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Abstract

Performance-based wind engineering (PBWE) is gaining consensus as an alternative to cur-

rent wind design procedures for its potential to allow the explicit evaluation of system per-

formance over a full range of performance objectives including collapse. To achieve the

maximum benefits from PBWE, advanced computational approaches that enable the effi-

cient prediction of the inelastic performance, as well as probabilities of failure under extreme

winds, are essential. In this paper, a stochastic simulation-based framework is proposed to

efficiently estimate the reliabilities/probabilities of failure of reinforced concrete (RC) struc-

tures subject to a full range of wind intensities. The framework is based on integrating a

high-fidelity nonlinear modeling environment with a wind-tunnel-informed stochastic wind

load model. An optimal stratified sampling scheme is adopted to propagate structural and

load uncertainties and subsequently estimate the small probabilities of failure characterizing

collapse with limited computational efforts. Through the illustration on a 45-story archetype

RC building with a hypothetical location in New York City, the inelastic behavior and the

subsequent reliabilities associated with various collapse limit states of interest are investi-

gated. In particular, typical collapse mechanisms for the RC structures under extreme winds

are explicitly captured by evaluating the progression of the localized damage, including re-

inforcing bar yielding, fracture, low-cycle fatigue failure, and concrete crushing.
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1. Introduction

Current wind practice consists in designing the structural system through linear elastic

analysis under a limited set of wind loads corresponding to specific hazard levels identified

from climatological studies [1]. Consequently, the system-level post-yield wind performance is

not explicitly evaluated. Nevertheless, extreme wind hazards can cause irreversible structural

and/or nonstructural damage that can only be mitigated by considering an appropriate suite

of explicit system-level inelastic limit states that ensure structural safety against potential

collapse. To this end, performance-based wind engineering (PBWE) has been proposed as

a fundamental shift to current practice in wind engineering [2, 3, 4, 5, 6, 7, 8], that places

focus on comprehensively evaluating the system-level structural performance at various wind

intensities, including those that can cause collapse.

A core objective of state-of-the-art PBWE is to predict the inelastic performance and the

reliabilities of structures subject to wind events beyond those prescribed in current codes for

design. While the accumulated knowledge related to the dynamic nonlinear response mod-

eling in performance-based earthquake engineering (PBEE) [9, 10] is useful and instructive

for developing PBWE guidelines, several challenges exist in developing a robust framework

for predicting the inelastic behavior up to collapse of wind-excited structural systems. These

include [1]: 1) the long duration (in the order of hours) of typical dynamic wind loads which

create a significant computational barrier to propagating uncertainty and therefore estimat-

ing probabilistic performance metrics; and 2) the complexity of modeling nonlinear wind

responses where the presence of a substantial mean wind load component (for certain wind

directions) can create theoretical difficulties in applying state-of-the-art modeling schemes

developed for PBEE. However, to fulfill the maximum potential of PBWE, advanced com-

putational frameworks that enable the probabilistic prediction of the inelastic and collapse

performance of wind-excited structural system through nonlinear analysis are indispensable

[11, 1]. Considerable research efforts have been placed on developing advanced approaches

for predicting nonlinear wind response with uncertainty propagation. For example, Judd

and Charney [12] investigated the nonlinear dynamic response and risk of collapse of single-

degree-of-freedom (SDOF) multistory building models, Feng and Chen [13, 14] introduced

two statistical linearization approaches for modeling the inelastic along-wind as well as the
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across-wind response of wind-excited tall buildings, while Huang and Chen [15] quantified the

uncertainty associated with using reduced order models. Chuang and Spence [16, 17, 18, 19]

proposed a probabilistic performance assessment framework for evaluating the reliabilities of

wind-excited steel structures through the application of dynamic shakedown while consider-

ing a full range of load and model uncertainties that are consistent with those considered in

developing current codes and standards. Arunachalam and Spence [20] developed a similar

framework while, however, considering high-fidelity nonlinear modeling and increased reso-

lution in the description of the model uncertainties. Zheng et al. [21] presented a hybrid

Bayesian-Copula-based method for assessing the wind-induced risk of tall buildings subject

to aleatory and epistemic uncertainties. On the other hand, extensive studies have focused

on developing data-driven methodologies for predicting system response under uncertainty

and subsequently estimating reliabilities. Their efficiency in wind engineering applications

has been demonstrated [24, 22, 23]. Their efficiency in wind engineering applications has

been widely demonstrated [22, 23, 24]. Regardless of these and other efforts devoted to prob-

abilistic performance assessment of wind-excited structures, there is not yet a consensus on

approaches for estimating inelastic performance, including collapse, while treating the esti-

mation of the small failure probabilities generally associated with inelastic limit states. In

addition, notwithstanding how reinforced concrete (RC) is perhaps the most widely adopted

material in developing the structural systems of wind-excited high-rise buildings, the high-

fidelity modeling of RC structural systems within a PBWE setting has received little atten-

tion. This is most likely due to the strong nonlinearity associated with concrete materials

which directly increases the difficulty of modeling and predicting the inelastic behavior of

RC systems.

In response to the aforementioned needs, this work is focused on developing an efficient

simulation framework for investigating the reliabilities as well as the inelastic/collapse behav-

ior of high-rise RC structural systems subject to extreme stochastic dynamic wind loads and

general model uncertainties. To this end, high-fidelity finite element models are developed

to directly capture the inelastic behavior of RC structural systems subject to a full range

of wind intensities. A stratified sampling scheme is introduced to propagate general uncer-

tainties and enable the direct estimation of the small probabilities of failure associated with
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rare events such as collapse. The proposed framework is illustrated on a 45-story archetype

RC building with a hypothetical location in New York City. Reliabilities (or failure proba-

bilities) associated with various inelastic limit states of interest are investigated. To identify

the collapse mechanism of high-rise RC buildings, the progression of inelasticity as well as

localized damage (e.g., reinforcing bar buckling, fracture, fatigue, and concrete crushing) is

explicitly evaluated.

2. Framework Outline

2.1. Reliability Problem

Advanced PBWE aims to describe performance in terms of probabilistic metrics estimated

from solving a system-level reliability problem based on the inelastic behavior of the structural

system. Essential to this performance evaluation is the identification of an adequate set

of random variables that account for the uncertainties in the wind hazard, the stochastic

nature of the dynamic wind loads (record-to-record variability), and the uncertainties in the

model parameters (e.g., mechanical parameters and component capacities). For describing

the intensity of the wind hazard while accounting for wind direction effects, a variety of

approaches have been developed [25]. In this work, the practical and commonly adopted

sector-by-sector approach is adopted in which wind direction is divided into Nsec equal-sized

sectors [26, 25]. Given a limit state of interest, R, the probability of failure is therefore

defined as:

PfR = max
1≤n≤Nsec

[

P
(n)
fR

]

(1)

where P
(n)
fR

is the failure probability in sector n. To estimate P
(n)
fR

, the following equation

requires solving:

P
(n)
fR

= P (gR ≤ 0) =

∫∫

G(gR ≤ 0|α, v̄H)|dGn(α|vH)||dGn(vH)| (2)

where gR is the limit state function associated with R that assumes negative values upon

exceedance of R; Gn(vH) represents the site-specific complementary cumulative distribution

function (CCDF) of the maximum mean hourly wind speed, vH , to occur over the lifespan

of the structure (e.g., 50 years) in sector n; Gn(α|vH) is the CCDF governing wind direction

conditional on vH in sector n; while G(gR|α, v̄H) is the CCDF of failure (gR ≤ 0) conditional
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on an event of wind speed, v̄H , and wind direction, α. Inherent to G(gR|α, v̄H) are the

effects of the uncertainties in the dynamic wind loads (i.e., the stochasticity of the dynamic

wind records) as well as the model parameters (i.e., uncertainty in component capacities,

mechanical parameters, etc.). In particular, to estimate G(gR|α, v̄H) for limit states that

involve inelasticity, nonlinear dynamic analysis is necessary. It should also be observed that

the estimation of Gn(vH) requires a certain amount of engineering judgment, especially if the

partial correlation between the sectorial wind speeds is to be captured.

