THE TENSORIAL X-RAY TRANSFORM ON
ASYMPTOTICALLY CONIC SPACES

QIUYE JIA AND ANDRAS VASY

ABSTRACT. In this paper we show the invertibility of the geodesic X-ray
transform on one forms and 2-tensors on asymptotically conic manifolds,
up to the natural obstruction, allowing existence of certain kinds of
conjugate points. We use the 1-cusp pseudodifferential operator algebra
and its semiclassical foliation version introduced and used by Vasy and
Zachos, who showed the same type invertibility on functions.

The complication of the invertibility of the tensorial X-ray transform,
compared with X-ray transform on functions, is caused by the natural
kernel of the transform consisting of ‘potential tensors’. We overcome
this by arranging a modified solenoidal gauge condition, under which we
have the invertibility of the X-ray transform.

1. INTRODUCTION

For n > 2, the geodesic X-ray transform I on a n—dimensional Riemann-
ian manifold (M, g), possibly with boundary, of a rank m tensor f is defined
by

(1.1) 110) =[5 ™ ) ds,

where the paring is given by (f,v™) =32, . firin...in, 0102 vPm in local
coordinates (or a local frame), and we assume conditions on v and f which
guarantee the convergence of the integral. Typically we impose sufficient
decay condition on f and some geometric assumption on . This map [
sends a function on M to a function on the space of geodesics on M. It
turns out to be useful to instead consider I as a map from M to the unit
sphere bundle SM of M by identifying S € SM with the unique unit speed
geodesic whose lift goes through f; of course for different 8’s on the same
lifted geodesic If(53) is the same.

One of the reasons for the importance of this problem is that it is the lin-
earization of the boundary rigidity problem, i.e. whether Riemannian metrics
can be determined from the (renormalized in many settings) lengths of their
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geodesics, see for instance [8]; however, X-ray transforms show up in many
other problems of interest.

The inverse problem concerns the question whether one can determine f
from I f, i.e., whether [ is left invertible, potentially with additional stability
questions (continuity properties of a left inverse), as well as whether a left
inverse can be constructed effectively. The answer depends on (M, g) and
on the function class we choose. The most famous and ‘standard’ conjecture
in this field is Michel’s, namely that boundary rigidity holds on (compact)
simple manifolds. Here a Riemannian manifold with boundary (M, g) is
called simple if for any p € M, the exponential map exp,, is a diffeomorphism
from a neighborhood of the origin of T, M and if M is strictly convex with
respect to g.

In this paper we consider the geodesic X-ray transform on asymptotically
conic spaces. Recall that a conic metric, on a manifold (0, 00), x Y, with ¥’
the cross section or link, which we always assume is compact and without
boundary, is one of the form

(1‘2) Joo = dr? + 7’2907

where g is a Riemannian metric on Y. An asymptotically conic metric is
one on a manifold which outside a compact set is identified with (rg, 00), XY,
with a metric that on this conic end tends to g., as r — oo in a specified
way. An example is the Euclidean metric, for which the cross section is
the standard sphere, and indeed metrics asymptotic to the Euclidean one at
infinity, or more generally to the perturbations of the Euclidean metric by
changing the metric on the link, namely the sphere ‘at infinity’.

To be concrete, for our purposes, it is useful to compactify our space, i.e.
let = r~!, so r — oo corresponds to  — 0, and add a boundary {0}, x Y’
to the manifold, thus compactifying it to M. An asymptotically conic metric
then, as introduced by Melrose [4], is a Riemannian metric on M which is
of the form

dz? g
(1.3) g=" 47

xd a2

near OM, where § is a smooth symmetric 2-cotensor on M; g is thus asymp-
totic to geo given by g|y—o on the cross section Y.

A key difficulty in analyzing the X-ray transform in general is the poten-
tially complicated geometry, such as the presence of conjugate points, though
these do not exist under Michel’s hypotheses. However, on perturbations of
asymptotically Euclidean metrics (for which the link has conjugate points at
distance 7), one typically has conjugate points; indeed this is necessarily the
case if the metric keeps being asymptotic to Euclidean space but is not flat,
as shown recently by Guillarmou, Mazzucchelli and Tzou [2]. Under the as-
sumption of the absence of conjugate points (as well as other assumptions),
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Guillarmou, Lassas and Tzou [1] have indeed analyzed the the geodesic X-
ray transform on asymptotically conic spaces, but these results in particular
do not apply to (non-trivial) asymptotically Euclidean metrics.

One way of dealing with the geometric complications, introduced by
Uhlmann and Vasy in [7], is by working locally in smaller regions, namely
on super-level sets of a function whose level sets are strictly concave from
the side of the super-level sets. Such functions always exist locally near the
boundary in Michel’s setting due to the strict convexity of the boundary;
indeed the latter guarantees this without further assumptions. The global
existence is called a convex foliation condition, and is satisfied under various
conditions discussed in [7, 6], see also a thorough study in [5, Section 2]
and references therein. The chosen level set acts as an artificial boundary,
analytically pushing to infinity the geometrically finite boundary. We recall
the main result here. For O an open set in M, the O—local geodesic X-ray
transform is the X-ray transform restricted to geodesic segments which are
completely in O and in addition with endpoints on M.

Theorem 1.1 (Uhlmann and Vasy, [7]). Suppose (M, g) is a Riemannian
manifold of dimension > 3 with strictly convex boundary and O is an open
set in it. The O—local geodesic X-ray transform is left invertible on a small
collar neighborhood of OM . It is globally left invertible under a global convex
foliation condition.

More recently Vasy [9] introduced a semiclassical approach to this prob-
lem, which could also be combined with the artificial boundary method to
take advantage of the best features of both. Subsequently Vasy and Zachos
extended this to asymptotically conic manifolds in [10]. In this extension,
it is shown that if we insert a localizer x in the definition of the normal
operator (roughly I*xI) and conjugate it by a suitable exponential weight

¢ to define the modified normal operator, then this operator is an elliptic,
and thus for sufficiently small A invertible, member of a new pseudodiffer-
ential algebra, whose non-semiclassical version, the 1-cusp algebra, already
appeared in Zachos’ PhD thesis [11].

Theorem 1.2 (Vasy and Zachos, [10]). Suppose that M is a manifold of di-
mensionn > 3, g is an asymptotically conic metric on M with cross sections
without conjugate points within distance < 5. Then on a collar neighborhood
of infinity the geodesic X-ray transform is injective on the restriction to the

collar neighborhood of functions in e_szLg, where p > 0 and C depends on
p.

Notice that the hypotheses of the theorem in particular allow asymptoti-
cally Euclidean metrics, or more general perturbations at infinity of asymp-
totically Euclidean metrics. However, this comes at the cost of more strin-
gent decay assumptions on the unknown function f relative to [1].

In this paper, we extend this conic result to the one form and 2-tensor
cases. These tensorial problems have an additional complication relative to
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the scalar ones above. Potential tensors, i.e. tensors of the form d®*v with
v a one lower rank tensor vanishing on M, or, in our case, sufficiently
fast at infinity, i.e. at M, where d® is the symmetrization of the gradient
with respect to g, are in the kernel of I. In the case of 1-forms, where d*
is the exterior derivative on functions (so is independent of g), this is an
immediate consequence of the fundamental theorem of calculus. Thus, the
natural injectivity we may expect, which is called s-injectivity, is that I f =0
implies that f is a potential tensor. While this is naturally phrased in terms
of quotient spaces (quotienting by potential tensors), analytically it is much
easier to work in a complementary space to potential tensors. This space can
be obtained by imposing a gauge condition. The ‘standard’ gauge for this
problem is the solenoidal one, namely that §°f = 0, where §° is the adjoint
of the symmetric gradient with respect to g, i.e. the (negative) divergence.
In the present situation we need a modification of this gauge condition to
one of the form 527,: f =0, where 5,517,: is a ‘Witten type’ divergence, a version
of which (adapted to the artificial boundary there) was introduced in the
work of Stefanov, Uhlmann and Vasy [6], where the scalar local invertibility
result [7] was extended to tensors. Here we use yet another version to deal
with both an artificial boundary (corresponding to the collar neighborhood)
and the asymptotically conic infinity; see Section 5. Our main theorem is:

Theorem 1.3. Suppose (M, g) is as in Theorem 1.2. Let F > 0 for one
forms, and F is sufficiently large for two tensors, h > 0 is sufficiently small,
and also that Qz, = {x < xo} with xo small. The X-ray transform restricted
to geodesics staying in )y, is injective on restrictions to 1y, of tensors

C
decaying with rate e~ =2 with C = F/(2h) (in the sense of membership in
C
e 22 L?) and satisfying the gauge condition

(1.4) 5e(e ) =0,
where 87 ¢ is given in (3.4) and ® in (3.3).
Remark 1.4. Much as for Theorem 1.2, the result continues to hold when

C
the decay requirement is weakened to be the rate e =% for any p > 0. We
only give a detailed proof for the case p = 1 as stated above, and indicate
minor changes needed for the general p case in Remark 4.8.

Next, let us recall the origin of 7/2 in the last two stated theorems.
A computation of Melrose and Zworski [3] shows that for an actual conic
metric, such as goo, unit speed (prior to reparameterization) geodesics can be
described explicitly as follows. Here the description will be the Hamiltonian
one, i.e. using the cosphere bundle rather than the sphere bundle. Writing

covectors as P p
x
—Tdr+u-(rdy):Tp+u‘£,
y local coordinates on the link Y, thus in a way adapted to the asymp-

totically conic structure (these are coordinates on the scattering cotangent
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bundle in Melrose’s terminology), bicharacteristics v can be written as fol-
lows using the notation p = |p|g, fi:

T = —
(1.5) sinrg
(y7 la) = eXp(TH%g)(y(]v ﬂO)v re (_T07 —ro + W)?

sin(r + rg), 7= cos(r + o), |u| = sin(r + o),

with (y, 1) thus following a unit speed lifted geodesic of length 7 in Y. Note
that the maximum of z o+, which is the point of tangency to level sets of the
function z, occurs halfway in the domain of 7, at (parameter) distance 7/2
from either endpoint, at r + ro = 7/2, and thus in terms of the boundary
geodesic distance 7/2 from either endpoint. Due to our exponential weights
and cutoffs, the key point is to have no points conjugate to the point of tan-
gency to this level set along these geodesics, which is guaranteed if the link
has no conjugate points within distance 7/2. While this is for actual conic
metrics, for asymptotically conic metrics the analogous condition automat-
ically holds in a sufficiently small collar neighborhood of the boundary.

The condition (1.4) is not restrictive in the sense that we can arrange
it by adding a potential tensor, which does not affect the result of the X-
ray transform (i.e. is in its kernel); in this sense (for suitably fast decaying
tensors) Theorem 1.3 is optimal.

Theorem 1.5. Suppose that F > 0 is sufficiently large and h > 0 is suf-
ficiently small, and let C = F/(2h). For each one form and 2-tensor f

C C
decaying with rate e =? (as x — 0, in the sense of membership in e =2 L?),
there exists a tensor v of one lower rank and the same exponential decay

rate such that
5Z,F(ef%

(f - d*)) = 0.

The structure of this paper is as follows. In Section 2 we recall the 1-
cusp and scattering pseudodifferential algebras from the scalar setting of
[10]; here going to tensors does not cause any complications. Note that the
algebras used do mot match the geometry in the sense that for instance an
asymptotically conic metric naturally corresponds to Melrose’s scattering
algebra [4] (e.g. its Laplacian is in this class), but we instead use a different,
1-cusp, algebra there. Ultimately the reason we can do this is that the X-ray
transform problem is overdetermined if n > 3: the way we choose what in-
formation to keep via the cutoff x¥ determines the operator algebra structure
in tandem with the geometry. In Section 3 we thus analyze the geometric
operators such as the symmetric gradient and divergence as elements of the
new algebras. In Section 4 we analyze the modified, gauge fixed, normal
operator, showing that it is an elliptic element of the algebra, and thus for
sufficiently small semiclassical parameter h it is invertible, thus proving the
main theorem, Theorem 1.3. Finally in Section 5 we show that the gauge
condition can be arranged, thus proving Theorem 1.5. Note that arranging
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the gauge condition in the present setting is much easier than in [6], since
in the latter paper the actual boundary of the manifold (as opposed to the
artificial boundary) caused significant complications.

