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Abstract— Multivariate point processes (MPP) are widely
used to model the occurrence of multiple interrelated events in
complex systems. They are used in a variety of fields to analyze
data and define models that can make predictions about future
events. In this paper, we consider finite-state MPP, which are
products of finite state automata (FSA) and MPP. Specifically,
the events in the MPP trigger state transitions in the FSA, while
the intensities of the point processes are defined as functions of
the FSA state and the history of the MPP. Further, we assume
that some of the event types are controllable, i.e., they are
not random but can be triggered. We formulate an optimal
control problem for such system, which can then be expressed
as optimal control for a Markov Decision Process (MDP) with
infinite states.

When the system has appropriate finite-time steady state
properties, we use the concept of stochastic bisimulation of MDP
to reduce the MDP into a finite state one, thereby allowing us to
use standard optimal control techniques to calculate the optimal
policy. We demonstrate the effectiveness of our method on a
simplified sleep-wake cycle model, for the problem of optimally
scheduling naps to maximize the length of wakefulness intervals.

I. INTRODUCTION

In recent years, multivariate point processes (MPPs) [1]
have emerged as a framework for representing multivariate
event data in continuous time. MPPs provide a mathematical
structure for modeling the occurrence of events, where each
event is assigned conditional intensity rate that quantifies
its frequency of occurrence at any given time, taking into
account the prior occurrence of other event labels [1], [2].
MPPs have gained significant popularity across several do-
mains, including finance, social networks, and healthcare. In
finance, events may represent buying or selling of stocks [3],
while in social networks, they may represent user activity
such as posts, likes, shares, or subscriptions [4]. In biology,
events can represent falling asleep or waking up [5].

Existing research on MPPs can be divided into two cat-
egories, MPP modeling (MPPM) and MPP control (MPPC)
[6]. MPPM is concerned with training machine learning
models for analyzing and understanding the generation
mechanisms of event streams, which is particularly useful
in predicting the occurrence of events or understanding
the cause of deleterious events’ occurrence to prevent their
occurrence. Some earlier works for MPPM make simpli-
fying assumptions due to the difficulty of modeling the
conditional intensity rate, such as Poisson networks [7],
models assuming piece-wise constant intensity rates, models
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assuming the generation process as a non-homogeneous
Poisson process [8], and multivariate Hawkes processes [9].
More recently, generalized algorithms for MPPM have been
proposed as well, such as representing MPPs as graphical
event models (GEMs) [10]–[12].

While the problem of MPPM has been extensively re-
searched, the synthesis of control policies for MPPs has
not received much attention. In the control domain, [13]
formulate the problem of optimally triggering an action
in a mean field games setting. However, only univariate
event (i.e., one event type) is considered. The state-of-the-art
approaches for MPPC are mainly accomplished by stochastic
optimal control approaches with the assumption that the
dynamics of MPPs are modeled as stochastic differential
equations (SDEs) [14], [15]. Nevertheless, the drawbacks in
the following aspects prevent their application in a broader
range. Modeling the intensity rates as particular differential
equations may limit their application when the dynamics
do not follow an ideal functional form. Also, the objective
functions for the stochastic optimal control problem need
to be carefully designed to guarantee the feasibility of the
proposed problem. Recent advancement in overcoming the
above limitations by using reinforcement learning approaches
has been proposed in [16], with the goal of finding the
optimal policy for event generation using a policy gradient
method. However, the policy gradient approach lacks global
optimality guarantee.

This paper aims to tackle the issue of intervening the
occurrence of events by appropriately triggering some con-
trollable events, so as to maximize a given objective (e.g.,
delaying the occurrence of some events). Our contributions
in this paper are in (i) formulating a generalized framework
for MPP, called finite state MPP, which are products of finite
state automata and MPP, (ii) formulating the above problem
in the Markov Decision Process (MDP) framework, in which
we seek to find the optimal policy for triggering these
events, (iii) showing that, under some finite-time steady state
properties, the MDP can be reduced to an equivalent finite-
state MDP using the concept of stochastic bisimulation, and
(iv) demonstrating that standard optimal control algorithms
for finite state MDP, which yield globally optimal policies,
can be effectively used on the reduced model in an example
that is based on a simplified model of the sleep-wake process.
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II. MATHEMATICAL PRELIMINARIES AND PROBLEM
FORMULATION

