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Abstract: The simulation of stochastic wind loads is necessary for many applications in wind en-
gineering. The proper orthogonal decomposition (POD)-based spectral representation method is a
popular approach used for this purpose due to its computational efficiency. For general wind direc-
tions and building configurations, the data-informed POD-based stochastic model is an alternative
that uses wind tunnel smoothed auto- and cross-spectral density as input to calibrate the eigenvalues
and eigenvectors of the target load process. Even though this method is straightforward and presents
advantages compared to using empirical target auto- and cross-spectral density, the limitations and
errors associated with this model have not been investigated. To this end, an extensive experimental
study on a rectangular building model considering multiple wind directions and configurations
was conducted to allow the quantification of uncertainty related to the use of short-duration wind
tunnel records for calibration and validation of the data-informed POD-based stochastic model.
Results demonstrate that the data-informed model can efficiently simulate stochastic wind loads with
negligible model errors, while the errors associated with calibration to short-duration wind tunnel
data can be important.

Keywords: Stochastic wind load models; Wind tunnel validation; Spectral representation; Proper
orthogonal decomposition; Uncertainty quantification; Short-duration record

1. Introduction

Simulation of multivariate stochastic wind loads is crucial for the performance assess-
ment of mid- and high-rise structural systems and ultimately obtaining reliable designs.
Many simulation approaches have been developed and extensively studied for wind en-
gineering applications, such as the wavelet-based method [1,2], hybrid discrete Fourier
Transform (DFT), and digital filtering method [3], autoregressive moving average (ARMA)
method [4], spectral representation method (SRM) [5,6]. Among them, the SRM has been
widely used for a variety of applications due to its established theory and relative simplicity
[6-10]. The SRM consists of simulating time histories of stationary Gaussian processes
that have the second-order properties of the input process [5,6,11]. Central to SRM is the
decomposition of the cross-power spectral density (CPSD) matrix corresponding to the
stochastic process, which can be done through Cholesky decomposition or proper orthogo-
nal decomposition (POD). The latter has gained popularity, especially for wind engineering
applications, with many studies demonstrating its computational efficiency through mode
truncation [8,12-17]. However, while mode truncation accelerates the simulation, it can
influence the accuracy of the simulated signals if an insufficient number of modes are
considered, and needs to be treated with care [15,18].

The critical aspect of SRM for simulating wind loads is defining the underlying (target)
stochastic process. Analytical formulations of the power spectral density (PSD) and CPSD
functions have been largely used to define the target load process and are generally limited
to a few wind directions (e.g., along-wind, across-wind) and geometries [9,19-23]. Some
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recent studies have used measured data as input (sample-based) to calibrate the stochastic s
process [8,10,16,24,25], which is seen as a straightforward and physically meaningful s
alternative. The advantage of using experimentally estimated spectral functions as the 4o
target, as opposed to analytical PSD/CPSD functions, is the possibility to directly capture 4
in the simulated samples the complex aerodynamic phenomena seen in the wind tunnel. s
Thus, a data-informed stochastic simulation method has the potential to be calibrated with 4
any given experimental input function and generate samples with the desired second- 44
order properties for different building geometries, approaching flows, and surrounding s
configurations. Regardless of the various advantages of wind tunnel-informed stochastic 46
simulation models, concerns still exist about the limitations they may impose due to a lack 47
of experimental validation. a8

Typically, short-duration records collected in wind tunnel tests, lengths ranging from 4
30 seconds to 1 minute, are used to calibrate the stochastic wind load model [16,25]. These o
records can be obtained by conducting high-frequency forcing balance (HFFB) tests or by s
conducting Synchronous Multi-Pressure Sensing System (SMPSS) tests. The latter is com- s
monly preferred as it provides a more complete picture of the dynamic wind loads acting s
on the building surface [26-28]. Each short-duration record (observation) is a realization s
of the underlying stochastic process, therefore only partial/incomplete information about s
the probabilistic characteristics of the process is available. Ideally, multiple realizations of a  se
stochastic process need to be obtained to describe the underlying process. However, in prac- =7
tice, just one (or at most a handful) short-duration time history is obtained for each wind s
direction and used as the baseline for design. These short-duration records are generally  so
affected by epistemic uncertainties, i.e., imperfect knowledge (e.g., model defects, human o
errors, low equipment resolution, sampling errors), and aleatory uncertainties, i.e., inherent e
randomness (e.g., variability of the wind tunnel records collected for the same experimental 2
setup). As a consequence, the underlying statistical properties of the target process will e
contain errors that can propagate to the simulation of the wind load and ultimately the s
estimation of structural responses. Although several experimental campaigns have been s
conducted to study the effects of different conditions on wind loading (e.g., different terrain s
roughness, surrounding structures, etc.), the errors associated with the estimation of the &
second-order properties of target stochastic processes using short-duration wind tunnel s
data have not been investigated thoroughly. If not accounted for, these errors can propagate  es
through the stochastic wind load model and can compromise the assessment of structural 7o
responses. n

The focus of this study is the quantification of the uncertainty associated with the =+
use of short-duration wind tunnel records (e.g., 32 seconds) to calibrate wind tunnel- 7
informed POD-based stochastic wind load models for the simulation of wind load time 7
series. An additional discussion on the limitations of the data-informed stochastic wind s
load model given input data from different testing conditions is also provided. To this end, 7
an extensive wind tunnel experimental campaign was conducted on a rectangular building 7~
model considering a total of 19 test conditions involving varying wind directions and 7
experimental setups. The extent of the errors in the simulation model due to the inevitable 7
variability of short-duration records is quantified as is the efficiency and accuracy of the =0
wind tunnel-informed POD-based wind load model in light of model errors and mode &
truncation. 82

