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Abstract. We introduce a nonconforming hybrid finite element method for the two-dimensional vector
Laplacian, based on a primal variational principle for which conforming methods are known to be
inconsistent. Consistency is ensured using penalty terms similar to those used to stabilize hybridizable
discontinuous Galerkin (HDG) methods, with a carefully chosen penalty parameter due to Brenner, Li,
and Sung [Math. Comp., 76 (2007), pp. 573–595]. Our method accommodates elements of arbitrarily
high order and, like HDG methods, it may be implemented efficiently using static condensation. The
lowest-order case recovers the P1-nonconforming method of Brenner, Cui, Li, and Sung [Numer. Math.,
109 (2008), pp. 509–533], and we show that higher-order convergence is achieved under appropriate
regularity assumptions. The analysis makes novel use of a family of weighted Sobolev spaces, due to
Kondrat’ev, for domains admitting corner singularities.
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1. Introduction

Given a bounded polygonal domain Ω ⊂ R2, f ∈
[︁
L2(Ω)

]︁2
, and α ∈ R, we consider the primal

variational problem: Find u ∈ H(div; Ω) ∩ H̊(curl; Ω) such that, for all v ∈ H(div; Ω) ∩ H̊(curl; Ω),

(∇ · u,∇ · v)Ω + (∇× u,∇× v)Ω + α(u, v)Ω = (f, v)Ω, (1.1)

where (·, ·)Ω denotes the L2 inner product on Ω. Here, we recall the familiar spaces

H(div; Ω) :=
{︁
v ∈

[︁
L2(Ω)

]︁2
: ∇ · v ∈ L2(Ω)

}︁
,

H(curl; Ω) :=
{︁
v ∈

[︁
L2(Ω)

]︁2
: ∇× v ∈ L2(Ω)

}︁
,

H̊(curl; Ω) :=
{︁
v ∈ H(curl; Ω) : v × n = 0 on ∂Ω

}︁
,
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where n is the outer unit normal vector field on the boundary. The strong form of (1.1) is the boundary
value problem

−∇∇ · u+∇×∇× u+ αu = f in Ω, (1.2a)

u× n = 0 on ∂Ω, (1.2b)

∇ · u = 0 on ∂Ω, (1.2c)

noting that −∇∇ · +∇×∇× = −∆ is the negative vector Laplacian.
It is well established that conforming finite element methods for (1.1) have severe difficulties.

For instance, a finite element approximation that is both div- and curl-conforming will also be H1-

conforming, but when Ω is non-convex,
[︁
H1(Ω)

]︁2 ⊊ H(div; Ω)∩H(curl; Ω) is a proper closed subspace
(see, e.g., [3, 20]). Consequently, such a method will fail to converge to solutions with reentrant
corner singularities. Even when Ω is convex, other problems may arise, e.g., spurious modes for the
eigenvalue problem [4, 1]. For this reason, the primal formulation (1.1) is often avoided in favor of
mixed formulations of (1.2) that are either div- or curl-conforming, but not both.

Brenner, Cui, Li, and Sung [6] developed a P1-nonconforming primal interior-penalty method that
bypasses these difficulties. Let Th be a conforming triangulation of Ω, and let Eh denote the set of
edges, partitioned into interior edges E◦

h and boundary edges E∂
h . Denote the broken L2 inner products

(·, ·)Th :=
∑︁

K∈Th(·, ·)K , ⟨·, ·⟩E◦
h
:=
∑︁

e∈E◦
h
⟨·, ·⟩e, and ⟨·, ·⟩E∂

h
:=
∑︁

e∈E∂
h
⟨·, ·⟩e. The method of [6] is based

on the variational problem

(∇ · uh,∇ · vh)Th + (∇× uh,∇× vh)Th + α(uh, vh)Th +
⟨︁
γJuhK, JvhK

⟩︁
E◦
h
+ ⟨γuh × n, vh × n⟩E∂

h

= (f, vh)Th , (1.3)

where γ|e := γe > 0 is a penalty parameter on each e ∈ Eh, to be detailed further in Section 2, and
J·K is the jump in both tangential and normal components across an interior edge. (See also Brenner,
Li, and Sung [9, 10, 11, 12] for related work on curl-curl source problems and eigenproblems arising
in Maxwell’s equations.) In [6], uh and vh are linear vector fields continuous at the midpoint of each
e ∈ E◦

h (i.e., both components live in the P1-nonconforming space of Crouzeix and Raviart [17]) whose

tangential components vanish at the midpoint of each e ∈ E∂
h . Brenner and Sung [13] later developed

a quadratic nonconforming element for this problem and conjectured that it could be generalized to
higher degree, as well as to dimension three. The two-dimensional conjecture was subsequently proved
by Mirebeau [27], who also gave a counterexample to the three-dimensional case. However, for k > 1,
the order-k elements are not simply Pk vector fields: they are enriched by additional vector fields up to
degree 2k − 1 that are gradients of harmonic polynomials.