A. Multivariate Point Processes (MPP)

Consider N events modeled as multivariate point pro-
cesses (MPP). We also have N clocks, {ci}i=1,··· ,N , asso-
ciated with these events. Assume that time is discretized.
Thus, for each i ∈ {1, · · · , N}, ci : N → N, where ci(k)
is the length of the time interval between timestep k and
the last time Event i happened before timestep k. For all
i ∈ {1, · · · , N} and k ∈ N, we define the binary-valued
random variable hi(k) as

hi(k) =

{
1, if Event i happens at timestep k,
0, otherwise. (1)

Therefore, ci(k) is also a random variable that evolves over
time according to

ci(k + 1) =

{
ci(k) + 1, if hi(k) = 0,

1, if hi(k) = 1.
(2)

We assume that for all timestep k, any random variables
hi(k) and hj(k), where i ̸= j, i, j ∈ {1, · · · , N}, are inde-
pendent. The dynamics of the clock variables is illustrated
in Fig. 1.

1
2
3
4

𝑘

𝑘

𝑐௜ሺ𝑘ሻ

Occurrences of Event 𝑖

Fig. 1. Illustration of the dynamics of the clock variable of Event i. (Top)
An event stream showing the occurrences of Event i. (Bottom) The value
of the clock ci(k) corresponding to the event stream.

We assume that there are M other events, whose oc-
currences can be controlled. We refer to these events as
Controlled Events, or C-Events in short. To these events,
we associate the clocks {vi}i=1,··· ,M , where vi(k) is the
length of the time interval between timestep k and the last
time the C-Event i happened before timestep k. For ease of
discussion later, for all i ∈ {1, · · · ,M} and k ∈ N, we also
introduce the binary-valued variable ui(k) as

ui(k) =

{
1, if C-Event i happens at timestep k,
0, otherwise. (3)

Analogous to Eq. (2), we define the evolution of the con-
trolled event clocks as

vi(k + 1) =

{
vi(k) + 1, if ui(k) = 0,

1, if ui(k) = 1.
(4)

Note that neither vi(k) nor ui(k) are random; they are control
variables.

Notation 1: The set of all events is denoted as

Ev ≜ {Event 1, · · · , Event N , C-Event 1, · · · , C-Event M}.
(5)

Notation 2: The vector of all clock values is denoted as
x(k) ∈ NN+M , where

x(k) ≜ [c(k), v(k)]

=

c1(k), · · · , cN (k)︸ ︷︷ ︸
c(k)

, v1(k), · · · , vM (k)︸ ︷︷ ︸
v(k)

 . (6)

The vector of all ui(k) is denoted as

u(k) ≜ [u1(k), · · · , uM (k)] ∈ {0, 1}M .

Each event of the point processes is assumed to depend on
the point processes and the controlled events. Specifically, let
pi(k) denote the probability that Event i occurs at timestep
k, we assume that for all i ∈ {1, · · · , N},

pi(k) = Fi(x(k)) = Fi(c(k), v(k)). (7)

Here, Fi is a known function that maps the clock values to
the interval [0, 1].

Next, we discuss a finite-time steady state property of the
transition probabilities. However, before that, we introduce
the following notation that will simplify the discussion.

Notation 3: Given a vector x ∈ Nn, where x =
[x1, x2, · · · , xi, · · · , xn], the operation Sati(x, Z) replaces
the i-th element of x with Z ∈ N. That is,

Sati(x, Z) = [x1, x2, · · · , xi−1, Z, xi+1, · · · , xn]. (8)
Definition 1 (finite-time steady state): An Event i of a

multivariate point process described above is said to have
finite-time steady state if there exists a horizon Hi ∈ N,
such that for any positive integers c ≜ {cj}j∈{1,··· ,N} and
v ≜ {vj}j∈{1,··· ,M}, if ci ≥ Hi then

Fk(c, v) = Fk(Sati(c,Hi), v),

for all k ∈ {1, · · · , N}. The same definition also applies to
controlled events. The multivariate point process itself is said
to have finite-time steady state is all of its N + M events
have finite-time steady state.