This study is organized as follows: the background theory on the simulation of multi- s
variate stochastic wind loads through the POD-based SRM is briefly described, followed .
by a discussion on the wind tunnel-informed POD-based SRM model; next, the mea- s
sures adopted to quantify the uncertainties from the use of short-duration wind tunnel s
records for calibration of the simulation model are presented; subsequently, the wind tunnel &7
experimental testing is described; finally, the results and conclusions are presented. 88
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2. Theoretical Background
2.1. Simulation of Multivariate Stochastic Wind Loads

Wind loads are spatio-temporally varying random processes that can be modeled
as stationary in time for a large number of applications. Based on this assumption, let
P(t;B) = [P1(t; B), P2(t; B), .., Px(t; B)]T be considered as the zero-mean fluctuating part
of the multivariate stationary wind load process for a given wind direction, 3, where N is
the total number of wind load components (i.e., the loads or force coefficients associated
with each floor level and force direction). According to the POD-based SRM theory [15],
the simulation of stationary zero-mean multicorrelated vector-value subprocesses P;(t; B)
can be generated by:

N;—

P;(t; B Z 2| (wy; B)| v/ Ai(wi; B) Aw cos(wyt + O (wi) + Oix) (1)

where A; and ¥; are the ith frequency-dependent eigenvalue and eigenvector of the CPSD
matrix of P(; B), respectively, Nj is the total number of discrete frequencies up to the
Nyquist cutoff frequency, Aw is the frequency increment with wy = kAw, 0y, is a uniformly
distributed independent random variable over [0,277] characterizing the stochasticity of the
process; and 9 (wy) is the phase angle defined as:

O(wy) = tan~! (W) ?

The eigenvalues and eigenvectors, A; and ¥;, can be obtained through the decomposi-
tion of the CPSD matrix of P(f; §) in terms of orthogonal mode functions, by solving the
following eigenproblem:

[Se(w; B) — Ai(w; BT ¥i(w; B) =0 )

where Sp is the two-sided CPSD matrix of the zero-mean process P(t; ), which is Her-
mitian and non-negative definite [11]; I is the identity matrix. Once the eigenvalues and
eigenvectors are obtained, the CPSD matrix of P(t; 8) can be expressed by the summation
of the contributing modes as:

N
Sp(w; B) = ) Ai(w; B)¥i(w; B)¥; (w; B) (4)

i=1

For many problems in wind engineering, the first few eigenmodes associated with
the highest eigenvalues carry the majority of the energy of the process. The truncation of
the higher modes enables the following reduced-order modeling of the resultant Gaussian
wind load process PGP (t; B):

an

PCP(tB) ~ PCP(;B) =P(B) + ; Pi(t; B) )

where PGP (t; B) is the truncated representation of P¢*(¢; 8), P(B) is the mean wind load for
a given wind direction , and N, is the number of contributing modes such that N, < N
[15].

While wind pressures are known to have non-Gaussian features, the wind loads may
be modeled as a Gaussian process based on the Central Limit Theorem [29]. Therefore, the
knowledge of the second-order statistics is assumed adequate for describing the stochastic
wind load process, P(t; B).
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2.2. Wind Tunnel-Informed POD-based SRM

The wind tunnel-informed POD-based SRM is based on the method described in
Section 2.1. The basic idea is to calibrate the model to a two-sided CPSD matrix, Sp(w; ),
derived from a typical single short-duration (30 seconds to 1 minute) wind tunnel record
[16,25].

To describe the method for the simulation of wind loads, assume Py (t; B) = [Pyt 1 (£ B),
P2 (£ B), o Put N (£ B)] T where N is the total number of force components obtained from
wind tunnel experimentation and representing the forces Fy(t), F,(t), and T.(t) acting at
the centroid of each floor of the building. To obtain the eigenvalues and eigenvectors of the
CPSD matrix of Py (t; B) and calibrate the simulation model as in Eq. 1, the data-informed
smoothed CPSD matrix of the single record needs to be estimated. The Welch’s averaging
method can be used to this end, which consists of breaking the filtered zero-mean time series
Pt (t; B) into K windowed segments of the same length and averaging their periodograms
[30,31]. This method reduces the variance of the PSD/CPSD functions by eliminating noise
(random effects), hence facilitating the identification of important patterns and trends in
the frequency domain that better align with the underlying PSD/CPSD functions of the
process. The smoothed PSD/CPSD functions are then decomposed using the spectral POD
method, to obtain the eigenvalues and eigenvectors, as in Eq. 3. The simulation model
can be further enhanced through standardization of the input wind tunnel loads or force
coefficient time series prior to applying the spectral POD method (see Appendix A). This
leads to a more even distribution of energy within the POD, and a lower number of modes
is needed to accurately represent the component time series.

This data-informed approach has the key property of incorporating any building-
specific aerodynamic phenomena captured in the wind tunnel into the simulation (e.g.,
vortex shedding and separated flow). Additionally, it enables the simulation of correlated
load components acting in the x, y, and z-rotational directions without the need for a large
set of repeated measurements or the development of complex equations to describe the
stochastic process for each wind direction and building geometry. However, the estimation
of the target matrix, Sp(w; B), from one short-duration record could potentially lead to
significant deviation from the underlying process. It is therefore crucial to quantify the
uncertainty related to the use of a single short duration record for calibrating the simulation
model.