Given PfR from Eq. (1), the associated reliability index, βR, can be estimated as:

βR = Φ−1(1− PfR) (3)

where Φ is the standard normal cumulative distribution function.

2.2. Response Analysis

To estimate the probability of failure of Eq. (2), the term G(gR ≤ 0|α, v̄H) requires the

prediction of the inelastic response of the structural system subject to a vector of stochastic

dynamic wind loads and characterized by general model uncertainty. This can be achieved

by solving the following equations of motion:

M (ym)ü(t) + fD(u(t), u̇(t),ym) + f r(u(t),ym) = f(t; vH , α,yh) (4)

where, ü(t), u̇(t) u(t) are the displacement, velocity, acceleration response vectors of the

system; f(t; vH , α,yh) is the stochastic dynamic wind load for a given wind speed, vH , and

wind direction, α; yh is a random vector characterizing the uncertainty in the wind hazard

model (including the stochasticity of the dynamic wind loads); M is the mass matrix; ym is a

random vector characterizing the uncertainty in the structural model (e.g., parameters of the

material constitutive laws and geometric uncertainties); while fD and f r are the nonlinear

damping and restoring forces that are generally dependent on response of the system and

encapsulate both material and geometric uncertainty.

In general, given a realization of f(t) and ym, to solve Eq. (4) direct time integration

schemes are required. Because of their efficiency, implicit schemes are a popular choice, for

example, the well-established class of Newmark-beta algorithms. However, as also observed

in [27], for highly nonlinear problems, e.g., collapse simulation, implicit schemes can have
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significant convergence issues. This is especially true for RC structures as concrete has a

highly nonlinear constitutive law even at relatively small deformations (i.e., unlike steel, it is

not characterized by an essentially elastic region before yielding). To overcome this, explicit

schemes (i.e., central difference, leap-frog, etc.) are more suitable notwithstanding their

increased computational effort, as compared to implicit schemes, due to the need to consider

time steps that are related to the highest natural frequency of the system.

In addition, before solving Eq. (4), gravity loads must be applied and the static system

response estimated. In other words, Eq. (4) is solved at the end of a static load step involving

the application of a vector of gravity loads, f g, related to both dead loads and vertical live

loads. In particular, f g is also uncertain while the response of the system due to f g depends

on the model uncertainties ym. Therefore, before solving Eq. (4), the uncertainty in f g

requires characterization which also involves identifying appropriate vertical live loads for

combination with the stochastic dynamic wind loads f(t).

2.3. Limit State Functions

As outlined in Sec. 2.1, this work is focused on estimating the probability of failure of

the system through solving Eq. (2) for any given limit state, R, of interest. Given R, this

involves defining the following limit state function:

gR = R−D(ü(t), u̇(t),u(t)) (5)

where D is an operator extracting from the dynamic response of the system the demand

parameter to compare against R. To allow for the consideration of a general class of limit

states related to the performance of RC structural systems under extreme winds, no limi-

tations on the definition of D or R are imposed therefore allowing for the inclusion of both

system and component level limit states, including limit states in which R presents significant

uncertainty. In particular, the system-level limit states that will be considered are related

to excessive inelastic deformation, in terms of both peak inter-story and residual drift ra-

tios, that can lead to collapse, while the component-level limit states are related to concrete

crushing, reinforcing bar buckling and fracture.
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3. Background Structural and Wind Load Models

3.1. Fiber-based Modeling of RC Structural Systems

RC systems of high-rise buildings often involve shear walls and/or core systems together

with beams (including coupling beams) and columns. While the finite element modeling

of the beams and columns of such systems can be carried out using common nonlinear

fiber-based beam-column elements (e.g., the displacement-/force-based beam-column ele-

ments of OpenSees [28]), such an approach is limited in the modeling of shear walls and/or

cores by the need to embed auxiliary beam-column/link elements for capturing the three-

dimensional interaction of such systems in resisting lateral loads. This directly influences

the accuracy/validity of the nonlinear structural analysis [29, 30]. To overcome the afore-

mentioned limitation, the OpenSees modeling environment is adopted in this work with

wall/core systems modeled using the three-dimensional four-node Multiple-Vertical-Line-

Element-Model-3D (MVLEM-3D) element that was specifically developed for the nonlinear

analysis of flexure-controlled non-rectangular reinforced concrete walls subjected to multidi-

rectional loading [30, 31]. The MVLEM-3D element is founded on a discretization based on

macro fibers that avoids the use of additional embedded elements and enables the simulation

of distributed plasticity along the length, width, and depth of the element. Out-of-plane

behavior is described by a four-node Kirchhoff plate model while in-plane shear is modeled

by an uncoupled linear or nonlinear shear spring. The element allows the consideration of

both confined and unconfined concrete in defining the macro fibers. Validated by compre-

hensive quasi-static experiments, the MVLEM-3D element is well suited for the modeling

of three-dimensional RC structures and represents a good balance between efficiency and

accuracy [30]. Because the framework of this work is developed using OpenSees as the finite

element modeling environment, if deemed necessary, more sophisticated finite elements can

be considered, including the three-dimensional Shear-Flexure Interaction Multiple-Vertical-

Line-Element-Model (SFI-MVLEM-3D) that explicitly captures axial-flexural and shear in-

teraction [32].

To capture the effects of large rotations and displacements in a small deformation/strain

setting, a corotational formulation [33] is implemented in this work. The basic reference

system of the individual finite elements is therefore considered fixed to the element as it
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deforms while the rotation and translation of this reference system is described through rigid

body motions.

3.2. Material and Damping Models

3.2.1. Concrete and Reinforcing Steel Material Models

Essential to a reliable prediction of the nonlinear behavior of RC structures are ade-

quate hysteretic models for describing the fiber-level stress-strain relationship in both cyclic

compression and tension for both the concrete and reinforcing materials [34].

For concrete, the uniaxial constitutive stress-strain relationship for cyclic loading sug-

gested in Yassin [35] offers a good balance between accuracy and efficiency. In this model, the

monotonic stress-strain curves for concrete in compression follow the relationship suggested

by Kent and Park [36] and Scott et al. [37], while the hysteretic unloading and reloading

curves are a set of linear stress-strain relationships. It should be noted that in its classic

form, this model continues with a non-zero stress level after crushing. To directly capture

the concrete crushing phenomenon, each concrete fiber can be wrapped in a MinMax material

model which drops the stress and stiffness to zero upon the first occurrence of a predefined

strain limit. This approach is followed in this work.