2. THE 1-CUSP AND SCATTERING PSEUDODIFFERENTIAL ALGEBRAS

In this section we recall the analytic ingredients, namely the relevant
pseudodifferential algebras, from [10].

2.1. The semiclassical foliation 1-cusp algebra.

We briefly describe the 1-cusp pseudodifferential algebra here. For detailed
construction and explanation, see Section 2 of [10]. First we define the cusp
vector fields and the 1-cusp vector fields. Let z be a boundary defining
function of M. Then V., consists of smooth vector fields V' tangent to 9M
such that Vo = O(2?). Note that the this is a Lie algebra of vector fields
(under commutators) and it depends on the choice of  modulo O(2?). In
local coordinates x,y1, ..., Yn_1, they have the form

n—1

ao(x,y)2° Dy + Y a;(2,y) Dy,
j=1

where a; are smooth functions of their variables. Then we define the 1-cusp
vector fields as cusp vector fields with one extra vanishing order near the
boundary:

Vie(M) := xVse(M).

In local coordinates, they have the form

n—1

ao(x,y)z Dy + Z aj(z,y)rD,y,.
j=1

Over C*°(M), this generates the algebra of 1-cusp differential operators as
(locally) finite sums of finite products of these.

Next we introduce the semiclassical foliation algebra associated to JF, the
foliation given by the level sets of x; this depends on x even more strongly
since it depends on all of the level sets of x. The semiclassical version of
Vic(M) is defined to be Vi¢p(M) = hVic(M). Its variant, the Lie algebra
of semiclassical foliation vector fields is

Vienr(M) = WVio(M) + hY?V1(M; F),

where Vi.(M; F) is the collection of 1-cusp vector fields tangent to the foli-
ation, i.e. locally of the form

n—1
Z aj(z,y)rD,,.
i=1
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This again generates a differential operator algebra; a typical semiclassical
foliation 1-cusp differential operator is thus of the form

Z aa[g(x,y,h)(hx?’Dm)o‘(hl/szy)ﬁ.
a+[B|l<m
Correspondingly, the frame of the semiclassical foliation 1-cusp cotangent
bundle, which is denoted by hljc_-T*X (and its scattering counterpart is de-
noted by ,*:T*X), is given by

dr  dy;

ha3’ hl/2g
Suppose coordinates of this bundle in this frame are written as &, 71, then
our symbol class Sﬁﬁl #(M) consists of standard semiclassical symbols in
this coordinate system:

(@D, )aDgD; Dglc (7,9, &1¢,Me, h)| < Ca,6’75<(§1c’771c)>m_7_|6|x_l-

Although in coordinates this is the same definition as the cusp symbol class,
in fact they are symbols on a different cotangent bundle, and correspondingly
they are quantized in a different manner. The quantization map is defined
by

(2.1)

Apu(z,y) =(2m) "hP

Zzzflc yy711 d.%'d
/ ( e ¥ / ) (:I: y £1C’T]1C7h) (:E/7y)( )n_g{_nglcdnlca

this is understood to be valid away from {x = 0}, this is identical to the
‘standard’ semiclassical foliation operators intorduced in [9], while for A > 0,
this gives the 1-cusp pseudodifferential operators introduced by Zachos [11].
The behavior near x = h = 0 is the important point for us.

Next we define the ellipticity of symbols and operators.

Definition 2.1. A symbol a € Slc h]_-(M) is called elliptic if
’a<x7 y7€1C7771C)’ > C.’E_ <(§1C7771C)>m7 c> 07
its quantization A is also called elliptic in this case.

Under this condition, see [10, Section 2.5], its quantization A has a
parametrix B € \IIICTT}LL}Z(M ) such that
AB—-1d,BA-1d € hoo\lllchf (M).

One can now define the semiclassical foliation 1-cusp Sobolev spaces
Hi!), 7(M), see [10, Section 2.5], for instance for s > 0 by choosing A €

w0 (M) elliptic, and demanding

ue Hy, (M) < uea"L*(M) and Au € 2" L*(M);
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here L?(M) is the L? space relative to a fixed polynomially weighted density,
which in the geometric context of asymptotically conic spaces is natural to
take to be the metric density, which is equivalent to iifi‘{ Equivalently, for

s > 0 integer,

laler = Nl "ul2e+ 7 lla~ (ha® D) (W20, 2,
’ Jtlal<s

with the spaces for other s defined via interpolation and duality.
Pseudodifferential operators are bounded on these Sobolev spaces, namely
for all s, 7,

7l ) Y =l
Ae Wiy (M) = A€ L(H, 7 Higpr )

The existence of parametrices for elliptic operators implies that for elliptic
operarors A, there exists hyg > 0 such that for h € [0, hg), A € E(Hfghf, HfC_,T]_f_l)
is invertible with uniform bounds. This is a key reason to use the semiclas-

sical algebra: the errors are not only compact, but can be indeed eliminated

via a convergent Neumann series.

2.2. The semiclassical foliation scattering algebra.

Now we recall basic facts about the semiclassical foliation scattering algebra
from [9]. This pseudodifferential operator algebra is similar to its 1-cusp
analogue. Let V(M) be scattering vector fields, i.e. x times vector fields
tangent to the boundary, so in local coordinates elements are of the form

n—1

a()(.%', y)xsz + Z aj($, y>$Dyj7
j=1

where a; are smooth functions of their variables. Also let Vi.(M;F) be
those ones tangent to level sets of the foliation, i.e. of the form

n—1
Z CLJ’([E, y)ny]w
7=1

The vector fields of relevance are combinations of h—semiclassical or h1/2 —semiclassical
and tangent to the foliation:

Vi 7(M) = WVso (M) + hY 2V (M; F).

Denote the coordinate of fiber part in the frame %, % by &sc, Mse- The

symbol class S;Z;L #(M) consists of smooth functions such that
|(wD2)* D DY_D5, a(x, Y, bser Nser )| < Cagys((€ser )™z,

For such a, we quantize it to be A € \IJZCLéF(M) by

(2.2)

Apu(z,y) =(2r) "2 71/2
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(T—iﬂ“/@_i_y;yl nsc ) dl'/dy/
(23) / ez wd h  nl/2 a(x, Y, SSC7 Nsc, h’)u($/7 y/)Wdfsch,sc'
Away from {x = 0}, these are just the standard semiclassical foliation op-
erators defined in [9], and in A > 0 are the standard scattering pseudodif-
ferential operators, with combined behavior near x = h = 0. The ellipticity

condition changes correspondingly.

Definition 2.2. A symbol a € S:Z;LI(M) is said to be elliptic if

|CL(CC, Y, §SCa Tsc, h)| > Cl‘_l <(€sm nsc)>m;

its quantization A is also called elliptic in this case.

Similar to the l-cusp case, its quantization A has a parametrix B €
w_ " (M) such that

AB —1d, BA —1d € h®U_5 (M),

and there exists hg > 0 such that for h € [0, hg), A € L(H., 7, Hsscf}:n]’_f*l)
is invertible with uniform bounds. The same as the 1-cusp case, the errors
are not only compact, but can be indeed eliminated.

2.3. The combined class.

Our analysis in the asymptotically conic setting is a combination of the
1-cusp (due to the conic end) and the scattering (due to the artificial bound-
ary) structures. Let X be a manifold with boundary equiped with a function
x such that dz is never degenerate and level sets ¥, := x7!(c) are smooth
hypersurfaces, among which ¥y and X, are two boundary surfaces. In our
application, ¢ will be the infinity of our asymptotic conic manifold, X,
will be taken to be the artificial boundary used to localize our argument and
X is a domain in M.

We define the operator class \I':lelclﬁ #(X) first, which consists of pseudo-
differential operators of m—th diffrential order that are scattering of order
[ in Q,, which is a neighborhood of ¥, and are 1-cusp of order I in €,
which is a neighborhood of X.

Definition 2.3. The operator class \P:Z’lllc’l}f]_-(X) consists of operators A

such that

e For ¢,y € C™(X) with support disjoint from X, pAY € \I/;Zﬁj]_-(QmO),
and the semiclassical foliation scattering algebra is constructed using
Yz, as the boundary surface.

o For ¢,y € C™(X) with support disjoint from ¥, pA € \IITZ:l}f’]_-(QO),
and the semiclassical foliation 1-cusp algebra is constructed using g
as the boundary surface.

e For ¢, € C°(X) with disjoint support, pAY has Schwartz kernel
which is C* and rapidly vanishing in the semiclassical parameter h
as well as at all boundary hypersurfaces of Qy, x .
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One can easily check that W20 % (X) is a tri-filtered *—algebra. We
also need Sobolev spaces; as usual these are defined by localization:

Definition 2.4. The function class HSTZ{;ZQJ_-(X) consists of functions f
such that
e For ¢ € C®°(X) with support disjoint from X, ¢f € H;lélf(ﬁxo),
and the semiclassical foliation scattering Sobolev space is constructed
using Xy, as the boundary surface.
o For ¢ € C(X) with support disjoint from ¥,,, ¢f € Hﬁlji}-(Qo),
and the semiclassical foliation 1-cusp Sobolev space is constructed
using g as the boundary surface.

We also define a new cotengent bundle that has corresponding boundary
behavior near each boundary surface.

Definition 2.5. The semiclassical sc-1c foliation cotangent bundle ZC’}CT*X
s the vector bundle such that

e In a neighborhood of ¥, its local frame is given by the frame of the

d dy;
xofx)Q’ hl/z(xjo—x) :
e In a neighborhood of ¥, its local frame is given by the frame of the

~ : I . de_dy;
semiclassical foliation 1-cusp cotangent bundle: 175, i/

o Away from both X¢, X, , its local frame is the same as the foliation

d .
cotangent bundle: Uﬁl—x, hlyfg-

semiclassical foliation scattering cotangent bundle: a

Bundle valued Sobolev spaces H Ssclicbh F(X ,?Lf’;-c T*X) are defined to be
spaces of sections of Zf’}_CT*X with coefficients in H :Clicbh #(X); similarly for
Symi:s’]leCT *X, which is the symmetric part of Z‘:’}CT *X® ZC,;-CT *X. More-
over, the operator classes mapping between those bundles, acting as a linear
map with components in \P:'glllcl;f #(X), are denoted by

m,lq,lo .sc,1c i v sc,lc ok
\Ilsc,lc,h,]:(X’h,]-' T X’h,]-— T X)

and
\I;mvllvl? (XS m2,sc,1cT*X S mQ,SC,ICT*X)
sc,lc,h, F\ A Oy, ¢ Yy,
respectively.