3. Uncertainty Quantification
3.1. Errors Induced by Wind Tunnel Data

The main uncertainty investigated in this study is associated with the variability of
individual wind tunnel records that are used to calibrate the wind tunnel-informed POD-
based SRM. In this study, the second-order statistics of the processes, such as variance
and correlation coefficients, are used to define the uncertainty measures. The target CPSD
functions, hereafter referred to as target spectra, are obtained through the ensemble average
of multiple wind tunnel records, as described in detail in Section 4, and are used in this
study as the baseline for comparison.

The error in the variance can be defined as follows:

02— o2
£i(%) = <lz”> x 100 6)

O'l-T

where crl-ZT is the variance associated with the target PSD function, which is estimated in

terms of the integration of the PSD functions, and ¢? is the variance derived from the
integration of the smoothed PSD function estimated from a single short-duration record.
Note that this measure determines the percentage difference between the diagonal terms of
the CPSD matrices.

For the off-diagonal terms of the CPSD matrices, percentage error estimates can become
meaningless for scarcely correlated signal pairs. Indeed, the target covariance, jj,, which
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is estimated by integrating the cospectrum (real part of the target CPSD matrix), can have
values close to zero for signals with weak correlation. This can lead to large relative errors
when 0j;, is used as the denominator in the percentage error estimation. Therefore, errors
of the off-diagonal terms in the CPSD functions are assessed by calculating the difference
between the correlation coefficients of the target spectra and the correlation coefficients of
each smoothed spectra from short-duration records. The error in the correlation coefficients,
@ij, is therefore expressed as:

Pij = Prij = Pr,ij @)
o

Ptij = ZZ]T > )
iiTUjjT
i ©)

Prjij = —F/=——2=
’ 2 2
v i Ve

where p; ;; is the correlation coefficient of the target spectra, p, ;; is the correlation coefficient
associated with individual smoothed spectra estimated from short-duration records, and
r =1,..., R with R being the total number of wind tunnel records. As correlation coefficients
have values ranging from -1 to 1, it is a straightforward measure to judge/interpret the
significance of any observed differences.

3.2. Errors Induced by the Model

Previous studies have extensively demonstrated the accuracy and efficiency of the
POD-based SRM for generating realizations that match prescribed CPSD functions [15,32].
For validation purposes, the model errors associated with the wind tunnel-informed
stochastic wind load model calibrated to the target spectra are estimated for different
experimental conditions. The model errors are computed using the same error measures
described in Eq. (6) and (7), with the caveat that the smoothed spectra are substituted by
the ensemble spectra of the simulated signals considering all modes.

Additionally, to provide guidance on the selection of a sufficient number of modes for
an accurate reduced-order representation of the simulated signals, the error considering
higher-order mode truncation is quantified. The effects of wind direction and experimental
setup on the truncation error are evaluated. In evaluating the error measures of Egs. (6)
and (7), the target spectra are used to calibrate the model while the ensemble spectra of the
reduced-order signals are used to characterize the performance of the reduced model.

4. Wind Tunnel Tests
4.1. Experimental Setup

Extensive experimental testing was carried out at the wind tunnel to enable the quan-
tification of the uncertainty associated with individual wind tunnel records. In particular, a
rectangular rigid model with geometry and pressure tap distribution shown in Fig. 1(a)
was considered. Pressure measurements were simultaneously collected using a Scanivalve
system at 625 Hz sampling frequency. A total of 512 pressure taps were distributed on
five surfaces to capture the flow around the corners and flow variation with height, width,
and depth. In this study, only the lateral surfaces were considered to obtain the resultant
forces as the roof pressures to not contribute to the lateral forces. In total, 19 different
testing conditions were conducted for various wind directions and experimental setups. To
investigate possible interference effects on the uncertainties of short-duration records, two
different testing configurations were considered. The first considered a single model (SM),
while the other configuration added two proximity models (PM) with the same geometry
as the building model, as shown in Fig. 1(b)-(c). For the SM setup, the experiment was
conducted for approximately 15 minutes in model scale and repeated five times for wind
directions varying from 0 to 90 degrees, in increments of 10 degrees, as shown in Fig. 2(a).
Due to the bilateral symmetry of the proximity model test setup, as shown in Fig. 2(b), five
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50 cm

(@) (b) ©

Figure 1. (a) Illustration of the building model used in the wind tunnel tests and configuration of the
pressure taps, (b) Wind tunnel testing with SM setup, and (c) Wind tunnel testing with PM setup.

repetitions of 15 minutes in model scale were carried out rotating from 0 to 180 degrees,
also in 10 degrees increments.

The experiments were carried out at the Natural Hazards Engineering Research
Infrastructure (NHERI) Boundary Layer Wind Tunnel of the University of Florida. The
tunnel is 6 m wide, 3 m tall, and 40 m long, as shown in Fig. 3 where the “terraformers”
are automated terrain roughness elements with an adjustable height that can be quickly
adjusted by electric actuators [33]. For the conducted tests, the height of the terraformer
elements was set to 16 cm, in order to obtain a suburban terrain condition. The model scale
considered in this study was 1:200, representing a 25-story full-scale building, while the
velocity scale was 1:3 leading to a time scale of 1:66.

a) Single Model b)_Proximity Model
Y Y
-
0,0) ko 90 cm
................................. X om
= P =
Study M 90 cm
building H—
0°-90° degrees Surrounding
\ building
\ Wind ($=0°) 0°-180° degrees \ Wind (5=0°)
¢) Coordinate System B
5|
Wind ($=90°)
) - F,
T. B,

I Wind (8=0°)

Figure 2. (a) SM setup, (b) PM setup, and (c) coordinate system adopted in estimating the wind loads.