For modeling the hysteretic behavior of the reinforcing steel, the well-known Menegotto-

Pinto material model [38], with the extensions outlined in Filippou et al. [39] to include

isotropic strain hardening effects, is adopted. This model is formed by two straight-line

asymptotes, with slopes E0 (elastic modulus) and E1 (yield modulus), for defining the elastic

and post-yield behavior of the reinforcing steel. A curved transition is incorporated between

the two asymptotes, permitting the Bauschinger effect to be represented. The curvature of the

transition curve is controlled by a parameter that depends on the difference in absolute strain

between the current asymptote intersection point and the previous maximum (or minimum)

strain reversal point. This parameter can be degraded, as in this work, for strain reversals

in both pre- and post-yielding regions therefore providing a more accurate prediction of the

member capacity. To capture reinforcing fracture and buckling failure, each steel fiber can

be wrapped in a MinMax material which drops the stress and stiffness to zero upon reaching

predefined tensile and compressive strain limits at which fracture in tension and buckling in
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compression is expected. Additionally, due to the long duration of typical wind events (in the

order of hours), a low cycle fatigue (LCF) material model capable of capturing reinforcing

bar failure due to damage accumulation is essential. In this work, an approach is adopted

based on the classic Coffin-Manson relationship for which the total strain amplitude, εi, is

assumed to be related to the number of constant cycles to failure, Nf , through the expression

[40, 41]:

εi = ε0(Nf )
m (6)

where ε0 indicates the strain amplitude at which fracture will occur due to a single complete

cycle; m defines the slope of the Coffin-Manson curve in the log-log space, which describes

the sensitivity of the log of εi to the log of Nf . To estimate the accumulation of damage

for a fiber subject to varying amplitude cycles, the modified rainflow cycle counting method

outlined in Uriz [40] is adopted. The approach is based on defining the damage index, DIi,

for a given amplitude, εi, as the ratio of the number of cycles, ni, and the number of constant

amplitude cycles, Nfi, necessary to cause failure at εi. Subsequently, the overall damage is

estimated as the sum of damage occurring at all amplitudes:

DI =
∑ ni

Nfi

(7)

Once DI reaches unity, reinforcing bar fracture due to LCF failure occurs and the fiber stress

and stiffness is dropped to zero. Importantly, the modified cycle counting method is based

on counting half cycles and therefore encompasses failure due to monotonic strain increases

typical of along-wind type of wind loading.

3.2.2. Damping Model

A classic approach for defining the damping force, fD, is the adoption of a Rayleigh

damping model which, for nonlinear systems, can be written in the following form [42]:

fD(u̇(t),u(t)) = (c0M+ c1Kt)u̇(t) = Ctu̇(t) (8)

where c0 and c1 are the Rayleigh proportionality coefficients estimated from the initial stiff-

ness matrix of the system, Kt is the tangent stiffness matrix computed at the end of the previ-

ous time step (last-committed state) during nonlinear dynamic analysis, andCt = c0M+c1Kt
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which represents the current damping matrix. While the adoption of the classic Rayleigh

damping model of Eq. (8) can be considered together with explicit time integration schemes,

it is not recommended as the non-diagonal nature of Ct precludes the use of diagonal solvers

for the resolution of the system of equations at each time step. This can significantly de-

creases computational efficiency, especially for large scale systems such as those considered

in this work [27]. As an alternative, the damping matrix can be constructed by the super-

position of modal damping matrices specified for a set of modes of interest [43]. However,

unless all modes are considered (which for large scale finite element systems is complex due

to numerical issues in identifying the higher modes), this model assumes zero damping in

the higher modes, and therefore often leads to local response (e.g., fiber level response) os-

cillations. These difficulties can be solved through considering a mass proportional damping

matrix, i.e., Ct = c0M, which can be calibrated by specifying the damping ratio for the first

natural frequency of the system estimated from the initial stiffness matrix. This approach

ensures a diagonal damping matrix as well as damping in all the vibration modes of the

system therefore eliminating spurious oscillations in the local responses. In general, mass

proportional damping will underestimate overall damping therefore ensuring a conservative

estimate of the resulting response. It should be observed that for highly nonlinear systems,

such as those considered in this work, a significant proportion of damping will come from the

hysteretic response of the system which is not affected by the choice of damping model.

3.3. Stochastic Wind Load Model

The path-dependent nature of the nonlinear dynamic analysis implies the need to define

appropriate initial and final conditions for the dynamic wind load history, f(t). This can

be achieved by defining f(t) through the use of an appropriate envelope function, e(t), and

therefore as:

f(t; vH , α,yh) = e(t)̃f(t; vH , α,yh) (9)

where f̃(t) is the stationary representation of f(t). As suggested in Judd and Charney [12],

Judd [44], Chuang and Spence [18, 19], it is common in wind engineering to assume e(t) so as
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to linearly ramp the initial/final part of f̃(t). This leads to the following envelope function:

e(t) =



















t/Ta, t ∈ [0, Ta)

1, t ∈ [Ta, Tb)

1− (t− Tb)/(T − Tb), t ∈ (Tb, T ]

(10)

where, Ta is the length of the initial linear ramp, Tb is time at which the final linear ramp

starts while T is the total duration of f̃(t).

To characterize the stationary vector f̃(t) a model capable of capturing the complex aero-

dynamic features characteristic of high-rise buildings (i.e., vortex shedding, detached flow and

interference effects from surrounding buildings) is required, as is a model that can capture

the record-to-record variability/stochasticity associated with dynamic wind loads. To achieve

this, the data-driven proper orthogonal decomposition (POD)-based spectral representation

model outlined in [45, 46, 47] is adopted in this work. The jth component of f̃(t) is therefore

written as:

f̃j(t; vH , α,yh) = w1w2w3

Nl
∑

l=1

Nω−1
∑

n1=0

2|Ψjl(ωn1 ;α)|
√

Λl(ωn1 ; vH , α)∆ω

cos(ωn1t+ ϑjl(ωn1 ;α) + θn1l)

(11)

where, Nl is the total number of spectral POD modes considered in the expansion; Nω is

the total number of discrete frequencies; ∆ω is the frequency increment with ωn1 = n1∆ω;

θn1l is a uniformly distributed basic random variable in [0, 2π] generating the stochasticity

in the dynamic wind loads; ϑjl = tan−1(Im(Ψjl)/Re(Ψjl)); Ψjl(ω) is the jth component of

the lth wind tunnel data estimated spectral POD eigenvector; Λl(ω) is the lth wind tunnel

data estimated eigenvalue; and w1, w2, and w3 are random variables that account for the

uncertainties associated with the sampling errors due to the finite length of the wind tunnel

record, the use of scaled models, and observational errors when estimating Ψl(ω) and Λl(ω)

from wind tunnel records.

The fundamental characteristic of the stochastic wind load model of Eq. (11) is the

calibration of Ψl(ω) and Λl(ω) to building specific wind tunnel data. This ensures the model

is capable of capturing all the aerodynamic features seen in the wind tunnel.
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4. Structural Model and Load Uncertainties

4.1. Preamble

A comprehensive description of the uncertainties affecting the system is essential for a

meaningful estimation of the failure probability of Eq. (2). This involves defining the pa-

rameters of the random vectors ym and yh, which complement the wind intensity measures

vH and α, so has to adequately describe all important sources of uncertainty therefore en-

suring the estimated failure probabilities (or reliabilities) are of use to the decision making

process, for example, they can be compared to the target reliabilities at the core of many

modern codes and standards (e.g., Table 1.3-1 of ASCE 7-22 [48]). Before proceeding, it is

important to observe that the random vector ym is non-ergodic in time (i.e., its statistical

properties cannot be obtained by temporal averaging), whereas yh is ergodic. As illustrated

in Kiureghian [49] for seismic applications, this can lead to errors in the failure probabilities

estimated from Eq. (2). Nevertheless, for small lifetime failure probabilities, i.e., less than

0.01 for the seismic applications outlined in Kiureghian [49] over lifespans of 50 years, these

errors are negligible. Because this paper is focused on collapse probabilities that are expected

to be in the order of 10−5 to 10−7 over lifespans of 50 years, the distinction between ergodic

and non-ergodic random variables is neglected as this assumption provides significant com-

putational advantages (i.e., ergodic and non-ergodic random variables can be simultaneously

sampled). Having said this, it is important to observe that wind excitation is generally sig-

nificantly longer than seismic excitation. This could lead to increased errors associated with

the neglect of the difference between ergodic and non-ergodic random variables and should

constitute a topic of future investigation.