In this paper, we present a three-field primal hybridization of (1.3) in the following form: Find

(uh, ph, ûh) ∈ Vh ×Qh × V̂ h such that, for all (vh, qh, v̂h) ∈ Vh ×Qh × V̂ h,

(∇ · uh,∇ · vh)Th + (∇× uh,∇× vh)Th + α(uh, vh)Th + ⟨p̂h, vh⟩∂Th = (f, vh)Th , (1.4a)

⟨uh − ûh, qh⟩∂Th = 0, (1.4b)

⟨p̂h, v̂h⟩∂Th = 0, (1.4c)

where p̂h := ph + γ(uh − ûh) and ⟨·, ·⟩∂Th :=
∑︁

K∈Th⟨·, ·⟩∂K . With appropriately chosen finite element
spaces, as detailed in Section 2, this method has the following properties:

• The lowest-order case is a hybridization of the method of Brenner et al. [6].

• Arbitrarily high order may be obtained using standard polynomial finite elements. The more
exotic Brenner–Sung–Mirebeau spaces and projections play a crucial role in the analysis but
are not needed for implementation.
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• As with HDG methods [14], the hybrid formulation enables efficient local assembly and static
condensation, where uh and ph may be eliminated to solve a smaller global system involving
only the approximate trace ûh.

In addition to these contributions, we also present a novel error analysis using weighted Sobolev spaces,
cf. Costabel and Dauge [16]. This approach allows us to obtain error estimates on domains admitting
corner singularities, without imposing the mesh-grading conditions on Th required by [6].

The paper is organized as follows. In Section 2, we describe the method and discuss its fundamental
properties. Next, in Section 3, we present the error analysis of the method. Finally, in Section 4, we
present the results of numerical experiments, which demonstrate and confirm the analytically obtained
convergence results.

2. The hybrid method

2.1. Description of the method

The proposed method is based on the variational problem (1.4), using the following finite element
spaces. Given a positive integer k, define

Vh :=
∏︂

K∈Th

[︁
P2k−1(K)

]︁2
, Qh :=

∏︂
K∈Th

∏︂
e⊂∂K

[︁
Pk−1(e)

]︁2
.

These are “broken” finite element spaces, with no inter-element continuity or boundary conditions
imposed, so vector fields in these spaces are generally double-valued at interior edges. To (weakly)
impose inter-element continuity and boundary conditions, we define

V̂ h :=

{︃
v̂h ∈

∏︂
e∈Eh

[︁
P2k−1(e)

]︁2
: v̂h × n = 0 on E∂

h

}︃
,

whose elements are single-valued on edges.
The extra variables ph and ûh, and their role in the variational problem, may be understood as

follows. From (1.4b), we see that ph acts as a Lagrange multiplier, constraining the degree ≤ k − 1
moments of uh and ûh to agree on Eh. Consequently, uh satisfies weak inter-element continuity and
boundary conditions, and ûh may be seen as an approximate trace of u. Next, on each K ∈ Th, taking
the inner product of the strong form (1.2a) with v ∈ H(div;K) ∩H(curl;K) and integrating by parts
implies that the solution to (1.1) satisfies

(∇ · u,∇ · v)K + (∇× u,∇× v)K + α(u, v)K − ⟨∇ · u, v · n⟩∂K + ⟨∇ × u, v × n⟩∂K = (f, v)K . (2.1)

Comparing with (1.4a) and writing ⟨p̂h, vh⟩∂K = ⟨p̂h · n, vh · n⟩∂K + ⟨p̂h × n, vh × n⟩∂K , it follows that
p̂h · n|∂K and p̂h × n|∂K can be seen as approximating −∇ · u|∂K and ∇× u|∂K , respectively. Finally,
(1.4c) shows that ûh also acts as a Lagrange multiplier, constraining p̂h ·n and p̂h×n to be single-valued
on interior edges and p̂h · n = 0 on boundary edges. The latter may be seen as an approximation of the
natural boundary condition (1.2c).

To ensure convergence of the method for solutions with corner singularities, the penalty γ must be
chosen carefully. Here, we recall the penalty used by Brenner et al. [6], which is the same one that we
will use. Denote the corners of Ω by c1, . . . , cL, and let rℓ(x) := |x− cℓ| be the distance from x ∈ Ω to

each corner. Given a multi-exponent λ = (λ1, . . . , λL), we denote rλ :=
∏︁L

ℓ=1 r
λℓ
ℓ . Now, at each corner

cℓ, with interior angle ωℓ, choose a parameter µℓ such that

µℓ = 1 if ωℓ ≤
π

2
, µℓ <

π

2ωℓ
if ωℓ >

π

2
,
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and µ := (µ1, . . . , µL). For each e ∈ Eh, whose midpoint is denoted me, we then define

Φµ(e) := r1−µ(me) =
L∏︂

ℓ=1

|me − cℓ|1−µℓ .

