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Abstract: The simulation of stochastic wind loads is necessary for many applications in wind en- 1

gineering. The proper orthogonal decomposition (POD)-based spectral representation method is a 2

popular approach used for this purpose due to its computational efficiency. For general wind direc- 3

tions and building configurations, the data-informed POD-based stochastic model is an alternative 4

that uses wind tunnel smoothed auto- and cross-spectral density as input to calibrate the eigenvalues 5

and eigenvectors of the target load process. Even though this method is straightforward and presents 6

advantages compared to using empirical target auto- and cross-spectral density, the limitations and 7

errors associated with this model have not been investigated. To this end, an extensive experimental 8

study on a rectangular building model considering multiple wind directions and configurations 9

was conducted to allow the quantification of uncertainty related to the use of short-duration wind 10

tunnel records for calibration and validation of the data-informed POD-based stochastic model. 11

Results demonstrate that the data-informed model can efficiently simulate stochastic wind loads with 12

negligible model errors, while the errors associated with calibration to short-duration wind tunnel 13

data can be important. 14

Keywords: Stochastic wind load models; Wind tunnel validation; Spectral representation; Proper 15

orthogonal decomposition; Uncertainty quantification; Short-duration record 16

1. Introduction 17

Simulation of multivariate stochastic wind loads is crucial for the performance assess- 18

ment of mid- and high-rise structural systems and ultimately obtaining reliable designs. 19

Many simulation approaches have been developed and extensively studied for wind en- 20

gineering applications, such as the wavelet-based method [1,2], hybrid discrete Fourier 21

Transform (DFT), and digital filtering method [3], autoregressive moving average (ARMA) 22

method [4], spectral representation method (SRM) [5,6]. Among them, the SRM has been 23

widely used for a variety of applications due to its established theory and relative simplicity 24

[6–10]. The SRM consists of simulating time histories of stationary Gaussian processes 25

that have the second-order properties of the input process [5,6,11]. Central to SRM is the 26

decomposition of the cross-power spectral density (CPSD) matrix corresponding to the 27

stochastic process, which can be done through Cholesky decomposition or proper orthogo- 28

nal decomposition (POD). The latter has gained popularity, especially for wind engineering 29

applications, with many studies demonstrating its computational efficiency through mode 30

truncation [8,12–17]. However, while mode truncation accelerates the simulation, it can 31

influence the accuracy of the simulated signals if an insufficient number of modes are 32

considered, and needs to be treated with care [15,18]. 33

The critical aspect of SRM for simulating wind loads is defining the underlying (target) 34

stochastic process. Analytical formulations of the power spectral density (PSD) and CPSD 35

functions have been largely used to define the target load process and are generally limited 36

to a few wind directions (e.g., along-wind, across-wind) and geometries [9,19–23]. Some 37
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recent studies have used measured data as input (sample-based) to calibrate the stochastic 38

process [8,10,16,24,25], which is seen as a straightforward and physically meaningful 39

alternative. The advantage of using experimentally estimated spectral functions as the 40

target, as opposed to analytical PSD/CPSD functions, is the possibility to directly capture 41

in the simulated samples the complex aerodynamic phenomena seen in the wind tunnel. 42

Thus, a data-informed stochastic simulation method has the potential to be calibrated with 43

any given experimental input function and generate samples with the desired second- 44

order properties for different building geometries, approaching flows, and surrounding 45

configurations. Regardless of the various advantages of wind tunnel-informed stochastic 46

simulation models, concerns still exist about the limitations they may impose due to a lack 47

of experimental validation. 48

Typically, short-duration records collected in wind tunnel tests, lengths ranging from 49

30 seconds to 1 minute, are used to calibrate the stochastic wind load model [16,25]. These 50

records can be obtained by conducting high-frequency forcing balance (HFFB) tests or by 51

conducting Synchronous Multi-Pressure Sensing System (SMPSS) tests. The latter is com- 52

monly preferred as it provides a more complete picture of the dynamic wind loads acting 53

on the building surface [26–28]. Each short-duration record (observation) is a realization 54

of the underlying stochastic process, therefore only partial/incomplete information about 55

the probabilistic characteristics of the process is available. Ideally, multiple realizations of a 56

stochastic process need to be obtained to describe the underlying process. However, in prac- 57

tice, just one (or at most a handful) short-duration time history is obtained for each wind 58

direction and used as the baseline for design. These short-duration records are generally 59

affected by epistemic uncertainties, i.e., imperfect knowledge (e.g., model defects, human 60

errors, low equipment resolution, sampling errors), and aleatory uncertainties, i.e., inherent 61

randomness (e.g., variability of the wind tunnel records collected for the same experimental 62

setup). As a consequence, the underlying statistical properties of the target process will 63

contain errors that can propagate to the simulation of the wind load and ultimately the 64