The external pressure coefficients, C; ., at each tap location and time, ¢, are estimated
as:

Cp,e(t) = P(t)q_ P (10)

where p(t) is the raw pressure measured at each pressure tap, po is the mean reference
static pressure measured by a Cobra Probe located upwind and at the height of the model,
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Fan Bank FFM o
A A Irwin Spires
= —

Terraformer (Fetch Length = 18.3 m) Test Section
A

Honeycomb

Figure 3. Representation of the UF NHERI boundary layer wind tunnel.

and ¢ is the dynamic pressure defined as g = 1/2pU% with p the local air density and Up
the mean streamwise wind speed at the model height. Information on the local atmospheric
pressure and temperature was used to estimate the air density during the experiments.

The local wind forces acting on the nth floor in x and y translational directions and
torque around the vertical z direction were obtained by first considering a linear interpo-
lation between the pressure taps to obtain the pressures acting at each floor level. Then,
the pressures were integrated over the tributary area corresponding to nth floor to obtain
the wind force components. The resultant local forces and moment can be decomposed
into Fy,,(t), Fy,x(t) and T, (t) components, where n denotes the floor number. Figure 2(c)
shows the forces, coordinate system, and wind directions. The force components at each
floor are normalized to obtain force coefficients as follows:

_ Feu(t)

CFx,n(t) — W (11)
_ Bt

CFyu(t) = 2B, H (12)
Ten(t)

CTz,n(t) = HBZ (13)
q 1’321)(

where CFy(t), CF,,,(t), CT,,,(t) are the dynamic force coefficients at the nth floor, H is
the height of the model, By and By are the plan dimensions of the building, and Bpay is the
maximum plan dimension of the building.

4.2. Processing of the Wind Tunnel Data

In order to evaluate the uncertainties associated with using short-duration wind tunnel
records to calibrate the data-informed stochastic model, as defined in Section 3, the wind
tunnel data set was divided into two groups; the first group was used to define the baseline
target spectra and the second group, also referred to as the testing set, was used to obtain
the smoothed spectra of individual short-duration records. The purpose of dividing the
data into two different groups is to obtain unbiased and meaningful error estimates as the
testing set is independent of the data set used to define the target spectra.

Target spectra were obtained using an ensemble average of 750 spectra estimated using
a rectangular window of 4-s duration. Each 4-s record was obtained from non-overlapping
intervals extracted from the first 10 minutes of each wind tunnel test repetition, as described
in Section 2.2. In particular, each 10-minute set was divided into 150 segments of 4-second
duration, while a rectangular window of the same length as the signal was used to ensure
zero padding and zero overlapping between the segments. The window size of 4 seconds
was adopted since it was small enough to obtain multiple periodograms to be averaged as
well as to capture the low-frequency content sufficiently well without any padding-based
interpolation. A total of 750 segments were used to establish the target spectra for each
force coefficient. Ultimately, the target spectra were estimated for all 75 force components
for every wind direction and setting.

The remaining 5 minutes of data were used as a testing set in order to evaluate the
uncertainties as described in Section 3. The testing data were divided into 32-second

242
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segments, which were treated as independent short-duration wind tunnel records. The zes
spectra of each short-duration record were obtained such that the frequency intervals are zeo
identical to the target spectra therefore ensuring the absence of interpolation errors (e.g., =270
zero padding). In particular, Welch’s averaging method was considered using a Hanning 27
window function of same length as the target spectra window size, and overlap of 50%. In 27
general, a total of 45 short-duration records were obtained for each wind direction, witha 273
few directions having fewer records (e.g., 35-44 segments) due to missing data or evident 27
errors in the data set (e.g., abnormal peak pressure values that were up to 50 times larger 2rs
than the maximum peaks of the entire signal), hence they were disregarded. Similarly, one 276
of the 4-s segments was disregarded due to the occurrence of an abnormal peak pressure. 27z

A second-order Butterworth lowpass filter with a cutoff frequency of 50 Hz was =7
applied to the dataset, as frequencies only up to a certain value are of interest for practical 27
wind engineering applications. The cutoff frequency was determined such that unrealistic =0
high-frequency noise caused by equipment was eliminated. 201
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Figure 4. Comparison between smoothed PSDs of short-duration records, Sg(f), and target PSD of
CFy 29(t) at the 20th floor and wind direction of p = 0°.
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Figure 5. Comparison between smoothed PSDs of short-duration records, Sg(f), and target PSD of
CFy20(t) at the 20th floor and wind direction of g = 0°.

5. Results 282
5.1. Preamble 283

The experimental data is employed to estimate the uncertainties associated with the zes
calibration of the wind tunnel-informed stochastic wind load model using short-duration =zss
records (e.g., 32 seconds). Subsequently, to investigate the effectiveness of the simulation  zs6
scheme, the model errors and truncation errors are discussed. 207
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Figure 6. Comparison between smoothed PSDs of short-duration records, Sg(f), and target PSD of
CT, 20(t) at the 20th floor and a wind direction of p = 0°.

