CHD, conformation or (ii) the
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Figure 1: Left: time-series for Rc−c, the single bond which may break, with t = 0 taken
as moment of the last downward hop. Green traces result in hexatriene; purple traces are
unreactive. Right: phase-space plots showing the state of the system at the moment of a
hop. Green stars represent trajectories that go to hexatriene and purple hexagons trajectories
that remain in the cyclic form. Shaded regions are guides to the eye constructed via the
difference of kernel density estimates for the two products. Dotted lines mark the saddle
point (R‡

c-c = 2.2 Å) along the minimum energy path and zero in velocity. Note that Ṙc-c at
the time of a hop is much better than Rc-c at the time of a hop as far as predicting the final
outcome (CHD vs HT).
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ring can open, breaking a C−C bond, to form the HT conformer. For both the vacuum and

the solvent cases, no further conversion between HT and CHD is observed on the time scale

of our simulation.

The main difference observed is among vacuum ring-opening trajectories’ narrow distri-

bution of C−C bond distances in the first 100 fs following excitation. According to the left

hand side of Fig. 1, in solvent, the fluctuations of the reactive geometries over the first 200 fs

after a hop are much more widely spread—suggesting steric hindrance in the presence of

solvent. Moreover, we will see below that the distribution of geometries at the time of the

hop for all product states is substantially broader in solvent than in vacuum —looking at not

just the C-C bond distance but the overall structure. Given that there are clear differences in

the rates at which the wavepackets diverge, one imagines that incorporating decoherence 18

into such a calculation would be important. We will address decoherence and its impact on

surface hopping calculations for systems with many (solvated) degrees of freedom in a future

publication.

More interesting than the left-hand side of Fig. 1 is the right, which shows a phase-space

plot of the C−C bond length, Rc-c, against the velocity along the bond, Ṙc-c, at the instant

of a hop. As above, here we use the time of the hop as an additional degree of freedom to

focus on a single time-slice of each trajectory: each point on the right represents an entire

trajectory from the left taken at the time of the hop (t = 0).

One might expect that bond shortening (Ṙc-c < 0) would lead to CHD and bond length-

ening (Ṙc-c > 0) would lead to HT. Indeed, the figures on the right of Fig. 1 indicate that

velocity along the bond at the moment of the hop is a reasonable predictor of the long-time

outcome of the reaction. For toluene-solvated CHD, the sign of the velocity at the time of the

hop correctly predicts the outcome of the reaction in 85% of cases; for ethanol the fraction

is 70%; the fraction is 59% in vacuum. The vacuum case can be significantly improved by

including bond-length information: of hops with Ṙc-c > 0 and Rc-c > R‡
c-c, 80% go on to

form HT. Interestingly, for toluene, Rc-c is a very poor predictor of the final outcome: at the
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time of hopping, most reactive trajectories have small C−C separation relative to the saddle

and most that revert to CHD are stretched. Fig. 1 therefore acts a strong caveat against

using intuition to assert asymptotic dynamical behavior based on geometrical feature (e.g.

Rc-c).

0 25 50 75

t / fs

0

2

4

6

∆
V

/
eV

vacuum

(a)

0 25 50 75

t / fs

0

2

4

6

∆
V

/
eV

toluene

(b)

0 25 50 75

t / fs

0

2

4

6

∆
V

/
eV

ethanol

(c)

0 25 50 75

t / fs

1

2

3

4

5

6

R
c−

c
/

Å
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Figure 2: (a)–(c): Scatter plots showing the S0–S1 gap at time of a hop as a function of time
since the last downward hop. Downward hops in are in blue and upward hops are in orange.
(d)–(f): Traces of carbon-carbon bond length as time since downward hop. Plotted also are
the (unsuccessful) attempted upward hops in orange. As in Fig. 1, reactive trajectories are
colored in green and unreactive trajectories are in purple. For all three environments, the
trajectories through phase space appear reasonably similar. The only meaningful difference
is in panel (a), where we see that, in the vacuum case, there are far more frustrated hops
at early times (and at small excitation energies), suggesting that solvent can play a subtle,
non-obvious role in electronic relaxation.