3. THE GEOMETRIC OPERATORS AS ELEMENTS OF THE
PSEUDODIFFERENTIAL ALGEBRAS

In this section we analyze the operators in the gauge condition. Let V be
the covariant derivative with respect to g, d® be the symmetrization of V;
these are natural geometric objects that are important to keep unchanged
since d® gives rise to the kernel of the X-ray transform. On the other hand,
the operators involved in the gauge condition are artificial, and we need
to (and can) choose them to match the analytic framework. Keeping in



THE TENSORIAL X-RAY TRANSFORM ON ASYMPTOTICALLY CONIC SPACES 11

mind that we employ an analytic framework which is 1-cusp at the conic
infinity and scattering at the artificial boundary, we choose gs 1cn to be
a combination of the semiclassical scattering metric and the semiclassical
1-cusp metric, and let 6° be the adjoint of d* with respect to gsc 1c,n, SO it is
the (negative) divergence operator. Concretely in a neighborhood of ¥, we
have

(3.1) Jsc,lc,h = h= 22 %dz? + hta2g,
while in a neighborhood of ¥, we have
(3.2) Gsc,lch = h_z(xo — 1:)_4d$2 + h_l(xo — 1:)_292.

g1, g2 are smooth families of Riemannian metric on level sets of x in neigh-
borhoods mentioned above. The specific choice among smooth transitions
between those two boundary faces does not affect our analysis and we choose
one of them and fix it. We reiterate that the metric g i is introduced as
an analytic tool to define adjoint operators, convert tensors and combine the
analysis near ¥ and ¥,,. In particular, near ¥, ¢° is the adjoint of d* with
respect to the semiclassical foliation 1-cusp metric h=2z %d2z? + h=tx2¢gy,
and near X, 6° is the adjoint of d* with respect to the semiclasscial foliation
scattering metric h=2(zg — ) "*dx® + h™ 1 (zg — x) 2 gs.

Next we conjugate them by an exponential weight so that they have de-
sired analytic properties. First we define

(3.3) ¢ =Fyoux,

where Fj is a smooth, increasing function, in the strong sense that Fjj > 0,
such that Fy(x) = —ﬁ near Yo and Fpy = Io%w near Xg,. Then our
conjugated symmetric differential and its adjoint are
Fo F® Fo
(3.4) dpp=c¢e" Tdien , Opp=end’e n
We then consider the effect of conjugation when we compute symbols in the
1-cusp algebra. Let ®(z) = —2%, we have
Fé(z) Fa(a) _F_ __F_
e~ ha®Dye™h = ez had Dye 2ha?

(3.5)
= ha3D, — iF.

Thus the effect of exponential conjugation is replacing £ by & —iF. We then
write the exterior derivative dy in terms of semiclassical foliation 1-cusp
covectors:

0 = Q. 50 i = 0. 50,

;) /2
J

This already shows that dg, which coincides with V When acting on func-
tions, has principal symbol §1C% X +n1c %@ when considered as a first
order semiclassical foliation 1-cusp differential operator. After conjugation,
as mentioned after (3.5), & is replaced by & — iF. A similar computa-
tion shows that its principal symbol when viewed as operator on tensors
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with higher rank is also tensoring with the covector at which the symbol is
evaluated.

3.1. d° as a scattering differential operator.

Next we consider the action of d®* on one forms, which originally is a
first order differential operator sending sections of *°T*X to sections of
Sym?*T*X. We compute its principal symbol in vll we consider V
first, whose action on a scattering one form T = Tgi—% + Z?:_ll Tjd%] is given
by

(3.6) V(T) = d:Tydax® @ da® — T Tydx® @ da?,
where we used the Einstein’s convention of summation, Ty = m_zfo, T; =
x7 T for 1 <j <n-—1, and Fgc is the Christoffel symbol defined by

1 '
(3.7) Il = §gl (Okgrj + 0jgrk — Orgj),

where ¢/ are components of the dual metric. In order to compute the form
of Fé-k, we consider the dual metric first. Recall (1.3), written as a block
matrix, with respect to the scattering basis, g;; has the form

(3.8) (O(lx) 0;@) ,

where two O(z) blocks of the shape 1 x n and n x 1 respectively are because
the dz ® dy terms encoded in 72§ in (1.3) are of order O(z) when written
in terms of i—”ﬁ ® %, and O(z) stands for z times a matrix of the appropriate
type with smooth entries. Inverting this matrix, the dual metric tensor in
terms of 220, ® 220y, 220, ® Oy, 20y ® 20, has the form

(3.9) <0(1:c) O;?) .

Thus, in terms of the basis given by tensor products of 9,,0,,, we know

(3 10) 900 — $4’ gOi — $4§0i7 gz‘O — $4§i07 1 S i S n — 1’
' g9 =239, 1<ij<n—1,

where 3%, G, 5 are functions smooth down to 2 = 0. We consider (3.6),
broken up into several cases.

Case 1: ¢=0,b=0
In this case, using (3.7), we have (when b, ¢ have fixed value, the summation
convention does not apply to them)

0. Tydz® @ dz®
=0y Tpdz® ® da°
=8, (27 *Tp)da’ @ da®
:(:U_262T0 — Qx_gfg)daro ® da’
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e g
N R e
x m’

Lp.Ta = T Tu,

I = %9 "(029r0 + Oxgro — Orgoo)-

We compute the power of h and x of FgOT 1dz® @ dz¥, when written as an
semiclassical foliation 1-cusp tensor:
The term d = 0 is Fgoh_lx_QTde()@dxo = xQFBOTg%@)%. In the expression
of T8y, the term with 7 = 0 contributes x4§?°9,2=* = O(z~!), while terms
with r # 0 contribute 24§°0,(z72§,0) = O(z). Thus the r = 0 case gives
the main contribution and combining the z? factor in the front, d = 0 term
is of order O(z).

When d # 0, we have I OTddac ® di¥ = hS/QxSFgOTdi% ® i—“g. For

I'dy, the term r = 0 is $24§%°9,27% = O(2™!), while terms with r # 0
give 22570, (7 2G,0) = O(l‘_l). Combining with A%223 in the front, it is
O(h3/2 2)

Combining d # 0 and d = 0 cases, the coefficient of ¢ 4z @ dgﬁ , together with
the term xTodxi2 ® % created by commuting the x factor and differentiation,
is O(x).

Case 2: ¢ =0,b# 0.

90 Tydz® @ dz®
= (0,217} da® ® dab
=219, Tydz’ ® da® — 27 2Tyda® @ da®
de®  da® de®  da®

=(z20, Tb)—@@——be—@@7

FbCTd = Fbon,
1
Iy = 59(”((%97«17 + Opgro — Orgio)-

We compute the power of h and x of FgOT 1dxz® @ dab, when written as a
scattering semiclassical foliation tensor:

Consider d = 0 and d # 0 respectively. The term with d = 0 is

d d
19, Todz® @ da® = 2T Ty L; ® i

For terms in the bracket in the expression of Fgo, the only possible term of
O(z™*) is Oypgro with r = 0, which however vanishes since gog = 274, b # 0.
So the term in the bracket is at most of order O(z~3). Combining with
g°" = O(z*), we know I'), = O(z), thus xfgofoi% ® d%b = O(x%% ® d%b.
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For d # 0, we have

o dr  dab

4 Tyda® @ da® = x2FgOTd§ ® -
For terms in the expression of I’ go» as explained above, terms in the bracket
are at most O(x ), whereas the dual metric factor has at least O(z?) van-
ishing, thus in total we have I'{; = O(z~!). With the 2? factor in the front,
this part has O(z) contribution. Combining with the case d = 0, we know

the zeroth differential order terms relevant to ;l—;” ® d%b component has O(x)
scale.
Case 3: ¢ #0,b=0.

9. Todz¢ @ dx’
=02 *Tydz® ® da°
=220, Tydz’® ® dx°

o dxt  da®
= (.%'acT()) &® ? ,

x
Ty T, =T8T,
1

Fgc = §gdr (3c9r0 + azgrc - 87‘.900)-
The argument about the Christoffel symbol is the same as the previous case
after interchange the indices ¢ and b (0 here), and we have T'd T dx° ®@ da® =
O(z) % ® %.

Case 4: ¢ #0,b#0.

9. Tydz® @ da®
=0.(z7T})da® @ da®

. dxt  dab
:(:Each) - ®i7

X

1
F(bic = 7gdr(acg7’b + abgrc - 3rgbc) = 0(1)

2
Next we explain the last line. Since g;; = O(z~2), when r # 0, terms in
the bracket are O(z~2) altogether. Since g% = O(z?) (including the O(z*)
case), this part gives O(1) contribution. When r = 0, we have g% = O(x%)
by (3.10), and terms in the bracket is of order at most O(z~3), hence this
part gives O(z) contribution. Combining two cases » = 0 and r # 0, we
have I'¢, = O(1), thus I'¢ Tyda® ® da® = >, O(l)dedTmb ® %. Thus those
terms are O(x) small compared with main terms.

Combining four cases and symmetrize V, we have the decomposition

(3.11) d° = di +xA, A€ WOO(X;*T* X, Sym>*°T*X),

thus as a semiclassical foliation scattering operator, d® has the same principal
symbol as the exterior differential.
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3.2. d° as a semiclassical foliation 1-cusp operator.

Next we compute the principal symbol of d° sending 1-cusp one forms to
1-cusp 2-tensors. We consider the contribution introduced when we change
bundles by comparing the basis of the scattering cotangent bundle and the
basis of the foliation semiclassical 1-cusp cotangent bundle. Initially d® is
a first order differential operator sending sections of **T*X to sections of
Sym?*T*X. The standard principal symbol of d® is tensoring with the
covector at which the principal symbol is evaluated, which coincides in the
first order with that when we consider it as a first order differential operator
sending sectlons of ,, fT*X to sections of Sym2 e * X, which is the symmet-
ric part of h X ® h 7T*X. Combining Wlth (3.11), the zeroth order part

introduced by this bundle change forms a matrix with x times smooth coeffi-

cients in the local basis of hom(**T* X, Sym®*°T* X). Next we consider their
contribution in terms of hom(,,'$7* X, Symizl]_-cT*X). With (;l—‘;“")2 = ffﬁ ® 4 5
dedvi = L(dr gy dig dm) the local basis of hom(*T* X, Sym®S°T* X )
is:

dxz? dax? dzx dy;
9 (2%0,), = @ (2dy,), fi ® (20,),
(3.12) f d N dyrd - dyrd
T ay; YiaY; YraY;
?? & ($28yj), 22 & (:czﬁm), 22 ® (wﬁy‘j),

and the local basis of hom(;,'$ 7™ X, Symy’ 1CT*X) is:

da?2 dz? dx dy;

3 1/2,.2 3
. dx dyz 1/2 dykdyz 3 dykdyz 1/2
had B2y ® (hY/ xayj), 2 (ha°0y), oz ® (h'/ zdy, ).

Comparing the power of h and z, in terms of basis in (3.13), basis in (3.12)
are smooth and vanish at {x = h = 0} to orders in following table

dTﬂQ ® (220,) hz

dx—"f ® (20y,;) h3/ 2y
%% @ (220,) | h'/?
d—g% ® (z0y,) | hx
% ® (220,) | =71

dy;gyi Q ($8yj) Bl/2

Taking the overall z factor into consideration, they vanish to order ha?, h3/2g,
hY/2z, ha?, O(1), h'/%z respectively. Thus the only non-trivial contribution
of d° —dg, | is from % ® (2%0,) component. Again using a computation
similar to the one for d* as a scattering operator, the gradient with respect
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to gn,1c, as a semiclassical 1-cusp operator, has principal symbol

Elc 0

e 0
0 flc
0 771(:@

where the matrix is acting on matrices of the form <f]1> representing &1 %—l—
1

mhld/—%z. Recall that the effect of conjugation by e~ s replacing &1, by
&1c — iF, thus after taking the error term above, symmetrization and con-
jugation into consideration, we know that the principal symbol of dj =

F __F . .
e2nraZ d%e 2r2? viewed as an operator between 1-cusp sections has the form

glc —iF 0
%nlc(8 %(flc - ZF)
5Mc® §(§1c —iF) |’
bs N1c®s

where bg essentially only plays role at the boundary by acting on % to pro-
duce 2-tensors. In particular, bs; has 0 differential order. As a consequence,
its adjoint d; ¢ with respect to the metric given in (3.1), acting on symmetric
2-tensors, has principal symbol

(314_) <§IC + ZF 1 %me 1 %Lrllc <b87 >>
0 e +iF) (& +iF) oy )7
where Lfylc = %(mc,vﬁzj + mc,jdil) on the lower right corner is replaced by ¢y,

since we only consider symmetric 2-tensors, on which they have the same
action. Summarizing results of two parts of this section we have:

Proposition 3.1. On functions, the operator Ay f s := 5,“;7Fd27F € Diffi’ﬁolc(X)
has principal symbol

glc —1F

2 2 2
= +F + .
Ne ) glc |7710|

(glc +iF me) (

On one forms, ApF s = onFdnE € Diff}zl’gc(X, h}]c_—T*X, h}]c_—T*X) has princi-
pal symbol

(3.15)
&1c —iF 0
(glc +iF %[’nlc %me (bs, >) l77lc® %(516 —iF)
0 L(€1c +iF) L(&1c +1iF) e IN1e® Lere —iF)
bs Nc®s

— (ﬁ%o + F? + %ch 1 %(flc - iF)me ) (<b57 ‘>bs <b57 ‘>7716®S) .
§(§1c + iF)"?lc@ §(€%C + F2) + iy Mc®s Lnlcbs 0
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3.3. d° as a semiclassical foliation scattering operator near ¥,,.