Intuitively, an Event i having finite-time steady state means
if it has not happened longer than Hi timesteps, its influence
on the events in the MPP (including Event i itself) does
not change with any additional timestep of Event i not
happening.

B. Generalization: Finite State MPP
The formulation described in the previous subsection can

be generalized by adding a finite state automaton to the MPP,
forming a Finite State MPP. First, we state the standard
definition of finite state automata.

Definition 2: A finite state automaton (FSA) is a tuple
A = (S,Σ, τ, s0), where S is the (finite) set of states, Σ
is the input alphabet, τ : S × Σ → S is the deterministic
transition function, where s′ = τ(s, σ) means the state would
switch from s ∈ S to s′ ∈ S upon the arrival of the input
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symbol σ ∈ Σ. The symbol s0 ∈ S denotes the initial state,
where the FSA is assumed to start.

A Finite State MPP is setup by taking the product of an
FSA A = (S,Σ, τ, s0) with an MPP, where

• the state of the FSA evolves according to the set of
events that happens, i.e., the input alphabet Σ = 2Ev,

• the probabilities of the occurrence of the events are
determined by the clocks and the state of the FSA.

Thus, the probability that Event i occurs at timestep k is
given by

pi(k) = F̂i(c(k), v(k), s), (9)

i ∈ {1, · · · , N}, where F̂i is a known function that maps
(c(k), v(k), s) to the interval [0, 1]. Note that F̂i generalizes
Fi in Eq. (7) by allowing pi(k) to depend not only on the
clock variables but also on the state of the FSA.

The concept of finite-time steady state that we discussed
in the previous section can be generalized to Finite State
MPP in the following sense.

Definition 3: An Event i of a Finite State MPP is said to
have finite-time steady state if there exists Hi ∈ N, such that
for any state s ∈ S, positive integers c ≜ {cj}j∈{1,··· ,N}, and
v ≜ {vj}j∈{1,··· ,M}, if ci ≥ Hi then

F̂k(c, v, s) = F̂k(Sati(c,Hi), v, s),

for all k ∈ {1, · · · , N}. As before, we also apply this
definition on the controlled events. The Finite State MPP
itself is said to have finite-time steady state is all of its N+M
events have finite-time steady state.

We note that an MPP is a special case of Finite State MPP.
I.e., an MPP is a Finite State MPP with only one state. In
the rest of the paper, we will formulate our work for Finite
State MPP.

C. Finite State MPP as Markov Decision Process

Definition 4 (Markov Decision Process): A Markov De-
cision Process (MDP) is defined as a tuple M =
(X,A,R, T ), where X is the state space, A is the action
space, R : X ×A×X → R is the reward function, and T :
X ×A×X → [0, 1] is the transition probabilities. We refer
the reader to the standard literature (e.g., [17], [18]) for the
semantics of MDP.

The Finite State MPP can be formulated as an MDP
MP = (NN+M × S, {0, 1}M , R, T ). The state space is the
product of the respective state spaces of the MPP and FSA,
where the state is given by

(x(k), s(k)) = (c(k), v(k), s(k)).

The action space is {0, 1}M and action is u(k) of the MPP.
The transition probabilities T of the MDP is defined as
follows. For any (X̄, S̄) and (X̄ ′, S̄′) ∈ NN+M × S, where

X̄ = [C, V ], X̄ ′ = [C ′, V ′] ∈ NN+M and U ∈ {0, 1}M ,

T ((X̄, S̄), U, (X̄ ′, S̄′))

≜ Pr
{
x(k + 1) = X̄ ′, s(k + 1) = S̄′∣∣

x(k) = X̄, s(k) = S̄, u(k) = U
}

(10)

= S(Ci, U, C
′
i, S̄, S̄

′)
N∏
i=1

Ti(S̄, X̄, U, X̄ ′)
M∏
i=1

Wi(X̄, U, X̄ ′),

(11)

where

Ti(S̄, X̄, U, X̄ ′) =

 F̂i(S̄, X̄), if C ′
i = 1,

1− F̂i(S̄, X̄), if C ′
i = Ci + 1,

0, else,
(12)