To better understand the nature of how the short-time dynamics described above lead

to branching, in Fig. 2 we plot the dynamics over the first 75 fs after a downward hop—this

time as a function of the S0–S1 gap, ∆V , and showing the frustrated hops that immediately

follow. The upper panels show the energy gap at a frustrated hop as a function of time
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and the lower panels show C−C separation as in Fig. 1. We see that after the downward

hop, the system rapidly leaves the coupling region (small ∆V ) independent of the ultimate

product that will form (CHD or HT) and regardless of the presence of solvent. The major

difference in the relaxation pathways available to CHD in solvent versus in vacuum appears

in the first 20 fs following a downward hop (upper left panel). In this brief period, one can

see that there are many attempted hops upward, back to S1 with a smaller energy gap (less

than 4 eV) than in the solvated systems or at later times (> 25 fs). These frustrated hops

occur for 15 % of trajectories in vacuum but negligibly in either of the solvents.
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Figure 3: RMSD (for CHD only) between all structures at the time of a hop. Axes are
sorted by energy gap and labels indicate range and 1st, 2nd, and 3rd quartiles. There is
clearly more similarity between structures in the vacuum case indicating that the solvated
structures span a greater region of configuration space.

In principle, the difference in the number and location of attempted hops could be caused

by differences in the structures or in the electronic wavefunctions of the trajectories. That

being said, while we observe nothing to implicate the wavefunctions differentially driving

hopping, as shown in Fig. 3, we do observe that the region of configuration space visited

by the system in solvent at the moment of a hop is much larger than when in vacuum.

Mathematically, in Fig. 3, we quantify this larger sampled region in terms of the pairwise

RMSD for all structures at the moment of a hop. For two structures, I and J , with N atomic

nuclei located at R⃗ I
α and R⃗ J

α , the RMSD is:

RMSDIJ = min
U

√√√√ 1

N

N∑
α

(
U · R⃗ I

α − R⃗ J
α

)2
(10)
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where the rotation matrix U is chosen to maximally align the structures and minimize

RMSDIJ (often by the Kabsch, but here by the QCP algorithm 29,30). In the present work,

we exclusively compare CHD structures, isolated from the solvent. We find the mean for all

RMSDI ̸=J to be significantly smaller in vacuum, 0.377 Å, than in either solvent: 0.878 Å

in toluene and 0.882 Å in ethanol. This finding is consistent with our previous observation

that when calculating absorption, the primary influence of the solvent on CHD is enabling

the exploration of a wider range of configuration space. 8 Altogether, the presence of sol-

vent leads to a spreading out of trajectories through phase space and evidently the excited

state potential energy surface is not characterized by strong, steep funnels to the conical

intersection that would guide all trajectories to the same region following photoexcitation.

Surface Hopping Dynamics in the Presence of Solvent

The Nature and Utility of Derivative Coupling on Solvent atoms

Though Tully’s original surface hopping scheme was implemented on one-dimensional model

problems, much richer photodynamics emerges for multidimensional problems (even if ex-

act benchmarking is impossible). In such a case, energy dissipation and barrier crossing

become much more realistic and, at the same time, nonseparable. One of the conceptual

breakthroughs in the FSSH algorithm was the notion that all nonadiabatic crossing events

should rescale momentum in the direction of the derivative coupling, a notion that goes back

to Pechukas31 and was later confirmed by Herman32 and is clearly implicated within the

quantum-classical Liouville equation (QCLE). 33–35 In practice, however, calculating a multi-

dimensional nonadiabatic coupling vector is non-trivial and, for many calculations (especially

QM/MM calculations), modern codes often make approximations.

1. The simplest scheme (and most aggressive approximation) is to simply rescale along the

unprojected momentum vector of the whole system. While this method is attractive

because it is trivial to implement and does not require the calculation of the nonadi-
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abatic coupling, one expects it to be successful only in situations where the dynamics

are dominated by a single degree of freedom and/or the velocity and nonadiabatic

coupling vectors are coincident. For small systems, where the total molecular system

is involved in the process this technique can lead to acceptable results. 13–15,36

2. While unprojected rescaling may succeed in vacuum, QM/MM calculations can easily

involve many (thousands) degrees of freedom of which surely not all are relevant to the

nonadiabatic relaxation. Simply including the kinetic energy of all the atoms (solvent

+ chromophore) for rescaling would functionally provide an infinite energy bath and

no hops would be frustrated. We know that frustrated hops are important to the

approach to equilibrium37,38 and their neglect would lead to severe artifacts by driving

electronic energy into the QM region. Masking algorithms, which require the user to

pre-select the atoms for rescaling, usually the QM atoms, have been previously used to

avoid these non-physical effects.12,13 However, atom-selection must be done with great

care especially if extending beyond the QM region. While it may be desirable to study

the solvent’s influence on the nonadiabatic process, as we will explore below, it is not

clear that it is even possible to successfully balance the requirements of frustrating

some hops and promoting others which are physically relevant to the reaction.

