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Abstract. In this paper we show the invertibility of the geodesic X-ray
transform on one forms and 2-tensors on asymptotically conic manifolds,
up to the natural obstruction, allowing existence of certain kinds of
conjugate points. We use the 1-cusp pseudodifferential operator algebra
and its semiclassical foliation version introduced and used by Vasy and
Zachos, who showed the same type invertibility on functions.

The complication of the invertibility of the tensorial X-ray transform,
compared with X-ray transform on functions, is caused by the natural
kernel of the transform consisting of ‘potential tensors’. We overcome
this by arranging a modified solenoidal gauge condition, under which we
have the invertibility of the X-ray transform.

1. Introduction

For n ≥ 2, the geodesic X-ray transform I on a n−dimensional Riemann-
ian manifold (M, g), possibly with boundary, of a rank m tensor f is defined
by

If(γ) =

∫

⟨f(γ(s)), γ̇m(s)⟩ds,(1.1)

where the paring is given by ⟨f, vm⟩ =
∑

i1,i2,...,im
fi1i2...imv

i1vi2 ...vim in local

coordinates (or a local frame), and we assume conditions on γ and f which
guarantee the convergence of the integral. Typically we impose sufficient
decay condition on f and some geometric assumption on γ. This map I
sends a function on M to a function on the space of geodesics on M . It
turns out to be useful to instead consider I as a map from M to the unit
sphere bundle SM of M by identifying β ∈ SM with the unique unit speed
geodesic whose lift goes through β; of course for different β’s on the same
lifted geodesic If(β) is the same.

One of the reasons for the importance of this problem is that it is the lin-
earization of the boundary rigidity problem, i.e. whether Riemannian metrics
can be determined from the (renormalized in many settings) lengths of their
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geodesics, see for instance [8]; however, X-ray transforms show up in many
other problems of interest.

The inverse problem concerns the question whether one can determine f
from If , i.e., whether I is left invertible, potentially with additional stability
questions (continuity properties of a left inverse), as well as whether a left
inverse can be constructed effectively. The answer depends on (M, g) and
on the function class we choose. The most famous and ‘standard’ conjecture
in this field is Michel’s, namely that boundary rigidity holds on (compact)
simple manifolds. Here a Riemannian manifold with boundary (M, g) is
called simple if for any p ∈M , the exponential map expp is a diffeomorphism
from a neighborhood of the origin of TpM and if ∂M is strictly convex with
respect to g.

In this paper we consider the geodesic X-ray transform on asymptotically
conic spaces. Recall that a conic metric, on a manifold (0,∞)r × Y , with Y
the cross section or link, which we always assume is compact and without
boundary, is one of the form

(1.2) g∞ = dr2 + r2g0,

where g0 is a Riemannian metric on Y . An asymptotically conic metric is
one on a manifold which outside a compact set is identified with (r0,∞)r×Y ,
with a metric that on this conic end tends to g∞ as r → ∞ in a specified
way. An example is the Euclidean metric, for which the cross section is
the standard sphere, and indeed metrics asymptotic to the Euclidean one at
infinity, or more generally to the perturbations of the Euclidean metric by
changing the metric on the link, namely the sphere ‘at infinity’.

To be concrete, for our purposes, it is useful to compactify our space, i.e.
let x = r−1, so r → ∞ corresponds to x→ 0, and add a boundary {0}x×Y
to the manifold, thus compactifying it toM . An asymptotically conic metric
then, as introduced by Melrose [4], is a Riemannian metric on M which is
of the form

(1.3) g =
dx2

x4
+

g̃

x2

near ∂M , where g̃ is a smooth symmetric 2-cotensor onM ; g is thus asymp-
totic to g∞ given by g̃|x=0 on the cross section Y .

A key difficulty in analyzing the X-ray transform in general is the poten-
tially complicated geometry, such as the presence of conjugate points, though
these do not exist under Michel’s hypotheses. However, on perturbations of
asymptotically Euclidean metrics (for which the link has conjugate points at
distance π), one typically has conjugate points; indeed this is necessarily the
case if the metric keeps being asymptotic to Euclidean space but is not flat,
as shown recently by Guillarmou, Mazzucchelli and Tzou [2]. Under the as-
sumption of the absence of conjugate points (as well as other assumptions),



THE TENSORIAL X-RAY TRANSFORM ON ASYMPTOTICALLY CONIC SPACES 3

Guillarmou, Lassas and Tzou [1] have indeed analyzed the the geodesic X-
ray transform on asymptotically conic spaces, but these results in particular
do not apply to (non-trivial) asymptotically Euclidean metrics.

One way of dealing with the geometric complications, introduced by
Uhlmann and Vasy in [7], is by working locally in smaller regions, namely
on super-level sets of a function whose level sets are strictly concave from
the side of the super-level sets. Such functions always exist locally near the
boundary in Michel’s setting due to the strict convexity of the boundary;
indeed the latter guarantees this without further assumptions. The global
existence is called a convex foliation condition, and is satisfied under various
conditions discussed in [7, 6], see also a thorough study in [5, Section 2]
and references therein. The chosen level set acts as an artificial boundary,
analytically pushing to infinity the geometrically finite boundary. We recall
the main result here. For O an open set in M , the O−local geodesic X-ray
transform is the X-ray transform restricted to geodesic segments which are
completely in O and in addition with endpoints on ∂M .

Theorem 1.1 (Uhlmann and Vasy, [7]). Suppose (M, g) is a Riemannian
manifold of dimension ≥ 3 with strictly convex boundary and O is an open
set in it. The O−local geodesic X-ray transform is left invertible on a small
collar neighborhood of ∂M . It is globally left invertible under a global convex
foliation condition.

More recently Vasy [9] introduced a semiclassical approach to this prob-
lem, which could also be combined with the artificial boundary method to
take advantage of the best features of both. Subsequently Vasy and Zachos
extended this to asymptotically conic manifolds in [10]. In this extension,
it is shown that if we insert a localizer χ̃ in the definition of the normal
operator (roughly I∗χ̃I) and conjugate it by a suitable exponential weight

e
FΦ
h to define the modified normal operator, then this operator is an elliptic,

and thus for sufficiently small h invertible, member of a new pseudodiffer-
ential algebra, whose non-semiclassical version, the 1-cusp algebra, already
appeared in Zachos’ PhD thesis [11].

Theorem 1.2 (Vasy and Zachos, [10]). Suppose that M is a manifold of di-
mension n ≥ 3, g is an asymptotically conic metric onM with cross sections
without conjugate points within distance ≤ π

2 . Then on a collar neighborhood
of infinity the geodesic X-ray transform is injective on the restriction to the

collar neighborhood of functions in e−
C

x2pL2
g, where p > 0 and C depends on

p.

Notice that the hypotheses of the theorem in particular allow asymptoti-
cally Euclidean metrics, or more general perturbations at infinity of asymp-
totically Euclidean metrics. However, this comes at the cost of more strin-
gent decay assumptions on the unknown function f relative to [1].

In this paper, we extend this conic result to the one form and 2-tensor
cases. These tensorial problems have an additional complication relative to
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the scalar ones above. Potential tensors, i.e. tensors of the form dsv with
v a one lower rank tensor vanishing on ∂M , or, in our case, sufficiently
fast at infinity, i.e. at ∂M , where ds is the symmetrization of the gradient
with respect to g, are in the kernel of I. In the case of 1-forms, where ds

is the exterior derivative on functions (so is independent of g), this is an
immediate consequence of the fundamental theorem of calculus. Thus, the
natural injectivity we may expect, which is called s-injectivity, is that If = 0
implies that f is a potential tensor. While this is naturally phrased in terms
of quotient spaces (quotienting by potential tensors), analytically it is much
easier to work in a complementary space to potential tensors. This space can
be obtained by imposing a gauge condition. The ‘standard’ gauge for this
problem is the solenoidal one, namely that δsf = 0, where δs is the adjoint
of the symmetric gradient with respect to g, i.e. the (negative) divergence.
In the present situation we need a modification of this gauge condition to
one of the form δsh,Ff = 0, where δsh,F is a ‘Witten type’ divergence, a version

of which (adapted to the artificial boundary there) was introduced in the
work of Stefanov, Uhlmann and Vasy [6], where the scalar local invertibility
result [7] was extended to tensors. Here we use yet another version to deal
with both an artificial boundary (corresponding to the collar neighborhood)
and the asymptotically conic infinity; see Section 5. Our main theorem is:

Theorem 1.3. Suppose (M, g) is as in Theorem 1.2. Let F > 0 for one
forms, and F is sufficiently large for two tensors, h > 0 is sufficiently small,
and also that Ωx0 = {x ≤ x0} with x0 small. The X-ray transform restricted
to geodesics staying in Ωx0 is injective on restrictions to Ωx0 of tensors

decaying with rate e−
C
x2 with C = F/(2h) (in the sense of membership in

e−
C
x2L2) and satisfying the gauge condition

δsh,F(e
− FΦ

h f) = 0,(1.4)

where δsh,F is given in (3.4) and Φ in (3.3).

Remark 1.4. Much as for Theorem 1.2, the result continues to hold when

the decay requirement is weakened to be the rate e−
C

x2p for any p > 0. We
only give a detailed proof for the case p = 1 as stated above, and indicate
minor changes needed for the general p case in Remark 4.8.

Next, let us recall the origin of π/2 in the last two stated theorems.
A computation of Melrose and Zworski [3] shows that for an actual conic
metric, such as g∞, unit speed (prior to reparameterization) geodesics can be
described explicitly as follows. Here the description will be the Hamiltonian
one, i.e. using the cosphere bundle rather than the sphere bundle. Writing
covectors as

−τ dr + µ · (r dy) = τ
dx

x2
+ µ · dy

x
,

y local coordinates on the link Y , thus in a way adapted to the asymp-
totically conic structure (these are coordinates on the scattering cotangent
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bundle in Melrose’s terminology), bicharacteristics γ can be written as fol-
lows using the notation µ = |µ|g0 µ̂:

(1.5)
x =

x0
sin r0

sin(r + r0), τ = cos(r + r0), |µ| = sin(r + r0),

(y, µ̂) = exp(rH 1
2
g̃)(y0, µ̂0), r ∈ (−r0,−r0 + π),

with (y, µ̂) thus following a unit speed lifted geodesic of length π in Y . Note
that the maximum of x◦γ, which is the point of tangency to level sets of the
function x, occurs halfway in the domain of γ, at (parameter) distance π/2
from either endpoint, at r + r0 = π/2, and thus in terms of the boundary
geodesic distance π/2 from either endpoint. Due to our exponential weights
and cutoffs, the key point is to have no points conjugate to the point of tan-
gency to this level set along these geodesics, which is guaranteed if the link
has no conjugate points within distance π/2. While this is for actual conic
metrics, for asymptotically conic metrics the analogous condition automat-
ically holds in a sufficiently small collar neighborhood of the boundary.

The condition (1.4) is not restrictive in the sense that we can arrange
it by adding a potential tensor, which does not affect the result of the X-
ray transform (i.e. is in its kernel); in this sense (for suitably fast decaying
tensors) Theorem 1.3 is optimal.

Theorem 1.5. Suppose that F > 0 is sufficiently large and h > 0 is suf-
ficiently small, and let C = F/(2h). For each one form and 2-tensor f

decaying with rate e−
C
x2 (as x→ 0, in the sense of membership in e−

C
x2L2),

there exists a tensor v of one lower rank and the same exponential decay
rate such that

δsh,F(e
− FΦ

h (f − dsv)) = 0.

The structure of this paper is as follows. In Section 2 we recall the 1-
cusp and scattering pseudodifferential algebras from the scalar setting of
[10]; here going to tensors does not cause any complications. Note that the
algebras used do not match the geometry in the sense that for instance an
asymptotically conic metric naturally corresponds to Melrose’s scattering
algebra [4] (e.g. its Laplacian is in this class), but we instead use a different,
1-cusp, algebra there. Ultimately the reason we can do this is that the X-ray
transform problem is overdetermined if n ≥ 3: the way we choose what in-
formation to keep via the cutoff χ̃ determines the operator algebra structure
in tandem with the geometry. In Section 3 we thus analyze the geometric
operators such as the symmetric gradient and divergence as elements of the
new algebras. In Section 4 we analyze the modified, gauge fixed, normal
operator, showing that it is an elliptic element of the algebra, and thus for
sufficiently small semiclassical parameter h it is invertible, thus proving the
main theorem, Theorem 1.3. Finally in Section 5 we show that the gauge
condition can be arranged, thus proving Theorem 1.5. Note that arranging
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the gauge condition in the present setting is much easier than in [6], since
in the latter paper the actual boundary of the manifold (as opposed to the
artificial boundary) caused significant complications.

2. The 1-cusp and scattering pseudodifferential algebras

In this section we recall the analytic ingredients, namely the relevant
pseudodifferential algebras, from [10].

2.1. The semiclassical foliation 1-cusp algebra.

We briefly describe the 1-cusp pseudodifferential algebra here. For detailed
construction and explanation, see Section 2 of [10]. First we define the cusp
vector fields and the 1-cusp vector fields. Let x be a boundary defining
function of M . Then Vcu consists of smooth vector fields V tangent to ∂M
such that V x = O(x2). Note that the this is a Lie algebra of vector fields
(under commutators) and it depends on the choice of x modulo O(x2). In
local coordinates x, y1, ..., yn−1, they have the form

a0(x, y)x
2Dx +

n−1
∑

j=1

aj(x, y)Dyj ,

where aj are smooth functions of their variables. Then we define the 1-cusp
vector fields as cusp vector fields with one extra vanishing order near the
boundary:

V1c(M) := xVsc(M).

In local coordinates, they have the form

a0(x, y)x
3Dx +

n−1
∑

j=1

aj(x, y)xDyj .

Over C∞(M), this generates the algebra of 1-cusp differential operators as
(locally) finite sums of finite products of these.

Next we introduce the semiclassical foliation algebra associated to F , the
foliation given by the level sets of x; this depends on x even more strongly
since it depends on all of the level sets of x. The semiclassical version of
V1c(M) is defined to be V1c,h(M) = hV1c(M). Its variant, the Lie algebra
of semiclassical foliation vector fields is

V1c,h,F (M) = hV1c(M) + h1/2V1c(M ;F),

where V1c(M ;F) is the collection of 1-cusp vector fields tangent to the foli-
ation, i.e. locally of the form

n−1
∑

j=1

aj(x, y)xDyj .