5.2. Errors induced by the Variability of Short-duration Wind Tunnel Records 288

Figures 4-6 provide a comparison between the target PSDs (black solid lines), esti- 2eo
mated as in Section 4.2, and the smoothed PSDs (gray dotted lines) of approximately 45 200
individual realizations of short-duration force coefficient records, Sg, at the 20th floor, i.e. 201
CFy20(t), CFy20(t) and CT; 50(t), respectively. As can be observed, the smoothed PSDs 20
fluctuate around the target spectra, especially at the lower frequency region, showing zes
a record variability of up to two standard deviations from the mean. It is also possible 204
to observe that the mean spectra, 5., which is obtained from the ensemble average of 2o
short-duration records, closely follow the target spectra for the x and y directions as well 206
as rotations around the vertical z direction. The fact that both curves are visibly close z2e7
to one another indicates that the individual records are indeed realizations of the target 208
stochastic process, and even though smoothing is applied, considerable variability in the 200
records is clearly evident. The similarity between both curves also indicates the quality and  s00
repeatability of the experiment. A similar conclusion could be drawn for all other floors. s

o ple] + o]
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20 F——a— - 201 F i 201 F i
——a—— —y —e—
i [ i ' i
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| e | | e s | | e |
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Figure 7. Mean error in the variance, ¢, with standard deviation, o, for each floor, for the SM layout
and 8 = 0°.

With respect to quantitative measures, the errors in the variance and the errors in the = o2
correlation coefficients are estimated as detailed in Section 3. Figure 7 presents the mean, sos
Ue, and standard deviation, o, of the error in the variance for all force components at each 304
floor and the SM layout for wind direction § = 0°. In particular, y, represents the error sos
between the variance estimated from the target spectra (black solid curve in Figs. 4-6) and s
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Figure 8. (a) Mean errors in the variance for SM and PM layouts, and (b) Std of errors in the variance
for the SM and PM layouts.

the variance estimated from the mean spectra (green solid line in Figs. 4-6), whereas o
quantifies the spread that individual records can cause on the estimated variances. Overall,
it is evident that y, ranges between -3% to 0.5% for all force components and all floors,
while o, varies between 5.5% to 9.6% for this particular wind direction and configuration.

To summarize the ranges of the error measures . and o, for all wind directions
and both experimental configurations (i.e., SM and PM), Fig. 8 presents the expectation,
maximum, and minimum values of y¢ and o; for all wind directions and both experimental
configurations. It is possible to observe from Fig. 8 that overall, both . and ¢ are relatively
consistent for all 19 cases studied, with no particular sensitivity to a wind direction or
testing condition. In particular, o, ranges from about 5% to almost 12% with an average
of around 7.5%. This demonstrates that the smoothed spectra of short-duration records
can considerably deviate from the target spectra regardless of force component and testing
condition. Therefore, even though smoothing is applied to reduce noise, the use of short-
duration records to calibrate the wind tunnel-informed stochastic wind load model can
introduce significant errors in the simulation. It should be noted that, in general, there are
other possible sources of errors. For example, errors generated by experimental setup or
those introduced by the integration of pressures over the tributary areas and interpola-
tion to each structural model level. These errors should in general be added to the errors
discussed in this study. It should be observed that, because a consistent pressure integration
method and experimental set are used in this work, such additional errors do not affect the
presented results.
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Figure 9. Map of the target correlation coefficients for the SM setup and wind direction g = 0°.
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Figure 10. Mean error in the correlation coefficients for the SM setup and wind direction g = 0°.
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Figure 11. Standard deviation of the difference between target and typical correlation coefficients for
the SM setup and wind direction g = 0°.

To assess the errors in terms of the off-diagonal components of the CPSD matrices,
the error in the correlation coefficients are estimated using Eq. (7). The map of correlation
coefficients estimated from the target spectra are presented in Fig. 9 for § = 0° and the SM
setup. It should be noted that components 1-25, 26-50, and 51-75 refer to the components
CFy(t), CF/(t), and CT,(t), respectively.

The map of the mean errors in the correlation coefficients between the target spectra
and the smoothed spectra, jy, considering all force components, SM setup, and g = 0°
are presented in Fig. 10. The values of y, range from around -0.014 to 0.014, which is
relatively small compared to the magnitude of the target correlation coefficients in Fig. 9,
indicating the validity of spectral smoothing in a mean sense. Figure 11 shows the map of
the standard deviation, oy, of the errors in the correlation coefficients for = 0° and the
SM configuration. It can be observed that highly correlated components show a smaller o,
while higher values are obtained for pairs with a small correlation coefficient. The values
of o, reach as high as 0.056, indicating uncertainty in the estimation of the correlation
coefficients, which agrees with the results presented for the errors in the variance.

To summarize the errors presented in Figs. 10-11 for all 19 testing conditions, Fig.
12 reports the maximum, minimum, and expected value of j, and o, for all correlation
pairs of each wind direction and experimental configuration. It can be seen that E[p,],
over all floors and force components fluctuates around zero, indicating that on average the
correlation structure estimated from the smoothed spectra is close to the target. However,
for the standard deviation the values of 0, fluctuate around 0.04 with a maximum that can
reach as high as 0.08, indicating an important level of variability in the correlation structure
estimated from a single short-duration wind tunnel record. Similar to what was seen for
the variance, it is also possible to observe that there is no particular sensitivity of the results
to the wind direction or testing configuration.
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Figure 12. (a) Mean errors in the correlation coefficients for SM and PM layouts and (b) Std of errors
in the correlation coefficients for the SM and PM layouts.
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Figure 13. Histograms of ¢ associated with SM layout and B = 0° of (a) CFy; (b) CFy; and (c) CTz, and
(d) correlation coefficients between the components of «.