3. A third option is to simply follow Pechukas’ (and the QCLE’s) prescription and use only

the part of the kinetic energy that arises from momentum parallel to the nonadiabatic

coupling vector for rescaling. An expedient approximation—arising from the fact that

most electronic structure codes compute the nonadiabatic couplings exclusively on the

QM region—is to ignore the MM atoms for rescaling. To the extent that solvent do

not participate in the process, using the nonadiabatic coupling has the advantage that

it gives an ab initio criterion for selecting the QM atoms relevant for rescaling.

One of the novel features of our implementation of QM/MM surface hopping is the inclu-

sion of the nonadiabatic coupling vector on all solvent molecules, which enables calculating
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Figure 4: Nonadiabatic coupling vector between S0 and S1 rendered on the solvent (blue)
as as well as CHD (red). The relative magnitude of vectors is indicated by the volume of
the arrows. The transition dipole moment,

〈
S0

∣∣∣X⃗∣∣∣S1

〉
, is plotted in yellow. The long range

behavior of the nonadiabatic coupling is of a dipole field, see Eq. 9.
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the participation of the environment in the nonadiabatic process. The Hellman-Feynman

expression for the nonadiabatic coupling vector for solvent atoms under an electrostatic em-

bedding QM/MM scheme is given in Eq. 9 and implemented in Q-Chem 6.0. 9 In Fig. 4 we

visualize the nonadiabatic coupling on the solvent (blue arrows) as well as on CHD (red

arrows). During a hop, the momenta of all atoms in the system are scaled along the nona-

diabatic coupling vector. Frustrated hops, which are numerous during relaxation, similarly

reverse the momentum of all atoms along the nonadiabatic coupling according to the Jasper

and Truhlar’s usual criterion.39 While the absolute magnitude of the nonadiabatic couplings

are usually much smaller on solvent atoms than on CHD, they are not negligible and still

impart non-trivial momentum. As we discuss below the overlap between the nonadiabatic

coupling and the gradient is minimal in this condensed phase system, highlighting the mul-

tidimensional nature of current problem.

To illustrate the sensitivity of the selection criteria discussed above (see Option 2) as far

as determining the outcome of a surface hopping direction, in Fig. 5 we plot the fraction

of frustrated hops that is recovered when rescaling momenta using the N nearest solvent

molecules and rescaling in the direction of the instantaneous momenta. The denominator

here is the number of frustrated hops recovered when running dynamics and rescaling with a

proper derivative coupling. According to Fig. 5, if one includes the first two solvation shells

(N = 12), there is enough kinetic energy available so to allow all upward hops in the toluene

case. For ethanol (the smaller molecule) N = 12 corresponds to 50% of the frustrated hops

being incorrectly allowed. Agreement with rescaling along the nonadiabatic coupling vector

is obtained for small numbers of solvent (i.e. the fraction is unity when N is small), but

clearly no such rule of thumb can hold in general. In the present case, CHD is only weakly

coupled to the solvent but for systems where there is more charge rearrangement during

the nonadiabatic transition,40 clearly choosing the “correct” N would be impossible and not

practical.
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Figure 5: A demonstration of the importance of choosing the correct momentum rescaling
direction. Here, we quantify the impact of hypothetically rescaling momenta in the direction
of the instantaneous momentum (rather than the derivative coupling) for both the CHD
nuclei and a small number (N) of solvent molecules closest to the QM system. On the y-
axis, we plot the number of such hypothetically frustrated hops divided by the number of
hops we recover when using a proper rescaling along the derivative coupling. If we include
only a few solvent molecules, there are far more frustrated hops, indicating that an arbitrary
cutoff would need to be applied in this case; there are clearly inherent dangers to using the
instantaneous momentum rather than the derivative coupling when rescaling momenta in
the condensed phase. The dashed line at N = 12 represents that set of all nearest neighbors.
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Multi-dimensional Aspects of Surface Hopping