Wi(X̄, U, X̄ ′) =

 1, if V ′
i = 1 and Ui = 1,

1, if V ′
i = Vi + 1 and Ui = 0,

0, else,
(13)

and

S(Ci, U, C
′
i, S̄, S̄

′) =

{
1, if τ(S̄,E) = S̄′,
0, else. (14)

Here, the set of events E are all events that happen in the
time step of the transition. That is, we define the indices

Iu ≜ {i | C ′
i = 1}, Ic ≜ {i | Ui = 1},

and
E =

⋃
i∈Iu

{Event i} ∪
⋃
i∈Ic

{C-Event i} .

Notation 4: To express the state-action sequence and re-
ward sequence, we use the notations

ξ ≜ (x(0), s(0)), u(0), (x(1), s(1)), u(1), · · · , (15)

ρξ(k) ≜ R((x(k), s(k)), u(k), ((x(k), s(k))). (16)
The reward function of the MDP will be specified later,

depending on the desired control objective. However, here
we present a finite-time steady state property of the reward
function.

Definition 5 (finite-time steady state reward): The MDP
for Finite State MPP is said to have finite-time steady state
reward if

• For all Event i, i ∈ {1, · · · , N} there exists a hori-
zon Hi ∈ N, such that for any state s and s′ in
S, and any positive integers c ≜ {cj}j∈{1,··· ,N},
c′ ≜ {c′j}j∈{1,··· ,N}, v ≜ {vj}j∈{1,··· ,M}, and v′ ≜
{v′j}j∈{1,··· ,M}, and any action u, if ci ≥ Hi then

R ((c, v, s), u, (c′, v′, s′))

= R ((Sati(c,Hi), v, s), u, (c
′, v′, s′)) ,

R ((c′, v′, s′), u, (c, v, s))

= R ((c′, v′, s′), u, (Sati(c,Hi), v, s)) .

• For all C-Event i, i ∈ {1, · · · ,M} there exists a
horizon Ki ∈ N, such that for any state s and s′

in S, and any positive integers c ≜ {cj}j∈{1,··· ,N},
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c′ ≜ {c′j}j∈{1,··· ,N}, v ≜ {vj}j∈{1,··· ,M}, and v′ ≜
{v′j}j∈{1,··· ,M}, and any action u, if vi ≥ Ki then

R ((c, v, s), u, (c′, v′, s′))

= R (c, (Sati(v,Ki), s), u, (c
′, v′, s′)) ,

R ((c′, v′, s′), u, (c, v, s))

= R ((c′, v′, s′), u, (c, Sati(v,Ki), s)) .
Intuitively, this property means if an Event or C-Event

has not occurred within its horizon length, the reward value
does not change with any additional timestep that Event or
C-Event not occurring.

D. Problem Formulation

To define the problem, we use the standard definition
of policies. A policy for an MDP M = (X,A,R, T ) is a
function π : X → A.

Problem 1: Given an MDP M = (X,A,R, T ), find the
policy π that maximizes the discounted accumulated reward

J(π,X0) =
∞∑
k=0

E [ρξ(k)] γ
k, (17)

where γ ∈ (0, 1) is the discount factor and the probability
distribution of ξ is defined such that

x(0) = X0, (18)
u(k) = π(x(k)), ∀k ∈ {0, 1, · · · }. (19)

Assumption: In this paper, we consider MDP that are
defined based on Finite State MPP with finite-time steady
state properties described in Definitions 3 and 5.

Remark 1: In this paper, we assume that policies are
deterministic. That is, π(·) returns a single action. More
generally, policies of MDP can be stochastic, where π(·)
returns a probability distribution over the set of actions
A. However, it can be proven (e.g., see [18]) that for the
objective function J in Eq. (17), the optimizing policy π
can be assumed to be deterministic without any loss of
performance.

Remark 2: In the problem definition, we define the objec-
tive function J , and therefore also the optimal policy, to be
dependent on the initial state X0. However, because of the
principle of optimality (e.g., see [18]), it is well known that
there exists an optimal policy π∗ that maximizes J for any
initial state X0 ∈ X .