Figure 13(a)-(c) presents the histograms of the error in the variance, ¢, from all real-
izations in the testing set for the SM layout and = 0°. It is possible to observe that the
histograms resemble approximately normal distributions, with errors induced from the use
of an individual record reaching as high as 20%. Another important finding is presented in
the map of Fig. 13(d), which shows the correlation of the error in the variance, pe, associated
with each force component. It can be observed that there is a high correlation in € between
components acting in the same direction, but a moderate to low correlation for components
acting in different directions. A similar trend was observed for other wind directions and
settings in terms of the magnitude of errors, shape of the histograms, and correlation of the
errors. This again indicates the importance of modeling the uncertainty associated with
spectral functions estimated from short-duration records.

5.3. Model and Truncation Errors
5.3.1. Model Errors

To evaluate the errors associated with the wind-tunnel informed stochastic wind load
model, a set of 40,000 realizations was generated using the target spectra to calibrate the
model. Figures 14 and 15 report the statistics of the errors in the variance and errors in the
correlation coefficients for the 40,000 realizations. It can be seen that for all wind directions
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and settings, the expected mean error in the variance, E[j], is in the order of 10~%%, and
the expected error in the correlation coefficients, E[j1,] is nearly 0. This demonstrates that
the data-driven POD-based stochastic wind load model operates with negligible model
error. This agrees with the theory of POD-based SRM models as the simulation algorithm
depends only on the target spectra provided as input, regardless of testing conditions when
all modes are considered [17,18,34].
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Figure 14. Expected values and range of the model error in the variance for the SM and PM setup.
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Figure 15. Expected values and range of the model error in the correlation coefficients for the SM and
PM setup.

Figures 16 and 17 examine the relative magnitude of the errors that can arise from the
stochastic wind load model based on the target spectra compared to the errors induced
by the use of smoothed spectra estimated from a single short-duration record. From these
figures, it is evident that model errors are insignificant compared to the errors introduced
by the use of short-duration wind tunnel records when all modes are considered.
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Figure 16. Comparison of the error in the variance due to the use of a single smoothed short-duration
wind tunnel record (wt) and the simulation model (sim).
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Figure 17. Comparison of the difference between the correlation coefficients due to the use of a single
smoothed short-duration wind tunnel record (wt) and the simulation model (sim).

5.3.2. Truncation Errors

To study the effects of mode truncation, the simulation of a set of 40,000 realizations
was conducted using the wind tunnel-informed stochastic wind load model calibrated
to the target spectra. This was used to carry out a parametric study varying the number
of modes in order to examine the errors this induces in the variance and the correlation
coefficients.

A total of 10, 15, and 25 out of the 75 total modes were considered to generate samples
for the SM layout and wind direction § = 0°, which corresponds to 13%, 20%, and 33% of
all modes, respectively. The value of y¢, shown in Fig. 18, reduces as the number of modes
increases, as expected. Figure 19 shows how the map of i, changes for an increase in the
number of contributing modes. The results demonstrate that the consideration of the lower
modes associated with large eigenvalues is crucial for capturing the majority of the energy
of the process, while the consideration of higher modes does not significantly improve
accuracy. This result agrees with other studies in the literature for multiple applications
[12,15,26].

Figure 18. Mean error in the variance, y, for each force coefficient component considering 10, 15,
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and 25 contributing modes, for SM layout and wind direction = 0°.

Figures 20(a)-(b) summarize the statistics (i.e., maximum, minimum, and expected
values) of € and ¢, for the various wind directions and two configurations. For a reduced
number of modes, i.e., 10 and 15 modes, the errors are considerably larger and more
sensitive to changes in wind directions and configurations. However, for a sufficient
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Figure 19. Difference between target and simulated signals considering 10, 15, and 25 modes, for SM
layout and wind direction g = 0°.
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Figure 20. (a) Error in the variance, ¢, and (b) Errors in the correlation coefficients, ¢, considering 10,
15, and 25 contributing modes.

Figures 21 and 22 show the expected values of y. and the expected values of iy 03
for all wind directions and both experimental settings, considering varying numbers of a0s
contributing modes. The results demonstrate that the wind tunnel-informed stochastic 4os
model is able to accurately simulate reduced-order signals regardless of the type of input  4os
spectra. For the test condition investigated in this study, it is possible to observe that E[y;]
reaches a value between -0.2% to -0.6% for approximately 20 modes (i.e., around 27% of all  40e
modes) while E[y,] reaches a value of around 10~*, which is comparable to the model error o
considering all modes. This means that higher modes do not have a significant contribution 410
to the loading process and can be truncated with no noticeable loss of accuracy. Similar 411
results were encountered in different studies, where for local loads and pressures about 412
20% to 30% of modes are necessary to provide high accuracy [12,15]. a13