4.2. Structural Model Uncertainties

4.2.1. Concrete Material Uncertainty

The modeling approach of this work is based on fiber discretizations. The mechanical

properties of the materials are therefore defined at the level of the material constitutive

laws. As discussed in Sec. 3.2.1, the constitutive law for confined and unconfined concrete

is modeled in this work by adopting the modified Kent and Park model outlined in Scott
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et al. [37], Yassin [35], Orakcal [34], although any other model could be adopted without

compromising the proposed framework.

As illustrated in Fig. 1, the skeleton curve of this model is defined by the following

parameters: compressive strength of the concrete at 28 days, f ′
c; concrete strain at maximum

strength, ε0; the factor K modeling the strength increase due to confinement; and the strain

softening slope Z. In particular, the strain at maximum strength can be estimated as ε0 =

0.002K while ε20 is estimated from the intersection of the strain softening portion of the

envelope curve and the point of 20% maximum strength, 0.2Kf ′
c. The parameters governing

the skeleton curve in tension, i.e., ft and Et, can be derived directly from f ′
c and ε0 [30]. The

degradation of stiffness during cyclic unloading and reloading is governed by the parameter

λ.

In terms of uncertainties, f ′
c can be treated as a lognormal basic random variable with

mean related to the nominal compressive strength through the factors outlined in [50] and

coefficient of variation (COV) of 0.2 [51, 52]. The parameters Z, K, ft, and Et, on the other

hand, can be treated as derived random variables. In particular, following the expressions

outlined in Yassin [35], Z depends on f ′
c as well as the yield strength of the transverse

reinforcement, fyh, whose randomness can be characterized as described for the longitudinal

reinforcement of Sec. 4.2.2, and the ratio of the volume of transverse reinforcement to the

volume of concrete core, ρs, which is random due to the geometric uncertainties of Sec.

4.2.3. Likewise, in terms of random parameters, Z depends on f ′
c, fyh, and ρs as well as

the width of the concrete core to the outside of the stirrups, h′, which is random due to

the geometric uncertainties of Sec. 4.2.3. From the expressions for ft and Et suggested in

[30], the uncertainty in ft and Et can be fully characterized from the knowledge f ′
c and K.

Due to an absence of information for uncertainty characterization, λ is generally taken as

deterministic.

4.2.2. Steel Material Uncertainty

As discussed in Sec. 3.2.1, the extended Menegotto-Pinto constitutive law was considered

in this work for characterizing the mechanical response of the steel fibers of the reinforcement.

Of the parameters defining this model, there is adequate information available in the literature
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Table 1: Random variables of the steel constitutive law.

Parameter Mean COV Distribution Reference

Fy or fyh 1.1Fyn or 1.1fyhn 0.106 Beta [51, 52, 20]

E0 200Gpa 0.033 Lognormal [51, 52, 20]

b 0.02 0.2 Lognormal [51, 52, 20]

ε0 0.077 0.161 Lognormal [20, 54]

εsh 0.1 0.00133 Lognormal [52, 54, 55]

Fyn or fyhn: Nominal yield strength of the reinforcing bars

4.2.1. With respect to LCF, to model the uncertainty in fatigue failure of the reinforcing

bars the strain amplitude at which failure will occur due to a single complete cycle, ε0, can

be modeled as a basic random variable with the distribution reported in Table 1.

4.2.3. Geometric Uncertainty

Uncertainties in the geometric properties of the components, e.g., cross-sectional dimen-

sions, thickness of concrete cover, and cross-sectional area of the reinforcing bars, are small

but not negligible [52]. Within the fiber-based modeling environment outlined in Sec. 3.1,

the geometric parameters that can be modeled as uncertain depend on the finite element

type used to model the component. For components schematized using fiber-based beam-

column elements, uncertainty can be considered in the width, bc, depth, hc, and concrete

cover thickness, ts, as well as the cross-sectional area of the longitudinal reinforcing steel,

As. For components schematized using fiber-based MVLEM-3D elements, the thickness of

the element, bs, can be taken as uncertain while the uncertainty in the cross-sectional area

of the longitudinal reinforcing steel can be indirectly modeled through the reinforcing ratio:

ρsv = As/Agross where Agross is the gross area of the element (also random due to the un-

certainty in bs). In addition to the above parameters and consistently with assuming As as

uncertain, the area of the transverse reinforcement, Ash, can also be taken as uncertain. This

will affect the concrete constitutive law of Sec. 4.2.1 through ρs and therefore the volume of

transverse reinforcement to the volume of the concrete core of the component.
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Table 2: Geometric Uncertainties.

Parameter Mean COV Distribution Reference

bc nominal 0.055 Normal [52]

hc nominal 0.055 Normal [52]

ts 75 mm 0.1 Normal [53]

bs nominal 0.055 Lognormal [52]

As or Ash nominal 0.02 Normal [53]

Appropriate distributions for the geometric parameters bc, hc, ts, bs, As, and Ash can be

found in the literature as reported in Table 2.

4.2.4. System Uncertainties

Together with the uncertainties at the local material level, characterization of uncertainty

at the level of the entire system is also required. This includes defining appropriate models for

characterizing the uncertainty in the damping model of Sec. 3.2.2 which, due to the assump-

tion of a Rayleigh model, requires the characterization of the first two modal damping ratios,

ζ = {ζ1, ζ2}
T (this reduces to the first modal damping ratio in the case mass proportional

damping is adopted). The most straightforward approach to modeling this uncertainty is to

treat ζ as a basic random vector with fully correlated components that follow a lognormal

distribution with mean 0.02 and COV 0.2 [52]. The parameters of the Rayleigh model, c0

and c1 of Eq. (8), can then be treated as derived random variables defined by calibrating

the initial damping matrix to the components of ζ at the first two natural frequencies of the

system estimated from the initial tangent stiffness (also uncertain due to the randomness in

the material constitutive laws) and current mass matrix (uncertain due to the randomness

in the dead loads).

An additional source of system uncertainty that requires characterizing is the probabilistic

dependence between the parameters of the constitutive laws of different components. With

respect to the basic random variables of the concrete constitutive law, for multi-story build-

ings, these will present significant correlations over each floor level as concrete is generally
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poured floor-by-floor. The basic random variables of the constitutive law of the steel rein-

forcing will also present a significant correlation for reinforcing cages made from the same

steel batch. However, multiple steel batches will in general be required in the construction

of a multi-story building. Using engineering judgment, the basic random variables of the

steel reinforcing constitutive law are also considered to vary from floor to floor. Therefore,

in this work, each floor level is associated with a separate set of basic random variables mod-

eling the uncertainty in the steel and concrete constitutive laws and collected in the vector

κc,j = {f ′
c, Fy, fyh, E0, b, ε0, εsh}

T where j is the floor number.