In this section we consider d® and the modified Laplacian Ay f s near the
artificial boundary as semiclassical foliation scattering operators and com-
pute their symbols. This is similar to the argument in Section 3.2: we
consider the contribution introduced when we change bundles by comparing
the basis of the scattering cotangent bundle and the basis of the foliation
semiclassical 1-cusp cotangent bundle. As a first order differential operator
sending sections of S°T* X to sections of Sym?*°T™* X, the standard principal
symbol of d® is tensoring with the covector at which the principal symbol
is evaluated, which coincides with that when we consider it as a first order
differential operator sending sections of ,°zT™ X to sections of Symi:s]‘jiT*X ,
which is the symmetric part of ,*:7*X @ =T X.

We emphasize that the scattering structure of **7* X in Section 3.1 refers
to using Yo as the boundary while here ,°3T7X refers to using ¥, as
the boundary. The operator d® here is the symmetric differential with re-
spect to a smooth metric. The zeroth order part introduced by the bun-
dle change from the standard smooth bundles to the new (local, near 3,)
scattering bundle forms a matriz with smooth coefficients in the local ba-
sis of hom(**T* X, Sym?*°T* X), since now there is no gain for the zeroth
order part as in (3.11) in terms of (zo — z). Next we consider their con-
tribution in terms of hom(,’zT™*X, Symi:s]‘le *X). Recall that the basis of
hom (°T* X, Sym?*°T* X) is given by (3.12) with p = 29 — « in place of z,
while the local basis (near X,,) of hom( nFl™ X, Symi’iﬁT*X ), using again
p = xg — x for brevity, is:

dp? dp?
th4 ® (hp28p), th4 @ (hl/Zpayj)

dp dy;
sz h1/2p

dp dy
" hp? h1/2p

® (hp*d,).
(3.16)

dyrdy; dyrdy;
®(hP28yj)v hp? ®(h028p)7 hp? ®(h1/2p8yj)'

Comparing the power of h (powers of p are all the same in this case), in terms
of basis in (3.16), basis in (3.12) are smooth and vanish at {p = h = 0} to
orders in following table

i’ @ (0*0)) h
%2 ® (pdy,) h3/2
%dgi ® (p? ) h'/?
igdzi ® (Payj) h
budu 5, (29,) | 0(1)
dyz;lyl ® (payj) B1/2
Again the only non-trivial contribution is from % ® (hp®d,).
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Recall that ® = xoax near %, the effect of the conjugation near ¥, is
derived from

___F __F
e h(zg—=) h(l'() — x)QDxeh(iEO_x) = h(l‘o — LL’)Q_DI — ’lF7

which tells us the conjugation is effectively replacing & by & — iF. Thus
d® when viewed as a semiclassical foliation scattering operator near ¥, has
principal symbol

&e —iF 0
1 1 .
5Nsc® *(gsc - ZF)
3.17 . ,
( ) ;77}(3(@ %(gsc - lF)
bs Nse®s

where b, only plays role at X,, by acting on h(%fmﬁ to produce 2-tensors.
In particular, b, has 0 differential order. Its adjoint 07 with respect to the
metric in (3.2), acting on symmetric 2-tensors, has principal symbol

§sc +iF lL lb <BS >>
318 2 “Msc . 2 “Nsc ) 9 ,
( ) ( 0 %(fsc + iF) %(gsc +iF) tnse
where ¢ = %(nsc,iélj + 7sc,j0;1) on the lower right corner is replaced by ¢,

since we are acting on symmetric 2-tensors. Taking product of (3.17), (3.18)
and summarizing, we have shown:

Proposition 3.2. On functions, the operator Apf s == 0}, gdj, ¢ € Diffi’gC(X)
has principal symbol

. —iF
({sc‘f‘ZF Lﬂsc) (55077 ? > :€SQC+ F2 + |775c|2~
sc

On one forms, Apfs = onrdnE € Diffi:gc(X;hf% *X, FT*X) has princi-
pal symbol

B &sc —iF 0
(fsc +iF L %Lnsc ' L %Lnsc ' <b57 >> %ﬂse@ %(gsc - 7»F)
(3 19) 0 §(€sc + ZF) E(fsc + 1F) Inse §7lsc® §(£sc - 1F)
. bs 7]sc®s
— (552(; + F2 + %7]3(; %(gsc - iF)LnSC ) + (<ES7 269 <83a ‘>778(2®S)
%(fsc +iF)Nse® %(gs%: +F2) + e 50 ®s tngebs 0 ’

4. THE MODIFIED NORMAL OPERATOR

In this section we consider the membership and ellipticity of the modified
normal operator restricted to the kernel of 52;. Recall that I is the X-ray
transform defined by (1.1) and @ is defined in (3.3), we define the modified
normal operator Ny g of I by

_Fe _ __ F®
Nprp=e n Lxlen,
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where L the ‘adjoint’ of I defined for one forms by

(Lw)('z) = x2/S Mw(’Yr,y,)\,w)gsc,lc,h(;Ya:,y,)\,w(O))dAdw’

and for 2-tensors by

(Lw)(z) = hx4/$ u w(')/x,y,/\,w)gsc,lc,h('7x,y,A,w(0)) ® gsc,lc,h(;}/x,y,/\w(o))d/\dw7
where gsc 1, is the metric defined using (3.1) and (3.2). As we mentioned,
I sends functions on M to functions on the collections of geodesics on M,
which is identified as T'M by identifying the starting point and the tan-
gent vector of a geodesic with itself. Here the 2 and ha* pre-factors are
introduced to cancel factors introduced by gsc,1c,n(¥z,y,0w(0)) and its tensor
powers, similarly to how powers of x were used in [6]. In fact, it would be
conceptually more clear to use ha? and h?z* respectively, but our compu-
tation, especially the part after we use the rescaled variables in the symbol
computation, shows that results are more compact if we have 1 order less h
power in our definitions.

Next we discuss quantities in the definition of L in more detail. Recall
(1.3), the asymptotic conic metric is

g =z Yda? + 272,

with g|z—o on the cross section being the asymptotic link metric gg. The
computation in [4] shows that, the Hamilton vector filed associated to the
dual metric function G of the asymptotic conic metric g is

1
Hg = 2x((&cx0p + Nse - Opy.) — |175¢]28,75C + EHG1 + V),

where G is the dual metric function of g1 and V is a vector field tangent
to the boundary {z = 0}. The geodesic is given by (page 28 of [10])

(4.1) Yeyrw(t) = (@ +x(Mt 4+ at? + 3TW), y + wt + 27@),

where '), T'(?) are smooth functions in ,y, A, w,t. Taking derivative with
respect to ¢, the tangent vector at v, x w(t) is

N2y + w0y = Fuyrw(t) = (@) + 2zat + O(2t?))0y + (w + O(1))d,.
Setting t = 0, the tangent vector at x is
(4.2) TAOy + wOy.

A key point in [10, Section 3.1] as well as in the earlier works is the negativity
of aw at A = 0; this precisely corresponds to a strict (definite) concavity
statement on the level sets of z from the sublevel sets.

The cutoff x¥ and the weight function ® are also designed to depend on the

geometric/analytic setting. We choose ®(z) = —ﬁ in the analytic 1-cusp
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setting (which is geometrically scattering) and ®(z) = 2 in the scattering
setting (which is geometrically smooth). Choose X to be

X = x(@ AV (B2 ]af )7,
where y € C2°(R) is non-negative and identically 1 near 0 and « is intro-
duced in (4.1).

Membership of Nj, F in \I/s_c,lﬁ?]-‘(X sl X, p°F T X) for the one form case
and \Ils_cl;ff(X ; Symi’iﬁT*X , Symi’sﬁT*X ) for the two tensor case when lo-
calized near the artificial boundary {z = z¢} follows from Proposition 3.3 of
[9] and the argument in Proposition 3.1 of [6], which generalizes Proposition
3.3 of [7] to one form and two tensor cases, just notice that z in [6] is (zg—x)
now, and the powers of it in (2.1)(2.2) of [6] are encoded in the second index

of \I/:(’jh’ 7 More detailed dicussion is given in the proof of Proposition 4.6.

The membership of Nj, g localized near the conic infinity = 0 in \Ijl_cll’z_]%‘

follows from Theorem 3.1 of [10]. The only difference between our operator
and operator therein is the additional tensorial factor, which is a smooth
endomorphism between scattering and 1-cusp bundles when localize to each
ends respectively and does not affect the pseudodifferential property. The
power of x and h introduced by those tensorial factors are cancelled by those
in the definition of L. So our proof focuses on the ellipticity.

Proposition 4.1. Let F > 0 for one forms, and F is sufficiently large for
two tensors and Qg = {x < xo} with xo small. Np g is an operator in
\Ilfcl’;lcff and it is elliptic on the kernel of dpf in the semiclassical foliation
1-cusp algebra.

Because the statement involves ellipticity in various senses for both one
forms and 2-tensors (differential, semiclassical, boundary symbol), we de-
compose the proof into several lemmas, whose combination proves Proposi-
tion 4.1.

4.1. Ellipticity on one forms.

In this part we show ellipticity of N, F on one forms in both 1-cusp differen-
tial and semiclassical and boundary sense. We first start with the differential
behavior, corresponding to ‘infinite points’ in the semiclassical foliation 1-
cusp cotangent bundle (fiber infinity for the compactification), and then we
turn to finite points (semiclassical and boundary behavior) as the arguments
are somewhat different in the two cases.

Lemma 4.2. For F > 0, Ny is an operator in \III_CI}L_} acting on one forms
and it is elliptic on the kernel of 0y, F in the I-cusp algebra differential sense
near Y.