III. STOCHASTIC BISIMULATION TO REDUCE MDP
The problem defined in the previous section is the classical

optimal control for MDP, for which there are known iterative
algorithms that yield the exact optimal solutions in the finite
models case (e.g., see [17], [18]). Here, finite models mean
those with finitely many states and actions. Such algorithms
include model-based ones (e.g., policy iteration and value
iteration (e.g., see [17], [18]), which yield the optimal policy
in finitely many steps) and simulation-based ones (e.g.,
tabular Reinforcement Learning (e.g., see [19]). For the cases
where the number of states is infinite, such as the setup that
we presented in the previous section, typically the approach
is to have a finite parameterization of the policy and perform

optimization on the finitely many parameters. In general,
the optimization is gradient-based and therefore there is no
guarantee on global optimality, unless other properties such
as convexity are assumed.

One concept that allows for exact calculation of the
optimal policy for infinite states MDP is factored MDP [20],
[21]. The main idea is to construct a finite state MDP that
is, in some sense, equivalent to the infinite state one and
calculate the optimal policy on the reduced MDP. Formally,
this is achieved using the concept of stochastic bisimulation,
which is defined below. But first, we overload the notation
of transition probability as follows.

Notation 5: Given an MDP M = (X,A,R, T ). For any
countable set of states X ⊂ X , state x ∈ X, and action
u ∈ A, we define

T (x, u,X ) ≜
∑
x′∈X

T (x, u, x′). (20)

Next, we recall that for a given set X , a relation R ⊂
X ×X is called an equivalence relation if it is

1) Reflexive: For all x ∈ X, (x, x) ∈ R.
2) Symmetric: For all x, x′ ∈ X , if (x, x′) ∈ R then

(x′, x) ∈ R.
3) Transitive: For all x, x′, x′′ ∈ X , if (x, x′) ∈ R and

(x′, x′′) ∈ R then (x, x′′) ∈ R.
Notation 6: For a given set X and an equivalence relation

R ⊂ X ×X , we define

R(x) ≜ {x′ ∈ X | (x, x′) ∈ R} . (21)
Definition 6 (Stochastic Bisimulation [20]): Given

an MDP M = (X,A,R, T ), the equivalence relation
R ⊂ X × X is a stochastic bisimulation if the following
are true.

1) Reward equivalence: For all x, x′, x′′ ∈ X and u ∈ A,
if (x, x′) ∈ R, then

R(x′′, u, x) = R(x′′, u, x′), (22)
R(x, u, x′′) = R(x′, u, x′′). (23)

2) Transition equivalence: For all x, x′, x′′ ∈ X and u ∈
A, if (x, x′) ∈ R, then

T (x, u,R(x′′)) = T (x′, u,R(x′′)). (24)
Since a stochastic bisimulation R is an equivalence, it

induces a partition of X, the states of the MDP.
Notation 7: We denote the partition of X induced by R

as ΓR(X). The partition function γR : X → ΓR(X) is then
defined such that for all x, x′ ∈ X: (x, x′) ∈ R if and only
if

γR(x) = γR(x′). (25)
The partition induced by R is then used to define the

factored MDP.
Definition 7 (Factored MDP [20]): Given an MDP M =

(X,A,R, T ) and a stochastic bisimulation R, the factored
MDP generated by R is MR = (ΓR(X), A,RR, TR), where
for all χ, χ′ ∈ ΓR(X) and u ∈ A,

RR(χ, u, χ′) = R(x, u, x′), (26a)
TR(χ, u, χ′) = T (x, u, x′), (26b)
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where
γR(x) = χ, γR(x′) = χ′. (27)

Note that reward equivalence and transition equivalence
properties of R ensure that any x, x′ that satisfy Eq. (27)
also satisfy Eq. (26).

Given a state-action sequence ξ of M as in Eq. (15), we
slightly abuse the notation of γR by defining

γR(ξ) ≜ γR (x(0)) , u(0), γR (x(1)) , u(1), · · · , (28)

ργR(ξ)(k) ≜ R(γR (x(k)) , u(k), γR (x(k + 1))). (29)

Then, the optimal control problem for the factored MDP can
be defined as follows.