estimation of structural responses. Although several experimental campaigns have been 65

conducted to study the effects of different conditions on wind loading (e.g., different terrain 66

roughness, surrounding structures, etc.), the errors associated with the estimation of the 67

second-order properties of target stochastic processes using short-duration wind tunnel 68

data have not been investigated thoroughly. If not accounted for, these errors can propagate 69

through the stochastic wind load model and can compromise the assessment of structural 70

responses. 71

The focus of this study is the quantification of the uncertainty associated with the 72

use of short-duration wind tunnel records (e.g., 32 seconds) to calibrate wind tunnel- 73

informed POD-based stochastic wind load models for the simulation of wind load time 74

series. An additional discussion on the limitations of the data-informed stochastic wind 75

load model given input data from different testing conditions is also provided. To this end, 76

an extensive wind tunnel experimental campaign was conducted on a rectangular building 77

model considering a total of 19 test conditions involving varying wind directions and 78

experimental setups. The extent of the errors in the simulation model due to the inevitable 79

variability of short-duration records is quantified as is the efficiency and accuracy of the 80

wind tunnel-informed POD-based wind load model in light of model errors and mode 81

truncation. 82

This study is organized as follows: the background theory on the simulation of multi- 83

variate stochastic wind loads through the POD-based SRM is briefly described, followed 84

by a discussion on the wind tunnel-informed POD-based SRM model; next, the mea- 85

sures adopted to quantify the uncertainties from the use of short-duration wind tunnel 86

records for calibration of the simulation model are presented; subsequently, the wind tunnel 87

experimental testing is described; finally, the results and conclusions are presented. 88
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2. Theoretical Background 89

2.1. Simulation of Multivariate Stochastic Wind Loads 90

Wind loads are spatio-temporally varying random processes that can be modeled 91

as stationary in time for a large number of applications. Based on this assumption, let 92

P(t; β) = [P1(t; β), P2(t; β), ..., PN(t; β)]T be considered as the zero-mean fluctuating part 93

of the multivariate stationary wind load process for a given wind direction, β, where N is 94

the total number of wind load components (i.e., the loads or force coefficients associated 95

with each floor level and force direction). According to the POD-based SRM theory [15], 96

the simulation of stationary zero-mean multicorrelated vector-value subprocesses P̃i(t; β) 97

can be generated by: 98

P̃i(t; β) =
Nl−1

∑
k=0

2|Ψi(ωk; β)|
√

Λi(ωk; β)∆ω cos(ωkt + ϑk(ωk) + θik) (1)

where Λi and Ψi are the ith frequency-dependent eigenvalue and eigenvector of the CPSD 99

matrix of P(t; β), respectively, Nl is the total number of discrete frequencies up to the 100

Nyquist cutoff frequency, ∆ω is the frequency increment with ωk = k∆ω, θik is a uniformly 101

distributed independent random variable over [0,2π] characterizing the stochasticity of the 102

process; and ϑk(ωk) is the phase angle defined as: 103

ϑk(ωk) = tan−1

(

Im(Ψi(ωk; β))

Re(Ψi(ωk; β))

)

(2)

The eigenvalues and eigenvectors, Λi and Ψi, can be obtained through the decomposi- 104

tion of the CPSD matrix of P(t; β) in terms of orthogonal mode functions, by solving the 105

following eigenproblem: 106

[SP(ω; β)− Λi(ω; β)I]Ψi(ω; β) = 0 (3)

where SP is the two-sided CPSD matrix of the zero-mean process P(t; β), which is Her- 107

mitian and non-negative definite [11]; I is the identity matrix. Once the eigenvalues and 108

eigenvectors are obtained, the CPSD matrix of P(t; β) can be expressed by the summation 109

of the contributing modes as: 110

SP(ω; β) =
N

∑
i=1

Λi(ω; β)Ψi(ω; β)Ψ∗
i (ω; β) (4)

For many problems in wind engineering, the first few eigenmodes associated with 111

the highest eigenvalues carry the majority of the energy of the process. The truncation of 112

the higher modes enables the following reduced-order modeling of the resultant Gaussian 113

wind load process PGP(t; β): 114

PGP(t; β) ≈ P̂GP(t; β) = P(β) +
Nm

∑
i=1

P̃i(t; β) (5)

where P̂GP(t; β) is the truncated representation of PGP(t; β), P(β) is the mean wind load for 115

a given wind direction β, and Nm is the number of contributing modes such that Nm f N 116

[15]. 117

While wind pressures are known to have non-Gaussian features, the wind loads may 118

be modeled as a Gaussian process based on the Central Limit Theorem [29]. Therefore, the 119

knowledge of the second-order statistics is assumed adequate for describing the stochastic 120

wind load process, P(t; β). 121
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2.2. Wind Tunnel-Informed POD-based SRM 122