In addition to the parameters of the constitutive laws, the geometric uncertainties can

also present dependence between components. In this work, bc, hc, ts, and bs are considered

independent basic random variables that vary between different components. Consistently

with how the parameters of the constitutive law of the reinforcing steel are treated, As

and Ash are considered to vary floor by floor. The geometric uncertainties therefore define

the following random vector κg,j = {bc,1..., bc,nj
, hc,1, ..., hc,nj

, tt,1..., tt,nj
, bs,1..., bs,kj , As, Ash}

T

where nj and kj are respectively the number of components modeled as beam-column and

MVLEM-3D elements at floor j.

The above random variables allows for the definition of the random vector of model

uncertainties as: ym = {ζT ,κT
c,1, ...,κ

T
c,Nf

,κT
g,1, ...,κ

T
g,Nf

}T where Nf is the total number of

floors of the building under consideration.

4.3. Load Uncertainties

4.3.1. Wind Load Uncertainty

The uncertainty in the external dynamic loads, f(t), are arguably the most important

source of uncertainty driving the reliability of the system. As discussed in Sec. 2.1, it is

common to use vH (maximum mean hourly wind speed) over the lifespan of the structure

and α (associated wind direction) as random variables describing the intensity of the wind

event. Additionally, the record-to-record variability (stochasticity) is another source of ran-

domness that requires consideration in extreme response analysis due to the path-dependency

of nonlinear analysis. This is captured in Eq. (11) for each POD mode through the inde-

pendent and identically distributed sequences θl = {θ1l, θ2l, ..., θn1l, ..., θNωl}
T . In addition,
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Table 3: Random variables associated with experimental wind tunnel data.

Parameter Mean COV Distribution Reference

w1 1.0 0.075 Truncated Normal [56]

w2 1.0 0.05 Truncated Normal [57, 58]

w3 1.0 0.05 Truncated Normal [57, 58]

uncertainties associated with calibrating Eq. (11) to experimental wind tunnel data should

be considered and are in the proposed framework through the random variables w1, w2, and

w3 of Sec. 3.3. In particular, appropriate distributions for w1, w2, and w3 are reported in

Table 3.

The above random variables allows for the definition the random vector of wind hazard

uncertainties as: yh = {w1, w2, w3,θ
T
1 , ...,θ

T
Nl
}T .

4.3.2. Gravity Load Uncertainty

As discussed in Sec. 2.2, before solving Eq. (4), a vector of uncertain gravity loads, f g,

must be applied to the system. In particular, together with the dead and super dead loads, D,

appropriate “arbitrary point-in-time” live loads, Lapt, are required for combination with the

external dynamic wind loads. Extensive literature exists on the probabilistic characterization

of both D and Lapt whose values are generally related to the nominal values of D and Lapt,

as outlined in Table 4. With respect to correlation, it is common to assume D and Lapt

as independent random variables. Individually, D is generally assumed perfectly correlated

at each floor level as is Lapt [59]. The application of D and Lapt to the structural model

results in a system of nodal forces (derived from appropriate fixed end force relationships

for distributed loads) that define the random vector f g. It should be observed that the

randomness in the gravity loads will in general generate randomness in the mass matrix, M ,

of the system.
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Table 4: Characterization of the gravity load uncertainty.

Parameter Mean COV Distribution Reference

D 1.05Dn 0.1 Normal [59, 60]

Lapt 0.24Lrn 0.6 Gamma [59, 61]

Dn: Nominal dead load

Lrn: Nominal reduced live load

5. Stochastic Simulation Strategy

The major goal of this work is to efficiently estimate the failure probability (or reliability)

of the system through solving Eq. (2) for a suite of limit states, including collapse, while

considering the uncertainties introduced in Sec. 4 as well as the sectorial hazard intensity

measures vH and α. The significant computational burden of the nonlinear dynamic response

analysis required for characterizing the failure of the systems of interest to this work implies

the need to adopt variance reduction methods for assessing Eq. (2). This is especially true if

it is recognized that probabilities associated with limit states such as collapse are extremely

small (often in the order of 10−5 – 10−7 for well-designed systems). The need to simulta-

neously estimate the failure probability for multiple limit states precludes the use of many

classic variance reduction techniques, e.g., subset simulation [62] and importance sampling

[63].

To overcome this, a recently introduced scheme based on stratified sampling [64, 65] is

adopted in the proposed framework. Basically, for wind sector n, the sample space of the wind

speeds is partitioned into Nw mutually exclusive and collectively exhaustive subspaces (or

strata), E
(n)
vH ,k. To ensure the collectively exhaustive nature of the partition, the lower bound

wind speed of the first stratum is taken as zero whereas the last stratum is unbounded from

above. With respect to the scheme used to identify the bounds of the individual stratum,

leveraging how wind force is closely related to the square of the wind speed, a constant

value is imposed for the difference between the square of the lower bound and upper bound

wind speeds of each stratum. In other words, E
(n)
vH ,k = [vLH,k, v

U
H,k) for k = 1, 2, ..., Nw where

vLH,k and vUH,k are the lower and upper bound wind speeds defining the kth stratum under
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the condition: (vLH,k)
2 − (vUH,k)

2 = (vLH,Nw
)2/Nw for k = 1, 2, ..., Nw − 1. In addition, it is

suggested to fix the lower bound of the last stratum, vLH,Nw
, consistently with the order of

magnitude of the failure probability expected in the simulation. Using the total probability

theorem, the failure probability for sector n can then be estimated as:

P
(n)
fR

=
Nw
∑

k=1

P
fR|E

(n)
vH,k

P (E
(n)
vH ,k) (12)

where Nw is the total number of strata; P (E
(n)
vH ,k) is the probability of vH belonging to

E
(n)
vH ,k that can be directly estimated from the knowledge of the sector hazard curve Gn(vH);

and P
fR|E

(n)
vH,k

is the probability of failure conditional on vH belonging to E
(n)
vH ,k that can

be estimated using standard Monte Carlo (MC) methods as it is no longer a small failure

probability.

As demonstrated in Arunachalam and Spence [64, 65], the COV of the estimator of P
(n)
fR

can be written as:

κ
(n)
R (n1, ..., nNw

) =

√

∑Nw

k=1

[

(

P (E
(n)
vH ,k)

)2

P
fR|E

(n)
vH,k

(1− P
fR|E

(n)
vH,k

)/nk

]

∑Nw

k=1 P (E
(n)
vH ,k)PfR|E

(n)
vH,k

(13)

where nk is the number of samples in strata k. From the knowledge of κ(n), the following

constrained optimization problem can be defined for finding the minimum stratum-wise allo-

cation of samples for achieving target COVs on the failure probability estimates of NR limit

states:

Find {n1, ..., nNw
}

to minimize Ns =
Nw
∑

k=1

nk

s. t. κ
(n)
R (n1, ..., nNw

) ≤ κ̃
(n)
R for R = 1, ..., NR

(14)

where Ns is the minimum number of samples while κ̃
(n)
R for R = 1, ..., NR are the target

COVs. It should be observed that the optimization problem of Eq. (14) requires a preliminary

estimate of the conditional probabilities, P
fR|E

(n)
vH,k

, which can be realized using MC simulation

based on a limited set of equally allocated stratum samples [64, 65].
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6. Case Study

6.1. Building Description

The proposed computational framework is illustrated on a 45-story archetype rectangular

RC building located in New York City (NYC). This structural system was designed by the

ASCE 7-22 Task Committee in support of the development of PBWE. The layout consists

of a centrally placed concrete core wall system with coupling beams and fin walls providing

lateral load-carrying resistance, as shown in Fig. 2 where the Y axis points north. The plan

dimensions of the building are X = 45.72 m, Y = 30.48 m while the total height of the building

is 180 m with a constant story height of 4 m. The building was designed using the current

state of practice to satisfy the requirements of ASCE-22 [48] for a risk category II building.