THE TENSORIAL X-RAY TRANSFORM ON ASYMPTOTICALLY CONIC SPACES 7

This again generates a differential operator algebra; a typical semiclassical
foliation 1-cusp differential operator is thus of the form

∑

α+|β|≤m

aαβ(x, y, h)(hx
3Dx)

α(h1/2xDy)
β .

Correspondingly, the frame of the semiclassical foliation 1-cusp cotangent
bundle, which is denoted by 1c

h,FT
∗X (and its scattering counterpart is de-

noted by sc
h,FT

∗X), is given by

dx

hx3
,
dyj

h1/2x
.

Suppose coordinates of this bundle in this frame are written as ξ1c, η1c, then

our symbol class Sm,l
1c,h,F (M) consists of standard semiclassical symbols in

this coordinate system:

|(xDx)
αDβ

yD
γ
ξ1c
Dδ

η1ca(x, y, ξ1c, η1c, h)| ≤ Cαβγδ⟨(ξ1c, η1c)⟩m−γ−|δ|x−l.

Although in coordinates this is the same definition as the cusp symbol class,
in fact they are symbols on a different cotangent bundle, and correspondingly
they are quantized in a different manner. The quantization map is defined
by

Ahu(x, y) =(2π)−nh−n/2−1/2

∫

e
i(x−x′

x3
ξ1c
h

+ y−y′

x
η1c

h1/2
)
a(x, y, ξ1c, η1c, h)u(x

′, y′)
dx′dy′

(x′)n+2
dξ1cdη1c;

(2.1)

this is understood to be valid away from {x = 0}, this is identical to the
‘standard’ semiclassical foliation operators intorduced in [9], while for h > 0,
this gives the 1-cusp pseudodifferential operators introduced by Zachos [11].
The behavior near x = h = 0 is the important point for us.

Next we define the ellipticity of symbols and operators.

Definition 2.1. A symbol a ∈ Sm,l
1c,h,F (M) is called elliptic if

|a(x, y, ξ1c, η1c)| ≥ cx−l⟨(ξ1c, η1c)⟩m, c > 0;

its quantization A is also called elliptic in this case.

Under this condition, see [10, Section 2.5], its quantization A has a

parametrix B ∈ Ψ−m,−l
1c,h,F (M) such that

AB − Id, BA− Id ∈ h∞Ψ−∞,−∞
1c,h,F (M).

One can now define the semiclassical foliation 1-cusp Sobolev spaces
Hs,r

1c,h,F (M), see [10, Section 2.5], for instance for s ≥ 0 by choosing A ∈
Ψs,0

1c,h,F (M) elliptic, and demanding

u ∈ Hs,r
1c,h,F (M) ⇔ u ∈ xrL2(M) and Au ∈ xrL2(M);
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here L2(M) is the L2 space relative to a fixed polynomially weighted density,
which in the geometric context of asymptotically conic spaces is natural to
take to be the metric density, which is equivalent to dx dy

xn+1 . Equivalently, for
s ≥ 0 integer,

∥u∥2Hs,r
1c,h

= ∥x−ru∥2L2 +
∑

j+|α|≤s

∥x−r(hx3Dx)
j(h1/2xDy)

α∥2L2

with the spaces for other s defined via interpolation and duality.
Pseudodifferential operators are bounded on these Sobolev spaces, namely

for all s, r,

A ∈ Ψm,l
1c,h,F (M) ⇒ A ∈ L(Hs,r

1c,h,F , H
s−m,r−l
1c,h,F ).

The existence of parametrices for elliptic operators implies that for elliptic

operarorsA, there exists h0 > 0 such that for h ∈ [0, h0), A ∈ L(Hs,r
1c,h,F , H

s−m,r−l
1c,h,F )

is invertible with uniform bounds. This is a key reason to use the semiclas-
sical algebra: the errors are not only compact, but can be indeed eliminated
via a convergent Neumann series.

2.2. The semiclassical foliation scattering algebra.

Now we recall basic facts about the semiclassical foliation scattering algebra
from [9]. This pseudodifferential operator algebra is similar to its 1-cusp
analogue. Let Vsc(M) be scattering vector fields, i.e. x times vector fields
tangent to the boundary, so in local coordinates elements are of the form

a0(x, y)x
2Dx +

n−1
∑

j=1

aj(x, y)xDyj ,

where aj are smooth functions of their variables. Also let Vsc(M ;F) be
those ones tangent to level sets of the foliation, i.e. of the form

n−1
∑

j=1

aj(x, y)xDyj ,

The vector fields of relevance are combinations of h−semiclassical or h1/2−semiclassical
and tangent to the foliation:

Vsc,h,F (M) = hVsc(M) + h1/2Vsc(M ;F).

Denote the coordinate of fiber part in the frame dx
hx2 ,

dyj
h1/2x

by ξsc, ηsc. The

symbol class Sm,l
sc,h,F (M) consists of smooth functions such that

|(xDx)
αDβ

yD
γ
ξsc
Dδ

ηsca(x, y, ξsc, ηsc, h)| ≤ Cαβγδ⟨(ξsc, ηsc)⟩m−γ−|δ|x−l.

For such a, we quantize it to be A ∈ Ψm,l
sc,h,F (M) by

Ahu(x, y) =(2π)−nh−n/2−1/2

(2.2)
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∫

e
i(x−x′

x2
ξsc
h

+ y−y′

x
ηsc

h1/2
)
a(x, y, ξsc, ηsc, h)u(x

′, y′)
dx′dy′

(x′)n+1
dξscdηsc.(2.3)

Away from {x = 0}, these are just the standard semiclassical foliation op-
erators defined in [9], and in h > 0 are the standard scattering pseudodif-
ferential operators, with combined behavior near x = h = 0. The ellipticity
condition changes correspondingly.

Definition 2.2. A symbol a ∈ Sm,l
sc,h,F (M) is said to be elliptic if

|a(x, y, ξsc, ηsc, h)| ≥ cx−l⟨(ξsc, ηsc)⟩m;

its quantization A is also called elliptic in this case.

Similar to the 1-cusp case, its quantization A has a parametrix B ∈
Ψ−m,−l

sc,h,F (M) such that

AB − Id, BA− Id ∈ h∞Ψ−∞,−∞
sc,h,F (M),

and there exists h0 > 0 such that for h ∈ [0, h0), A ∈ L(Hs,r
sc,h,F , H

s−m,r−l
sc,h,F )

is invertible with uniform bounds. The same as the 1-cusp case, the errors
are not only compact, but can be indeed eliminated.

2.3. The combined class.

Our analysis in the asymptotically conic setting is a combination of the
1-cusp (due to the conic end) and the scattering (due to the artificial bound-
ary) structures. Let X be a manifold with boundary equiped with a function
x such that dx is never degenerate and level sets Σc := x−1(c) are smooth
hypersurfaces, among which Σ0 and Σx0 are two boundary surfaces. In our
application, Σ0 will be the infinity of our asymptotic conic manifold, Σx0

will be taken to be the artificial boundary used to localize our argument and
X is a domain in M .

We define the operator class Ψm,l1,l2
sc,1c,h,F (X) first, which consists of pseudo-

differential operators of m−th diffrential order that are scattering of order
l1 in Ωx0 , which is a neighborhood of Σx0 , and are 1-cusp of order l2 in Ω0,
which is a neighborhood of Σ0.

Definition 2.3. The operator class Ψm,l1,l2
sc,1c,h,F (X) consists of operators A

such that

• For ϕ, ψ ∈ C∞(X) with support disjoint from Σ0, ϕAψ ∈ Ψm,l1
sc,h,F (Ωx0),

and the semiclassical foliation scattering algebra is constructed using
Σx0 as the boundary surface.

• For ϕ, ψ ∈ C∞(X) with support disjoint from Σx0, ϕAψ ∈ Ψm,l2
1c,h,F (Ω0),

and the semiclassical foliation 1-cusp algebra is constructed using Σ0

as the boundary surface.
• For ϕ, ψ ∈ C∞(X) with disjoint support, ϕAψ has Schwartz kernel
which is C∞ and rapidly vanishing in the semiclassical parameter h
as well as at all boundary hypersurfaces of Ωx0 × Ωx0.
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One can easily check that Ψ∞,∞,∞
sc,1c,h,F (X) is a tri-filtered ∗−algebra. We

also need Sobolev spaces; as usual these are defined by localization:

Definition 2.4. The function class Hm,l1,l2
sc,1c,h,F (X) consists of functions f

such that

• For ϕ ∈ C∞(X) with support disjoint from Σ0, ϕf ∈ Hm,l1
sc,h,F (Ωx0),

and the semiclassical foliation scattering Sobolev space is constructed
using Σx0 as the boundary surface.

• For ϕ ∈ C∞(X) with support disjoint from Σx0, ϕf ∈ Hm,l2
1c,h,F (Ω0),

and the semiclassical foliation 1-cusp Sobolev space is constructed
using Σ0 as the boundary surface.

We also define a new cotengent bundle that has corresponding boundary
behavior near each boundary surface.

Definition 2.5. The semiclassical sc-1c foliation cotangent bundle sc,1c
h,F T ∗X

is the vector bundle such that

• In a neighborhood of Σx0, its local frame is given by the frame of the

semiclassical foliation scattering cotangent bundle: dx
h(x0−x)2

,
dyj

h1/2(x0−x)
.

• In a neighborhood of Σ0, its local frame is given by the frame of the

semiclassical foliation 1-cusp cotangent bundle: dx
hx3 ,

dyj
h1/2x

.
• Away from both Σ0,Σx0, its local frame is the same as the foliation

cotangent bundle: dx
h ,

dyj
h1/2 .

Bundle valued Sobolev spaces Hs,l1,l2
sc,1c,h,F (X,

sc,1c
h,F T ∗X) are defined to be

spaces of sections of sc,1c
h,F T ∗X with coefficients in Hs,l1,l2

sc,1c,h,F (X); similarly for

Sym2,sc,1c
h,F T ∗X, which is the symmetric part of sc,1c

h,F T ∗X ⊗ sc,1c
h,F T ∗X. More-

over, the operator classes mapping between those bundles, acting as a linear

map with components in Ψm,l1,l2
sc,1c,h,F (X), are denoted by

Ψm,l1,l2
sc,1c,h,F (X;sc,1ch,F T ∗X,sc,1ch,F T ∗X)

and

Ψm,l1,l2
sc,1c,h,F (X; Sym2,sc,1c

h,F T ∗X, Sym2,sc,1c
h,F T ∗X)

respectively.

3. The geometric operators as elements of the

pseudodifferential algebras

In this section we analyze the operators in the gauge condition. Let ∇ be
the covariant derivative with respect to g, ds be the symmetrization of ∇;
these are natural geometric objects that are important to keep unchanged
since ds gives rise to the kernel of the X-ray transform. On the other hand,
the operators involved in the gauge condition are artificial, and we need
to (and can) choose them to match the analytic framework. Keeping in
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mind that we employ an analytic framework which is 1-cusp at the conic
infinity and scattering at the artificial boundary, we choose gsc,1c,h to be
a combination of the semiclassical scattering metric and the semiclassical
1-cusp metric, and let δs be the adjoint of ds with respect to gsc,1c,h, so it is
the (negative) divergence operator. Concretely in a neighborhood of Σ0, we
have

gsc,1c,h = h−2x−6dx2 + h−1x−2g1,(3.1)

while in a neighborhood of Σx0 , we have

gsc,1c,h = h−2(x0 − x)−4dx2 + h−1(x0 − x)−2g2.(3.2)

g1, g2 are smooth families of Riemannian metric on level sets of x in neigh-
borhoods mentioned above. The specific choice among smooth transitions
between those two boundary faces does not affect our analysis and we choose
one of them and fix it. We reiterate that the metric gsc,1c,h is introduced as
an analytic tool to define adjoint operators, convert tensors and combine the
analysis near Σ0 and Σx0 . In particular, near Σ0, δ

s is the adjoint of ds with
respect to the semiclassical foliation 1-cusp metric h−2x−6dx2 + h−1x−2g1,
and near Σx0 δ

s is the adjoint of ds with respect to the semiclasscial foliation
scattering metric h−2(x0 − x)−4dx2 + h−1(x0 − x)−2g2.

Next we conjugate them by an exponential weight so that they have de-
sired analytic properties. First we define

Φ = F0 ◦ x,(3.3)

where F0 is a smooth, increasing function, in the strong sense that F ′
0 > 0,

such that F0(x) = − 1
2x2 near Σ0 and F0 = 1

x0−x near Σx0 . Then our
conjugated symmetric differential and its adjoint are

dsh,F = e−
FΦ
h dse

FΦ
h , δsh,F = e

FΦ
h δse−

FΦ
h .(3.4)

We then consider the effect of conjugation when we compute symbols in the
1-cusp algebra. Let Φ(x) = − 1

2x2 , we have

e−
FΦ(x)

h hx3Dxe
FΦ(x)

h = e
F

2hx2 hx3Dxe
− F

2hx2

= hx3Dx − iF.
(3.5)

Thus the effect of exponential conjugation is replacing ξ by ξ− iF. We then
write the exterior derivative d0 in terms of semiclassical foliation 1-cusp
covectors:

d0f = (∂xf)dx+
∑

j

(∂yjf)dyj = (hx3∂xf)
dx

hx3
+
∑

j

(h1/2x∂yj )
dyj

h1/2x
.

This already shows that d0, which coincides with ∇ when acting on func-
tions, has principal symbol ξ1c

dx
hx3 ⊗+η1c · dy

h1/2x
⊗ when considered as a first

order semiclassical foliation 1-cusp differential operator. After conjugation,
as mentioned after (3.5), ξ1c is replaced by ξ1c − iF. A similar computa-
tion shows that its principal symbol when viewed as operator on tensors
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with higher rank is also tensoring with the covector at which the symbol is
evaluated.

3.1. ds as a scattering differential operator.