The wind tunnel-informed POD-based SRM is based on the method described in 123

Section 2.1. The basic idea is to calibrate the model to a two-sided CPSD matrix, SP(ω; β), 124

derived from a typical single short-duration (30 seconds to 1 minute) wind tunnel record 125

[16,25]. 126

To describe the method for the simulation of wind loads, assume Pwt(t; β) = [Pwt,1(t; β), 127

Pwt,2(t; β), ..., Pwt,N(t; β)]T , where N is the total number of force components obtained from 128

wind tunnel experimentation and representing the forces Fx(t), Fy(t), and Tz(t) acting at 129

the centroid of each floor of the building. To obtain the eigenvalues and eigenvectors of the 130

CPSD matrix of Pwt(t; β) and calibrate the simulation model as in Eq. 1, the data-informed 131

smoothed CPSD matrix of the single record needs to be estimated. The Welch’s averaging 132

method can be used to this end, which consists of breaking the filtered zero-mean time series 133

Pwt(t; β) into K windowed segments of the same length and averaging their periodograms 134

[30,31]. This method reduces the variance of the PSD/CPSD functions by eliminating noise 135

(random effects), hence facilitating the identification of important patterns and trends in 136

the frequency domain that better align with the underlying PSD/CPSD functions of the 137

process. The smoothed PSD/CPSD functions are then decomposed using the spectral POD 138

method, to obtain the eigenvalues and eigenvectors, as in Eq. 3. The simulation model 139

can be further enhanced through standardization of the input wind tunnel loads or force 140

coefficient time series prior to applying the spectral POD method (see Appendix A). This 141

leads to a more even distribution of energy within the POD, and a lower number of modes 142

is needed to accurately represent the component time series. 143

This data-informed approach has the key property of incorporating any building- 144

specific aerodynamic phenomena captured in the wind tunnel into the simulation (e.g., 145

vortex shedding and separated flow). Additionally, it enables the simulation of correlated 146

load components acting in the x, y, and z-rotational directions without the need for a large 147

set of repeated measurements or the development of complex equations to describe the 148

stochastic process for each wind direction and building geometry. However, the estimation 149

of the target matrix, SP(ω; β), from one short-duration record could potentially lead to 150

significant deviation from the underlying process. It is therefore crucial to quantify the 151

uncertainty related to the use of a single short duration record for calibrating the simulation 152

model. 153

3. Uncertainty Quantification 154

3.1. Errors Induced by Wind Tunnel Data 155

The main uncertainty investigated in this study is associated with the variability of 156

individual wind tunnel records that are used to calibrate the wind tunnel-informed POD- 157

based SRM. In this study, the second-order statistics of the processes, such as variance 158

and correlation coefficients, are used to define the uncertainty measures. The target CPSD 159

functions, hereafter referred to as target spectra, are obtained through the ensemble average 160

of multiple wind tunnel records, as described in detail in Section 4, and are used in this 161

study as the baseline for comparison. 162

The error in the variance can be defined as follows: 163

εi(%) =

(

σ2
i − σ2

iT

σ2
iT

)

× 100 (6)

where σ2
iT

is the variance associated with the target PSD function, which is estimated in 164

terms of the integration of the PSD functions, and σ2
i is the variance derived from the 165

integration of the smoothed PSD function estimated from a single short-duration record. 166

Note that this measure determines the percentage difference between the diagonal terms of 167

the CPSD matrices. 168

For the off-diagonal terms of the CPSD matrices, percentage error estimates can become 169

meaningless for scarcely correlated signal pairs. Indeed, the target covariance, σijT , which 170
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is estimated by integrating the cospectrum (real part of the target CPSD matrix), can have 171

values close to zero for signals with weak correlation. This can lead to large relative errors 172

when σijT is used as the denominator in the percentage error estimation. Therefore, errors 173

of the off-diagonal terms in the CPSD functions are assessed by calculating the difference 174

between the correlation coefficients of the target spectra and the correlation coefficients of 175

each smoothed spectra from short-duration records. The error in the correlation coefficients, 176

ϕij, is therefore expressed as: 177

ϕij = ρt,ij − ρr,ij (7)
178

ρt,ij =
σijT

√

σ2
iiT

σ2
jjT

(8)

179

ρr,ij =
σijr

√

σ2
iir

σ2
jjr

(9)

where ρt,ij is the correlation coefficient of the target spectra, ρr,ij is the correlation coefficient 180

associated with individual smoothed spectra estimated from short-duration records, and 181

r = 1, ..., R with R being the total number of wind tunnel records. As correlation coefficients 182

have values ranging from -1 to 1, it is a straightforward measure to judge/interpret the 183

significance of any observed differences. 184

3.2. Errors Induced by the Model 185

Previous studies have extensively demonstrated the accuracy and efficiency of the 186