o
N

6. Conclusions and Discussion 414

An extensive wind tunnel test campaign was conducted considering multiple wind a5
directions and two different experimental configurations to ultimately quantify the uncer- a6
tainties introduced in the simulation of wind loads when using typical single short-duration s~
wind tunnel records to calibrate POD-based stochastic wind load models. A discussion s
on the limitations of using data-informed POD models was also provided with respect to 410
model errors and the truncation of higher-order modes. a20
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Figure 21. Expected error in the variance from the truncation of modes for both the SM and PM
setups, considering 1, 5, 10, 15, 20, 25, and 75 contributing modes.
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Figure 22. Expected difference in the correlation coefficients from the truncation of modes for all wind
directions and the SM and PM setups, considering 1, 5, 10, 15, 20, 25, and 75 contributing modes.
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The major contributions of this study are as follows. It has been demonstrated that the
spectra estimated from single short-duration wind load records can considerably deviate
from the spectra of the underlying stochastic process, even though smoothing is applied
to reduce noise. The standard deviation of the errors in the variance estimated from the
integration of the spectra can reach 12%, while the standard deviation of the errors in
the correlation coefficients can reach values as high as 0.08. This significant variability
supports the argument that uncertainty should be considered when simulating wind loads
calibrated to spectral functions estimated from single short-duration records since it can
affect the response estimates of wind-excited systems. Moreover, it has been observed that
errors introduced by the use of single short-duration records are of a similar magnitude for
different experimental conditions with no particular sensitivity to the experimental setting
being observed. It was also found that errors in the variance have a high correlation for
forces acting in the same direction, whereas, for forces acting in different directions, these
errors had a low to moderate correlation. Lastly, it was demonstrated that the wind tunnel-
informed stochastic wind load model has negligible model errors as compared to the errors
introduced by calibration to single short-duration records. Regarding mode truncation, it
was observed that at least 25% of modes should be included for simulating wind loads for
the tested scenarios with negligible errors, which is overall consistent with results found in
the literature. It is important to note that even though 19 cases were considered, the study
of the effects of the uncertainties of this work should be investigated for other geometries
and record durations in order to obtain a more comprehensive uncertainty quantification.

To conclude, due to its straightforwardness, the wind tunnel-informed stochastic wind
load model can be a powerful alternative to reduce the reliance on the collection of multiple
wind records for generating representative samples of stochastic wind load time series.
It is hoped that the extensive error analysis associated with the use of the data-driven
POD-based stochastic wind load model of this work will provide greater confidence for the
use of such models in wind engineering applications, in particular, for structural response
estimation, performance-based wind engineering, and vibration control. Future research
efforts will focus on expanding the error assessment of this work to non-Gaussian multivari-
ate wind processes, developing models that incorporate these uncertainties in probabilistic
performance assessment approaches, and quantifying the impacts of these uncertainties on
the structural response.

Appendix A Standardization scheme of force coefficients

To increase the efficiency of carrying out a POD analysis of wind force coefficients, it
is first advisable to standardize the data. To this end, the zero-mean force coefficients were
standardized in this study using the following scheme:

CEeu(t)

CEI™(t) = —+——= Al

x (F) —— (A1)
CEyu(t)

CEpo™(t) = —22~ A2

y,n ) UCF,, Tr (A2)
CTyn(t)

CTI™(t) = — A3

Zn ' (t) ——— (A3)

where CFy(t), CF,(t), CT.(t), are the zero-mean force coefficients while 7, = 3.5 is the
reduced variate estimated based on the expected peak of a Gaussian process after normal-
ization. As an example, Fig. Al illustrates the standardized force coefficient time series of
an individual record for wind direction = 0° and the SM layout.

Author Contributions: Conceptualization, A.S. and S.M.].S.; methodology, A.S. and S.M.].S.; vali-
dation, TG.A.D., S.A,; formal analysis, T.G.A.D.; resources, A.S, S.M.].S.; data curation, T.G.A.D.,
S.A.; writing—original draft preparation, T.G.A.D.; writing—review and editing, S.A., A.S.,, SM.].S.;



Version August 15, 2023 submitted to Wind 18

i
© ‘ s s ‘ ‘
0 5 10 15 20 25 30
6(s)
D 1 1 1 1 1 1 1
0 5 10 15 20 25 30
6(s)
1 T T T . : :
£i0
U -1 1 1 1 1 1 1
0 5 10 15 20 25 30

Figure A1. Example time series of the standardized force coefficients for f = 0° and the SM layout.

visualization, T.G.A.D.; supervision, A.S., S.M.].S.; project administration, A.S., S.M.].S.; funding
acquisition, A.S., S.M.].S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation, Grants: CMMI-1750339,
CMMI-2118488, and CMMI-2131111.

Data Availability Statement: The wind tunnel data generated for this study is published in the
Design Safe Database and can be accessed free of charge.

Acknowledgments: The authors would like to acknowledge Dr. Sungmoon Jung for providing the
scale model used in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Zeldin, B.A.; Spanos, P.D. Random Field Representation and Synthesis Using Wavelet Bases. Journal of Applied Mechanics 1996,
63, 946-952.

2.  Kitagawa, T.; Nomura, T. A wavelet-based method to generate artificial wind fluctuation data. Journal of Wind Engineering and
Industrial Aerodynamics 2003, 91, 943-964.

3. Li, Y,; Kareem, A. Simulation of multivariate random processes: Hybrid DFT and digital filtering approach. Journal of Engineering
Mechanics 1993, 119, 1078-1098.

4. Mignolet, M.P.; Spanos, P.D. Simulation of Homogeneous Two-Dimensional Random Fields: Part [ —AR and ARMA Models.
Journal of Applied Mechanics 1992, 59, S260-5269.

5. Shinozuka, M.; Deodatis, G. Simulation of stochastic processes by spectral representation. Applied Mechanics Reviews 1991,
44,191-204.

6.  Deodatis, G. Simulation of ergodic multivariate stochastic processes. Journal of Engineering Mechanics 1996, 122, 778-787.

7. Cheynet, E.; Daniotti, N.; Bogunovi¢ Jakobsen, J.; Sneebjoérnsson, J.; Wang, J. Unfrozen skewed turbulence for wind loading on
structures. Applied Sciences 2022, 12, 9537.

8. Huang, G.; Peng, L.; Kareem, A.; Song, C. Data-driven simulation of multivariate nonstationary winds: A hybrid multivariate
empirical mode decomposition and spectral representation method. Journal of Wind Engineering and Industrial Aerodynamics 2020,
197, 104073.