Next we consider the action of ds on one forms, which originally is a
first order differential operator sending sections of scT ∗X to sections of
Sym2,scT ∗X. We compute its principal symbol in Ψ1,0

sc . We consider ∇
first, whose action on a scattering one form T = T̂0

dx
x2 +

∑n−1
j=1 T̂j

dxj

x is given
by

∇(T ) = ∂cTbdx
c ⊗ dxb − Γd

bcTddx
c ⊗ dxb,(3.6)

where we used the Einstein’s convention of summation, T0 = x−2T̂0, Tj =

x−1T̂j for 1 ≤ j ≤ n− 1, and Γd
bc is the Christoffel symbol defined by

Γl
jk =

1

2
glr(∂kgrj + ∂jgrk − ∂rgjk),(3.7)

where glr are components of the dual metric. In order to compute the form
of Γl

jk, we consider the dual metric first. Recall (1.3), written as a block
matrix, with respect to the scattering basis, gij has the form

(

1 O(x)
O(x) g̃

)

,(3.8)

where two O(x) blocks of the shape 1×n and n×1 respectively are because
the dx⊗ dy terms encoded in x−2g̃ in (1.3) are of order O(x) when written

in terms of dx
x2 ⊗ dy

x , and O(x) stands for x times a matrix of the appropriate
type with smooth entries. Inverting this matrix, the dual metric tensor in
terms of x2∂x ⊗ x2∂x, x

2∂x ⊗ ∂y, x∂y ⊗ x∂y has the form
(

1 O(x)
O(x) g̃−1

)

.(3.9)

Thus, in terms of the basis given by tensor products of ∂x, ∂yi , we know

g00 = x4, g0i = x4g̃0i, gi0 = x4g̃i0, 1 ≤ i ≤ n− 1,

gij = x2g̃ij , 1 ≤ i, j ≤ n− 1,
(3.10)

where g̃0i, g̃i0, g̃ij are functions smooth down to x = 0. We consider (3.6),
broken up into several cases.

Case 1: c = 0, b = 0
In this case, using (3.7), we have (when b, c have fixed value, the summation
convention does not apply to them)

∂cTbdx
c ⊗ dxb

=∂0T0dx
0 ⊗ dx0

=∂x(x
−2T̂0)dx

0 ⊗ dx0

=(x−2∂xT̂0 − 2x−3T̂0)dx
0 ⊗ dx0
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=x2∂xT̂0
dx0

x2
⊗ dx0

x2
− xT̂0

dx0

x2
⊗ dx0

x2
,

Γd
bcTd = Γd

00Td,

Γd
00 =

1

2
gdr(∂xgr0 + ∂xgr0 − ∂rg00).

We compute the power of h and x of Γd
00Tddx

0 ⊗ dx0, when written as an
semiclassical foliation 1-cusp tensor:
The term d = 0 is Γ0

00h
−1x−2T̂0dx

0⊗dx0 = x2Γ0
00T̂0

dx
x2⊗dx

x2 . In the expression

of Γ0
00, the term with r = 0 contributes x4g̃d0∂xx

−4 = O(x−1), while terms
with r ̸= 0 contribute x4g̃0r∂x(x

−2g̃r0) = O(x). Thus the r = 0 case gives
the main contribution and combining the x2 factor in the front, d = 0 term
is of order O(x).

When d ̸= 0, we have Γd
00Tddx

0 ⊗ dx0 = h3/2x3Γd
00T̂d

dx
x2 ⊗ dx

x2 . For

Γd
00, the term r = 0 is 1

2x
4g̃d0∂xx

−4 = O(x−1), while terms with r ̸= 0

give x2g̃dr∂x(x
−2g̃r0) = O(x−1). Combining with h3/2x3 in the front, it is

O(h3/2x2).
Combining d ̸= 0 and d = 0 cases, the coefficient of dx

x2 ⊗ dx
x2 , together with

the term xT̂0
dx0

x2 ⊗ dx0

x2 created by commuting the x factor and differentiation,
is O(x).

Case 2: c = 0, b ̸= 0.

∂0Tbdx
0 ⊗ dxb

=(∂xx
−1T̂b)dx

0 ⊗ dxb

=x−1∂xT̂bdx
0 ⊗ dxb − x−2T̂bdx

0 ⊗ dxb

=(x2∂xT̂b)
dx0

x2
⊗ dxb

x
− xT̂b

dx0

x2
⊗ dxb

x
,

Γd
bcTd = Γd

b0Td,

Γd
b0 =

1

2
gdr(∂xgrb + ∂bgr0 − ∂rgb0).

We compute the power of h and x of Γd
b0Tddx

0 ⊗ dxb, when written as a
scattering semiclassical foliation tensor:

Consider d = 0 and d ̸= 0 respectively. The term with d = 0 is

Γ0
b0T0dx

0 ⊗ dxb = xΓ0
b0T̂0

dx

x2
⊗ dxb

x
,

For terms in the bracket in the expression of Γ0
b0, the only possible term of

O(x−4) is ∂bgr0 with r = 0, which however vanishes since g00 = x−4, b ̸= 0.
So the term in the bracket is at most of order O(x−3). Combining with

g0r = O(x4), we know Γ0
b0 = O(x), thus xΓ0

b0T̂0
dx
x2 ⊗ dxb

x = O(x2)dx
x2 ⊗ dxb

x .
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For d ̸= 0, we have

Γd
b0Tddx

0 ⊗ dxb = x2Γd
b0T̂d

dx

x2
⊗ dxb

x
.

For terms in the expression of Γd
b0, as explained above, terms in the bracket

are at most O(x−3), whereas the dual metric factor has at least O(x2) van-
ishing, thus in total we have Γd

b0 = O(x−1). With the x2 factor in the front,
this part has O(x) contribution. Combining with the case d = 0, we know

the zeroth differential order terms relevant to dx
x2 ⊗ dxb

x component has O(x)
scale.

Case 3: c ̸= 0, b = 0.

∂cT0dx
c ⊗ dx0

=∂cx
−2T̂0dx

c ⊗ dx0

=x−2∂cT̂0dx
c ⊗ dx0

=(x∂cT̂0)
dxc

x
⊗ dx0

x2
,

Γd
bcTd = Γd

0cTd,

Γd
0c =

1

2
gdr(∂cgr0 + ∂xgrc − ∂rg0c).

The argument about the Christoffel symbol is the same as the previous case
after interchange the indices c and b (0 here), and we have Γd

0cTddx
c⊗dx0 =

O(x)dx
c

x ⊗ dx
x2 .

Case 4: c ̸= 0, b ̸= 0.

∂cTbdx
c ⊗ dxb

=∂c(x
−1T̂b)dx

c ⊗ dxb

=(x∂cT̂b)
dxc

x
⊗ dxb

x
,

Γd
bc =

1

2
gdr(∂cgrb + ∂bgrc − ∂rgbc) = O(1).

Next we explain the last line. Since gij = O(x−2), when r ̸= 0, terms in

the bracket are O(x−2) altogether. Since gdr = O(x2) (including the O(x4)
case), this part gives O(1) contribution. When r = 0, we have gdr = O(x4)
by (3.10), and terms in the bracket is of order at most O(x−3), hence this
part gives O(x) contribution. Combining two cases r = 0 and r ̸= 0, we

have Γd
bc = O(1), thus Γd

bcTddx
c ⊗ dxb =

∑

dO(1)xT̂d
dxb

x ⊗ dxc

x . Thus those
terms are O(x) small compared with main terms.

Combining four cases and symmetrize ∇, we have the decomposition

ds = ds0 + xA, A ∈ Ψ0,0
sc (X; scT ∗X, Sym2,scT ∗X),(3.11)

thus as a semiclassical foliation scattering operator, ds has the same principal
symbol as the exterior differential.
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3.2. ds as a semiclassical foliation 1-cusp operator.

Next we compute the principal symbol of ds sending 1-cusp one forms to
1-cusp 2-tensors. We consider the contribution introduced when we change
bundles by comparing the basis of the scattering cotangent bundle and the
basis of the foliation semiclassical 1-cusp cotangent bundle. Initially ds is
a first order differential operator sending sections of scT ∗X to sections of
Sym2,scT ∗X. The standard principal symbol of ds is tensoring with the
covector at which the principal symbol is evaluated, which coincides in the
first order with that when we consider it as a first order differential operator
sending sections of 1c

h,FT
∗X to sections of Sym2,1c

h,FT
∗X, which is the symmet-

ric part of 1c
h,FT

∗X ⊗ 1c
h,FT

∗X. Combining with (3.11), the zeroth order part
introduced by this bundle change forms a matrix with x times smooth coeffi-
cients in the local basis of hom(scT ∗X, Sym2,scT ∗X). Next we consider their

contribution in terms of hom( 1c
h,FT

∗X, Sym2,1c
h,FT

∗X). With (dx
x2 )

2 := dx
x2 ⊗ dx

x2 ,
dx
x2

dyi
x := 1

2(
dx
x2 ⊗ dyi

x + dyi
x ⊗ dx

x2 ), the local basis of hom(scT ∗X, Sym2,scT ∗X)
is:

dx2

x4
⊗ (x2∂x),

dx2

x4
⊗ (x∂yj ),

dx

x2
dyi
x

⊗ (x2∂x),

dx

x2
dyi
x

⊗ (x2∂yj ),
dykdyi
x2

⊗ (x2∂x),
dykdyi
x2

⊗ (x∂yj ),

(3.12)

and the local basis of hom( 1c
h,FT

∗X, Sym2,1c
h,FT

∗X) is:

dx2

h2x6
⊗ (hx3∂x),

dx2

h2x6
⊗ (h1/2x2∂yj ),

dx

hx3
dyi

h1/2x
⊗ (hx3∂x),

dx

hx3
dyi

h1/2x
⊗ (h1/2x∂yj ),

dykdyi
hx2

⊗ (hx3∂x),
dykdyi
hx2

⊗ (h1/2x∂yj ).

(3.13)

Comparing the power of h and x, in terms of basis in (3.13), basis in (3.12)
are smooth and vanish at {x = h = 0} to orders in following table

dx2

x4 ⊗ (x2∂x) hx
dx2

x4 ⊗ (x∂yj ) h3/2x
dx
x2

dyi
x ⊗ (x2∂x) h1/2

dx
x2

dyi
x ⊗ (x∂yj ) hx

dykdyi
x2 ⊗ (x2∂x) x−1

dykdyi
x2 ⊗ (x∂yj ) h1/2

Taking the overall x factor into consideration, they vanish to order hx2, h3/2x,
h1/2x, hx2, O(1), h1/2x respectively. Thus the only non-trivial contribution

of ds− dsgh,1c is from
dykdyi
x2 ⊗ (x2∂x) component. Again using a computation

similar to the one for ds as a scattering operator, the gradient with respect
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to gh,1c, as a semiclassical 1-cusp operator, has principal symbol








ξ1c 0
η1c 0
0 ξ1c
0 η1c⊗









,

where the matrix is acting on matrices of the form

(

ξ1
η1

)

representing ξ1
dx
hx3+

η1
dy

h1/2x
. Recall that the effect of conjugation by e−

FΦ
h is replacing ξ1c by

ξ1c − iF, thus after taking the error term above, symmetrization and con-
jugation into consideration, we know that the principal symbol of dsh,F =

e
F

2hx2 dse−
F

2hx2 viewed as an operator between 1-cusp sections has the form








ξ1c − iF 0
1
2η1c⊗ 1

2(ξ1c − iF)
1
2η1c⊗ 1

2(ξ1c − iF)
bs η1c⊗s









,

where bs essentially only plays role at the boundary by acting on dx
hx3 to pro-

duce 2-tensors. In particular, bs has 0 differential order. As a consequence,
its adjoint δsh,F with respect to the metric given in (3.1), acting on symmetric
2-tensors, has principal symbol

(

ξ1c + iF 1
2 ιη1c

1
2 ιη1c ⟨bs, ·⟩

0 1
2(ξ1c + iF) 1

2(ξ1c + iF) ιη1c

)

,(3.14)

where ιsη1c =
1
2(η1c,iδlj + η1c,jδil) on the lower right corner is replaced by ιη1c

since we only consider symmetric 2-tensors, on which they have the same
action. Summarizing results of two parts of this section we have:

Proposition 3.1. On functions, the operator ∆h,F,s := δsh,Fd
s
h,F ∈ Diff2,0

h,1c(X)

has principal symbol

(

ξ1c + iF ιη1c
)

(

ξ1c − iF
η1c

)

= ξ21c + F
2 + |η1c|2.

On one forms, ∆h,F,s := δsh,Fd
s
h,F ∈ Diff2,0

h,1c(X,
1c

h,FT
∗X, 1c

h,FT
∗X) has princi-

pal symbol

(

ξ1c + iF 1
2
ιη1c

1
2
ιη1c ⟨bs, ·⟩

0 1
2
(ξ1c + iF) 1

2
(ξ1c + iF) ιη1c

)









ξ1c − iF 0
1
2
η1c⊗

1
2
(ξ1c − iF)

1
2
η1c⊗

1
2
(ξ1c − iF)

bs η1c⊗s









=

(

ξ21c + F
2 + 1

2
η21c

1
2
(ξ1c − iF)ιη1c

1
2
(ξ1c + iF)η1c⊗

1
2
(ξ21c + F

2) + ιη1cη1c⊗s

)

+

(

⟨bs, ·⟩bs ⟨bs, ·⟩η1c⊗s

ιη1cbs 0

)

.

(3.15)
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3.3. ds as a semiclassical foliation scattering operator near Σx0.