POD-based SRM for generating realizations that match prescribed CPSD functions [15,32]. 187

For validation purposes, the model errors associated with the wind tunnel-informed 188

stochastic wind load model calibrated to the target spectra are estimated for different 189

experimental conditions. The model errors are computed using the same error measures 190

described in Eq. (6) and (7), with the caveat that the smoothed spectra are substituted by 191

the ensemble spectra of the simulated signals considering all modes. 192

Additionally, to provide guidance on the selection of a sufficient number of modes for 193

an accurate reduced-order representation of the simulated signals, the error considering 194

higher-order mode truncation is quantified. The effects of wind direction and experimental 195

setup on the truncation error are evaluated. In evaluating the error measures of Eqs. (6) 196

and (7), the target spectra are used to calibrate the model while the ensemble spectra of the 197

reduced-order signals are used to characterize the performance of the reduced model. 198

4. Wind Tunnel Tests 199

4.1. Experimental Setup 200

Extensive experimental testing was carried out at the wind tunnel to enable the quan- 201

tification of the uncertainty associated with individual wind tunnel records. In particular, a 202

rectangular rigid model with geometry and pressure tap distribution shown in Fig. 1(a) 203

was considered. Pressure measurements were simultaneously collected using a Scanivalve 204

system at 625 Hz sampling frequency. A total of 512 pressure taps were distributed on 205

five surfaces to capture the flow around the corners and flow variation with height, width, 206

and depth. In this study, only the lateral surfaces were considered to obtain the resultant 207

forces as the roof pressures to not contribute to the lateral forces. In total, 19 different 208

testing conditions were conducted for various wind directions and experimental setups. To 209

investigate possible interference effects on the uncertainties of short-duration records, two 210

different testing configurations were considered. The first considered a single model (SM), 211

while the other configuration added two proximity models (PM) with the same geometry 212

as the building model, as shown in Fig. 1(b)-(c). For the SM setup, the experiment was 213

conducted for approximately 15 minutes in model scale and repeated five times for wind 214

directions varying from 0 to 90 degrees, in increments of 10 degrees, as shown in Fig. 2(a). 215

Due to the bilateral symmetry of the proximity model test setup, as shown in Fig. 2(b), five 216
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Figure 1. (a) Illustration of the building model used in the wind tunnel tests and configuration of the

pressure taps, (b) Wind tunnel testing with SM setup, and (c) Wind tunnel testing with PM setup.

repetitions of 15 minutes in model scale were carried out rotating from 0 to 180 degrees, 217

also in 10 degrees increments. 218

The experiments were carried out at the Natural Hazards Engineering Research 219

Infrastructure (NHERI) Boundary Layer Wind Tunnel of the University of Florida. The 220

tunnel is 6 m wide, 3 m tall, and 40 m long, as shown in Fig. 3 where the “terraformers” 221

are automated terrain roughness elements with an adjustable height that can be quickly 222

adjusted by electric actuators [33]. For the conducted tests, the height of the terraformer 223

elements was set to 16 cm, in order to obtain a suburban terrain condition. The model scale 224

considered in this study was 1:200, representing a 25-story full-scale building, while the 225

velocity scale was 1:3 leading to a time scale of 1:66. 226

Study 

building

(0,0)
X

Surrounding 

building

60 cm

60 cm

90 cm

90 cm

Y

X

Wind (β=0°)0°-180° degrees

0°-90° degrees

a) Single Model b) Proximity Model

Fx

Fy

Tz

Wind (β=0°)

Wind (β=90°)

c) Coordinate System

Y

Wind (β=0°)

By

Bx

Figure 2. (a) SM setup, (b) PM setup, and (c) coordinate system adopted in estimating the wind loads.

The external pressure coefficients, Cp,e, at each tap location and time, t, are estimated 227

as: 228

Cp,e(t) =
p(t)− p0

q
(10)

where p(t) is the raw pressure measured at each pressure tap, p0 is the mean reference 229

static pressure measured by a Cobra Probe located upwind and at the height of the model, 230
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Figure 3. Representation of the UF NHERI boundary layer wind tunnel.

and q is the dynamic pressure defined as q = 1/2ρU2
H with ρ the local air density and UH 231

the mean streamwise wind speed at the model height. Information on the local atmospheric 232

pressure and temperature was used to estimate the air density during the experiments. 233

The local wind forces acting on the nth floor in x and y translational directions and 234

torque around the vertical z direction were obtained by first considering a linear interpo- 235

lation between the pressure taps to obtain the pressures acting at each floor level. Then, 236

the pressures were integrated over the tributary area corresponding to nth floor to obtain 237

the wind force components. The resultant local forces and moment can be decomposed 238

into Fx,n(t), Fy,n(t) and Tz,n(t) components, where n denotes the floor number. Figure 2(c) 239

shows the forces, coordinate system, and wind directions. The force components at each 240

floor are normalized to obtain force coefficients as follows: 241

CFx,n(t) =
Fx,n(t)

qBx H
(11)