Problem 2: Given a factored MDP MR =
(ΓR(X), A,RR, TR), find the policy πR : ΓR(X) → A
that maximizes the discounted accumulated reward

JR(π, χ0) ≜
∞∑
k=0

E
[
ργR(ξ)(k)

]
γk, (30)

where γ ∈ (0, 1) is the discount factor and the probability
distribution of γR(ξ) is defined such that

γR (x(0)) = χ0, (31)
u(k) = πR(γR (x(k))), ∀k ∈ {0, 1, · · · }. (32)

The following theorem is central in solving the optimal
control problem for the original MDP (i.e., Problem 1) by
way of solving the optimal control problem of the factored
MDP (i.e., Problem 2).

Lemma 1: (from [20]) Given a factored MDP MR =
(ΓR(X), A,RR, TR), if a policy πR : ΓR(X) → A maxi-
mizes the objective JR in Problem 2 then its implementation
of the original MDP, defined as π : X → A,

π ≜ πR ◦ γR, (33)

maximizes the objective J in Problem 1. Here ◦ denotes
function composition.

IV. MDP FACTORIZATION OF MPP WITH FINITE-TIME
STEADY STATE

In this section, we discuss how MDPs of Finite State MPP
with finite-time steady state can be factorized into finite-state
MDP. This would then allow us to use Lemma 1 and apply
standard optimal control algorithms for finite models. Note
that finite-time steady state property does not imply that the
MDP has finitely many states, as the clock values can still
go unboundedly. Rather, the increments of the clocks beyond
a certain horizon (i.e., Hi in Definition 3) do not change the
transition probabilities.

Consider the Finite State MPP described in Section II-
B. The main idea is to construct a stochastic bisimulation
relation R that lumps together clock values beyond the
horizon, as illustrated in Fig. 2 for one and two clocks. Thus,
given two states of the MDP, (c, v, s) and (c′, v′, s′), both in
NN × NM × S, we define ((c, v, s), (c′, v′, s′)) ∈ R if and

𝑐௜1    2 𝐻௜…

…
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together

…

…
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…
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…
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2
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Fig. 2. Illustration of partitioning the clock values. The values of the clock
ci beyond the horizon Hi are lumped together. (Left) Illustration for one
clock. (Right) Illustration for two clocks.

only if
N∧
i=1

((ci = c′i) ∨ ((ci ≥ Hi) ∧ (c′i ≥ Hi))) . . .

M∧
i=1

((vi = v′i) ∨ ((vi ≥ Ki) ∧ (v′i ≥ Ki))) ∧ (s = s′).

The symbols ∧ and ∨ denote the logical “AND” and “OR”
operations, respectively.

We shall proceed to show that R is a stochastic bisimula-
tion relation. First, we need to introduce some notations and
a lemma.

Notation 8: For any c = [c1 c2 · · · cN ] ∈ NN and index
set I ⊂ {1, 2, · · ·N}, let us define the following operations.
ResetI(c) replaces the values of c at the indices in I with
1. That is, if d = ResetI(c) then

di =

{
1, i ∈ I,
ci, i /∈ I.

IncI(c) increments the values of c at the indices in I by 1.
That is, if d = IncI(c) then

di =

{
ci + 1, i ∈ I,
ci, i /∈ I.

We can define analogous operations for v ∈ NM .
Lemma 2: The relation R is closed under the op-

erations ResetI(·) and IncI(·). That is, suppose that
((c, v, s), (c′, v′, s′)) ∈ R then for any index set I ,

((IncI(c), v, s), (IncI(c
′), v′, s′)) ∈ R,

((c, IncI(v), s), (c
′, IncI(v

′), s′)) ∈ R,

((ResetI(c), v, s), (ResetI(c
′), v′, s′)) ∈ R,

((c, ResetI(v), s), (c
′, ResetI(v

′), s′)) ∈ R.