In this section we consider ds and the modified Laplacian ∆h,F,s near the
artificial boundary as semiclassical foliation scattering operators and com-
pute their symbols. This is similar to the argument in Section 3.2: we
consider the contribution introduced when we change bundles by comparing
the basis of the scattering cotangent bundle and the basis of the foliation
semiclassical 1-cusp cotangent bundle. As a first order differential operator
sending sections of scT ∗X to sections of Sym2,scT ∗X, the standard principal
symbol of ds is tensoring with the covector at which the principal symbol
is evaluated, which coincides with that when we consider it as a first order
differential operator sending sections of sc

h,FT
∗X to sections of Sym2,sc

h,FT
∗X,

which is the symmetric part of sc
h,FT

∗X ⊗ sc
h,FT

∗X.
We emphasize that the scattering structure of scT ∗X in Section 3.1 refers

to using Σ0 as the boundary while here sc
h,FT

∗X refers to using Σx0 as
the boundary. The operator ds here is the symmetric differential with re-
spect to a smooth metric. The zeroth order part introduced by the bun-
dle change from the standard smooth bundles to the new (local, near Σx0)
scattering bundle forms a matrix with smooth coefficients in the local ba-
sis of hom(scT ∗X, Sym2,scT ∗X), since now there is no gain for the zeroth
order part as in (3.11) in terms of (x0 − x). Next we consider their con-

tribution in terms of hom( sc
h,FT

∗X, Sym2,sc
h,FT

∗X). Recall that the basis of

hom(scT ∗X, Sym2,scT ∗X) is given by (3.12) with ρ = x0 − x in place of x,

while the local basis (near Σx0) of hom( sc
h,FT

∗X, Sym2,sc
h,FT

∗X), using again

ρ = x0 − x for brevity, is:

dρ2

h2ρ4
⊗ (hρ2∂ρ),

dρ2

h2ρ4
⊗ (h1/2ρ∂yj ),

dρ

hρ2
dyi

h1/2ρ
⊗ (hρ2∂ρ),

dρ

hρ2
dyi

h1/2ρ
⊗ (hρ2∂yj ),

dykdyi
hρ2

⊗ (hρ2∂ρ),
dykdyi
hρ2

⊗ (h1/2ρ∂yj ).

(3.16)

Comparing the power of h (powers of ρ are all the same in this case), in terms
of basis in (3.16), basis in (3.12) are smooth and vanish at {ρ = h = 0} to
orders in following table

dρ2

ρ4
⊗ (ρ2∂ρ) h

dρ2

ρ4
⊗ (ρ∂yj ) h3/2

dρ
ρ2

dyi
ρ ⊗ (ρ2∂ρ) h1/2

dρ
ρ2

dyi
ρ ⊗ (ρ∂yj ) h

dykdyi
ρ2

⊗ (ρ2∂ρ) O(1)
dykdyi

ρ2
⊗ (ρ∂yj ) h1/2

Again the only non-trivial contribution is from dykdyi
hρ2

⊗ (hρ2∂ρ).
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Recall that Φ = 1
x0−x near Σx0 , the effect of the conjugation near Σx0 , is

derived from

e
− F

h(x0−x)h(x0 − x)2Dxe
F

h(x0−x) = h(x0 − x)2Dx − iF,

which tells us the conjugation is effectively replacing ξsc by ξsc − iF. Thus
ds when viewed as a semiclassical foliation scattering operator near Σx0 has
principal symbol









ξsc − iF 0
1
2ηsc⊗ 1

2(ξsc − iF)
1
2ηsc⊗ 1

2(ξsc − iF)

b̃s ηsc⊗s









,(3.17)

where b̃s only plays role at Σx0 by acting on dx
h(x0−x)2

to produce 2-tensors.

In particular, b̃s has 0 differential order. Its adjoint δsh with respect to the
metric in (3.2), acting on symmetric 2-tensors, has principal symbol

(

ξsc + iF 1
2 ιηsc

1
2 ιηsc ⟨b̃s, ·⟩

0 1
2(ξsc + iF) 1

2(ξsc + iF) ιηsc

)

,(3.18)

where ιsηsc =
1
2(ηsc,iδlj + ηsc,jδil) on the lower right corner is replaced by ιηsc

since we are acting on symmetric 2-tensors. Taking product of (3.17), (3.18)
and summarizing, we have shown:

Proposition 3.2. On functions, the operator ∆h,F,s := δsh,Fd
s
h,F ∈ Diff2,0

h,sc(X)

has principal symbol

(

ξsc + iF ιηsc
)

(

ξsc − iF
ηsc

)

= ξ2sc + F
2 + |ηsc|2.

On one forms, ∆h,F,s := δsh,Fd
s
h,F ∈ Diff2,0

h,sc(X; sc
h,FT

∗X, sc
h,FT

∗X) has princi-

pal symbol

(

ξsc + iF 1
2
ιηsc

1
2
ιηsc ⟨b̃s, ·⟩

0 1
2
(ξsc + iF) 1

2
(ξsc + iF) ιηsc

)









ξsc − iF 0
1
2
ηsc⊗

1
2
(ξsc − iF)

1
2
ηsc⊗

1
2
(ξsc − iF)

b̃s ηsc⊗s









=

(

ξ2sc + F
2 + 1

2
η2sc

1
2
(ξsc − iF)ιηsc

1
2
(ξsc + iF)ηsc⊗

1
2
(ξ2sc + F

2) + ιηscηsc⊗s

)

+

(

⟨b̃s, ·⟩b̃s ⟨b̃s, ·⟩ηsc⊗s

ιηsc b̃s 0

)

.

(3.19)

4. The modified normal operator

In this section we consider the membership and ellipticity of the modified
normal operator restricted to the kernel of δsh,F. Recall that I is the X-ray

transform defined by (1.1) and Φ is defined in (3.3), we define the modified
normal operator Nh,F of I by

Nh,F = e−
FΦ
h Lχ̃Ie

FΦ
h ,
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where L the ‘adjoint’ of I defined for one forms by

(Lw)(z) = x2
∫

SzM
w(γx,y,λ,ω)gsc,1c,h(γ̇x,y,λ,ω(0))dλdω,

and for 2-tensors by

(Lw)(z) = hx4
∫

SzM
w(γx,y,λ,ω)gsc,1c,h(γ̇x,y,λ,ω(0))⊗ gsc,1c,h(γ̇x,y,λ,ω(0))dλdω,

where gsc,1c,h is the metric defined using (3.1) and (3.2). As we mentioned,
I sends functions on M to functions on the collections of geodesics on M ,
which is identified as TM by identifying the starting point and the tan-
gent vector of a geodesic with itself. Here the x2 and hx4 pre-factors are
introduced to cancel factors introduced by gsc,1c,h(γ̇x,y,λ,ω(0)) and its tensor
powers, similarly to how powers of x were used in [6]. In fact, it would be
conceptually more clear to use hx2 and h2x4 respectively, but our compu-
tation, especially the part after we use the rescaled variables in the symbol
computation, shows that results are more compact if we have 1 order less h
power in our definitions.

Next we discuss quantities in the definition of L in more detail. Recall
(1.3), the asymptotic conic metric is

g = x−4dx2 + x−2g̃,

with g̃|x=0 on the cross section being the asymptotic link metric g0. The
computation in [4] shows that, the Hamilton vector filed associated to the
dual metric function G of the asymptotic conic metric g is

HG = 2x((ξscx∂x + ηsc · ∂ηsc)− |ηsc|2∂ηsc +
1

2
HG1 + xV ),

where G1 is the dual metric function of g1 and V is a vector field tangent
to the boundary {x = 0}. The geodesic is given by (page 28 of [10])

γx,y,λ,ω(t) = (x+ x(λt+ αt2 + t3Γ(1)), y + ωt+ t2Γ(2)),(4.1)

where Γ(1),Γ(2) are smooth functions in x, y, λ, ω, t. Taking derivative with
respect to t, the tangent vector at γx,y,λ,ω(t) is

λ′x∂x + ω′∂y = γ̇x,y,λ,ω(t) = (xλ+ 2xαt+O(xt2))∂x + (ω +O(t))∂y.

Setting t = 0, the tangent vector at x is

xλ∂x + ω∂y.(4.2)

A key point in [10, Section 3.1] as well as in the earlier works is the negativity
of α at λ = 0; this precisely corresponds to a strict (definite) concavity
statement on the level sets of x from the sublevel sets.

The cutoff χ̃ and the weight function Φ are also designed to depend on the
geometric/analytic setting. We choose Φ(x) = − 1

2x2 in the analytic 1-cusp
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setting (which is geometrically scattering) and Φ(x) = 1
x in the scattering

setting (which is geometrically smooth). Choose χ̃ to be

χ̃ = χ(x1/2
√
Φ′(h1/2|α|1/2)−1),

where χ ∈ C∞
c (R) is non-negative and identically 1 near 0 and α is intro-

duced in (4.1).

Membership of Nh,F in Ψ−1,0
sc,h,F (X; sc

h,FT
∗X, sc

h,FT
∗X) for the one form case

and Ψ−1,2
sc,h,F (X; Sym2,sc

h,FT
∗X, Sym2,sc

h,FT
∗X) for the two tensor case when lo-

calized near the artificial boundary {x = x0} follows from Proposition 3.3 of
[9] and the argument in Proposition 3.1 of [6], which generalizes Proposition
3.3 of [7] to one form and two tensor cases, just notice that x in [6] is (x0−x)
now, and the powers of it in (2.1)(2.2) of [6] are encoded in the second index
of Ψ∗,∗

sc,h,F . More detailed dicussion is given in the proof of Proposition 4.6.

The membership of Nh,F localized near the conic infinity x = 0 in Ψ−1,−1
1c,h,F

follows from Theorem 3.1 of [10]. The only difference between our operator
and operator therein is the additional tensorial factor, which is a smooth
endomorphism between scattering and 1-cusp bundles when localize to each
ends respectively and does not affect the pseudodifferential property. The
power of x and h introduced by those tensorial factors are cancelled by those
in the definition of L. So our proof focuses on the ellipticity.

Proposition 4.1. Let F > 0 for one forms, and F is sufficiently large for
two tensors and Ωx0 = {x ≤ x0} with x0 small. Nh,F is an operator in

Ψ−1,0
1c,h,F and it is elliptic on the kernel of δh,F in the semiclassical foliation

1-cusp algebra.

Because the statement involves ellipticity in various senses for both one
forms and 2-tensors (differential, semiclassical, boundary symbol), we de-
compose the proof into several lemmas, whose combination proves Proposi-
tion 4.1.

4.1. Ellipticity on one forms.

In this part we show ellipticity of Nh,F on one forms in both 1-cusp differen-
tial and semiclassical and boundary sense. We first start with the differential
behavior, corresponding to ‘infinite points’ in the semiclassical foliation 1-
cusp cotangent bundle (fiber infinity for the compactification), and then we
turn to finite points (semiclassical and boundary behavior) as the arguments
are somewhat different in the two cases.

Lemma 4.2. For F > 0, Nh,F is an operator in Ψ−1,−1
1c,h,F acting on one forms

and it is elliptic on the kernel of δh,F in the 1-cusp algebra differential sense
near Σ0.

Proof. First we compute the tensorial factor gh,1c(γ̇, ·)⊗ ιγ̇ in the Schwartz
kernel of Nh,F at the front face {x = 0}. Introduce the rescaled variables:

λ̂ =
λ

h1/2x
, t̂ =

t

h1/2x
.
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The semiclassical 1-cusp metric applied to (4.2) is:

gh,1c(xλ∂x + ω∂y) = λ
dx

h2x5
+
g1(ω∂y)

hx2

= h−1/2x−1(λ̂
dx

hx3
+
g1(ω∂y)

h1/2x
).

Similarly, the second factor is

ιγ̇ = h−1/2x−1((λ̂+ 2αt̂)hx3∂x + ωh1/2x∂y).

So the tensorial factor near Σ0 is,

Ẽc = h−1(λ̂
dx

hx3
+
g1(ω∂y)

h1/2x
)⊗ ((λ̂+ 2αt̂)hx3∂x + ωh1/2x∂y),

where we have incorporated the x2 factor in the definition of L on one forms.
The modified normal operator Nh,F acts on functions by

Nh,Fu(x, y) = (2π)−nh−n−1/2

∫

eix
−3ξ̃1c

(γ
(1)
x,y,λ,ω

(t)−x)

h e
ix−1η̃1c·

(γ
(2)
x,y,λ,ω

(t)−y)

h1/2

ah(x, y, ξ̃1c, η̃1c)(x
′)−n−2dx′dy′dξ̃1cdη̃1c,

where ah is its standard left symbol. The Schwartz kernel of Nh,F relative
to the density |dz′| = |dx′dy′| is

KNh,F
(x, y, x′, y′) =

∫

e−FΦ(x)/heFΦ(x(γx,y,λ,ω(t)))/hχ̃(x, y, λ/(xh1/2), ω)

δ(z′ − γz,λ,ω(t))Ẽc(γ
(1)z,λ,ω(t))−1dtdλdω

=(2π)−nh−n/2−1/2

∫

e−FΦ(x)/heFΦ(x(γx,y,λ,ω(t)))/h

χ̃(x, y, λ/(xh1/2), ω)Ẽce
−iξ′·

(x′−γ
(1)
x,y,λ,ω

(t))

h
−iη′·

(y′−γ
(2)
x,y,λ,ω

(t))

h1/2

(γ(1)z,λ,ω(t))−1dtdλdωdζ ′.

(4.3)

The principal symbol of Nh,F is the leading part of the semiclassical inverse
Fourier transform of KNh,F

in z′ evaluated at ζ, which gives a (2π)nδ(ζ −
ζ ′) factor, effectively replacing ζ ′ by ζ in the integrand and annihilate the
ζ ′−integration. We obtain

ah(x, y, ξ1c, η1c) =

∫

e−FΦ(x)/heFΦ(x(γx,y,λ,ω(t)))/hχ̃(x, y, λ/(xh1/2), ω)

Ẽce
iξ·

(γ
(1)
x,y,λ,ω

(t)−x)

h e
iη·

(γ
(2)
x,y,λ,ω

(t)−y)

h1/2 dtdλdω,

(4.4)

where χ̃ has compact support with respect to λ
xh1/2 , thus the λ̂−integral is

happening over a compact interval.
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Notice that by the definition of the 1-cusp algebra, our Schwartz kernel

is relative to the density dx′dy′

(x′)n+2 , which means it is (2π)−nxn+2 times the

semiclassical foliation Fourier transform in (x−3ξ̃1c, x
−1η̃1c) of the symbol

(x, y, ξ̃1c, η̃1c) → ei(x
−2ξ1ch−1+x−1y·η1ch−1/2)a(x, y, ξ̃1c, η̃1c),

where the xn+2 factor comes from scaling the fiber variable to (x−3ξ̃1c, x
−1η̃1c).