242

CFy,n(t) =
Fy,n(t)

qBy H
(12)

243

CTz,n(t) =
Tz,n(t)

qH B2
max
2

(13)

where CFx,n(t), CFy,n(t), CTz,n(t) are the dynamic force coefficients at the nth floor, H is 244

the height of the model, Bx and By are the plan dimensions of the building, and Bmax is the 245

maximum plan dimension of the building. 246

4.2. Processing of the Wind Tunnel Data 247

In order to evaluate the uncertainties associated with using short-duration wind tunnel 248

records to calibrate the data-informed stochastic model, as defined in Section 3, the wind 249

tunnel data set was divided into two groups; the first group was used to define the baseline 250

target spectra and the second group, also referred to as the testing set, was used to obtain 251

the smoothed spectra of individual short-duration records. The purpose of dividing the 252

data into two different groups is to obtain unbiased and meaningful error estimates as the 253

testing set is independent of the data set used to define the target spectra. 254

Target spectra were obtained using an ensemble average of 750 spectra estimated using 255

a rectangular window of 4-s duration. Each 4-s record was obtained from non-overlapping 256

intervals extracted from the first 10 minutes of each wind tunnel test repetition, as described 257

in Section 2.2. In particular, each 10-minute set was divided into 150 segments of 4-second 258

duration, while a rectangular window of the same length as the signal was used to ensure 259

zero padding and zero overlapping between the segments. The window size of 4 seconds 260

was adopted since it was small enough to obtain multiple periodograms to be averaged as 261

well as to capture the low-frequency content sufficiently well without any padding-based 262

interpolation. A total of 750 segments were used to establish the target spectra for each 263

force coefficient. Ultimately, the target spectra were estimated for all 75 force components 264

for every wind direction and setting. 265

The remaining 5 minutes of data were used as a testing set in order to evaluate the 266

uncertainties as described in Section 3. The testing data were divided into 32-second 267
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segments, which were treated as independent short-duration wind tunnel records. The 268

spectra of each short-duration record were obtained such that the frequency intervals are 269

identical to the target spectra therefore ensuring the absence of interpolation errors (e.g., 270

zero padding). In particular, Welch’s averaging method was considered using a Hanning 271

window function of same length as the target spectra window size, and overlap of 50%. In 272

general, a total of 45 short-duration records were obtained for each wind direction, with a 273

few directions having fewer records (e.g., 35-44 segments) due to missing data or evident 274

errors in the data set (e.g., abnormal peak pressure values that were up to 50 times larger 275

than the maximum peaks of the entire signal), hence they were disregarded. Similarly, one 276

of the 4-s segments was disregarded due to the occurrence of an abnormal peak pressure. 277

A second-order Butterworth lowpass filter with a cutoff frequency of 50 Hz was 278

applied to the dataset, as frequencies only up to a certain value are of interest for practical 279

wind engineering applications. The cutoff frequency was determined such that unrealistic 280

high-frequency noise caused by equipment was eliminated. 281
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Figure 4. Comparison between smoothed PSDs of short-duration records, SR( f ), and target PSD of

CFx,20(t) at the 20th floor and wind direction of β = 0◦.
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Figure 5. Comparison between smoothed PSDs of short-duration records, SR( f ), and target PSD of

CFy,20(t) at the 20th floor and wind direction of β = 0◦.

5. Results 282

5.1. Preamble 283

The experimental data is employed to estimate the uncertainties associated with the 284

calibration of the wind tunnel-informed stochastic wind load model using short-duration 285

records (e.g., 32 seconds). Subsequently, to investigate the effectiveness of the simulation 286

scheme, the model errors and truncation errors are discussed. 287
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CTz,20(t) at the 20th floor and a wind direction of β = 0◦.

5.2. Errors induced by the Variability of Short-duration Wind Tunnel Records 288

Figures 4-6 provide a comparison between the target PSDs (black solid lines), esti- 289

mated as in Section 4.2, and the smoothed PSDs (gray dotted lines) of approximately 45 290

individual realizations of short-duration force coefficient records, SR, at the 20th floor, i.e. 291

CFx,20(t), CFy,20(t) and CTz,20(t), respectively. As can be observed, the smoothed PSDs 292

fluctuate around the target spectra, especially at the lower frequency region, showing 293

a record variability of up to two standard deviations from the mean. It is also possible 294

to observe that the mean spectra, µSR
, which is obtained from the ensemble average of 295

short-duration records, closely follow the target spectra for the x and y directions as well 296

as rotations around the vertical z direction. The fact that both curves are visibly close 297

to one another indicates that the individual records are indeed realizations of the target 298

stochastic process, and even though smoothing is applied, considerable variability in the 299

records is clearly evident. The similarity between both curves also indicates the quality and 300

repeatability of the experiment. A similar conclusion could be drawn for all other floors. 301
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Figure 7. Mean error in the variance, µε, with standard deviation, σε, for each floor, for the SM layout

and β = 0◦.