For 1-dimensional surface hopping models, one assumes that all electronic dynamics are

dependent on only a single nuclear reaction coordinate. However, in a real system, there are

often multiple relevant degrees of freedom. Is it reasonable to expect the directions breaking

adiabaticity to have anything to do with the direction advancing the reaction? In general

the answer is decidedly no.
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Figure 6: (a)–(c): Scatter plots of cosine of the angle between the nonadiabatic coupling
vector, d⃗, and the difference in the gradients, g⃗a, as a function of adiabatic energy gap.
Downward hops in are in blue and upward hops are in orange (frustrated) or red (success-
ful). The gradients do not generally align with the nonadiabatic coupling, highlighting the
multidimensional nature of the problem. (d)–(f): Hops by the cosine of the angle between
the nonadiabatic coupling vector and the nuclear velocity, v⃗, as a function of the S0-S1 gap.
We consider only the portion of the nonadiabatic coupling that extends over CHD. In the
solvated systems the nonadiabatic coupling vector on solvent molecules is effectively uncor-
related with their velocities, i.e. cos(v⃗solvent, d⃗solvent) ≈ 0.

For a two-level system, the directions in the nuclear configuration space that are most
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relevant to the electronic state are defined by the nonadiabatic coupling vector, d⃗ = d⃗01 (c.f.

Eq. 8), and the gradient of the difference in the energy levels, g⃗a,

g⃗a = ∇⃗S1 − ∇⃗S0. (11)

To the extent that these directions are coincident, a system will be well described by a single

coordinate. In the upper panels of Fig. 6, we consider the correlation between d⃗, and g⃗a,

cos(d⃗, g⃗a ) =
d⃗ · g⃗a

∥d⃗ ∥ · ∥g⃗a∥
. (12)

While the majority of successful hops have g⃗a roughly in the same direction as d⃗, there are

many where they are nearly orthogonal. That is, there are many times when the system

traverses the conical intersection such that g⃗a and d⃗ have little to do with each other. For

frustrated hops, there’s a roughly uniform distribution of cosines, suggestive of no correlation

at all.

Continuing to explore the multi-dimensional aspects of this system, in the lower portion

of Fig. 6 we turn our attention to correlations between the velocity, v⃗ =
˙⃗
R, and the derivative

coupling. The d⃗ · v⃗ term in the equations of motion for the electronic wavefunction (Eq. 4)

is responsible for driving transitions between adiabatic states. In Fig. 6(d)–(f), we make

a scatter plot of the cosine of the angle between the nonadiabatic coupling vector and the

velocity for each hopping (or attempted hopping) event. For successful downwards transitions

(in blue), there appears to be some correlation between the angle and the energy gap, with

greater coincidence at larger gaps. On the one hand, these two vectors are never parallel and

are often orthogonal during the long equilibration period that follows the return to the ground

state (orange frustrated hops in at large gap); this fact highlights the very multidimensional

nature of the problem. That being said, on the other hand, it is remarkable that d⃗ and v⃗

almost always have an angle larger than π/3 between them, i.e. cos(d⃗, v⃗ ) ⪅ 0.5 during a hop

down, suggesting that there clearly exist reduced reaction coordinates with some meaning
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for this solvated system. Note that we only consider the nonadiabatic coupling and velocity

on CHD; in an extended system, the velocities of distant solvent molecules will necessarily

be uncorrelated with the nonadiabatic coupling.

Energy Dissipation: The Path Towards Equilibrium in a Condensed

Environment

Following photoexcitation in the presence of a solvent, one would like to understand how the

energy is dissipated by the environment and how those energetic pathways modify the course

of the reaction. For QM/MM surface hopping, two primary energy dissipation mechanisms

exist:

1. The first pathway is via simple collisions, mediated by non-bonded interactions. For

CHD, the presence of solvent drives the system to a explore a larger region of con-

figuration space (see Fig. 3), which leads to the spreading of energy (which can be

captured by the broadening of the simulated UV spectrum 8). Energy transfer in this

fashion is slow and effectively diffusion limited.

2. The other pathway is the instantaneous interconversion of electronic and kinetic energy

at the moment of a hop. Energy conservation demands that, during a hop between

adiabatic energy surfaces, potential energy be exchanged with kinetic energy. If MM

atoms are included in the momentum rescaling scheme, as they are here, then a unique

pathway for the energy transfer between QM and MM sites opens. Exactly where

and how this energy is deposited or drawn from may influence the resulting dynamics

and approach to equilibrium. As the rescaling method plays such a fundamental role

in partitioning energy, an inaccurate treatment may lead to non-trivial errors in the

simulation.