Proof: Straightforward from the definition of R.
Theorem 1: The relation R as defined above is a stochas-

tic bisimulation relation.
Proof: Take any (c, v, s), (c′, v′, s′), and (c′′, v′′, s′′)

all in NN × NM × S and any action u. Suppose that
((c, v, s), (c′, v′, s′)) ∈ R. We need to show that both
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Reward Equivalence and Transition Equivalence hold.
(Reward Equivalence) We need to show that

R((c′′, v′′, s′′), u, (c, v, s)) = R((c′′, v′′, s′′), u, (c′, v′, s′)),
(34)

R((c, v, s), u, (c′′, v′′, s′′)) = R((c′, v′, s′), u, (c′′, v′′, s′′)).
(35)

Since ((c, v, s), (c′, v′, s′)) ∈ R, we know that s = s′. Thus,

R((c′′, v′′, s′′), u, (c, v, s)) = R((c′′, v′′, s′′), u, (c, v, s′)).

If c′ = c and v′ = v then Eq. (34) is implied immediately.
If c′ ̸= c then for any element i wherein they are different,
we have

ci ≥ Hi, c′i ≥ Hi. (36)

Similarly, if v′ ̸= v then for any element i wherein they are
different, we have

vi ≥ Ki, v′i ≥ Ki. (37)

From here, Eq. (34) follows as a consequence of the finite-
time steady state reward property in Definition 5. A similar
argument can be formed to prove Eq. (35).

(Transition Equivalence) We need to show that

T ((c, v, s),u,R((c′′, v′′, s′′))) = T ((c′, v′, s′),

u,R((c′′, v′′, s′′))).
(38)

As before, we infer that s = s′. Thus,

T ((c, v, s), u,R((c′′, v′′, s′′))) =

T ((c, v, s′), u,R((c′′, v′′, s′′))). (39)

If c′ = c and v′ = v then Eq. (38) is implied immediately.
Using the definition of the transition probability in Eq. (11),
we can conclude that for any (c̄, v̄, s̄), if

ρ ≜ T ((c, v, s), u, (c̄, v̄, s̄)) > 0,

then (c̄, v̄) can be obtained from applying a pair of reset
and increment operations on (c, v). Suppose that applying
the same operations on (c′, v′) yields (ĉ, v̂), then Lemma 2
implies that

((c̄, v̄, s̄), (ĉ, v̂, ŝ)) ∈ R.

Further, the transition probability defined in Eq. (11) implies

T ((c′, v′, s′), u, (ĉ, v̂, ŝ)) = ρ.

It follows that Eq. (38) is true.

V. EXAMPLE: SIMPLIFIED SLEEP-WAKE PROCESS
MODEL

In this section, we apply the theory that we discussed in
the previous sections to an example of the sleep-wake pro-
cess. The body’s internal clock includes circadian rhythms,
which are 24-hour cycles that perform vital functions and
processes in the background. Among the most significant
and recognized circadian rhythms is the sleep-wake cycle.

In this example, we use a Finite State MPP as a simplified
model of the sleep-wake cycle. It has two random events,

Fig. 3. Illustration of the finite state automaton in the sleep-wake cycle.

sleep and wake, and a controlled event nap. The clocks are
denoted as csleep, cwake, and cnap, respectively. The FSA
part has 6 states, i.e.,

S = {asleep, awake, napping}×{recent nap, recent sleep}.

The first part of the discrete state, denoted as sstate, indicates
whether the subject is asleep, awake, or napping, respec-
tively. The second part, denoted as sorder, indicates whether
the most recent non-awake period was asleep or napping,
which influences the likelihood of the sleep happening. The
finite state automaton for the sleep-wake cycle is shown in
Fig.3. Note that only 4 discrete states are shown, due to
the other 2 being not reachable (i.e., (asleep,recent nap) and
(napping, recent sleep)).