Proof. First we compute the tensorial factor g 1c(7, ) ® t5 in the Schwartz
kernel of Np, r at the front face {« = 0}. Introduce the rescaled variables:
A t

A= /24 /2y

75:
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The semiclassical 1-cusp metric applied to (4.2) is:

dx 91(wdy)
h1c(TA0y + wly) = )\hzx5 o
19 _1,: dx (wdy)
_ g —1/2, —1,3 X 1 W0y
h O\hx?’ hi/2g )

Similarly, the second factor is
vy = BV 207 Y (A + 20d) ha0,, + wh/?2d)).
So the tensorial factor near Y is,

c dr  g1(wdy)
E.=h" (A$+ hl/%)

@ (A + 20d)ha’0, + wh'/?2d,),

where we have incorporated the 22 factor in the definition of L on one forms.
The modified normal operator Nj f acts on functions by

SR s S (f”)/)\w(t) v)

- —3¢ (a: w
Ny pu(z,y) = (27T)”h”1/2/e“” I T [ RV

ap, (1:7 Y, glc; 77]1(:) (ﬁl)_n_zdx/dy/délcdﬁlm

where ay, is its standard left symbol. The Schwartz kernel of Nj, f relative
to the density |dz/| = |d2'dy’| is

(4.3)
KNh F(x7 Y, xlv y/) = / e_Fq>(x)/heF<D(x(’yx’y’/\’w(t)))/hX(xv Y, )‘/(xhl/z)v w)

5(2/ — Yz \w (t))Ec(V(l)z’A‘w(t))71dtd)\dw
—(2m) " R21/2 / o~ FO@)/h (212,500 (1) /.

@ = @) W= @)

ary/\w .y acy/\w

>z(x’y’)\/(:L,hl/2)’W)EN.cefifl. 4 —in’- i
(yV=re )L agtdrdwd.

The principal symbol of Nj,  is the leading part of the semiclassical inverse
Fourier transform of Ky, . in 2’ evaluated at ¢, which gives a (27)"(¢ —
¢’) factor, effectively replacing ¢’ by ¢ in the integrand and annihilate the
¢'—integration. We obtain

ah(x, y, flC’n]_C) :/e—F(I’(x)/heF(D(IE(VI,y,)\,w(t)))/h}z($7 y, )\/(xhl/2)7w)

( ;15 re®=0) €l i;xw(t)—y)

) — W2 dtd\dw,

(4.4)

where x has compact support with respect to
happening over a compact interval.

h1/2, thus the )\—mtegral is
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Notice that by the definition of the 1-cusp algebra, our Schwartz kernel

7nxn+2

is relative to the density (’i’f)/%, which means it is (27) times the

semiclassical foliation Fourier transform in (x_3§~1C, 7 171¢) of the symbol

i(z72§1ch71+$71y'nlch71/2) (

($7y7£1C7ﬁ10) — € a l'ayaglcaﬁlc)7

where the 22 factor comes from scaling the fiber variable to (:U*3§~10, xilﬁlc).
Then we invert this Fourier transform and evaluate at (z73&1c, 27 1) to
obtain

_ -2 —-1_..—1,,. —1/2
an(,y, E1e,Mic) =(2m) a2l (8T G h T ey meh T

(]:’; )(1’ W)= (x 73£~1c,ﬂ?*1ﬁ1c)KNh,F(:C’yvx,ay/)a

where the F representing (inverse) Fourier transform and the foliation should
not cause confusion.

(4.5)

an(@, Y, E1ey i) =" 2e— 0 ach ™ —ia T mch /2 / ¢ FO@)/hFO (a0 (1)) /1

K@, 5, A (h2), ) Brel® 6170 u O Hie™ e (05 L (0 -)h /2
1

(48 (6)"Hdt|do|

_ / e~ FO@)/hFOE e 7 O /by (g y N (B2, ) B,

zy)\w Z’CCil

M-
oy 7T Mo —2H 9, (1) n+1
c e nl/2 T (7. 5.,®)" T dt|do].

€i$73§1

The imaginary phase is

¢ Oeppe® =) | Oeyan) —)
h " K12
B O SO () R I OVl O () Ry
(46) =T 3616 y)\ +$ 17]1C( y)\hl/2 )

h
=Gc(M + af? + W27 (2, y, h12X, w, /7))

+ Me - (wt 4+ A22T @) (2, y, B2 N, w, K1/?D).
The damping factor is

FO(z)  FO(z(vryrw(t)))
- + 3 )
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where ®(z) = thus this damping factor is

212a
(4.7)
F F
57—
208 20,0 3, (0)%h

= (1) () = 2220 4 (1)

F _
=gr— (M + A+ at? + 3TW)2 — 1) (1 + At + at? + 3 T7W) 2
F _
=52+ A+ at? + BT + at? + T (1 4+ At + at? + 371)) 2
:F()\t + a(z,y, zh'/? ), W)t + Bpt/2rM (z,y, oh'?)\, w, xhl/Qf)),
where I'W is smooth with respect to its variables. This means the integrand
is Gaussian with respect to ¢, hence integrating against it does not affect
decay or smoothness properties. Notice that when we rewrite (4.4) in terms

of \, %, we obtain an zh factor because of the change of variables, and we
combine h with E. to define

dr  g1(wdy) 8 N3 1/2
E,=hE, = (Aﬁ + 5 ) @ (A +200)ha’0, + wh 220,),
which is smooth down to x = 0 and A = 0.
(4.8)

X(x,y, A\, w)Ee

F(AM+af2+83h1/20 (M) (2,4, /2 7 w,h1/28)) ~
an(z,y,&1c, Me) Zx/e (At+at®+ (z,y wh1/20) 5

ei(flc(5\f+af2+h1/2f31“(1))+7710~(wi+h1/2£2F(2>))dfd;\dw7

where we abbreviated the variables (z,y, RY2), w, h1/28) of T T2, Next
we compute X, w', i.e. computing 4z, x.(t). Recall the expression of
geodesics, we have

N, W) = Yeyrw(t) = (A + 20z, y, \,w)t + O(tz),w O(t)).

Recall that A = h'/2z\, ¢t = h'/2at, thus N = O(hY/2), A = O(h'/?), and at
the front face E. is

dr  g1(wdy)
(4.9) ()\W + W12, )
We compute (4.8) by applying the stationary phase lemma. We choose x
having compact support with respect to its third variable. Thus the integral
in \,w is over a compact region, satisfying the condition for the stationary
phase lemma. We divide the integral in ¢ into two parts with one over
{|t| <2} and the other over {|¢t| > 1} by introducing a partition of unity

@ (A + 20d)ha’0, + wh/?zd,).

X1+ x2 =1,

where y; € C*(R), suppx1 C [—2,2], suppyxe2 C (—o0,—1] U [1,00). In par-
ticular, x1(0) = 1. In {|{| < 2} we apply the standard parameter dependent
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stationary phase lemma. In {|{| > 1}, the phase in non-stationary and
integration by parts shows its Schwartz property.

We first consider the region {|f| < 2} by applying the standard parameter
dependent stationary phase lemma. In order to compute the semiclassical
principal symbol, we may set h*/2 = 0 and the phase becomes

glC(S‘tA + O[(xa Y, Oa W)?) + Me - wf,

The contribution to the symbol of the part {|f| < 2} when we take h!/? = 0
is

an(@, Y, E1c; M) :90/ei(glc(Xﬂa(x’y’o’w)p)+’71°'°”€)eF(’A\”a(”C’y’O’wﬁz)X(w,y7X,w)

x1(D) EdidAdw.

Error terms caused by taking h'/? = 0 are of at most O(zh*?(|(&1e, mc)]) 1)
order relative to the leading part.

We use the notation 6§ = (X,w) and apply the stationary phase lemma
with respect to #,6 to compute the leading part as |(£1e,m1c)| — co. We
decompose 6 according to directions parallel to and orthogonal to (&1c, 71c)
and denote projections of 6 by 6,6+ respectively. Then the critical set is
given by £ = 0,0 = 0. So the leading part, up to a constant factor, is

(4.10) (Erermie)| / Uy, (O, w(0) Endo™,

Sn—2

|=! comes from the square root of the determinant of

where the |(&1¢,71c) C
the Hessian of the phase in the stationary phase lemma and A\(0+),w(0+)
indicates that this critical set is parametrized by 6 and thus other variables
are functions of it. Recall (4.9), the tensorial factor on this critical set is
« dx wO
Ec — ()\7 + gl( y)
ha3 hi/2g
Since the statement is pointwise with respect to x,y, we assume that g; is
the Euclidean metric in the ellipticity argument and E. becomes

) @ (M0, + wh1/2x8y).

cdr  w-d
Since x > 0, this is a positive multiple of the projection to the span of
(A, w). As (A, w) runs over the equatorial sphere consists of vectors orthogo-
nal to (§1c,7m1c), we are integrating these projections, with the weight being
strictly positive if x(z,y, A, w) > 0.
Recall that the kernel of the principal symbol of 5Z,F consists of covectors

) @ (Aha®8, + wh'/?2d,).

of the form v = (vp,v1) such that &cvg + 1m0 = 0. Thus we need to show
that for each such (vg,v1), there is at least one (A,w) in the critical set of
the phase making x¥ > 0. Concretely, they satisfy

(4'11) X(x? y’ 5\70‘)) > O?
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(4.12) 51(}5\ + nlc W= 0,
(4.13) Avg +w - vy #0,
(4.14) &1cvo + Mic - v1 = 0.

These conditions let us concludes that the integral of projections is posi-
tive and our desired ellipticity on the kernel of the standard principal symbol
of 6; ¢ follows. So we arrange those conditions on vector components now.

e Consider the case v = 0 first. From (4.11) we know &1, = 0. In order
to satisfy (4.13), we take A small but non-zeri, w orthogonal to ne.
Such w exists because the orthogonal relationship is in R*~!,n > 3.

e Then we consider the case v; # 0 and v; is not parallel to n. In
this case we take w orthogonal to n but not to vy, A= 0, then
(4.11)-(4.13) are satisfied.

e Then we consider when v; = ¢n # 0, then (4.14) becomes &1cvg +
c|n1e/? = 0. Then with w to be determined later, we set A= —fl_clmc-
w, we have

Mo +w -1 = e(w - mie) (1+ €2 Imel?),
which is non-zero when w - 1. # 0, which can be arranged since w
and 1. are (n—1)—dimensional vectors. In addition, we may require
w - N1e to be small so that A is small as well and satisfy (4.11).

The discussion on the contribution of the region {|f| > 1} is divided
again into three parts: The first one is {|t| < Ty, > 1} with T fixed, the
second one is the region ¢ bounded but away from 0 and the third region is
|t| — oo. In the first region the phase is lower bounded by |(£1¢, n1c)|[£|7% for
some k and integration by parts gives the desired Schwartz property. In the
second region, the no conjugate point assumption implies non-degenerate
property of the Jacobian and in turn implies there is no critical point of the
phase. The third region is analyzed in the similar manner to the second.
See discussion after (3.13) of [10], which verbatim transplant to our setting.

Combining cases above proves that the principal symbol of IV},  is strictly
positive definite on the kernel of principal symbol of 5Z,F' U

Next we consider the ellipticity at finite points.

Lemma 4.3. Let F > 0 and Q,, = {z < x¢} with z9 small. Npf is an
operator in \I/;CI;L_} acting on one forms and it is elliptic on the kernel of
OnF in the boundary and semiclassical senses.

Proof. Recalling (4.8), setting h = 0 in the computation of semiclassical
principal symbol, we have

an (@, E1es ) :x/eF(j\eran))Z(l"y’ 5\’w)Ecei(glc(;\f+a£2)+mc-wf)d£d5\dw7
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which is equivalent to
an(z,y, E1e, M) =2 / e HEAFIDAL (2 y. K w)

. ) . ) '~ 22 A A
E 't time Rl gig N,

(4.15)

The A—integral is a Fourier transform evaluated at (—=&1c+ Fi). Then multi-
plication by \ is transformed into —D, = i0,, where o is the third variable
of F3x and F3 is the partial Fourier transform with respect to the third
variable. Define the matrix D, to be E, with replaced by —D,.