Then we invert this Fourier transform and evaluate at (x−3ξ̃1c, x
−1η̃1c) to

obtain

ah(x, y, ξ1c, η1c) =(2π)nx−n−2ei(−x−2ξ1ch−1−x−1y·η1ch−1/2)

(F−1
h )(x′,y′)→(x−3ξ̃1c,x−1η̃1c)

KNh,F
(x, y, x′, y′),

where the F representing (inverse) Fourier transform and the foliation should
not cause confusion.

ah(x, y, ξ1c, η1c) =x
−n−2e−ix−3ξ1ch−1−ix−1η1ch−1/2

∫

e−FΦ(x)/heFΦ(x(γx,y,λ,ω(t)))/h

χ̃(x, y, λ/(xh1/2), ω)Ẽce
ix−3ξ1cγ

(1)
z,λ,ω(t)h

−1+ix−1η1c·(γ
(2)
z,λ,ω(t)−y)h−1/2

(γ
(1)
z,λ,ω(t))

n+1dt|dσ|

=

∫

e−FΦ(x)/heFΦ(x(γx,y,λ,ω(t)))/hχ̃(x, y, λ/(xh1/2), ω)Ẽc

eix
−3ξ1c

(γ
(1)
x,y,λ,ω

(t)−x)

h e
ix−1η1c·

(γ
(2)
x,y,λ,ω

(t)−y)

h1/2 x−n−2(γ
(1)
z,λ,ω(t))

n+1dt|dσ|.

(4.5)

The imaginary phase is

ξ ·
(γ

(1)
x,y,λ,ω(t)− x)

h
+ η ·

(γ
(2)
x,y,λ,ω(t)− y)

h1/2

=x−3ξ1c
(γ

(1)
x,y,λ,ω(t)− x)

h
+ x−1η1c(

(γ
(2)
x,y,λ,ω(t)− y)

h1/2
)

=ξ1c(λ̂t̂+ αt̂2 + h1/2t̂3Γ(1)(x, y, h1/2λ̂, ω, h1/2t̂))

+ η1c · (ωt̂+ h1/2t̂2Γ(2)(x, y, h1/2λ̂, ω, h1/2t̂)).

(4.6)

The damping factor is

−FΦ(x)

h
+

FΦ(x(γx,y,λ,ω(t)))

h
,
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where Φ(x) = − 1
2x2 , thus this damping factor is

F

2x2h
− F

2(γ
(1)
x,y,λ,ω(t))

2h

=
F

2h
((γ

(1)
x,y,λ,ω(t))

2 − x2)x−2(γ
(1)
x,y,λ,ω(t))

−2

=
F

2hx2
((1 + λt+ αt2 + t3Γ(1))2 − 1)(1 + λt+ αt2 + t3Γ(1))−2

=
F

2hx2
(2 + λt+ αt2 + t3Γ(1))(λt+ αt2 + t3Γ(1))(1 + λt+ αt2 + t3Γ(1))−2

=F(λ̂t̂+ α(x, y, xh1/2λ̂, ω)t̂2 + t̂3xh1/2Γ̂(1)(x, y, xh1/2λ̂, ω, xh1/2t̂)),

(4.7)

where Γ̂(1) is smooth with respect to its variables. This means the integrand
is Gaussian with respect to t̂, hence integrating against it does not affect
decay or smoothness properties. Notice that when we rewrite (4.4) in terms

of λ̂, t̂, we obtain an xh factor because of the change of variables, and we
combine h with Ẽc to define

Ec = hẼc = (λ̂
dx

hx3
+
g1(ω∂y)

h1/2x
)⊗ ((λ̂+ 2αt̂)hx3∂x + ωh1/2x∂y),

which is smooth down to x = 0 and h = 0.

ah(x, y, ξ1c, η1c) =x

∫

eF(λ̂t̂+αt̂2+t̂3h1/2Γ(1)(x,y,h1/2λ̂,ω,h1/2 t̂))χ̃(x, y, λ̂, ω)Ec

ei(ξ1c(λ̂t̂+αt̂2+h1/2 t̂3Γ(1))+η1c·(ωt̂+h1/2 t̂2Γ(2)))dt̂dλ̂dω,

(4.8)

where we abbreviated the variables (x, y, h1/2λ̂, ω, h1/2t̂) of Γ(1),Γ(2). Next
we compute λ′, ω′, i.e. computing γ̇x,y,λ,ω(t). Recall the expression of
geodesics, we have

(λ′, ω′) = γ̇x,y,λ,ω(t) = (λ+ 2α(x, y, λ, ω)t+O(t2), ω +O(t)).

Recall that λ = h1/2xλ̂, t = h1/2xt̂, thus λ′ = O(h1/2), λ = O(h1/2), and at
the front face Ec is

Ec = (λ̂
dx

hx3
+
g1(ω∂y)

h1/2x
)⊗ ((λ̂+ 2αt̂)hx3∂x + ωh1/2x∂y).(4.9)

We compute (4.8) by applying the stationary phase lemma. We choose χ̃
having compact support with respect to its third variable. Thus the integral
in λ̂, ω is over a compact region, satisfying the condition for the stationary
phase lemma. We divide the integral in t̂ into two parts with one over
{|t̂| ≤ 2} and the other over {|t̂| ≥ 1} by introducing a partition of unity

χ1 + χ2 = 1,

where χi ∈ C∞(R), suppχ1 ⊂ [−2, 2], suppχ2 ⊂ (−∞,−1] ∪ [1,∞). In par-
ticular, χ1(0) = 1. In {|t̂| ≤ 2} we apply the standard parameter dependent
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stationary phase lemma. In {|t̂| ≥ 1}, the phase in non-stationary and
integration by parts shows its Schwartz property.

We first consider the region {|t̂| < 2} by applying the standard parameter
dependent stationary phase lemma. In order to compute the semiclassical
principal symbol, we may set h1/2 = 0 and the phase becomes

ξ1c(λ̂t̂+ α(x, y, 0, ω)t̂2) + η1c · ωt̂.

The contribution to the symbol of the part {|t̂| < 2} when we take h1/2 = 0
is

ah(x, y, ξ1c, η1c) =x

∫

ei(ξ1c(λ̂t̂+α(x,y,0,ω)t̂2)+η1c·ωt̂)eF(λ̂t̂+α(x,y,0,ω)t̂2)χ̃(x, y, λ̂, ω)

χ1(t̂)Ecdt̂dλ̂dω.

Error terms caused by taking h1/2 = 0 are of at most O(xh1/2⟨|(ξ1c, η1c)|⟩−1)
order relative to the leading part.

We use the notation θ = (λ̂, ω) and apply the stationary phase lemma
with respect to t̂, θ to compute the leading part as |(ξ1c, η1c)| → ∞. We
decompose θ according to directions parallel to and orthogonal to (ξ1c, η1c)

and denote projections of θ by θ∥, θ⊥ respectively. Then the critical set is
given by t̂ = 0, θ∥ = 0. So the leading part, up to a constant factor, is

|(ξ1c, η1c)|−1x

∫

Sn−2

χ̃(x, y, λ̂(θ⊥), ω(θ⊥))Ecdθ
⊥,(4.10)

where the |(ξ1c, η1c)|−1 comes from the square root of the determinant of

the Hessian of the phase in the stationary phase lemma and λ̂(θ⊥), ω(θ⊥)
indicates that this critical set is parametrized by θ⊥ and thus other variables
are functions of it. Recall (4.9), the tensorial factor on this critical set is

Ec = (λ̂
dx

hx3
+
g1(ω∂y)

h1/2x
)⊗ (λ̂hx3∂x + ωh1/2x∂y).

Since the statement is pointwise with respect to x, y, we assume that g1 is
the Euclidean metric in the ellipticity argument and Ec becomes

Ec = (λ̂
dx

hx3
+
ω · dy
h1/2x

)⊗ (λ̂hx3∂x + ωh1/2x∂y).

Since χ ≥ 0, this is a positive multiple of the projection to the span of
(λ̂, ω). As (λ̂, ω) runs over the equatorial sphere consists of vectors orthogo-
nal to (ξ1c, η1c), we are integrating these projections, with the weight being

strictly positive if χ(x, y, λ̂, ω) > 0.
Recall that the kernel of the principal symbol of δsh,F consists of covectors

of the form v = (v0, v1) such that ξ1cv0 + η1cv
′ = 0. Thus we need to show

that for each such (v0, v1), there is at least one (λ̂, ω) in the critical set of
the phase making χ̃ > 0. Concretely, they satisfy

χ̃(x, y, λ̂, ω) > 0,(4.11)
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ξ1cλ̂+ η1c · ω = 0,(4.12)

λ̂v0 + ω · v1 ̸= 0,(4.13)

ξ1cv0 + η1c · v1 = 0.(4.14)

These conditions let us concludes that the integral of projections is posi-
tive and our desired ellipticity on the kernel of the standard principal symbol
of δsh,F follows. So we arrange those conditions on vector components now.

• Consider the case v1 = 0 first. From (4.11) we know ξ1c = 0. In order

to satisfy (4.13), we take λ̂ small but non-zeri, ω orthogonal to η1c.
Such ω exists because the orthogonal relationship is in R

n−1, n ≥ 3.
• Then we consider the case v1 ̸= 0 and v1 is not parallel to η. In
this case we take ω orthogonal to η but not to v1, λ̂ = 0, then
(4.11)-(4.13) are satisfied.

• Then we consider when v1 = cη ̸= 0, then (4.14) becomes ξ1cv0 +

c|η1c|2 = 0. Then with ω to be determined later, we set λ̂ = −ξ−1
1c η1c·

ω, we have

λ̂v0 + ω · v1 = c(ω · η1c)(1 + ξ−2
1c |η1c|2),

which is non-zero when ω · η1c ̸= 0, which can be arranged since ω
and η1c are (n−1)−dimensional vectors. In addition, we may require

ω · η1c to be small so that λ̂ is small as well and satisfy (4.11).

The discussion on the contribution of the region {|t̂| ≥ 1} is divided
again into three parts: The first one is {|t| ≤ T0, t̂ ≥ 1} with T0 fixed, the
second one is the region t bounded but away from 0 and the third region is
|t| → ∞. In the first region the phase is lower bounded by |(ξ1c, η1c)||t̂|−k for
some k and integration by parts gives the desired Schwartz property. In the
second region, the no conjugate point assumption implies non-degenerate
property of the Jacobian and in turn implies there is no critical point of the
phase. The third region is analyzed in the similar manner to the second.
See discussion after (3.13) of [10], which verbatim transplant to our setting.

Combining cases above proves that the principal symbol of Nh,F is strictly
positive definite on the kernel of principal symbol of δsh,F. □

Next we consider the ellipticity at finite points.

Lemma 4.3. Let F > 0 and Ωx0 = {x ≤ x0} with x0 small. Nh,F is an

operator in Ψ−1,−1
1c,h,F acting on one forms and it is elliptic on the kernel of

δh,F in the boundary and semiclassical senses.

Proof. Recalling (4.8), setting h = 0 in the computation of semiclassical
principal symbol, we have

ah(x, y, ξ1c, η1c) =x

∫

eF(λ̂t̂+αt̂2)χ̃(x, y, λ̂, ω)Ece
i(ξ1c(λ̂t̂+αt̂2)+η1c·ωt̂)dt̂dλ̂dω,
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which is equivalent to

ah(x, y, ξ1c, η1c) =x

∫

e−i((−ξ1c+Fi)t̂)λ̂χ̃(x, y, λ̂, ω)

Ece
iαξ1c t̂2+iη1c·ωt̂+Fαt̂2dt̂dλ̂dω.

(4.15)

The λ̂−integral is a Fourier transform evaluated at (−ξ1c+Fi). Then multi-

plication by λ̂ is transformed into −Dσ = i∂σ, where σ is the third variable
of F3χ̃ and F3 is the partial Fourier transform with respect to the third
variable. Define the matrix Dc to be Ec with λ̂ replaced by −Dσ.

Dc =

(

D2
σ − αt̂Dσ −Dσ⟨ω, ·⟩

ω(−Dσ + 2αt̂) ω⟨ω, ·⟩

)

.

This integral becomes (λ̂ becomes −Dσ after Fourier transform, because it
becomes Dσ after inverse Fourier transform)

ah(x, y, ξ1c, η1c) =x

∫

eiαξ1c t̂
2+iη1c·ωt̂+Fαt̂2DcF3χ̃(x, y, ((−ξ1c + iF)t̂), ω)dt̂dω,

(4.16)

Take ν = F
−1α, χ(s) = e

s2

2ν , then χ̂(σ) = ce
νσ2

2 . Substitute in the equation
above, we obtain

ah(x, y, ξ1c, η1c) =cx

∫

eiαξ1c t̂
2+iη1c·ωt̂+Fαt̂2Dce

ν(−ξ1c+iF)2 t̂2

2 dt̂dω.(4.17)

Notice that Dσ is (−i times) differentiating (−ξ1c + iF)t̂. For the conve-
nience of later discussion, we set

ϕ(ξ1c, ω) =− ν(−ξ1c + iF)2 − 2iαξ1c − 2Fα

=− ν(ξ21c + F
2).

Then we compute derivatives of χ̂ = e
νσ2

2 , with c representing possibly
different overall factors.

Dσχ̂ = cνσe
νσ2

2 , D2
σχ̂ = c(ν + ν2s2)e

νσ2

2 ,

Substituting those σ−derivatives back, we have

ah(x, y, ξ1c, η1c) =cx

∫

Sn−2

∫

R

eit̂ω·η1ce−
ϕt̂2

2

(

−iν(ξ1c − iF)(−iν(ξ1c − iF) + 2α)t̂2 − ν −iν(ξ1c − iF)t̂⟨ω, ·⟩

ω(−iν(ξ1c − iF) + 2α)t̂ ω⟨ω, ·⟩)

)

dt̂dω.

The t̂ integral is an inverse Fourier transform with respect to ω · η1c, which
turns multiplication by t̂ to −Dω·η1c . In addition, e−

ϕt̂2

2 is transformed into

(a constant multiple of) ϕ(ξ1c, ω)
−1/2e

−
(ω·η1c)

2

2ϕ(ξ1c,ω) . So we have

ah(x, y, ξ1c, η1c) = cx

∫

Sn−2

∫

R

ϕ(ξ1c, ω)
−1/2e

−
(ω·η)2

2ϕ
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(

−iν(ξ1c − iF)(−iν(ξ1c − iF) + 2α)D2
ω·η1c

− ν −iν(ξ1c − iF)Dω·η⟨ω, ·⟩

ω(−iν(ξ1c − iF) + 2α)Dω·η1c ω⟨ω, ·⟩)

)

dω.