The probabilities of occurrence of the events sleep and
wake depend on the clock values and the discrete state, as
summarized in the tables below.

psleep(k) Conditions
0 sstate(k) = asleep or napping
0 sstate(k) = awake and cwake(k) < 8

ecwake(k)−16 sstate(k) = awake, sorder(k) =
recent sleep, 8 ≤ cwake(k) ≤ 16

ecwake(k)−18 sstate(k) = awake, sorder(k) =
recent nap, 8 ≤ cwake(k) ≤ 18

1 else

pwake(k) Conditions
0 sstate(k) = awake

ecsleep(k)−8 sstate(k) = asleep, csleep(k) < 8

ecnap(k)−2 sstate(k) = napping, cnap(k) < 2
1 else

We assume that the event nap can only be triggered in the
awake state. This is done by coding the transition probability
function not to change the discrete state and the clocks if nap
is triggered in the asleep or napping state. Also, if sleep and
nap occur at the same time, then nap is ignored. Note that the
model parameters are tuned such that if nap is never triggered
(i.e., a no-nap policy) the typical trajectory has approximately
16 hours of awake and 8 hours of sleeping alternatingly. One
such trajectory is shown in Fig. 4. When napping occurs, the
model assumes that the subject wakes up randomly between
1 and 2 hours later, but no longer than 2 hours later.
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Fig. 4. Simulation trajectory for the sleep and wake events under no-nap policy. Observe that the lengths of sleep intervals (i.e., between wake and sleep
events) are approximately 8 hours.

Reward function: In this example, we assume that we want
to maximize the total (and discounted) lengths of the awake
intervals. This is done by setting the reward function as 1,
if sstate(k) = awake, and 0 otherwise. The discount factor
γ is chosen to be 0.99.

The probability tables above show that all events have a
finite-time steady state. Specifically, the horizons are given
by

Hsleep = 8, Hwake = 18, Hnap = 2.

The reward function also satisfies the finite-time steady state
reward property. Therefore, Theorem 1 allows us to reduce
the overall MDP to one with 8× 18× 2× 6 = 1728 states.

We use the standard tabular policy iteration algorithm
to calculate the optimal policy. The optimal policy is to
trigger “nap” only in 8 states (of the factored MDP), which
are defined by the following condition: sstate(k) = awake,
sorder(k) = recent sleep, csleep(k) = 8+ , cnap(k) = 2+,
12 ≤ cwake(k) ≤ 15, OR sstate(k) = awake, sorder(k) = re-
cent nap, csleep(k) = 8+ , cnap(k) = 2+, 14 ≤ cwake(k) ≤
17.

The optimal policy can be interpreted as the subject taking
naps to preempt natural sleep, thereby shortening the non-
awake intervals (2 hours vs 8 hours). The policy also reveals
the optimal timing for triggering nap. Triggering too late
would increase the likelihood of failure to preempt sleep.
Triggering too early would shorten the awake intervals. A
sample trajectory obtained from running the optimal policy
is shown in Fig. 5. Here, we can see that in most days the
subject could preempt sleeping by taking short naps, except
on Day 3 where sleep happened early.

VI. CONCLUSIONS AND FUTURE RESEARCH

We formulated an MDP formulation for optimal control
of finite state automata that are driven by multivariate point
processes. Generally, the MDP would involve infinitely many
states, as some of the state components are the clock values
of the events, which can grow unboundedly. In the special
cases where the system has appropriate finite-time steady
state properties, we show that the concept of stochastic
bisimulation of MDP can be used to reduce the MDP into a
finite state one, thereby allowing us to use standard optimal

control techniques to calculate the optimal policy.
In the future, we believe generalizing the strict equivalence

that is demanded by stochastic bisimulation to an approxi-
mate one is a potentially fruitful research direction. This idea
can be coupled with a possibility to bound the sub-optimality
of the policy calculated under the approximate equivalence
relation. In particular, earlier work by Ferns, Panangaden,
Precup and others may be useful in this effort.

Finally, we note that although our algorithm can find
the optimal policy for this simplified sleep-wake process
model, the result, which assumes that naps can completely
preempt and replace sleep, is not realistic/practical. This is
mainly because the simplified model does not capture sleep
homeostasis, i.e., the quantity of “sleep debt”. In the future,
this model can be refined, e.g., by including multiple states
of awake, each representing different amount of sleep debt.
Here, nap and sleep will clear different amount of sleep debt,
leading to a more realistic model and optimal policy.
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