Equivalent static wind loads (ESWLs) corresponding to a 700-year return period winds were

therefore used in the design. The ESWLs were provided by the wind tunnel consultant

Cermak Peterka Petersen (CPP) while considering 2% modal damping and a site-specific

climatological study. According to ASCE-22 [48], the target probability of failure for a risk

category II building and limit states that are sudden and can result in widespread progression

of damage is 3.5 × 10−6 (corresponding reliability index β = 4.0) over a 50-year lifespan.

The nominal compressive strengths for the concrete composing the shear wall and coupling

beams were 70 Mpa, 55 Mpa, and 40 Mpa for floors 1-18, 19-36, and 37-45 respectively. The

reinforcing steel, both longitudinal and transverse, had a nominal yield stress of 420 MPa.

It was assumed that the same steel batch was used for both the longitudinal and transverse

reinforcing at each floor therefore resulting in a perfect correlation between Fy and fyh at each

floor. With respect to the gravity loads, the nominal dead load is defined by a self-weight of

4.8 kPa with a superimposed dead load of 0.72 kPa. The nominal reduced live load was 2

kPa.

6.2. Finite Element Model

The OpenSees finite element model of the building is shown in Fig. 3. The model was de-

veloped using sixteen MVLEM-3D elements at each floor. Displacement-based beam-column

elements with five integration points and distributed plasticity were used to model the cou-

pling beams. Each MVLEM-3D element considered 25 macro fibers while the rectangular
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Figure 2: Planar layout of the archetype building.

coupling beams were discretized with 6 vertical fibers and 3 horizontal concrete fibers with

steel fibers corresponding to the location of the reinforcing bars. The constitutive laws for the

fibers corresponded to those discussed in Secs. 3.2.1 and 4 and denominated “Concrete02”

and “SteelMPF” in OpenSees. The uncertain parameters of the constitutive laws were as-

signed consistently with Sec. 4.2.1 and 4.2.2. In particular, the concrete tensile strength was

determined from the relationship ft = 0.31
√

f ′
c [MPa] while the slope of the post-cracking

model envelope in tension was taken as 5% [30]. The degree of confinement of the concrete of

the core walls and coupling beams was considered by estimating K of Sec. 4.2.1 in terms of

the transverse reinforcing of each component of the archetype building. For the reinforcing

steel, the cyclic stiffness degradation characteristics were modeled using the parameter values

suggested in [30] and therefore λ = 0.1.

6.3. Site-specific Wind Loads

6.3.1. Climatological Characterization

In implementing the sector-by-sector approach, the following eight sectors were consid-

ered: N, NE, E, SE, S, SW, W, and NW, as shown in Fig. 5. The largest sectorial mean

annual wind speeds, vH , were assumed to follow the same probability distribution as the non-

directional wind speeds, F
(nd)
VH

(vH), which is described by a Type I distribution. To estimate

F
(nd)
VH

(vH) and the subsequent wind hazard over the lifespan of the structure (i.e., 50 years as

suggested in the ASCE 7-22), the annual site-specific 3 s gust wind speeds, v3, correspond-
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Figure 3: Opensees finite element model of the archetype building.
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Table 5: Sectorial factors, κn, for NYC.

Sector N NE E SE S SW W NW

κn 0.88 0.88 0.84 0.84 0.84 0.88 1.00 0.92

ing to mean recurrence intervals (MRIs) of 700, 1700, 3000, 10,000, 100,000 and 1,000,000

years identified from the ASCE 7-22 hazard map [48] and transformed to v̄H through the

expression:

v̄H = b̄

(

H

10

)ᾱ

v3 (15)

where b̄ = 0.47 and ᾱ = 1/4.5 are the terrain exposure constants suggested by the ASCE 7-22

[48] for Exposure Category B. From the knowledge of F
(nd)
VH

(vH), the 50 year (y = 50) non-

directional hazard curve can be estimated as: G(y=50)(vH) = 1−
(

F
(nd)
VH

(vH)
)50

. As adopted

in Chuang and Spence [19], the sectorial wind speeds were considered to be linearly related to

the non-directional wind speeds through sectorial factors, κn, provided for NYC by CPP and

reported in Table 5. It should be observed that, to account for the partial correlation of the

sectoral wind speeds, these factors were intentionally increased by CPP to ensure at least one

sector is characterized by non-directional wind speeds. The linear relationship between the

non-directional and sectorial wind speeds allowed for the following definition of the sectorial

CCDF of the lifespan maximum mean hourly wind speed: Gn(vH |n) = G(y=50)(vH/κn). The

CCDF Gn(α|vH) of wind direction conditional on vH for sector n was taken as uniform.

Due to the linear relationship between the non-directional and directional wind speeds,

the generation of samples from Gn(vH |n) can be achieved through directly sampling the

stratified non-directional hazard curve, G(y=50)(vH), of Fig. 4. The stratification was defined

for this case study by considering the last stratum with the lower bound fixed by an annual

exceedance probability of 1×10−7 (annual failure at which widespread progression of damage

is expected for Risk Category II structures).

6.3.2. Aerodynamic Characterization

The POD-based stochastic wind load model of Sec. 3.3 was calibrated to building specific

wind tunnel data collected on a 1:400 scale building model in urban surroundings by CPP.
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Figure 4: Site-specific stratified 50-year wind hazard curve.

Figure 5: Wind direction sectors.
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The test data were recorded for a sampling frequency of 250 Hz with a total duration of 81.92

s. The wind tunnel load histories, in terms of translational loads in X and Y directions as well

as the torsional load around the vertical Z direction, were collected for 36 wind directions

(i.e., α = 0◦, 10◦, ..., 350◦). These datasets were scaled using standard reduced frequency

scaling and used to calibrate the stochastic wind load model. The first five POD modes were

considered to this end as this has been demonstrated to be sufficient for representing the

energy associated with the dynamic wind loads acting on high-rise buildings [66]. The total

duration of the stochastic wind load samples was T = 3660 s with Ta = 30 s, Tb = 3630

s therefore leading to 3600 s of stationary wind loading. To directly estimate the residual

structural behavior, an extra 45 s of zero loading was added to the end of each sample resulting

in a total wind load duration of 3705 s. For a sample of vH , α, and yh, the realizations of

f(t; vH , α,yh) were generated with a full-scale sampling frequency of 0.1 s. However, based

on the highest natural frequency of the system, the central difference scheme used to solve Eq.

(4) required a time step of 0.000625 s or smaller. Therefore, the common practice of linear

interpolation of the external excitation was carried out to reduce the sampling frequency of

the external load to 0.000625 s.