D, — D2 — atD, —Dg{w, )
¢ \w(—Dy + 2at) wlw,) )’

This integral becomes (A becomes —D,, after Fourier transform, because it
becomes D, after inverse Fourier transform)

(4.16)
an (2, Y, E1e; Mic) =2 / lobicl timewttFal i Tog(g y ((=&1e + iF)E), w)didw,

52 VO'2
Take v = F~la, x(s) = e2, then X(0) = ce 2 . Substitute in the equation
above, we obtain

v(=g10+iF)2E2
2

(417) ah($7 Y, £1C7 7710) =CXr / @7:()l£1ci2"!‘1”'7lc"’“)i_'_':oag2 Dce dtdw

Notice that D, is (—i times) differentiating (—&1 + iF)t. For the conve-
nience of later discussion, we set

B(E1e,w) = — v(=E1e + iF)? = 2iak). — 2Fa
- V(g%c + F2>

U(7'2
Then we compute derivatives of x = e 2 , with ¢ representing possibly
different overall factors.

l/(f2

2
A vo A
Dox =cvoe 2, D2y =c(v+1v2s%)e 2,

Substituting those o—derivatives back, we have

itone  —
an (I‘, Y, €1C7 nlc) =CX eltw 771(:6 >
Sn—2 R

—iv(&1c — iF)(—iv(€1e — iF) + 20)t% — v —iv(€1ec — iF)Hw, )\ ;7
( w(—iv(€1ec — iF) + 2a)t wlw,-)) ) dtdw.

The ¢ integral is an inverse Fourier transform with respect to w - 71, which
22

RT . A s _oZ .
turns multiplication by ¢ to —D,,.p,,.. In addition, e = is transformed into

_ (wme)?
a constant multiple of le, W —1/267 25 1c9) . So we have
p

(w-m)?
¢

an(z, Y, E1cs Mie) :CZL‘/ /¢(§1C7w)_1/26_ 2
Sn—2 JR
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—iv(é1e — iF)(—iw(§1c — iF) +2a)D2 ., —v —iv(€1c — F) Dy (W, -)
( w(=iv(€rc — iF) + 20) Doy wlw, ) ) dw

Direct computation shows this is

(516*“:) .
(gl + P [ () (s%chF? <“’ W)

S w

(wn1)?

® (‘f%jiif:'?(w “e)  (w, .)) ST g

We refer readers to page 21-22 of [6] for a detailed process of a similar

computation. We apply this principal symbol to an one form v = vgd% +

1)1% in the kernel of the principal symbol of 47, i.e. satisfying

<£lc + iF)UO + N1c - v1 = 0.

In order for the action of a; on v to be non-vanishing, we need to choose w
so that

(e +iF) (11 - v1)
& +F e +F

e If v; =0, then v = 0, which is trivial.

Next we consider the case in which v; # 0.

If mc = 0, choosing w parallel to vy gives (4.18).

If me # 0, and 11 is not parallel to vy, then we take w orthogonal to

N1c but not to v, which again gives (4.18). This is possible because

n > 3 and w has n — 2 dimensional choices.

If n # 0 and v; = cn. Then the quantity in (4.18) is

C( ‘nlc
& + F2

We can choose w that is not orthogonal to v; to make (4.18) hold.

(4.18) (W Nie)vo +w - vy = (W-nie) +w-vp #0.

" + 1>(w - v1).

Summarizing all cases, ay, is elliptic at finite points, and thus in the boundary
and semiclassical senses. ([l

4.2. Ellipticity on 2-tensors.
We now consider the modified normal operator on 2-tensors. Again, we
first prove the ellipticity of Nj f at fiber infinity.

Lemma 4.4. Suppose F > 0 is sufficiently large and Qg = {x < zo} with
xo small. Ny is an operator in \Illfcl};} acting on 2-tensors and it is elliptic
on the kernel of o, in the 1-cusp algebra differential sense.

Proof. Since the claim is pointwise, so we assume the y—part of gy, 1. is the
n—1 dimensional Euclidean metric, i.e., g1 = dy?. For 2-tensor computation,
the basis is

dv o dv dv o dy dy o odzv o dy o dy
ha® = ha®’ ha® " pag’ hap  hatl pap o pax
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Similar to the E, factor in the one form case, we have an Es. factor in
our 2-tensor case. In the 2-tensor case, the first factor becomes g, jc(Az0; +
wOy) & gn1c(Ax0y + wdy). For this factor, we have

gh,lc(Amam + Way) X gh71c(/\x6$ + wﬁy)

cdr gi1(wi0y) dz  g1(w20y)

_p—1/2, 1.5 4T ~1/2 —1/3 0T
h v ()\hx3+ hl/2g J@h . (Ahx3+ hl/2g )
5\2
—h 12 §\<w, )
)‘<w7 '>2 ’
<w7'>1 w>'>2

where the indices 1, 2 in w1, wy are indicating the order of components. While
the second factor in the 2-tensor case is

vy ® vy =h a2 (A + 2ad)haBdy + w18,) ® (A + 2ad)ha’d, + w2d,)
=h'27? (A +20d)? (A +20d)(w, )1 (A4 208)(w, )2 (w, )1 {w,-)a) -

FEs., the product of two factors after combining A and x powers in the
definition of L and introduced by the change of variables is

N2(A+ 2ai)? A2(A+ 2af) (w, )1 A2(A+2af) (w, )2 A2 (w, ) 1w, )2
?‘(j\ + 2at)w %\(%\ + 2at)wi (W, )1 %\(%\ + 2at)wi (W, )2 Awi (w, )1{w, )2
):()\ + 2at)%ws ):()\ + 2af)wa(w, )1 ):()\ + 2at)wa(w, )2 Awz{w, )1 {w, )2
(A + 2ai)?wiws (A + 2at)wiwa (w, )1 (A + 2ad)wiwa (w, )2 wiw2(w, )1 {w-)2

The semiclassical principal symbol is
(4.19)

F(M+af2+83n1/20 W) (z,y,h /2 X w,h1/28)) ~ 3
ah(l‘ayaé-lC?nlC) :IE/G ( tott (my © ))X('raya)‘aw)EZC

ei(g(;\f—i-an—i-hl/2f3F(1>)+n‘(wi+h1/2izf‘(2>))dfdj\dw’

where ), { are rescaled variables introduced in the one form case. Following
the computation in [10] and references therein, i.e., equation (3.12) of [9],
the symbol when we take h'/2 = 0 is

. N "2 . ~ oA /\2
an (SE, v, 51(:7 nlc) — /ezglc()\t—&—a(x,y,o,w)t )+n1c wteF()\t—i-oz(m,y,O,w)t )

)Z(xv Y, 5‘) W)EQCdL?dde.

Error terms caused by taking h'/2 = 0 have extra O(zhY?(|(&1e, mc)]) ™)
gain relative the the leading part.

We use the notation 6 = (X,w) and apply the stationary phase lemma
with respect to #,6 to compute the leading part as |(£1c,m1c)| — co. We
decompose 6 according to directions parallel to and orthogonal to (&ic, 71c)
and denote projections of 0 by 6/l 6+ respectively. Then the critical set is
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given by ¢ = 0,0l = 0. So the leading part is
o [ R A, w(6) Eade™,
Sn—2

where A\(1), w(61) indicates that this critical set is parametrized by 8+ and
thus other variables are functions of it.

Since x > 0, this is a positive multiple of the projection to the span of
(5\, w). As (;\, w) runs over the equatorial sphere consists of vectors orthogo-
nal to (£1c,7M1c), we are integrating these projections, with the weight being
strictly positive if x(z,y, A, w) > 0.

Recall that the kernel of the standard principal symbol of oy, ¢ consists of
2-tensors v = (vgo, Vo1, Vo1, v11) Such that

£1cv00 + Nic - vo1 = 0,
(4.20)

1
§1cv01 + 5(771c,1 + Ni1c2) - vi1 =0,

where sub-indices in 71c 1 resp. 7.2 denotes the inner product is taken in
the first resp. second slots of v1;. Taking the inner product with 7. in the
second equation, notice that v1; is a 2-tensor sending a (co)vector 71 to be
a (co)vector, we obtain

E1cMic * v10 + (Me @ Mic) - v11 = 0.
Combining this with the first equation in (4.20) yields

00 = (e @ Ne)vrr.

Without ¢F—term in the finite points case, we need to consider cases in
which £ = 0 and £ # 0 respectively.
Consider the case £ # 0 first.

voo = £ (0 ®@ M)vit,
(4.21)

Vo1 = (Mea + Mic2) - V11-

1
2flc
Recall that we are computing the contribution at the critical set of the

phase: {t =0, gl = 0}, so the direction to which we are projecting is

bRy =k (N Mwy )t Mw, e (W d1{w,s )e) -
As 0l = 0, or equivalently &1\ + 11w = 0, we know
Me - W
glc .

So for v to be in the kernel of the projection means

cw Q@ W
(% )2"“52”1%"1;2 (e ®w+we () +wow) =0,
c lc lc c c

e




30 QIUYE JIA AND ANDRAS VASY

which is equivalent to

(4.22) ((mgl’ “% tw)® (mgl’ w% +w)) v = 0.

Suppose 1. = 0, then (4.21) implies vgp = 0,v9; = 0. Equation (4.22)
now becomes

(w®w) v =0.

By the ‘polarization’ formula w) @ wy +ws @w; = (w1 +w2) ® (w1 +wz) —w1 ®
w1 — w9 ®we, we know that the symmetric 2-tensors of the form w ® w span
the sapce of all symmetric 2-tensors. So from (w ® w) - v1; = 0 we conclude
that v1; = 0 and consequently v = 0 in this case.
Now suppose 71c # 0, with 71, = %, we decompose w as
w = €fe + (1 — )20t

where w™ is the unit vector in the direction of the projection of w onto nf-c,
the orthogonal complement of 7;.. Then we substitute this into (4.22) to
obtain

0+

+ (1 — 62)(4)L &® UJL) -v11 = 0.

|2 2 2 A - \n1c|2
)6771c®771c)+(1+ 3
f1(:

Je(1 — )2 (f1e ® wh + wh @ 1)

Let the directions of w vary, then € varies correspondingly, and our condition
is that this equation holds for all € € [—1, 1]. In addition, now nic-w = €|nic|

and we have \ = —%, o A is small when € is small and therefore y >

for small e. Taking € = 0 first yields (w' ® w®) - v;; = 0. By the same
polarization argument as above, cotensors of the form w' ®w span 771c®77ﬁ;a
we conclude that vy is orthogonal to every cotensor in ni; ®ni.. Our second
step is to take derivative with respect to € at € = 0 at (4.31), which yields
(e ® wl+wt® M1e) - v11 = 0 for all wt. Notice that symmetric tensors
of the form (71 ® wh + wt ®@ 1) and 71 @ ni together span (N1e @ Nic)™.
Then further taking the second order derivative at e = 0 shows that (7. ®
M1c) - v11 = 0. Combining orthogonal conditions we have we know v1; = 0.
Combining (4.21), we know that v = 0, then the non-degeneracy of this
principal symbol and thus the ellipticity when &1 # 0 follows.

Now we consider the case £1. = 0. Now the critical set condition becomes
Me - w = 0. (4.21) and the condition being in the kernel of 15 ® ¢ is

Me - vo1 = 0,
(4.23) (Me,1 + Me2) - vi1 =0,
(A2v00 4 2Xw - vo1 + (W @ w) - v11) = 0.
Suppose (4.10) acting on v is not elliptic, then it vanishes for every 5\,w

satisfy m1c - w = 0 and A in the support of ¥ (for fixed other variables).
In particular, for every A small. View this as a polynomial in A, then its
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coefficients need to vanish. So we conclude that vgp = 0,w - vg1 = 0, (W ®
w) -v11 = 0. Combine these with first two equations in (4.23), we know
vp1 is orthogonal to both 7. and all directions orthogonal to it, similarly
for v1; (using the argument in the previous £ # 0 part), we conclude that
vo1 = 0,v11 = 0, thus v = 0 as desired. The proof of ellipticity at fiber
infinity is completed. O

Next we consider the ellipticity at finite points.