With respect to quantitative measures, the errors in the variance and the errors in the 302

correlation coefficients are estimated as detailed in Section 3. Figure 7 presents the mean, 303

µε, and standard deviation, σε, of the error in the variance for all force components at each 304

floor and the SM layout for wind direction β = 0◦. In particular, µε represents the error 305

between the variance estimated from the target spectra (black solid curve in Figs. 4-6) and 306
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the variance estimated from the mean spectra (green solid line in Figs. 4-6), whereas σε 307

quantifies the spread that individual records can cause on the estimated variances. Overall, 308

it is evident that µε ranges between -3% to 0.5% for all force components and all floors, 309

while σε varies between 5.5% to 9.6% for this particular wind direction and configuration. 310

To summarize the ranges of the error measures µε and σε for all wind directions 311

and both experimental configurations (i.e., SM and PM), Fig. 8 presents the expectation, 312

maximum, and minimum values of µε and σε for all wind directions and both experimental 313

configurations. It is possible to observe from Fig. 8 that overall, both µε and σε are relatively 314

consistent for all 19 cases studied, with no particular sensitivity to a wind direction or 315

testing condition. In particular, σε ranges from about 5% to almost 12% with an average 316

of around 7.5%. This demonstrates that the smoothed spectra of short-duration records 317

can considerably deviate from the target spectra regardless of force component and testing 318

condition. Therefore, even though smoothing is applied to reduce noise, the use of short- 319

duration records to calibrate the wind tunnel-informed stochastic wind load model can 320

introduce significant errors in the simulation. It should be noted that, in general, there are 321

other possible sources of errors. For example, errors generated by experimental setup or 322

those introduced by the integration of pressures over the tributary areas and interpola- 323

tion to each structural model level. These errors should in general be added to the errors 324

discussed in this study. It should be observed that, because a consistent pressure integration 325

method and experimental set are used in this work, such additional errors do not affect the 326

presented results. 327
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Figure 9. Map of the target correlation coefficients for the SM setup and wind direction β = 0◦.
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Figure 10. Mean error in the correlation coefficients for the SM setup and wind direction β = 0◦.
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Figure 11. Standard deviation of the difference between target and typical correlation coefficients for

the SM setup and wind direction β = 0◦.

To assess the errors in terms of the off-diagonal components of the CPSD matrices, 328

the error in the correlation coefficients are estimated using Eq. (7). The map of correlation 329

coefficients estimated from the target spectra are presented in Fig. 9 for β = 0◦ and the SM 330

setup. It should be noted that components 1-25, 26-50, and 51-75 refer to the components 331

CFx(t), CFy(t), and CTz(t), respectively. 332

The map of the mean errors in the correlation coefficients between the target spectra 333

and the smoothed spectra, µϕ, considering all force components, SM setup, and β = 0◦ 334

are presented in Fig. 10. The values of µϕ range from around -0.014 to 0.014, which is 335

relatively small compared to the magnitude of the target correlation coefficients in Fig. 9, 336

indicating the validity of spectral smoothing in a mean sense. Figure 11 shows the map of 337

the standard deviation, σϕ, of the errors in the correlation coefficients for β = 0◦ and the 338

SM configuration. It can be observed that highly correlated components show a smaller σϕ, 339

while higher values are obtained for pairs with a small correlation coefficient. The values 340

of σϕ reach as high as 0.056, indicating uncertainty in the estimation of the correlation 341

coefficients, which agrees with the results presented for the errors in the variance. 342

To summarize the errors presented in Figs. 10-11 for all 19 testing conditions, Fig. 343

12 reports the maximum, minimum, and expected value of µϕ and σϕ for all correlation 344

pairs of each wind direction and experimental configuration. It can be seen that E[µϕ], 345

over all floors and force components fluctuates around zero, indicating that on average the 346

correlation structure estimated from the smoothed spectra is close to the target. However, 347

for the standard deviation the values of σϕ fluctuate around 0.04 with a maximum that can 348

reach as high as 0.08, indicating an important level of variability in the correlation structure 349

estimated from a single short-duration wind tunnel record. Similar to what was seen for 350

the variance, it is also possible to observe that there is no particular sensitivity of the results 351

to the wind direction or testing configuration. 352
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Figure 12. (a) Mean errors in the correlation coefficients for SM and PM layouts and (b) Std of errors

in the correlation coefficients for the SM and PM layouts.