6.4. Limit States Definition

The following suite of system and component-level limit states were considered consis-

tently with what can be found in the literature [27, 11, 67];

� LS1: system collapse: maximum (over all floors) inter-story drift ratio exceeding R =

1/20 (5%);

� LS2-3: system displacement-based limit state 1: along-wind (LS2) and across-wind

(LS3) maximum (over all floors) peak inter-story drift ratio exceeding R = 1/50;

� LS4-5: system displacement-based limit state 2: along-wind (LS4) and across-wind

(LS5) maximum (over all floors) inter-story residual drift ratio exceeding R = 1/1000;

� LS6: compressive fiber experiencing concrete crushing/buckling of longitudinal rein-

forcing bars: compressive fiber strain exceeding R = ε20;

� LS7: tensile fracture of the reinforcing bars: tensile fiber strain exceeding R = εsh.
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6.5. Calibration of the Simulation Scheme

In implementing the sector-by-sector approach of Sec. 2.1, it is not generally necessary

to solve Eq. (2) for all sectors. Indeed, it is common to use simplified elastic models of

the system and key response parameters (e.g., peak base response moments) to identify the

critical sectors [26, 25]. In this work, the critical sectors are identified by defining an elastic

model of the system based on the initial tangent stiffness while considering the expected

value of the random vector ym. The key response parameter was taken as the peak absolute

resultant base moment, MR, as this allows for the capture of the combined 3D response of

the structure. To determine MR, modal integration was used to rapidly solve the dynamic

response of the system to realizations of f(t) calibrated as outlined in Sec. 6.3.2. Values of

MR were generated for each sector using the stratification of Fig. 4. For each sector, 3000

samples were considered with equal allocation between the stratum. The resulting CCDFs of

MR for a lifespan of 50 years are reported in Fig. 6 from which it is clearly seen that sector

7 (i.e., α ∈ [247.5° − 292.5°]) is critical for the extreme response of the structure. Collapse

simulation through the framework of this paper was therefore carried out in this sector.

To optimally allocate the samples for solving Eq. (2) among the strata of Sec. 6.3.1, a

preliminary study with a total of 160 equally allocated samples (i.e., 20 samples per stratum)

was first carried out. This enabled the preliminary estimation of P
fR|E

(n=7)
vH,k

from which the

optimal stratum-wise sample allocation was identified for achieving a target COV of 20% on

the probability of failure associated with the system-level limit states (i.e. LS1-LS5 of Sec.

6.4). This resulted in the requirement of an additional 773 samples to be allocated between

the stratum as reported in Table 6.

6.6. Results

6.6.1. Reliability Assessment

The probabilities of failure, PfR , associated reliability indexes, β50, as well as the cor-

responding COVs with respect to the limit states of Sec. 6.4 are reported in Table 7. In

particular, LS6 and LS7 are associated with the critical compressive, fiber(c), and tensile,

fiber(t), fibers of the system which are located at the base of the structure as illustrated in

Fig. 2. From Table 7, it can be immediately seen that the structural system exceeds the
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Figure 6: CCDFs of the resultant elastic base moment, MR.

Table 6: Optimal sample allocation between the wind stratum.

Strata V L
H,k (m/s) V U

H,k (m/s) Stratum samples

1 0.00 32.77 20

2 32.77 46.35 20

3 46.35 56.76 20

4 56.76 65.55 20

5 65.55 73.28 311

6 73.28 80.28 47

7 80.28 86.71 20

8 86.71 ∞ 475
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target reliabilities reported in the ASCE 7-22 for a Risk Category II building. In particu-

lar, the component-level probability of concrete crushing/buckling of longitudinal reinforcing

bars for the compressive fiber and reinforcing bar fracture for the tensile fiber exceed the

target reliability of 4.0 by a significant margin illustrating the inherent inelastic capacity of

the system against extreme winds. It is interesting to observe that the reliability index as-

sociated with peak inter-story drift ratio in the along-wind direction (LS2) is, for all intents

and purposes, identical to the across-wind direction (LS3). This suggests that the along-

wind and across-wind loads have a similar probability of resulting in extreme deformations.

This is confirmed for the maximum inter-story residual drift ratio exceeding 1/1000 whose

reliabilities are identical in the along-wind and across-wind directions.

Fig. 7 reports the empirical CCDFs of the maximum peak and residual inter-story drift

ratios, Dr and D̂ respectively. From Fig. 7, it is interesting to observe that, in terms of Dr,

the limit of R = 1/1000 is critical. Indeed, once exceeded, residual deformations increase

significantly in both the across-wind and along-wind directions with larger increases in the

along-wind direction due to ratcheting. The exceedance of R = 1/1000 generally leads to

collapse, as is evident from Table 7 where the reliability associated with LS1 is identical to

that of LS4/5. With respect to D̂, Fig. 7 shows how the across-wind response dominates until

around R = 1/50 after which the along-wind response becomes dominant. This can be traced

back to how initially, vortex shedding drives the peak response until the buffeting response

causes enough ratcheting to exceed the across-wind response. Finally, it is interesting to

observe from Fig. 7 how it is more likely for D̂ to exceed R = 1/50, the collapse limit, in the

along-wind direction rather than the across-wind direction, although both response directions

contribute to the total exceedance probability of R = 1/50. The capability of the proposed

framework to provide estimates of the CCDFs of the response parameters, as illustrated in

Fig. 7, is extremely beneficial to the decision-making process as it provides information on

the performance of the system over a full range of intensities and threshold values as opposed

to estimating probabilities solely for a few predefined threshold values/limit states.

The capability of the stochastic simulation scheme of Sec. 5 to provide reliability estimates

from extremely small sample sizes (total samples used was 933) for probabilities as small as

10−7 can be seen from the COVs of Table 7. Even though the target COVs of 20% were
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Table 7: Failure probabilities and reliability indices over 50 years

Limit State PfR COV β50

LS1 4.37× 10−7 15.11% 4.92

LS2 5.90× 10−7 12.78% 4.86

LS3 3.39× 10−7 17.34% 4.97

LS4 4.37× 10−7 15.11% 4.92

LS5 4.37× 10−7 15.11% 4.92

LS6 1.09× 10−7 31.28% 5.18

LS7 4.37× 10−8 49.78% 5.35

not strictly met for the failure probabilities associated with LS1-LS5, reasonable COVs were

still achieved. It is noteworthy that if simple MC simulation was used to estimate the failure

probabilities with target COVs of 20%, approximately 250 million samples would be required.

This clearly illustrates the efficiency of the stratified sampling scheme. The reason that the

actual COVs differ from the target can be traced back to the fact the limited sample size of

the preliminary study (20 samples per stratum) which can fail to provide adequate estimates

of P
fR|E

(n)
vH,k

. To strictly meet the target COVs, it would simply be necessary to solve the

optimal sample allocation problem with the updated values of P
fR|E

(n)
vH,k

. This would identify

the strata where additional samples should be run to more accurately achieve the target

COVs.

6.6.2. Collapse Mechanism Discussion

Samples that caused collapse, i.e., exceedance of LS1, occurred exclusively in the last

wind speed stratum. In general, two typical collapse mechanisms were observed based on

the deformed shape at the onset of collapse and the location of significant damage. These

were: (1) flexure collapse at the base of the structure characterized by dominant along-

wind deformation (denoted as Type-A collapse in the following); (2) collapse due to loss

of horizontal load-bearing capacity at the base of the structure characterized by initiation

through significant simultaneous along-wind and across-wind flexure (denoted as Type-B

collapse in the following). Of the 475 samples generated in the last stratum, 27 led to
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Figure 7: CCDFs of the maximum, over all floors, peak drift and residual drift ratios.