Lemma 4.5. Suppose F > 0 is sufficiently large and Qg = {x < zo} with
xo small. Ny r is an operator in \I’fcl};;- acting on 2-tensors and it is elliptic
on the kernel of 6y F in the boundary and semiclassical senses.

Proof. Then the semiclassical principal symbol at finite points is
an(z,y, §1c, Me) = a?/eap(F+i§10)+£(5‘(F+iglc)”’710""))Z(a:,y,j\,w)Egcdfdj\dw.

Use the expression from [10], adding the tensorial factor, and notice that
with our new parameter F, the phase is unchanged, while the damping factor
is multiplied by F, we have

(4.24)

an(z, Y, E1cs Mic) —x‘/eF(;\”o‘i?))Z(:v,y,5\,w)Ezcei(&c(’A\”anH’””“’?)dfd;\dw,
Rewrite ay, as
an(T, Y, §1c, Me) = SU/G_Z-((_&CJFFZ-){)XX(QZ%5\»“’)

. 72 . o 22 A LA
EQgezaflct +in1c-wt+Foat dtd\dw.

(4.25)

The A—integral is a Fourier transform evaluated at (—&;c 4 Fi). Then multi-
plication by A is transformed into —D, = i0,, Yvhere o is the third variable
of F3x. Define the matrix Dy, to be Fo. with A replaced by —D,:

D2(—Dy + 2at)? D2(—Dy + 2at)(w, )1 D2(—Dy + 2at)(w, )2 D2(w, )1 {w, )2
—Ds(—Do + 2at)w1 —Do(—=Do + 2af)w1 (w,)1 —=Do(—Do + 2af)w1 (w, )2 —Dowi(
—Dy(=Dy 4 20t)%2ws —Dy(—Dy + 20t)wa(w, )1 —Do (=D + 2at)wa{w, Y2 —Dowa(w, - ,

(=Dos + 2af)2w1WQ (=Ds + 2af)w1¢1J2 (w, )1 (=Ds + Zaf)wlt.ug (w, )2 wiwz{w, )1 {w-)2

Then (4.25) becomes
(4.26)

ah<q;7 Y, §1C’ 771c) =z / eia51cf2+i771cwf+Faf2D20f3>~<(x’ g, ((—flc n iF)f),w)dfdw,

52
Take v = F~la, (2,9, s,w) = e2v, where the dependence on z,y,w is en-

7/(7'2
coded in « and thus in v, then F3x(z,y,0,w) = ce 2 . Substitute in (4.26),
we obtain

(=€ +iF)2E2

(427) ap (JZ‘, Y, 5107 7710) =Ccx / 6ia§1Cf2+mlc-th+Fm‘? DQCe 2 dfdw
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For the convenience of later discussion, we set
P(&1e,w) = — v(—E1c +iF)? — 2iaé1c — 2Fa
v(&fe + F?).

I./O'2
Then we compute derivatives of F3x = e 2 , with ¢ in in different equations

representing possibly different overall factors.

va? o?
D,x = cvoe 2, D2X—C(V+V2S2) =,

o2 o2
Dix = (30 +130%)e s, Dig=c(3® + 6507 + viot)e .

(e

Then we have
A~ ~ 22 "
an(,y, &1cs Me) =czh / lme( By x e % didw.
Sn— 2

Let B;; be the coefficient after the action of D! (D,+2at)?, we have (notice
that the variable of y is —&1. + ¢F, but now we are writting expressions for
(&1 — iF) for convenience)

B = —v(&1e — iF)(v(€1e — iF) + 2i)t? — v,
Boy = iv?(€1c — iF)2(v(€1e — iF) + 2i0) > + (3iv?(&1e — iF) — 2va)t,
Bz = (v(&1c — iF) + 2ia)*t? — v,
By = —iv(€1e — iF)(v(€1e — iF) + 2ia)?83,
Bz = v*(&1c — iF)*(v(&1e — iF) + 2ia)*E* + v (617 (&1c — iF)?
+ 12iva(éy. — iF) — 4% + 302,

~—  —

Then the matrix (B;;) is given by

Bas Boy(w, )1 Bai(w, )2 Bog(w, )1(w, )2
Biawy Briwi{w, )1 Biiwi(w, )2 Biowi (w1, -)1{w)2
Biaws Biiwa(w, )1 Biiwa(w, )2 Biowa(wi, -)1{w)2

Bopwiws  Boiwiwa(w,-)1  Boiwiwa(w, )2 Biowa(wa(w, )1

The ¢ integral is an inverse Fourier transform with respect to w-11c, which
T 5 _oi® :
turns multiplication by ¢ to —D,,.,,.. Moreover, e” 2" is transformed into

_ (w‘"1c>2
(a constant multiple of) ¢(&1e,w) /%€ 26C1e) . So we have

_ (w "1c>2

(.T Y, 5107771c _cx/gn 2/ﬂ§¢(§1C7w)1/2(C’7ﬁj) Xe dw.
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The matrix (Cj;) is given by

Ca2 Co1{w, )1 Co1(w, -)2 Coo(w, )1{w, )2
Crawt Criwi{w, )1 Criwi{w, )2 Crow1 (w1, -)1{w)2
Crawo Criwa(w, )1 Criwa(w, )2 Crowa (w1, -)1{w)2

Coowiwz  Coiwiwa(w,-)1  Corwiwa(w, )2 Crowa (w2 (w, )1

Here (Cjj) is the counterpart of (3.20) of [6], set p = w - N,
Coo =1,
Cio = v(&1c — iF)p~'p,
Cao = V2 (€1c — iF)?¢72p% + 2ivag™ (&1c — iF),
Cor = v(&1c — iF)¢™ ' p — 2iag™ " p,
Cr1 = v(€1e — iF) (v (&1c — iF) + 2ia) ¢~ p?,
Oy = iv? (€1 — iF)2(v(€1e — iF) + 2ia) 3 p> — 2ivag™1p,
Coz = (v(&1e — iF) + 2iv)*¢2p? — ¢~ (v(€ — iF) + 2iv)2iv,
Crz = v(&1c — iF) (v(&1c — iF) + 2i0)*¢~"p% + 2029~ "p,
Cao = 12(€1c — iF)2 (v (€1 — iF) + 2i0) 204 p* + dva?p 292 — 40Pve L

We can verify that C;oCy; = Cj;, which is as expected since we constructed
Fj5. and therefore subsequent matrices by multiplying two rank one matrices.

Thus the matrix (Cj;) can be decomposed as

Cao
w1Cho
w2C1o

wiw2

(4.28) & (Coz Co1{w, )1 Cor(w, )2 <W,‘>1<Wa'>2) )

where the second factor is the adjoint of the first one. In addition, we have

Co1 = v(&1c + iF)p1p,
Coz = V2 (€1e + iF) 2072 p% + 2ivag ™ (&1 + iF),

where ¢ = —v(&2 + F?).

Using (3.14), the condition that a symmetric 2-tensor v = (vgg, Vo1, V10, V11)
(being symmetric means vg; = v1g being in the kernel of the principal symbol
of 6; means that

(&1c + tF)voo + Mic - vo1 + bs - v11 =0,
(129 T
(&1c + iF)vor + §(U1C,1 + Nic2) - v11 =0,

where sub-indices in 71¢,1 resp. 7ic2 denotes the inner product is taken in
the first resp. second slots of v11. Taking the inner product with 7. in the
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second equation, notice that v11 is a 2-tensor sending a (co)vector 71, to be
a (co)vector, we obtain
(&1c + iF)n1c - vo1 + (N1e ® N1c) - v11 = 0.
Combining this with the first equation in (4.29) yields
(&1c + iF)?v00 + ((£1c + iF)bs — n1c @ M1c) - v11 = 0.

From the second equation of (4.29), we know

. 1
(&1c +iF)vor = —5(771c,1 + N1c2) - V11

Using symmetry of tensors involved to combine inner products taken, we
have

Voo = (glc + iF>_2(771c & N — (§1c + ZF)bs) - V11,
(4.30) 1 1
Vo1 = _5(610 + ZF) (771c,1 + 771c,2) *U11-

Fixing w, for v to be in the kernel of the principal symbol of §; and the
projection given by (4.28) means

(002(510 + Z'F)72(7710 ® Mic — (glc + lF)bs)
— C01(flc + iF)_l(Ulc Qw+w 771c) +w® W) ~v11 = 0.

Recalling that ¢ = —V(f%c + F2), we conclude from the concrete expressions
of Cj; that this is equivalent to

((1e —iF) 7M€l + F) 7w - me)® — 20w (& + F*) ™)

((§1c+3F) " (me ® me) — bs)+

(e +F)Hwnie) (e ®w + w @ mie) + w @ w) - v11 = 0.
In order to eliminate ‘error terms’ involving bs above, we introduce

EloF = €le _ e
1c,F F y Me,F F -

Using these rescaled variables, condition above can be rewritten as
(1o =) (e + D Hw  mep)” + 2iF (&l p +1)7H)
((G1ep + 1) (e @ micr) — Fla)+
(E%C,F + 1) 7w ) (MeF W+ w @ NicE) +w ®w) - vy = 0.
We collect terms involving F~! to rewrite this as:
(1o — )7 (Eer + DN W mep)?) e +9) 7 (M1eF ® MicF)+
Eer+ D)W mep)(mer @w+w@ner) +w@w+OF ) v =0.
This can be decomposed as
(e + D)7 @ meF)mer +w)

(4.31) : - By )
® (€l + 1) (W MieF)Miefr +w) + O(F 7)) -v11 = 0.
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Then we choose F large, and we show that this equation holds for all w
implies v11 = 0. When 7. F = 0, this means (w®w)v11 = 0 for all w. Notice
the ‘polarization’ formula w; @ we + ws @ w1 = (w1 +w2) @ (W1 +w2) — w1 ®
w1 — w9 ®we, we know that the symmetric 2-tensors of the form w ® w span
the space of all symmetric 2-tensors. So from the vanishing condition we
conclude that v1; = 0 and consequently v = 0 in this case.

Now suppose 71cf # 0 and we define 7. F = 725 then we decompose w

‘nlc,F‘
as w = ener + (1 — 62)1/2wl, where w' is the unit vector in the direction

of the projection of w onto nfc r» the orthogonal complement of 7. . Then
we substitute this into (4.31) to obtain

1 IMerl® \2 5 . .
+ ggﬁ € Nc,F @ Nie,F
lc,F

2
(e M)EU = )2 (heF ®wh + w0t @)
glc,F + 1

+ (1 — 62)(4.1L (%9 CUL) -v11 = 0.

Our condition is that this equation holds for all € € [—1,1]. Taking e =
0 first yields (wt ® wt) - vy = 0. By the same polarization argument
as above, cotensors of the form w' ® w' span Ne,F @ niF, we conclude

that v1; is orthogonal to every cotensor in nf-QF ® ntf. Our second step
is to take derivative with respect to € at ¢ = 0 at (4.31), which yields
(e F @ W +wh ®M1cp) -v11 = 0 for all wh. Notice that symmetric tensors
of the form (7o F ® wt+wt® Mic,F) and 171{:7,: ® nf;’,: together span (1. F ®
nlc,F)J_- Then further taking the second order derivative at e = 0 shows that
(Me,F ® NieF) - v11 = 0. Combining orthogonal conditions we have we know
v11 = 0. Combining (4.30), we know that v = 0, then the non-degeneracy
of this principal symbol and thus the ellipticity follows. (I

4.3. Ellipticity in the combined class.

Next we consider the ellipticity of Nj,F in the combined operator class
U 1c,h,7- We first show the ellipticity of Nj, r as a semiclassical scattering
operator near Y, restricted to the kernel of d; r. Note that this argument is
necessary since in [6] only the scattering (not the semiclassical) behavior was
considered, but the addition of the semiclassical behavior does not require
any significant changes.