Figure 13. Histograms of ε associated with SM layout and β = 0◦ of (a) CFx; (b) CFy; and (c) CTz, and

(d) correlation coefficients between the components of ε.

Figure 13(a)-(c) presents the histograms of the error in the variance, ε, from all real- 353

izations in the testing set for the SM layout and β = 0◦. It is possible to observe that the 354

histograms resemble approximately normal distributions, with errors induced from the use 355

of an individual record reaching as high as 20%. Another important finding is presented in 356

the map of Fig. 13(d), which shows the correlation of the error in the variance, ρε, associated 357

with each force component. It can be observed that there is a high correlation in ε between 358

components acting in the same direction, but a moderate to low correlation for components 359

acting in different directions. A similar trend was observed for other wind directions and 360

settings in terms of the magnitude of errors, shape of the histograms, and correlation of the 361

errors. This again indicates the importance of modeling the uncertainty associated with 362

spectral functions estimated from short-duration records. 363

5.3. Model and Truncation Errors 364

5.3.1. Model Errors 365

To evaluate the errors associated with the wind-tunnel informed stochastic wind load 366

model, a set of 40,000 realizations was generated using the target spectra to calibrate the 367

model. Figures 14 and 15 report the statistics of the errors in the variance and errors in the 368

correlation coefficients for the 40,000 realizations. It can be seen that for all wind directions 369
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and settings, the expected mean error in the variance, E[µε], is in the order of 10−4%, and 370

the expected error in the correlation coefficients, E[µϕ] is nearly 0. This demonstrates that 371

the data-driven POD-based stochastic wind load model operates with negligible model 372

error. This agrees with the theory of POD-based SRM models as the simulation algorithm 373

depends only on the target spectra provided as input, regardless of testing conditions when 374

all modes are considered [17,18,34].
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Figure 14. Expected values and range of the model error in the variance for the SM and PM setup.
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Figure 15. Expected values and range of the model error in the correlation coefficients for the SM and

PM setup.

Figures 16 and 17 examine the relative magnitude of the errors that can arise from the 376

stochastic wind load model based on the target spectra compared to the errors induced 377

by the use of smoothed spectra estimated from a single short-duration record. From these 378

figures, it is evident that model errors are insignificant compared to the errors introduced 379

by the use of short-duration wind tunnel records when all modes are considered.
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Figure 16. Comparison of the error in the variance due to the use of a single smoothed short-duration

wind tunnel record (wt) and the simulation model (sim).
380



Version August 15, 2023 submitted to Wind 14

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Figure 17. Comparison of the difference between the correlation coefficients due to the use of a single

smoothed short-duration wind tunnel record (wt) and the simulation model (sim).

5.3.2. Truncation Errors 381

To study the effects of mode truncation, the simulation of a set of 40,000 realizations 382

was conducted using the wind tunnel-informed stochastic wind load model calibrated 383

to the target spectra. This was used to carry out a parametric study varying the number 384

of modes in order to examine the errors this induces in the variance and the correlation 385

coefficients. 386

A total of 10, 15, and 25 out of the 75 total modes were considered to generate samples 387

for the SM layout and wind direction β = 0◦, which corresponds to 13%, 20%, and 33% of 388

all modes, respectively. The value of µε, shown in Fig. 18, reduces as the number of modes 389

increases, as expected. Figure 19 shows how the map of µϕ changes for an increase in the 390

number of contributing modes. The results demonstrate that the consideration of the lower 391

modes associated with large eigenvalues is crucial for capturing the majority of the energy 392

of the process, while the consideration of higher modes does not significantly improve 393

accuracy. This result agrees with other studies in the literature for multiple applications 394

[12,15,26].

-10 0 10

5

10

15

20

25

-10 0 10

5

10

15

20

25

-10 0 10

5

10

15

20

25

Figure 18. Mean error in the variance, µε, for each force coefficient component considering 10, 15,

and 25 contributing modes, for SM layout and wind direction β = 0◦.
395

Figures 20(a)-(b) summarize the statistics (i.e., maximum, minimum, and expected 396

values) of ε and ϕ, for the various wind directions and two configurations. For a reduced 397

number of modes, i.e., 10 and 15 modes, the errors are considerably larger and more 398

sensitive to changes in wind directions and configurations. However, for a sufficient 399
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Figure 19. Difference between target and simulated signals considering 10, 15, and 25 modes, for SM

layout and wind direction β = 0◦.

number of contributing modes, i.e., 25 modes, the errors are sufficiently small for all cases. 400

This confirms that a minimum number of modes in the simulation is necessary to ensure 401

small and consistent errors given any wind direction and configuration. 402

(a) (b)

Figure 20. (a) Error in the variance, ε, and (b) Errors in the correlation coefficients, ϕ, considering 10,

15, and 25 contributing modes.