Direct computation shows this is

cx(ξ21c + F
2)−1/2

∫

Sn−2

(−ν)−1/2

(

(ξ1c−iF)
ξ21c+F2 (ω · η1c)

ω

)

⊗
(

− (ξ1c+iF)
ξ21c+F2 (ω · η1c) ⟨ω, ·⟩

)

e
(ω·η1c)

2

2ν(ξ21c+F2)dω.

We refer readers to page 21-22 of [6] for a detailed process of a similar
computation. We apply this principal symbol to an one form v = v0

dx
h +

v1
dy
h1/2 in the kernel of the principal symbol of δsh, i.e. satisfying

(ξ1c + iF)v0 + η1c · v1 = 0.

In order for the action of ah on v to be non-vanishing, we need to choose ω
so that

−(ξ1c + iF)

ξ21c + F2
(ω · η1c)v0 + ω · v1 =

(η1c · v1)
ξ21c + F2

(ω · η1c) + ω · v1 ̸= 0.(4.18)

• If v1 = 0, then v = 0, which is trivial.
Next we consider the case in which v1 ̸= 0.

• If η1c = 0, choosing ω parallel to v1 gives (4.18).
• If η1c ̸= 0, and η1c is not parallel to v1, then we take ω orthogonal to
η1c but not to v1, which again gives (4.18). This is possible because
n ≥ 3 and ω has n− 2 dimensional choices.

• If η ̸= 0 and v1 = cη. Then the quantity in (4.18) is

c
( |η1c|2
ξ21c + F2

+ 1
)

(ω · v1).

We can choose ω that is not orthogonal to v1 to make (4.18) hold.

Summarizing all cases, ah is elliptic at finite points, and thus in the boundary
and semiclassical senses. □

4.2. Ellipticity on 2-tensors.

We now consider the modified normal operator on 2-tensors. Again, we
first prove the ellipticity of Nh,F at fiber infinity.

Lemma 4.4. Suppose F > 0 is sufficiently large and Ωx0 = {x ≤ x0} with

x0 small. Nh,F is an operator in Ψ−1,−1
1c,h,F acting on 2-tensors and it is elliptic

on the kernel of δh,F in the 1-cusp algebra differential sense.

Proof. Since the claim is pointwise, so we assume the y−part of gh,1c is the
n−1 dimensional Euclidean metric, i.e., g1 = dy2. For 2-tensor computation,
the basis is

dx

hx3
⊗ dx

hx3
,
dx

hx3
⊗ dy

h
1
2x
,
dy

h
1
2x

⊗ dx

hx3
,
dy

h
1
2x

⊗ dy

h
1
2x
.
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Similar to the Ẽc factor in the one form case, we have an Ẽ2c factor in
our 2-tensor case. In the 2-tensor case, the first factor becomes gh,1c(λx∂x+
ω∂y)⊗ gh,1c(λx∂x + ω∂y). For this factor, we have

gh,1c(λx∂x + ω∂y)⊗ gh,1c(λx∂x + ω∂y)

=h−1/2x−1(λ̂
dx

hx3
+
g1(ω1∂y)

h1/2x
)⊗ h−1/2x−1(λ̂

dx

hx3
+
g1(ω2∂y)

h1/2x
)

=h−1x−2









λ̂2

λ̂⟨ω, ·⟩1
λ̂⟨ω, ·⟩2

⟨ω, ·⟩1⟨ω, ·⟩2









,

where the indices 1, 2 in ω1, ω2 are indicating the order of components. While
the second factor in the 2-tensor case is

ιγ̇ ⊗ ιγ̇ =h−1x−2((λ̂+ 2αt̂)hx3∂x + ω1∂y)⊗ ((λ̂+ 2αt̂)hx3∂x + ω2∂y)

=h−1x−2
(

(λ̂+ 2αt̂)2 (λ̂+ 2αt̂)⟨ω, ·⟩1 (λ̂+ 2αt̂)⟨ω, ·⟩2 ⟨ω, ·⟩1⟨ω, ·⟩2
)

.

E2c, the product of two factors after combining h and x powers in the
definition of L and introduced by the change of variables is




λ̂2(λ̂+ 2αt̂)2 λ̂2(λ̂+ 2αt̂)⟨ω, ·⟩1 λ̂2(λ̂+ 2αt̂)⟨ω, ·⟩2 λ̂2⟨ω, ·⟩1⟨ω, ·⟩2
λ̂(λ̂+ 2αt̂)ω1 λ̂(λ̂+ 2αt̂)ω1⟨ω, ·⟩1 λ̂(λ̂+ 2αt̂)ω1⟨ω, ·⟩2 λ̂ω1⟨ω, ·⟩1⟨ω, ·⟩2
λ̂(λ̂+ 2αt̂)2ω2 λ̂(λ̂+ 2αt̂)ω2⟨ω, ·⟩1 λ̂(λ̂+ 2αt̂)ω2⟨ω, ·⟩2 λ̂ω2⟨ω, ·⟩1⟨ω, ·⟩2
(λ̂+ 2αt̂)2ω1ω2 (λ̂+ 2αt̂)ω1ω2⟨ω, ·⟩1 (λ̂+ 2αt̂)ω1ω2⟨ω, ·⟩2 ω1ω2⟨ω, ·⟩1⟨ω·⟩2



 .

The semiclassical principal symbol is

ah(x, y, ξ1c, η1c) =x

∫

eF(λ̂t̂+αt̂2+t̂3h1/2Γ(1)(x,y,h1/2λ̂,ω,h1/2 t̂))χ̃(x, y, λ̂, ω)E2c

ei(ξ(λ̂t̂+αt̂2+h1/2 t̂3Γ(1))+η·(ωt̂+h1/2 t̂2Γ(2)))dt̂dλ̂dω,

(4.19)

where λ̂, t̂ are rescaled variables introduced in the one form case. Following
the computation in [10] and references therein, i.e., equation (3.12) of [9],

the symbol when we take h1/2 = 0 is

ah(x, y, ξ1c, η1c) = x

∫

eiξ1c(λ̂t̂+α(x,y,0,ω)t̂2)+η1c·ωt̂eF(λ̂t̂+α(x,y,0,ω)t̂2)

χ̃(x, y, λ̂, ω)E2cdt̂dλ̂dω.

Error terms caused by taking h1/2 = 0 have extra O(xh1/2⟨|(ξ1c, η1c)|⟩−1)
gain relative the the leading part.

We use the notation θ = (λ̂, ω) and apply the stationary phase lemma
with respect to t̂, θ to compute the leading part as |(ξ1c, η1c)| → ∞. We
decompose θ according to directions parallel to and orthogonal to (ξ1c, η1c)

and denote projections of θ by θ∥, θ⊥ respectively. Then the critical set is
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given by t̂ = 0, θ∥ = 0. So the leading part is

x

∫

Sn−2

χ̃(x, y, λ̂(θ⊥), ω(θ⊥))E2cdθ
⊥,

where λ̂(θ⊥), ω(θ⊥) indicates that this critical set is parametrized by θ⊥ and
thus other variables are functions of it.

Since χ ≥ 0, this is a positive multiple of the projection to the span of
(λ̂, ω). As (λ̂, ω) runs over the equatorial sphere consists of vectors orthogo-
nal to (ξ1c, η1c), we are integrating these projections, with the weight being

strictly positive if χ(x, y, λ̂, ω) > 0.
Recall that the kernel of the standard principal symbol of δsh,F consists of

2-tensors v = (v00, v01, v01, v11) such that

ξ1cv00 + η1c · v01 = 0,

ξ1cv01 +
1

2
(η1c,1 + η1c,2) · v11 = 0,

(4.20)

where sub-indices in η1c,1 resp. η1c,2 denotes the inner product is taken in
the first resp. second slots of v11. Taking the inner product with η1c in the
second equation, notice that v11 is a 2-tensor sending a (co)vector η1c to be
a (co)vector, we obtain

ξ1cη1c · ·v10 + (η1c ⊗ η1c) · v11 = 0.

Combining this with the first equation in (4.20) yields

ξ21cv00 = (η1c ⊗ η1c)v11.

Without iF−term in the finite points case, we need to consider cases in
which ξ = 0 and ξ ̸= 0 respectively.

Consider the case ξ ̸= 0 first.

v00 = ξ−2
1c (η ⊗ η)v11,

v01 = − 1

2ξ1c
(η1c,1 + η1c,2) · v11.

(4.21)

Recall that we are computing the contribution at the critical set of the
phase: {t̂ = 0, θ∥ = 0}, so the direction to which we are projecting is

ιγ̇ ⊗ ιγ̇ =h−1x−2
(

(λ̂2 λ̂⟨ω, ·⟩1 λ̂⟨ω, ·⟩2 ⟨ω, ·⟩1⟨ω, ·⟩2
)

.

As θ∥ = 0, or equivalently ξ1cλ̂+ η1cω = 0, we know

λ̂ = −η1c · ω
ξ1c

.

So for v to be in the kernel of the projection means

((
η1c · ω
ξ1c

)2
η1c ⊗ η1c
ξ21c

+
η1c · ω
ξ21c

(
η1c
ξ1c

⊗ ω + ω ⊗ η1c
ξ1c

) + ω ⊗ ω) · v11 = 0,



30 QIUYE JIA AND ANDRAS VASY

which is equivalent to

((
η1c · ω
ξ1c

η1c
ξ1c

+ ω)⊗ (
η1c · ω
ξ1c

η1c
ξ1c

+ ω)) · v11 = 0.(4.22)

Suppose η1c = 0, then (4.21) implies v00 = 0, v01 = 0. Equation (4.22)
now becomes

(ω ⊗ ω) · v11 = 0.

By the ‘polarization’ formula ω1⊗ω2+ω2⊗ω1 = (ω1+ω2)⊗(ω1+ω2)−ω1⊗
ω1 −ω2 ⊗ω2, we know that the symmetric 2-tensors of the form ω⊗ω span
the sapce of all symmetric 2-tensors. So from (ω ⊗ ω) · v11 = 0 we conclude
that v11 = 0 and consequently v = 0 in this case.

Now suppose η1c ̸= 0, with η̂1c =
η1c
|η1c|

, we decompose ω as

ω = ϵη̂1c + (1− ϵ2)1/2ω⊥,

where ω⊥ is the unit vector in the direction of the projection of ω onto η⊥1c,
the orthogonal complement of η1c. Then we substitute this into (4.22) to
obtain

((1 +
|η1c|2
ξ21c

)2ϵ2η̂1c ⊗ η̂1c) + (1 +
|η1c|2
ξ21c

)ϵ(1− ϵ2)1/2(η̂1c ⊗ ω⊥ + ω⊥ ⊗ η̂1c)

+ (1− ϵ2)ω⊥ ⊗ ω⊥) · v11 = 0.

Let the directions of ω vary, then ϵ varies correspondingly, and our condition
is that this equation holds for all ϵ ∈ [−1, 1]. In addition, now η1c ·ω = ϵ|η1c|
and we have λ̂ = − ϵ|η1c|

ξ1c
, so λ̂ is small when ϵ is small and therefore χ̃ >

for small ϵ. Taking ϵ = 0 first yields (ω⊥ ⊗ ω⊥) · v11 = 0. By the same
polarization argument as above, cotensors of the form ω⊥⊗ω⊥ span η1c⊗η⊥1c,
we conclude that v11 is orthogonal to every cotensor in η⊥1c⊗η⊥1c. Our second
step is to take derivative with respect to ϵ at ϵ = 0 at (4.31), which yields
(η̂1c ⊗ ω⊥ + ω⊥ ⊗ η̂1c) · v11 = 0 for all ω⊥. Notice that symmetric tensors
of the form (η̂1c ⊗ ω⊥ + ω⊥ ⊗ η̂1c) and η

⊥
1c ⊗ η⊥1c together span (η1c ⊗ η1c)

⊥.
Then further taking the second order derivative at ϵ = 0 shows that (η̂1c ⊗
η̂1c) · v11 = 0. Combining orthogonal conditions we have we know v11 = 0.
Combining (4.21), we know that v = 0, then the non-degeneracy of this
principal symbol and thus the ellipticity when ξ1c ̸= 0 follows.

Now we consider the case ξ1c = 0. Now the critical set condition becomes
η1c · ω = 0. (4.21) and the condition being in the kernel of ιγ̇ ⊗ ιγ̇ is

η1c · v01 = 0,

(η1c,1 + η1c,2) · v11 = 0,

(λ̂2v00 + 2λ̂ω · v01 + (ω ⊗ ω) · v11) = 0.

(4.23)

Suppose (4.10) acting on v is not elliptic, then it vanishes for every λ̂, ω

satisfy η1c · ω = 0 and λ̂ in the support of χ̃ (for fixed other variables).

In particular, for every λ̂ small. View this as a polynomial in λ̂, then its
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coefficients need to vanish. So we conclude that v00 = 0, ω · v01 = 0, (ω ⊗
ω) · v11 = 0. Combine these with first two equations in (4.23), we know
v01 is orthogonal to both η1c and all directions orthogonal to it, similarly
for v11 (using the argument in the previous ξ ̸= 0 part), we conclude that
v01 = 0, v11 = 0, thus v = 0 as desired. The proof of ellipticity at fiber
infinity is completed. □

Next we consider the ellipticity at finite points.

Lemma 4.5. Suppose F > 0 is sufficiently large and Ωx0 = {x ≤ x0} with

x0 small. Nh,F is an operator in Ψ−1,−1
1c,h,F acting on 2-tensors and it is elliptic

on the kernel of δh,F in the boundary and semiclassical senses.

Proof. Then the semiclassical principal symbol at finite points is

ah(x, y, ξ1c, η1c) = x

∫

eαt̂
2(F+iξ1c)+t̂(λ̂(F+iξ1c)+iη1c·ω)χ̃(x, y, λ̂, ω)E2cdt̂dλ̂dω.

Use the expression from [10], adding the tensorial factor, and notice that
with our new parameter F, the phase is unchanged, while the damping factor
is multiplied by F, we have

ah(x, y, ξ1c, η1c) =x

∫

eF(λ̂t̂+αt̂2)χ̃(x, y, λ̂, ω)E2ce
i(ξ1c(λ̂t̂+αt̂2)+η1c·ωt̂)dt̂dλ̂dω,

(4.24)

Rewrite ah as

ah(x, y, ξ1c, η1c) = x

∫

e−i((−ξ1c+Fi)t̂)λ̂χ̃(x, y, λ̂, ω)

E2ce
iαξ1c t̂2+iη1c·ωt̂+Fαt̂2dt̂dλ̂dω.