Type-A collapse while 13 led to Type-B collapse. The occurrence frequencies of the collapse

mechanisms are therefore similar and generally characterized by severe damage towards the

bottom of the structure (i.e., below H/4). This section will focus on the progression of

component damage, and therefore the potential exceedance of LS6 and LS7, that ultimately

led to the exceedance of LS1 and therefore the collapse of the structural system. It is

important to note that in general several components must failure before collapse will occur,

therefore the exceedance of LS6 and LS7 in a specific component does not necessarily imply

collapse of the system.

Fig. 8 reports the X and Y roof displacements for the Type-A collapse sample. In

particular, the sample was associated with a wind speed of vH = 104.96 m/s and wind

direction α = 280◦. As can be observed from Fig. 8, collapse occurs due to a sudden

increase in the along-wind response which is caused by the collapse of the core walls at the

base of the structure. The corresponding time histories of the base moments are reported in

Fig. 9 from which it can be observed that no sudden change in loading caused the collapse,

i.e., the collapse occurred due to a ratcheting type accumulation of damage. However, it

can be seen that the initiation of component failure is caused by a significant along-wind

moment at T = 430 s. As illustrated in Fig. 10 for the first floor, failure commences in the

X-direction shear walls (T = 430− 1580 s) with a predominance of damage in the downwind
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Figure 8: Type-A collapse sample (vH = 104.96 m/s, α = 280◦ ): roof displacement time history response in

X and Y direction.

walls. In particular, component failure is due to tensile fracture of the reinforcing bars in the

upwind walls and LCF failure in the downwind walls. This progression of failure continues

(T = 1580−1754 s) until concrete crushing and buckling of the reinforcing bars occurs in the

downwind shear walls (T = 1754−1766 s) which ultimately leads to collapse. It is interesting

to observe that this failure mechanism took over 20 minutes to develop illustrating how a

ratcheting-type failure is present. It is worth noting that, although no substantial damage

to the coupling beams occurred in this collapse sample, around half of the Type-A collapse

samples did include significant damage to the X-direction coupling beams, with damage

reaching as high as the 22nd floor.

Fig. 11 reports the X and Y roof displacements for the Type-B collapse sample which

occurred for a wind speed of vH = 98.85 m/s in direction α = 290◦. From Fig. 11, the

sudden nature of the Type-B collapse mechanism is evident with the near simultaneous

occurrence of large along-wind and across-wind responses. From Fig. 9, it is interesting

to observe that, unlike the Type-A collapse mechanism, the initiation of collapse coincides

with the simultaneous occurrence of significant along-wind and across-wind base moments,

as highlighted by the base moments occurring at T = 392 s, i.e., time in which the collapse

mechanism imitates. The critical floor for the representative Type-B collapse mechanism is
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Figure 9: Type-A collapse sample (vH = 104.96 m/s, α = 280◦ ): base moment time histories.

Figure 10: Type-A collapse sample (vH = 104.96 m/s, α = 280◦ ): fiber failure progression at the critical

(first) floor.

33



0 50 100 150 200 250 300 350 400
-15

-10

-5

0

5

10

15

20

Along-wind

Across-wind

Figure 11: Type-B collapse sample (vH = 98.95 m/s, α = 290◦): roof displacement time history response in

X and Y direction.

the first floor. The failure progression at this floor is illustrated in Fig. 13. In particular,

component collapse initiates in both the X- and Y-direction shear walls in the southeast

corner of the structure. Failure is due to concrete crushing and buckling of the reinforcing

bars. This failure mode rapidly evolves (over the time span of 2.6 seconds), including failure

of the coupling beams at the base of the structure, until the entire system loses its vertical

load-bearing capacity. It should be observed that while in this collapse sample vertical load-

bearing capacity was ultimately lost leading to a pancake collapse of the structure, in around

half of the observed Type-B collapse samples, the structure failed due to excessive lateral

deformation without pancake effect.

As discussed above, the onset of collapse is closely aligned with component failure due to

buckling of the reinforcing bars, concrete crushing, fatigue failure, and fracture of the rein-

forcing bars. Fig. 14 reports the stress-strain hysteretic curves for select fibers experiencing

such failure. In particular, Fig. 14a illustrates the case of fiber failure due to concrete crush-

ing with reinforcing bar buckling, which is the predominant fiber failure mode for the Type-B

failure mechanism. More in detail, when the compressive strain of the macro fiber reaches

the concrete crushing strain limit, the “MinMax” model drops the stress and stiffness of the

fiber to zero with respect to both concrete and reinforcing bar materials. Fig. 14b illustrates
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Figure 12: Type-B collapse sample (vH = 98.85 m/s, α = 290◦): base moment time histories.

Figure 13: Type-B collapse sample (vH = 98.85 m/s, α = 290◦): fiber failure progression at the critical (first)

floor.
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failure due to concrete cracking in tension followed by reinforcing bar fracture which is the

predominant fiber failure mode for the Type-A failure mechanism. When the macro fiber

is in tension, the concrete quickly cracks, with stress and stiffness dropping to zero. The

reinforcing bars continue to resist the tension forces until they eventually fail due to fracture

from excessive tensile strain. Fig. 14c illustrates fiber failure due to LCF under cyclic loads

that cause concrete fiber failure in tension due to cracking (seen in the representative Type-A

failure mechanism).

7. Conclusions

This work introduced a general framework for the reliability-based collapse assessment

of reinforced concrete structures subject to extreme winds. The framework was based on

modeling the response of the structure in a fiber-based finite element environment that in-

corporated the use of 3D macro fiber elements for the explicit modeling of shear walls as

well as schemes for the capture of low cycle fatigue failure, fracture and buckling of the

reinforcing bars together with crashing failure and cyclic degradation of the concrete. The

dynamic wind loads were modeled through a stochastic scheme calibrated to building specific

wind tunnel data therefore enabling the capture of both record-to-record variability (path-

dependent effects) as well as any complex aerodynamic features seen in the wind tunnel. To

efficiently propagate uncertainty and estimate the small failure probabilities that generally

characterize the collapse of code-compliant buildings, the framework was integrated with

a recently introduced stratified sampling scheme that enables the simultaneous estimation

of failure probabilities (or reliabilities) associated with multiple limit states of interest. The

framework was illustrated on the collapse analysis of a 45-story archetype reinforced concrete

structure with a hypothetical location in New York City. From the results, the capability of

the framework to provide estimates of small failure probabilities associated with the extreme

response of the structure was seen with failure probabilities as small as 10−7 estimated with

coefficients of variation of around 20% using less than 1000 samples. In terms of the observed

performance of the archetype structure, collapse reliabilities were seen to significantly exceed

the target values of the archetype design highlighting the significant inelastic capacity of re-

inforced concrete structures. When collapse did occur, two mechanisms were observed with
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Figure 14: Representative stress-strain curves for the fiber failure modes: (a) concrete crushing/reinforcing

bar buckling failure mode; (b) reinforcing bar fracture failure mode; (c) reinforcing bar fatigue failure mode.
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both involving significant interaction between along-wind and across-wind response. In the

first mechanism, damage accumulated over a relatively long period of time (≈ 20 minutes)

while in the second, damage occurred rapidly (≈ 3 seconds) and led, in some cases, to a

complete loss of vertical load bearing capacity. The failure mechanisms were characterized

by concrete crushing/buckling of the reinforcing, reinforcing fatigue failure, and reinforcing

fracture illustrating the complexity of wind-induced collapse. It is believed that the proposed

framework and the insight gained on the extreme behavior of wind-excited reinforced concrete

structures can be of use to the further development of performance-based wind engineering.
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