Figures 21 and 22 show the expected values of µε and the expected values of µϕ 403

for all wind directions and both experimental settings, considering varying numbers of 404

contributing modes. The results demonstrate that the wind tunnel-informed stochastic 405

model is able to accurately simulate reduced-order signals regardless of the type of input 406

spectra. For the test condition investigated in this study, it is possible to observe that E[µε] 407

reaches a value between -0.2% to -0.6% for approximately 20 modes (i.e., around 27% of all 408

modes) while E[µϕ] reaches a value of around 10−4, which is comparable to the model error 409

considering all modes. This means that higher modes do not have a significant contribution 410

to the loading process and can be truncated with no noticeable loss of accuracy. Similar 411

results were encountered in different studies, where for local loads and pressures about 412

20% to 30% of modes are necessary to provide high accuracy [12,15]. 413

6. Conclusions and Discussion 414

An extensive wind tunnel test campaign was conducted considering multiple wind 415

directions and two different experimental configurations to ultimately quantify the uncer- 416

tainties introduced in the simulation of wind loads when using typical single short-duration 417

wind tunnel records to calibrate POD-based stochastic wind load models. A discussion 418

on the limitations of using data-informed POD models was also provided with respect to 419

model errors and the truncation of higher-order modes. 420
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Figure 21. Expected error in the variance from the truncation of modes for both the SM and PM

setups, considering 1, 5, 10, 15, 20, 25, and 75 contributing modes.

Figure 22. Expected difference in the correlation coefficients from the truncation of modes for all wind

directions and the SM and PM setups, considering 1, 5, 10, 15, 20, 25, and 75 contributing modes.
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The major contributions of this study are as follows. It has been demonstrated that the 421

spectra estimated from single short-duration wind load records can considerably deviate 422

from the spectra of the underlying stochastic process, even though smoothing is applied 423

to reduce noise. The standard deviation of the errors in the variance estimated from the 424

integration of the spectra can reach 12%, while the standard deviation of the errors in 425

the correlation coefficients can reach values as high as 0.08. This significant variability 426

supports the argument that uncertainty should be considered when simulating wind loads 427

calibrated to spectral functions estimated from single short-duration records since it can 428

affect the response estimates of wind-excited systems. Moreover, it has been observed that 429

errors introduced by the use of single short-duration records are of a similar magnitude for 430

different experimental conditions with no particular sensitivity to the experimental setting 431

being observed. It was also found that errors in the variance have a high correlation for 432

forces acting in the same direction, whereas, for forces acting in different directions, these 433

errors had a low to moderate correlation. Lastly, it was demonstrated that the wind tunnel- 434

informed stochastic wind load model has negligible model errors as compared to the errors 435

introduced by calibration to single short-duration records. Regarding mode truncation, it 436

was observed that at least 25% of modes should be included for simulating wind loads for 437

the tested scenarios with negligible errors, which is overall consistent with results found in 438

the literature. It is important to note that even though 19 cases were considered, the study 439

of the effects of the uncertainties of this work should be investigated for other geometries 440

and record durations in order to obtain a more comprehensive uncertainty quantification. 441

To conclude, due to its straightforwardness, the wind tunnel-informed stochastic wind 442

load model can be a powerful alternative to reduce the reliance on the collection of multiple 443

wind records for generating representative samples of stochastic wind load time series. 444

It is hoped that the extensive error analysis associated with the use of the data-driven 445

POD-based stochastic wind load model of this work will provide greater confidence for the 446

use of such models in wind engineering applications, in particular, for structural response 447

estimation, performance-based wind engineering, and vibration control. Future research 448

efforts will focus on expanding the error assessment of this work to non-Gaussian multivari- 449

ate wind processes, developing models that incorporate these uncertainties in probabilistic 450

performance assessment approaches, and quantifying the impacts of these uncertainties on 451

the structural response. 452

Appendix A Standardization scheme of force coefficients 453

To increase the efficiency of carrying out a POD analysis of wind force coefficients, it 454

is first advisable to standardize the data. To this end, the zero-mean force coefficients were 455

standardized in this study using the following scheme: 456

CFnorm
x,n (t) =

CFx,n(t)

σCFx,n
γr

(A1)

457

CFnorm
y,n (t) =

CFy,n(t)

σCFy,n
γr

(A2)

458

CTnorm
z,n (t) =

CTz,n(t)

σCTz,n
γr

(A3)

where CFx(t), CFy(t), CTz(t), are the zero-mean force coefficients while γr = 3.5 is the 459

reduced variate estimated based on the expected peak of a Gaussian process after normal- 460

ization. As an example, Fig. A1 illustrates the standardized force coefficient time series of 461

an individual record for wind direction β = 0◦ and the SM layout. 462
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