(4.25)

The λ̂−integral is a Fourier transform evaluated at (−ξ1c+Fi). Then multi-

plication by λ̂ is transformed into −Dσ = i∂σ, where σ is the third variable
of F3χ̃. Define the matrix D2c to be E2c with λ̂ replaced by −Dσ:




D2
σ(−Dσ + 2αt̂)2 D2

σ(−Dσ + 2αt̂)⟨ω, ·⟩1 D2
σ(−Dσ + 2αt̂)⟨ω, ·⟩2 D2

σ⟨ω, ·⟩1⟨ω, ·⟩2
−Dσ(−Dσ + 2αt̂)ω1 −Dσ(−Dσ + 2αt̂)ω1⟨ω, ·⟩1 −Dσ(−Dσ + 2αt̂)ω1⟨ω, ·⟩2 −Dσω1⟨ω, ·⟩1⟨ω, ·⟩2
−Dσ(−Dσ + 2αt̂)2ω2 −Dσ(−Dσ + 2αt̂)ω2⟨ω, ·⟩1 −Dσ(−Dσ + 2αt̂)ω2⟨ω, ·⟩2 −Dσω2⟨ω, ·⟩1⟨ω, ·⟩2
(−Dσ + 2αt̂)2ω1ω2 (−Dσ + 2αt̂)ω1ω2⟨ω, ·⟩1 (−Dσ + 2αt̂)ω1ω2⟨ω, ·⟩2 ω1ω2⟨ω, ·⟩1⟨ω·⟩2



 .

Then (4.25) becomes

ah(x, y, ξ1c, η1c) =x

∫

eiαξ1c t̂
2+iη1c·ωt̂+Fαt̂2D2cF3χ̃(x, y, ((−ξ1c + iF)t̂), ω)dt̂dω,

(4.26)

Take ν = F
−1α, χ̃(x, y, s, ω) = e

s2

2ν , where the dependence on x, y, ω is en-

coded in α and thus in ν, then F3χ̃(x, y, σ, ω) = ce
νσ2

2 . Substitute in (4.26),
we obtain

ah(x, y, ξ1c, η1c) =cx

∫

eiαξ1c t̂
2+iη1c·ωt̂+Fαt̂2D2ce

ν(−ξ1c+iF)2 t̂2

2 dt̂dω.(4.27)
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For the convenience of later discussion, we set

ϕ(ξ1c, ω) =− ν(−ξ1c + iF)2 − 2iαξ1c − 2Fα

=− ν(ξ21c + F
2).

Then we compute derivatives of F3χ̃ = e
νσ2

2 , with c in in different equations
representing possibly different overall factors.

Dσχ̂ = cνσe
νσ2

2 , D2
σχ̂ = c(ν + ν2s2)e

νσ2

2 ,

D3
σχ̂ = c(3ν2σ + ν3σ3)e

νσ2

2 , D4
σχ̂ = c(3ν2 + 6ν3σ2 + ν4σ4)e

νσ2

2 .

Then we have

ah(x, y, ξ1c, η1c) =cxh

∫

Sn−2

∫

R

eit̂ω·η1c(B̃ij)× e−
ϕt̂2

2 dt̂dω.

LetBij be the coefficient after the action ofDi
σ(Dσ+2αt̂)j , we have (notice

that the variable of χ̂ is −ξ1c + iF, but now we are writting expressions for
(ξ1c − iF) for convenience)

B00 = 1,

B10 = −iν(ξ1c − iF)t̂,

B20 = −ν2(ξ1c − iF)2t̂2 − ν,

B01 = −iν(ξ1c − iF)t̂+ 2αt̂,

B11 = −ν(ξ1c − iF)(ν(ξ1c − iF) + 2iα)t̂2 − ν,

B21 = iν2(ξ1c − iF)2(ν(ξ1c − iF) + 2iα)t̂3 + (3iν2(ξ1c − iF)− 2να)t̂,

B02 = (ν(ξ1c − iF) + 2iα)2t̂2 − ν,

B12 = −iν(ξ1c − iF)(ν(ξ1c − iF) + 2iα)2t̂3,

B22 = ν2(ξ1c − iF)2(ν(ξ1c − iF) + 2iα)2t̂4 + ν(6ν2(ξ1c − iF)2

+ 12iνα(ξ1c − iF)− 4ν2)t̂2 + 3ν2.

Then the matrix (B̃ij) is given by








B22 B21⟨ω, ·⟩1 B21⟨ω, ·⟩2 B20⟨ω, ·⟩1⟨ω, ·⟩2
B12ω1 B11ω1⟨ω, ·⟩1 B11ω1⟨ω, ·⟩2 B10ω1⟨ω1, ·⟩1⟨ω⟩2
B12ω2 B11ω2⟨ω, ·⟩1 B11ω2⟨ω, ·⟩2 B10ω2⟨ω1, ·⟩1⟨ω⟩2
B02ω1ω2 B01ω1ω2⟨ω, ·⟩1 B01ω1ω2⟨ω, ·⟩2 B10ω2⟨ω2⟨ω, ·⟩1









The t̂ integral is an inverse Fourier transform with respect to ω ·η1c, which
turns multiplication by t̂ to −Dω·η1c . Moreover, e−

ϕt̂2

2 is transformed into

(a constant multiple of) ϕ(ξ1c, ω)
−1/2e

−
(ω·η1c)

2

2ϕ(ξ1c,ω) . So we have

ah(x, y, ξ1c, η1c) =cx

∫

Sn−2

∫

R

ϕ(ξ1c, ω)
−1/2(C̃ij)× e

−
(ω·η1c)

2

2ϕ dω.
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The matrix (C̃ij) is given by








C22 C21⟨ω, ·⟩1 C21⟨ω, ·⟩2 C20⟨ω, ·⟩1⟨ω, ·⟩2
C12ω1 C11ω1⟨ω, ·⟩1 C11ω1⟨ω, ·⟩2 C10ω1⟨ω1, ·⟩1⟨ω⟩2
C12ω2 C11ω2⟨ω, ·⟩1 C11ω2⟨ω, ·⟩2 C10ω2⟨ω1, ·⟩1⟨ω⟩2
C02ω1ω2 C01ω1ω2⟨ω, ·⟩1 C01ω1ω2⟨ω, ·⟩2 C10ω2⟨ω2⟨ω, ·⟩1









.

Here (C̃ij) is the counterpart of (3.20) of [6], set ρ = ω · η1c,

C00 = 1,

C10 = ν(ξ1c − iF)ϕ−1ρ,

C20 = ν2(ξ1c − iF)2ϕ−2ρ2 + 2iναϕ−1(ξ1c − iF),

C01 = ν(ξ1c − iF)ϕ−1ρ− 2iαϕ−1ρ,

C11 = ν(ξ1c − iF)(ν(ξ1c − iF) + 2iα)ϕ−2ρ2,

C21 = iν2(ξ1c − iF)2(ν(ξ1c − iF) + 2iα)ϕ−3ρ3 − 2iναϕ−1ρ,

C02 = (ν(ξ1c − iF) + 2iν)2ϕ−2ρ2 − ϕ−1(ν(ξ − iF) + 2iν)2iν,

C12 = ν(ξ1c − iF)(ν(ξ1c − iF) + 2iα)2ϕ−3ρ3 + 2iν2ϕ−1ρ,

C22 = ν2(ξ1c − iF)2(ν(ξ1c − iF) + 2iα)2ϕ−4ρ4 + 4να2ρ−2ϕ2 − 4α2νϕ−1.

We can verify that Ci0C0j = Cij , which is as expected since we constructed
E2c and therefore subsequent matrices by multiplying two rank one matrices.
Thus the matrix (C̃ij) can be decomposed as









C20

ω1C10

ω2C10

ω1ω2









⊗
(

C02 C01⟨ω, ·⟩1 C01⟨ω, ·⟩2 ⟨ω, ·⟩1⟨ω, ·⟩2
)

,(4.28)

where the second factor is the adjoint of the first one. In addition, we have

C01 = ν(ξ1c + iF)ϕ−1ρ,

C02 = ν2(ξ1c + iF)2ϕ−2ρ2 + 2iναϕ−1(ξ1c + iF),

where ϕ = −ν(ξ2 + F
2).

Using (3.14), the condition that a symmetric 2-tensor v = (v00, v01, v10, v11)
(being symmetric means v01 = v10 being in the kernel of the principal symbol
of δsh means that

(ξ1c + iF)v00 + η1c · v01 + bs · v11 = 0,

(ξ1c + iF)v01 +
1

2
(η1c,1 + η1c,2) · v11 = 0,

(4.29)

where sub-indices in η1c,1 resp. η1c,2 denotes the inner product is taken in
the first resp. second slots of v11. Taking the inner product with η1c in the
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second equation, notice that v11 is a 2-tensor sending a (co)vector η1c to be
a (co)vector, we obtain

(ξ1c + iF)η1c · v01 + (η1c ⊗ η1c) · v11 = 0.

Combining this with the first equation in (4.29) yields

(ξ1c + iF)2v00 + ((ξ1c + iF)bs − η1c ⊗ η1c) · v11 = 0.

From the second equation of (4.29), we know

(ξ1c + iF)v01 = −1

2
(η1c,1 + η1c,2) · v11.

Using symmetry of tensors involved to combine inner products taken, we
have

v00 = (ξ1c + iF)−2(η1c ⊗ η1c − (ξ1c + iF)bs) · v11,

v01 = −1

2
(ξ1c + iF)−1(η1c,1 + η1c,2) · v11.

(4.30)

Fixing ω, for v to be in the kernel of the principal symbol of δsh and the
projection given by (4.28) means

(C02(ξ1c + iF)−2(η1c ⊗ η1c − (ξ1c + iF)bs)

− C01(ξ1c + iF)−1(η1c ⊗ ω + ω ⊗ η1c) + ω ⊗ ω) · v11 = 0.

Recalling that ϕ = −ν(ξ21c + F
2), we conclude from the concrete expressions

of Cij that this is equivalent to

((ξ1c − iF)−1(ξ21c + F
2)−1(ω · η1c)2 − 2iν(ξ21c + F

2)−1)

((ξ1c + iF)−1(η1c ⊗ η1c)− bs)+

(ξ21c + F
2)−1(ω · η1c)(η1c ⊗ ω + ω ⊗ η1c) + ω ⊗ ω) · v11 = 0.

In order to eliminate ‘error terms’ involving bs above, we introduce

ξ1c,F =
ξ1c
F
, η1c,F =

η1c
F
.

Using these rescaled variables, condition above can be rewritten as

((ξ1c,F − i)−1(ξ21c,F + 1)−1(ω · η1c,F)2 + 2iF−1α(ξ21c,F + 1)−1)

((ξ1c,F + i)−1(η1c,F ⊗ η1c,F)− F
−1a)+

(ξ21c,F + 1)−1(ω · η1c,F)(η1c,F ⊗ ω + ω ⊗ η1c,F) + ω ⊗ ω) · v11 = 0.

We collect terms involving F
−1 to rewrite this as:

((ξ1c,F − i)−1(ξ21c,F + 1)−1(ω · η1c,F)2)(ξ1c,F + i)−1(η1c,F ⊗ η1c,F)+

(ξ21c,F + 1)−1(ω · η1c,F)(η1c,F ⊗ ω + ω ⊗ η1c,F) + ω ⊗ ω +O(F−1)) · v11 = 0.

This can be decomposed as

(((ξ21c,F + 1)−1(ω · η1c,F)η1c,F + ω)

⊗ ((ξ21c,F + 1)−1(ω · η1c,F)η1c,F + ω) +O(F−1)) · v11 = 0.
(4.31)
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Then we choose F large, and we show that this equation holds for all ω
implies v11 = 0. When η1c,F = 0, this means (ω⊗ω)v11 = 0 for all ω. Notice
the ‘polarization’ formula ω1 ⊗ ω2 + ω2 ⊗ ω1 = (ω1 + ω2)⊗ (ω1 + ω2)− ω1 ⊗
ω1 −ω2 ⊗ω2, we know that the symmetric 2-tensors of the form ω⊗ω span
the space of all symmetric 2-tensors. So from the vanishing condition we
conclude that v11 = 0 and consequently v = 0 in this case.

Now suppose η1c,F ̸= 0 and we define η̂1c,F =
η1c,F
|η1c,F|

then we decompose ω

as ω = ϵη̂1c,F + (1 − ϵ2)1/2ω⊥, where ω⊥ is the unit vector in the direction

of the projection of ω onto η⊥1c,F, the orthogonal complement of η1c,F. Then

we substitute this into (4.31) to obtain

((

1 +
|η1c,F|2
ξ21c,F + 1

)2
ϵ2 ˆη1c,F ⊗ η̂1c,F

)

+
(

1 +
|η1c,F|2
ξ21c,F + 1

)

ϵ(1− ϵ2)1/2(η̂1c,F ⊗ ω⊥ + ω⊥ ⊗ η̂1c,F)

+ (1− ϵ2)ω⊥ ⊗ ω⊥) · v11 = 0.

Our condition is that this equation holds for all ϵ ∈ [−1, 1]. Taking ϵ =
0 first yields (ω⊥ ⊗ ω⊥) · v11 = 0. By the same polarization argument
as above, cotensors of the form ω⊥ ⊗ ω⊥ span η1c,F ⊗ η⊥1c,F, we conclude

that v11 is orthogonal to every cotensor in η⊥1c,F ⊗ η⊥1c,F. Our second step

is to take derivative with respect to ϵ at ϵ = 0 at (4.31), which yields
(η̂1c,F ⊗ω⊥ +ω⊥ ⊗ η̂1c,F) · v11 = 0 for all ω⊥. Notice that symmetric tensors

of the form (η̂1c,F ⊗ω⊥ +ω⊥ ⊗ η̂1c,F) and η
⊥
1c,F ⊗ η⊥1c,F together span (η1c,F ⊗

η1c,F)
⊥. Then further taking the second order derivative at ϵ = 0 shows that

(η̂1c,F ⊗ η̂1c,F) · v11 = 0. Combining orthogonal conditions we have we know
v11 = 0. Combining (4.30), we know that v = 0, then the non-degeneracy
of this principal symbol and thus the ellipticity follows. □

4.3. Ellipticity in the combined class.

Next we consider the ellipticity of Nh,F in the combined operator class
Ψsc,1c,h,F . We first show the ellipticity of Nh,F as a semiclassical scattering
operator near Σx0 restricted to the kernel of δh,F. Note that this argument is
necessary since in [6] only the scattering (not the semiclassical) behavior was
considered, but the addition of the semiclassical behavior does not require
any significant changes.