Proposition 4.6. Let F > 0 for one forms, and F is sufficiently large for two
tensors and Qy, = {x < xo} with xy small. Then acting on one forms N, f

. . —1,0 . . .. .
18 an operator in \I[sc,h,]-"f while on symmetric 2-tensors, it is an operator in

\II;C’l;f]_- In both cases, it is elliptic on the kernel of o, in both scattering
algebra and semiclassical sense.
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Proof. The ellipticity of Nj, r as a semiclassical foliation scattering operator
on functions is proved in [9]. The process to transplant this result to one
forms and 2-tensors is similar to the proof of Proposition 4.1.

As we mentioned in the beginning of this section, the membership of Ny, p
near X, in Wy p, F, expressions of phase and damping factor are given in the
proof of Proposition 3.3 of [9] and the argument in Proposition 3.1 of [6].
The remaining part to verify is the power of z, h introduced by our tensorial
factor and notice the decay order difference in results. In the 1-form case, as
computation below show, we have an extra h~!(zo — 2)~2 factor compared
with the scalar function case. h is absorbed in the same manner as in our
computation near ¥y. Thus the membership of \Il;lh_Z there is changed to

be \Ils_cl,’lOF. In the 2-tensor case, we have an extra factor h=2(zg — z)~%.

An h™! power is absorbed as in the 1-form case, or previous lemmas, and
another h~! factor is absorbed by that in the definition of L, finally we have
membership of \IJS_CI;LQF.

Notice that in the notation [9], (x\) is interpreted as the component of 4
on 0, direction as a whole. So the rescaled variable we introduce near ¥,
are

- A ~ xt
4.32 A= , = .
(4.32) h/2(zo — x) h/2(zg — )

The metric g 1c,, near ;,, which is a semiclassical scattering metric,

applied to (4.2) is:

dx g2(w0y)
h2(zg — x)*  h(zg — x)?
_ 15 dx (wdy)
_3-1/2 . 1 g1\W0oy
h (zo — @) ()\h(aco —x)2 " W2(zg—2)”

Gse,h (TN + w0Oy) = zA

Similarly, the second factor is
vy = Y2 (@ — 2) "N\ 4 2ad) h(zo — )28, + wh'/ P (xg — 2)9,).

Then the counterparts of Lemma 4.2 - 4.5 for N, in the semiclassical
scattering foliation algebra near X, are proved in the same manner as the
proof of Lemma 4.2 - 4.5 by replacing = by (zo — z), A by A, and ¢ by .
These results combine to complete our proof. O

Next we derive the ellipticity of N, F with an extra term added in the
combined class by combining Proposition 4.1 and Proposition 4.6. As before
we consider Q, = {z < x0} with z¢ small.

Proposition 4.7. First consider the result about one forms. For F > 0,
Ny, F is an operator in \Ils_cli27glj:(X;zc’]£C T*X,ZC’;C T*X). With suitable choice
of M € \I/S_C?’ig’,:;-(X), the operator

Ah’F = Nh’F + dZ,FM(SZ,F

. T -1,0,—1 s¢,1c s v sc,1c ik
is elliptic in W | 7 (X5 7 T° X7 T*X) on Qg
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On the other hand, consider symmetm’c 2-tensors. For F sufficiently large,
Ny is an operator in W_ 1chJ—‘(X Sym? ST X, Symy ST X)), With

suitable choice of M € \I/S_C?’lz gl]:(X,ZC}C T*X,ZC}C T*X), the operator
Ah’F = Nh’F + dz,FM(SZ,F

is elliptic in \I/SC lc N I(X Sym 2 s 1CT*X Sym2 Seleps xy,

Here, the ellipticity in ‘I’SC lehF mcludes the ellzptzczty in the sense of the
standard (differential), the scattering (at X,,) and 1-cusp (at Xo) boundary
as well as the semiclassical principal symbols. In particular, Ay, F is invertible
for h sufficiently small.

Proof. The proofs for one forms and 2-tensors are the same, except for the
extra requirement that F is sufficiently large for 2-tensor cases introduced
by the proof of ellipticity in the semiclassical sense. The membership and
ellipticity on the kernel of 6; ¢ near two boundaries follows from Proposition
4.1 and Proposition 4.6. Thus when we add the term dj M(Sh’,:, where M

’3,0,—1
has positive scalar principal symbol as an operator in ¥_ c,1 ChF for 1-forms

and \Ifscslz hF for 2-tensors, then its product with dh FrOpp I8 of the same
order as Nh’p Since M has positive scalar principal symbol, to show the
ellipticity of Ay, F, it remains to check the positivity of the principal symbol
of dj 07 .

We oﬂly give computation details for the 1-cusp principal symbol near 3
because the computation near ¥, is almost the same as that near ¥y. The
membership of dj hF and its adjoint Jj7, hF @s operator in the combined class is
encoded in the discussion in Section 3.2 and 3.3. Also, according to symbol
computation in Section 3.2, on one forms, dh7F5h7F has principal symbol

flc —1iF . f% + F2 (flc - iF)L
F — C . Mc
< Ne <§1C +1 L7]1c) (flc 4 ZF)T]10® Ne ® Lo )

and on 2-tensors, dthéth has principal symbol

(4.33)

§1c —iF 0 . 1 .

Imew  Le—ip) | (ST 2tme (bs ) _

’ : 0 5 (&1c — iF) e
bs N1c®s

g%c + F2 %(glc — iF)L'ﬂlc (51'3 _ ZF)(bS, >

2+ Fme® 4 (me ® Jeme + (€ +F) 5me ® () + 5 (E1e =P, |

(Elc — ’LF)bs gbsbmc + %(é‘lc + iF)T]l(:@S bs <b37 > + N1c Vs tnre

where the last matrix in fact is a 4 x 4 matrix of blocks, where the third
column is the same as the second column and omitted. When b = 0,
standard linear algebra gives lower bound independent of F in terms of
|(&1¢,m1c)|. Thus, rescaling &1e,m1c by F~! as in the proof of Lemma 4.5,
we can absorb terms involving b, b%, since their total power of F, &1c, n1c is
lower.
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To summarize, this extra term de,FM 5Z7F, with M suitably large and
positive gives the ellipticity of A F, without changing its action on the
kernel of 6} . U

4.4. Proof of Theorem 1.3.

Proof. Proposition 4.7 implies the invertibility of Ay F, and thus, under the
gauge condition, the injectivity of N}, g, which in turn implies the injectivity

of Te'h restricted to tensors in the kernel of 07 ¢ with sufficient decay and
hence the result of Theorem 1.3. O

Remark 4.8. Following up on Remark 1.4, see also analogous arguments
in [10], when we replace x by aP, then the rescaled variables should be taken
as A = N/ (h'/2aP) & = t/(h*/%aP), and similarly the weight for conjugation
s ¢ = —ope7s T€ar Yo. The 1-cusp algebra is changed accordingly: the
construction is completely the same, but with the defining function x and
the smooth structure replaced by that of zP.

Now write 1c.p, Ncp for the dual variables of the 1-cusp cotangent bundle
constructed using xP as the boundary defining function. Covectors are

dxP dy dx dy
Slc,pﬁ + nlc,pﬁ = pglc,pw =+ nlc,pﬁ-

The phase (4.6) becomes (using our new t, \)
Pliep(M + afz, y, W 2P X w)i? 4 W 2aPBT W) (2, y, WY 22P X w, hY/22Pi))
+ ey - (Wi + Y 2P (2, y, BV 2P X w, WY 22PE)).
Similarly, the damping factor (4.7) becomes
M+ oz, y, 22PN, w)i2 + B 22PBT W (2, y, B 2P X, w, W' 22PF).

Then the arguments afterwards for symbol computation and ellipticity in
various senses go through as before after repalcing quantities as mentioned
here, and the p coefficient produced does not affect the argument.

5. THE GAUGE CONDITION

5.1. The gauge condition, conic 2-tensor.
We still need to show that we can arrange the gauge condition

SnefnfF =0,

where
_Fe
Jhp=e""f.
Recall that the freedom we have is adding to f a term of the form d*v with
v decaying suffiicently fast at M. This is equivalent to adding to fnr a
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term of the form d;";’thyp with vy F = e_%v, where d;";’F — e~ W den is the
adjoint of 0y F, and the modified Laplacian is their product:

S S
AnF,s = Oprdj, F-

Notice that if v F is in any 1-cusp Sobolev space (of sufficient regularity,
if one wants pointwise statements) near M then v is actually Gaussian
decaying, so d®v is indeed in the kernel of the X-ray transform. Note also
that there is no decay needed at the artificial boundary: the geodesics on
which our modified normal operator puts a positive weight do not intersect
it! However, we must of course make sure that the added potential term
leaves us in the correct function space.

The modified solenoidal (S) and potential (P) projections acting on a
function or one form ¢ are given by

Snrd = ¢ — d; f AL | 57 O,
Prkd = di fQurd, Qnid = Ay 65 0

QnF¢ is vanishing at 0int{);, because of the boundary condition for Ay r g
and its solution operator. Thus P ¢ is in the range of dj, ¢ applied to
functions or one forms vanishing at 0, M. Further, Sp, F¢ is in the kernel
of 5h F-

5 FShFd = 8 g — 0 pdy f AL E 550 = 0.

Thus the remaining task is to justify the definition of @ F by checking
the invertibility of Ap g s on the mixed 1-cusp (at M) /scattering (at the
artificial boundary) Sobolev spaces.

5.2. The invertibility of Ay, r ;.

In this section we prove the ellipticity of the modified Laplacian Ay F q,
from which the invertibility follows by taking the semiclassical limit. This,
in combination with previous discussion, proves Theorem 1.5.

Lemma 5.1. For F > 0, we have Apps = 0p ¢dp ¢ € ‘I’fé?ig,h,f(X); and
for F > 0 sufficiently large it is jointly elliptic in the sense of the standard
(differential), the 1-cusp (at ¥¢) and scattering (at ¥4,) boundary as well
as the semiclassical principal symbols. In particular, it is invertible for h
sufficiently small.

Proof. Membership of Ay, f s near both boundaries follows from the operator
properties of the dj, ¢ discussed in Section 3.2 and 3.3 and consequently its
adjoint dj p. Near the scattering boundary Y, it is in Diffi:gc(X ); while
near the 1-cusp boundary ¥, it is in Diff%co (X). The bundle valued version
can be derived in the same manner. Combining these facts, we know that
in our new operator class, Ay, f s lies in ‘I’fé?ig,h,f-
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Next we consider the ellipticity near g as an l-cusp operator. Recall
Proposition 3.1, the principal symbol of Ay, is

(gi + F2 + %77%(: %(Elc - iF)Lﬁlc > + <<b87 '>b8 <b87 '>"71c®s>
T+ iF)me®  5(EL 4+ F?) 415, me®s 0,.b 0 ’

where the term %(5%6 +F?) + Ly Mc®s represents a block with components

MNic S

%(ffc+ F2) +%’7llc|25ij +%771C7mlc7j. We apply the same argument in the proof
of Lemma 4.5 to absorb the second term by taking F > 0 sufficiently large
since all those terms have lower order in terms of the total power of &1, 71c
and F. This proves the ellipticity near ¥ in the 1-cusp and semiclassical
sense.

The ellipticity of Apfs in the scattering and semiclassical sense near
Yz, follows from the same argument, but using Proposition 3.2 instead of
Proposition 3.1. The invertibility follows the standard way by constructing
parametrix and take semiclassical limit. O

In particular, this proves Theorem 1.5.

Proof of Theorem 1.5. This is an immediate consequence of the discussion
before Lemma 5.1 and Lemma 5.1 itself. O
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