To investigate the relative importance of the solvent contribution to momentum rescaling,

in Fig. 7 we plot the per-atom momentum transfer during a successful hop as a function of

22



(a) (b)

Figure 7: Per-atom momentum transfer in atomic units as a function of distance from
CHD center of mass for representative successful downward hops in toluene (a) and ethanol
(b). Black=Carbon, Orange=Hydrogen, Red=Oxygen. The larger circles in the upper left
of each panel are the atoms composing CHD, the smaller symbols represent solvent atoms.
Note that although every individual solvent atom absorbs only a small amount of momentum
transfer, altogether the solvent does take on a significant amount of transfer simply because
there are so many solvent molecules.

distance from the CHD center of mass for typical hops in toluene and ethanol. The nearer

atoms, with largest momentum transfer make up CHD and the more distant ones the solvent.

For the kth atom,

∆pk = ∥p⃗k − p⃗k
′∥

where p⃗k and p⃗k
′ are the momenta before and after the hop respectively, the latter found by

solving the energy conservation equations for momentum rescaling, Eq. 5.

As one can see from Fig. 7 there is a clear hierarchy of contributions split between three

distinct regions in either solvent. The carbon atoms on CHD show the largest momentum

change, followed by the CHD hydrogen atoms; lastly the atoms of the solvent appear as a

continuum. Solvent atoms generally experience 2-3 orders of magnitude smaller momentum

transfer than the atoms in CHD. This difference is not surprising as CHD has relatively weak

coupling to the solvent and thus the nonadiabatic coupling on the solvent atoms is relatively
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small. However, and despite the considerably smaller per-atom effect, the total momentum

transfer to the solvent, ∆psolvent =
∑

k∈solvent ∆pk, usually represents between 2% and 8% of

the total and in some instances is as much as 16%. We expect that for polar species or for

a system with charge transfer states, the coupling and therefore momentum transfer will be

larger.
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Figure 8: Scatter plots showing C−C bond distance as a function of energy the S0-S1 gap
at time of a hop. Downward hops in are in blue and upward hops are in orange (frustrated)
and red (successful). Frustrated hops can arise even with very large energy gaps (as large as
6 eV) and clearly are essential for maintaining detailed balance.

To further analyze the energy dissipation via the hopping mechanism, in Fig. 8 we plot

hops down (blue) and up (orange when frustrated and red when successful) by C−C sep-

aration and energy gap. With the exception of 4 successful hops up in 2 trajectories in

vacuum, upward hops are all frustrated. The relatively tight distribution for hops downward

stands in contrast to the distribution for upward, frustrated hops, which span a larger range

of energies and C−C separations. At small Rc−c, the hops are initiated from CHD and at

larger distances, from hexatriene. Notably many frustrated hops appear for high energy gaps

(∆V > 2 eV) highlighting the importance of physically meaningful selection of the relevant

atoms for the rescaling scheme. Most trajectories fall out of the region of the conical inter-

section relatively quickly (see Fig. 2), but in vacuum, there are some trajectories that persist

in the region of small gap, a feature we explored in Fig. 3.

Altogether, Fig. 8 shows how energy transfer and the dissipation of energy among many
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degrees of freedom is ultimately the cause that leads to the presence of frustrated hops

in a solvated environment, the phenomenon by which surface hopping maintains detailed

balance.37,38

Conclusion

We have presented the nonadiabatic relaxation dynamics of 1,3-cyclohexadiene in vacuum,

toluene, and ethanol as computed via explicit QM/MM with electrostatic embedding. We

analyzed the short and long-time dynamics and made a few limited conjectures about how

short-time hops can translate into long-time populations for this photochemical process. We

implemented and plotted the nonadiabatic coupling vector on the MM sites for electrostatic

embedding. This analysis allows one both to gain intuition as to the role of solvent as far

as facilitating a nonadiabatic transition as well as potentially helping to define the relevant

separation of QM and MM atoms. By computing the nonadiabatic coupling vectors on

the solvent atoms, we have also been able to explicitly include the solvent in the electronic

relaxation in an ab initio fashion so as to ensure that the correct equilibrium (with detailed

balance) is achieved at long times. We find that in highly multi-dimensional systems the

gradients can have nothing to do with the nonadiabatic couplings.

Looking forward, the case of CHD is the simplest possible model QM/MM problem be-

cause no charge transfer occurs and the system-solvent interaction is weak. In particular, the

hopping dynamics are largely dictated by the chromophore (even though hops up are gated

by solvent). To that end, the next step of this research is clearly to work with problems of

charge transfer and large (unshielded) charges. In such situations, we anticipate that systems

with stronger solute-solvent interaction will enhance the electronic effects substantially.
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