Proposition 4.6. Let F > 0 for one forms, and F is sufficiently large for two
tensors and Ωx0 = {x ≤ x0} with x0 small. Then acting on one forms Nh,F

is an operator in Ψ−1,0
sc,h,F , while on symmetric 2-tensors, it is an operator in

Ψ−1,2
sc,h,F . In both cases, it is elliptic on the kernel of δh,F in both scattering

algebra and semiclassical sense.
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Proof. The ellipticity of Nh,F as a semiclassical foliation scattering operator
on functions is proved in [9]. The process to transplant this result to one
forms and 2-tensors is similar to the proof of Proposition 4.1.

As we mentioned in the beginning of this section, the membership of Nh,F

near Σx0 in Ψsc,h,F, expressions of phase and damping factor are given in the
proof of Proposition 3.3 of [9] and the argument in Proposition 3.1 of [6].
The remaining part to verify is the power of x, h introduced by our tensorial
factor and notice the decay order difference in results. In the 1-form case, as
computation below show, we have an extra h−1(x0 − x)−2 factor compared
with the scalar function case. h is absorbed in the same manner as in our
computation near Σ0. Thus the membership of Ψ−1,−2

sc,h,F there is changed to

be Ψ−1,0
sc,h,F. In the 2-tensor case, we have an extra factor h−2(x0 − x)−4.

An h−1 power is absorbed as in the 1-form case, or previous lemmas, and
another h−1 factor is absorbed by that in the definition of L, finally we have
membership of Ψ−1,2

sc,h,F.

Notice that in the notation [9], (xλ) is interpreted as the component of γ̇
on ∂x direction as a whole. So the rescaled variable we introduce near Σx0

are

λ̃ :=
xλ

h1/2(x0 − x)
, t̃ :=

xt

h1/2(x0 − x)
.(4.32)

The metric gsc,1c,h near Σx0 , which is a semiclassical scattering metric,
applied to (4.2) is:

gsc,h(xλ∂x + ω∂y) = xλ
dx

h2(x0 − x)4
+

g2(ω∂y)

h(x0 − x)2

= h−1/2(x0 − x)−1(λ̃
dx

h(x0 − x)2
+

g1(ω∂y)

h1/2(x0 − x)
).

Similarly, the second factor is

ιγ̇ = h−1/2(x0 − x)−1((λ̃+ 2αt̃)h(x0 − x)2∂x + ωh1/2(x0 − x)∂y).

Then the counterparts of Lemma 4.2 - 4.5 for Nh,F in the semiclassical
scattering foliation algebra near Σx0 are proved in the same manner as the

proof of Lemma 4.2 - 4.5 by replacing x by (x0 − x), λ̂ by λ̃, and t̂ by t̃.
These results combine to complete our proof. □

Next we derive the ellipticity of Nh,F with an extra term added in the
combined class by combining Proposition 4.1 and Proposition 4.6. As before
we consider Ωx0 = {x ≤ x0} with x0 small.

Proposition 4.7. First consider the result about one forms. For F > 0,
Nh,F is an operator in Ψ−1,0,−1

sc,1c,h,F (X;sc,1ch,F T ∗X,sc,1ch,F T ∗X). With suitable choice

of M ∈ Ψ−3,0,−1
sc,1c,h,F (X), the operator

Ah,F := Nh,F + dsh,FMδsh,F

is elliptic in Ψ−1,0,−1
sc,1c,h,F (X;sc,1ch,F T ∗X,sc,1ch,F T ∗X) on Ωx0.
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On the other hand, consider symmetric 2-tensors. For F sufficiently large,
Nh,F is an operator in Ψ−1,2,−1

sc,1c,h,F (X; Sym2,sc,1c
h,F T ∗X, Sym2,sc,1c

h,F T ∗X). With

suitable choice of M ∈ Ψ−3,2,−1
sc,1c,h,F (X;sc,1ch,F T ∗X,sc,1ch,F T ∗X), the operator

Ah,F := Nh,F + dsh,FMδsh,F

is elliptic in Ψ−1,2,−1
sc,1c,h,F (X; Sym2,sc,1c

h,F T ∗X, Sym2,sc,1c
h,F T ∗X).

Here, the ellipticity in Ψ∗,∗,∗
sc,1c,h,F includes the ellipticity in the sense of the

standard (differential), the scattering (at Σx0) and 1-cusp (at Σ0) boundary
as well as the semiclassical principal symbols. In particular, Ah,F is invertible
for h sufficiently small.

Proof. The proofs for one forms and 2-tensors are the same, except for the
extra requirement that F is sufficiently large for 2-tensor cases introduced
by the proof of ellipticity in the semiclassical sense. The membership and
ellipticity on the kernel of δsh,F near two boundaries follows from Proposition
4.1 and Proposition 4.6. Thus, when we add the term dsh,FMδsh,F, where M

has positive scalar principal symbol as an operator in Ψ−3,0,−1
sc,1c,h,F for 1-forms

and Ψ−3,2,−1
sc,1c,h,F for 2-tensors, then its product with dsh,F, δ

s
h,F is of the same

order as Nh,F. Since M has positive scalar principal symbol, to show the
ellipticity of Ah,F, it remains to check the positivity of the principal symbol
of dsh,Fδ

s
h,F.

We only give computation details for the 1-cusp principal symbol near Σ0

because the computation near Σx0 is almost the same as that near Σ0. The
membership of dsh,F and its adjoint δsh,F as operator in the combined class is
encoded in the discussion in Section 3.2 and 3.3. Also, according to symbol
computation in Section 3.2, on one forms, dsh,Fδ

s
h,F has principal symbol

(

ξ1c − iF
η1c

)

(

ξ1c + iF ιη1c
)

=

(

ξ21c + F
2 (ξ1c − iF)ιη1c

(ξ1c + iF)η1c⊗ η1c ⊗ ιη1c

)

,

and on 2-tensors, dsh,Fδ
s
h,F has principal symbol





ξ1c − iF 0
1
2
η1c⊗

1
2
(ξ1c − iF)

bs η1c⊗s





(

ξ1c + iF 1
2
ιη1c ⟨bs, ·⟩

0 1
2
(ξ1c − iF) ιη1c

)

=





ξ21c + F
2 1

2
(ξ1c − iF)ιη1c (ξ1c − iF)⟨bs, ·⟩

1
2
(ξ1c + iF)η1c⊗

1
4
((η1c ⊗ ·)ιη1c + (ξ21c + F

2)) 1
2
η1c ⊗ ⟨bs, ·⟩+

1
2
(ξ1c − iF)ιsη1c

(ξ1c − iF)bs
1
2
bsιη1c + 1

2
(ξ1c + iF)η1c⊗s bs⟨bs, ·⟩+ η1c ⊗s ιη1c



 ,

(4.33)

where the last matrix in fact is a 4 × 4 matrix of blocks, where the third
column is the same as the second column and omitted. When bs = 0,
standard linear algebra gives lower bound independent of F in terms of
|(ξ1c, η1c)|. Thus, rescaling ξ1c, η1c by F

−1 as in the proof of Lemma 4.5,
we can absorb terms involving bs, b

∗
s, since their total power of F, ξ1c, η1c is

lower.



38 QIUYE JIA AND ANDRAS VASY

To summarize, this extra term dsh,FMδsh,F, with M suitably large and
positive gives the ellipticity of Ah,F, without changing its action on the
kernel of δsh,F. □

4.4. Proof of Theorem 1.3.

Proof. Proposition 4.7 implies the invertibility of Ah,F, and thus, under the
gauge condition, the injectivity of Nh,F, which in turn implies the injectivity

of Ie
FΦ
h restricted to tensors in the kernel of δsh,F with sufficient decay and

hence the result of Theorem 1.3. □

Remark 4.8. Following up on Remark 1.4, see also analogous arguments
in [10], when we replace x by xp, then the rescaled variables should be taken

as λ̂ = λ/(h1/2xp), t̂ = t/(h1/2xp), and similarly the weight for conjugation
is Φ = − 1

2px2p near Σ0. The 1-cusp algebra is changed accordingly: the

construction is completely the same, but with the defining function x and
the smooth structure replaced by that of xp.

Now write ξ1c,p, η1c,p for the dual variables of the 1-cusp cotangent bundle
constructed using xp as the boundary defining function. Covectors are

ξ1c,p
dxp

x3p
+ η1c,p

dy

xp
= pξ1c,p

dx

x2p+1
+ η1c,p

dy

xp
.

The phase (4.6) becomes (using our new t̂, λ̂)

pξ1c,p(λ̂t̂+ α(x, y, h1/2xpλ̂, ω)t̂2 + h1/2xpt̂3Γ(1)(x, y, h1/2xpλ̂, ω, h1/2xpt̂))

+ η1c,p · (ωt̂+ h1/2xpt̂2Γ(2)(x, y, h1/2xpλ̂, ω, h1/2xpt̂)).

Similarly, the damping factor (4.7) becomes

λ̂t̂+ α(x, y, h1/2xpλ̂, ω)t̂2 + h1/2xpt̂3Γ(1)(x, y, h1/2xpλ̂, ω, h1/2xpt̂).

Then the arguments afterwards for symbol computation and ellipticity in
various senses go through as before after repalcing quantities as mentioned
here, and the p coefficient produced does not affect the argument.

5. The gauge condition

5.1. The gauge condition, conic 2-tensor.

We still need to show that we can arrange the gauge condition

δsh,Ffh,F = 0,

where

fh,F = e−
FΦ
h f.

Recall that the freedom we have is adding to f a term of the form dsv with
v decaying suffiicently fast at ∂M . This is equivalent to adding to fh,F a
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term of the form dsh,Fvh,F with vh,F = e−
FΦ
h v, where dsh,F = e−

FΦ
h dse

FΦ
h is the

adjoint of δh,F, and the modified Laplacian is their product:

∆h,F,s = δsh,Fd
s
h,F.

Notice that if vh,F is in any 1-cusp Sobolev space (of sufficient regularity,

if one wants pointwise statements) near ∂M then v is actually Gaussian
decaying, so dsv is indeed in the kernel of the X-ray transform. Note also
that there is no decay needed at the artificial boundary: the geodesics on
which our modified normal operator puts a positive weight do not intersect
it! However, we must of course make sure that the added potential term
leaves us in the correct function space.

The modified solenoidal (S) and potential (P) projections acting on a
function or one form ϕ are given by

Sh,Fϕ = ϕ− dsh,F∆
−1
h,F,sδ

s
h,Fϕ,

Ph,Fϕ = dsh,FQh,Fϕ, Qh,Fϕ = ∆−1
h,F,sδ

s
h,Fϕ.

Qh,Fϕ is vanishing at ∂intΩx0 because of the boundary condition for ∆h,F,s

and its solution operator. Thus Ph,Fϕ is in the range of dsh,F applied to
functions or one forms vanishing at ∂intM . Further, Sh,Fϕ is in the kernel
of δh,F.

δsh,FSh,Fϕ = δsh,Fϕ− δsh,Fd
s
h,F∆

−1
h,F,sδ

s
Fϕ = 0.

Thus the remaining task is to justify the definition of Qh,F by checking

the invertibility of ∆h,F,s on the mixed 1-cusp (at ∂M)/scattering (at the
artificial boundary) Sobolev spaces.

5.2. The invertibility of ∆h,F,s.

In this section we prove the ellipticity of the modified Laplacian ∆h,F,s,
from which the invertibility follows by taking the semiclassical limit. This,
in combination with previous discussion, proves Theorem 1.5.

Lemma 5.1. For F > 0, we have ∆h,F,s = δsh,Fd
s
h,F ∈ Ψ2,0,0

sc,1c,h,F (X), and

for F > 0 sufficiently large it is jointly elliptic in the sense of the standard
(differential), the 1-cusp (at Σ0) and scattering (at Σx0) boundary as well
as the semiclassical principal symbols. In particular, it is invertible for h
sufficiently small.

Proof. Membership of ∆h,F,s near both boundaries follows from the operator
properties of the dsh,F discussed in Section 3.2 and 3.3 and consequently its

adjoint δsh,F. Near the scattering boundary Σx0 , it is in Diff2,0
h,sc(X); while

near the 1-cusp boundary Σ0, it is in Diff2,0
1c (X). The bundle valued version

can be derived in the same manner. Combining these facts, we know that
in our new operator class, ∆h,F,s lies in Ψ2,0,0

sc,1c,h,F .
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Next we consider the ellipticity near Σ0 as an 1-cusp operator. Recall
Proposition 3.1, the principal symbol of ∆h,F,s is
(

ξ21c + F
2 + 1

2η
2
1c

1
2(ξ1c − iF)ιη1c

1
2(ξ1c + iF)η1c⊗ 1

2(ξ
2
1c + F

2) + ιsη1cη1c⊗s

)

+

(

⟨bs, ·⟩bs ⟨bs, ·⟩η1c⊗s

ιsη1cbs 0

)

,

where the term 1
2(ξ

2
1c + F

2) + ιsη1cη1c⊗s represents a block with components
1
2(ξ

2
1c+F

2)+ 1
2 |η1c|2δij+ 1

2η1c,iη1c,j . We apply the same argument in the proof
of Lemma 4.5 to absorb the second term by taking F > 0 sufficiently large
since all those terms have lower order in terms of the total power of ξ1c, η1c
and F. This proves the ellipticity near Σ0 in the 1-cusp and semiclassical
sense.

The ellipticity of ∆h,F,s in the scattering and semiclassical sense near
Σx0 follows from the same argument, but using Proposition 3.2 instead of
Proposition 3.1. The invertibility follows the standard way by constructing
parametrix and take semiclassical limit. □

In particular, this proves Theorem 1.5.

Proof of Theorem 1.5. This is an immediate consequence of the discussion
before Lemma 5.1 and Lemma 5.1 itself. □
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