9. Lopez-lbarra, A.; Pozos-Estrada, A.; Nava-Gonzélez, R. Effect of Partially Correlated Wind Loading on the Response of Two-Way
Asymmetric Systems: The Impact of Torsional Sensitivity and Nonlinear Effects. Applied Sciences 2023, 13, 6421.

10. Wang, L.; McCullough, M.; Kareem, A. A data-driven approach for simulation of full-scale downburst wind speeds. Journal of
Wind Engineering and Industrial Aerodynamics 2013, 123, 171-190.

11.  Shinozuka, M. Stochastic fields and their digital simulation. In Stochastic Methods in Structural Dynamics; Springer, 1987; pp.
93-133.

12.  Tamura, Y.; Suganuma, S.; Kikuchi, H.; Hibi, K. Proper orthogonal decomposition of random wind pressure field. Journal of Fluids
and Structures 1999, 13, 1069-1095.

13. Carassale, L.; Piccardo, G.; Solari, G. Double modal transformation and wind engineering applications. Journal of Engineering
Mechanics 2001, 127, 432-439.

14. Chen, L.; Letchford, C.W. Simulation of multivariate stationary Gaussian stochastic processes: Hybrid spectral representation

and proper orthogonal decomposition approach. Journal of Engineering Mechanics 2005, 131, 801-808.

466

467

468



Version August 15, 2023 submitted to Wind 19

15.

16.

17.

18.

19.

20.
21.

22.
23.
24.
25.
26.

27.
28.

29.
30.

31.

32.

33.

34.

Chen, X.; Kareem, A. Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects
on structures. Journal of Engineering Mechanics 2005, 131, 325-339.

Ouyang, Z.; Spence, S.M.]. A performance-based wind engineering framework for envelope systems of engineered buildings
subject to directional wind and rain hazards. Journal of Structural Engineering 2020, 146, 04020049.

Hu, L,; Li, L.; Gu, M. Error assessment for spectral representation method in wind velocity field simulation. Journal of Engineering
Mechanics 2010, 136, 1090-1104.

Tao, T.; Wang, H.; Hu, L.; Kareem, A. Error analysis of multivariate wind field simulated by interpolation-enhanced spectral
representation method. Journal of Engineering Mechanics 2020, 146, 04020049.

Davenport, A. The response of six building shapes to turbulent wind. Philosophical Transactions of the Royal Society of London A,
Mathematical, Physical and Engineering Sciences 1971, 269, 385-394.

Simiu, E. Wind spectra and dynamic alongwind response. Journal of the Structural Division 1974, 100, 1897-1910.

Melbourne, W. Comparison of measurements on the CAARC standard tall building model in simulated model wind flows.
Journal of Wind Engineering and Industrial Aerodynamics 1980, 6, 73-88.

Solari, G. Analytical estimation of the alongwind response of structures. Journal of Wind Engineering and Industrial Aerodynamics
1983, 14, 467-477.

Kaimal, ].C.; Finnigan, J.J. Atmospheric boundary layer flows: their structure and measurement; Oxford University Press, 1994.
Gurley, K.; Kareem, A. Simulation of correlated non-Gaussian pressure fields. Meccanica 1998, 33, 309-317.

Suksuwan, A.; Spence, S.M.]. Optimization of uncertain structures subject to stochastic wind loads under system-level first
excursion constraints: a data-driven approach. Computers & Structures 2018, 210, 58-68.

Lin, N.; Letchford, C.; Tamura, Y.; Liang, B.; Nakamura, O. Characteristics of wind forces acting on tall buildings. Journal of Wind
Engineering and Industrial Aerodynamics 2005, 93, 217-242.

Tamura, Y.; Kareem, A. Advanced Structural Wind Engineering; Vol. 482, Springer, 2013.

Spence, S.M.].; Kareem, A. Data-enabled design and optimization (DEDOpt): tall steel building frameworks. Computers &
Structures 2013, 129, 134-147.

Gurley, K.R. Modelling and simulation of non-Gaussian processes; University of Notre Dame, 1997.

Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short,
modified periodograms. IEEE Transactions on Audio and Electroacoustics 1967, 15, 70-73.

Solomon Jr, O.M. PSD computations using Welch’s method. Technical report, Sandia National Labs., Albuquerque, NM (United
States), 1991.

Tao, T.; Wang, H.; Yao, C.; He, X.; Kareem, A. Efficacy of interpolation-enhanced schemes in random wind field simulation over
long-span bridges. Journal of Bridge Engineering 2018, 23, 04017147.

Catarelli, R.A.; Fernandez-Caban, P.L.; Phillips, B.M.; Bridge, ].A.; Masters, EJ.; Gurley, K.R.; Prevatt, D.O. Automation and new
capabilities in the university of Florida NHERI Boundary Layer Wind Tunnel. Frontiers in Built Environment 2020, 6.

Wu, Y; Gao, Y;; Li, D. Error assessment of multivariate random processes simulated by a conditional-simulation method. Journal
of Engineering Mechanics 2015, 141, 04014155.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538



	Introduction
	Theoretical Background
	Simulation of Multivariate Stochastic Wind Loads
	Wind Tunnel-Informed POD-based SRM

	Uncertainty Quantification
	Errors Induced by Wind Tunnel Data
	Errors Induced by the Model

	Wind Tunnel Tests
	Experimental Setup
	Processing of the Wind Tunnel Data

	Results
	Preamble
	Errors induced by the Variability of Short-duration Wind Tunnel Records
	Model and Truncation Errors
	Model Errors
	Truncation Errors

	Conclusions and Discussion
	Appendix A

	References