Finally, the penalty parameter on e is taken to be

γe :=

[︁
Φµ(e)

]︁2
|e|

,

where |e| is the length of e. This ensures that γe ∼ 1/|e| away from corners, while being appropriately
weakened near corners to allow convergence to singular solutions, as we will see in Section 3.

2.2. The Brenner–Sung–Mirebeau element and projection

We now recall the nonconforming finite element developed in Brenner and Sung [13] and Mirebeau
[27], which we call the Brenner–Sung–Mirebeau (BSM) element. While it is not used to implement
the method described above, this element and its associated projection play an important role in the
numerical analysis of the method—and will also make clear why we have taken polynomial spaces of
degrees 2k − 1 and k − 1.

Definition 2.1. Given a positive integer k, define the Brenner–Sung–Mirebeau (BSM) space on a
triangle K ⊂ R2 to be

BSMk(K) :=
[︁
Pk(K)

]︁2 ⊕∇Hk+2(K)⊕ · · · ⊕ ∇H2k(K),

where Hj(K) is the space of homogeneous harmonic polynomials of degree j on K. (By harmonic, we
mean having vanishing Laplacian.)

We immediately see that
[︁
Pk(K)

]︁2 ⊂ BSMk(K) ⊂
[︁
P2k−1(K)

]︁2
, with equality if and only if k = 1.

Indeed, since dimHj(K) = 2 for each j, it follows that dimBSMk(K) = k(k + 5). Brenner and Sung
[13] conjectured, and Mirebeau [27] proved, that an element vh ∈ BSMk(K) is uniquely determined by
the k(k + 5) degrees of freedom

⟨vh, qh⟩∂K for qh ∈
∏︂

e⊂∂K

[︁
Pk−1(e)

]︁2
, (vh, wh)K for wh ∈

[︁
Pk−2(K)

]︁2
.

Moreover, the canonical interpolation using these degrees of freedom naturally defines a projection

Πh :
[︁
Hσ(K)

]︁2 → BSMk(K), for any σ > 1
2 , such that

⟨Πhv, qh⟩∂K = ⟨v, qh⟩∂K , (Πhv, wh)K = (v, wh)K , (2.2)

for all qh and wh as above. Letting Ph : L
2(K) → Pk−1(K) be the L2-orthogonal projection for scalar

fields, we obtain the following commuting-projection property; the proof is basically identical to that
in Brenner and Sung [13].

Lemma 2.2. For all v ∈
[︁
Hσ(K)

]︁2
with σ > 1

2 such that ∇ · v,∇× v ∈ L2(K), we have

∇ ·Πhv = Ph(∇ · v), ∇×Πhv = Ph(∇× v).

Proof. For all ϕh ∈ Pk−1(K), integrating by parts using the divergence theorem gives(︁
∇ · (v −Πhv), ϕh

)︁
K

= ⟨v −Πhv, ϕhn⟩∂K − (v −Πhv,∇ϕh)K = 0,

by (2.2) with qh = ϕhn and wh = ∇ϕh. This proves the first equality; the proof of the second is
essentially the same, using Green’s theorem instead of the divergence theorem.

The solution to (1.1) satisfies the hypotheses of this lemma on each K ∈ Th, as a result of the
regularity theory discussed in Section 3.1.
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2.3. Equivalence to reduced methods with jump terms

We next show that the three-field hybrid method described in Section 2.1 may be reduced to a two-field
or one-field method with jump terms. The coupling introduced by the jump terms prevents static
condensation, so we generally prefer the three-field formulation for implementation. However, these
reduced formulations will be useful analytically, and will help in relating our method to that of Brenner
et al. [6].1

First, we introduce notation and definitions for the average and jump of a vector field across interior
edges. Suppose e ∈ E◦

h is an interior edge shared by two triangles, K+ and K−, and let n± denote the
unit normal to e pointing outward from K±. If a vector field w takes values w± on the K± sides of e,
we define the average and jump of w at e to be

{{w}}e :=
1

2
(w+ + w−), JwKe := w+ ⊗ n+ + w− ⊗ n−,

where w ⊗ n := wn⊤ is the outer product. It is straightforward to see that the i-th row of JwKe is the
transpose of the usual scalar jump JwiKe = w+

i n
+ + w−

i n
− for i = 1, 2. This definition of J·K encodes

the jump in both tangential and normal directions, without requiring a global orientation of the edges.
It is then easily verified that the ⟨·, ·⟩∂Th inner product of vector fields (just as for scalar fields) may be
expanded as

⟨w, v⟩∂Th = 2
⟨︁
{{w}}, {{v}}

⟩︁
E◦
h
+

1

2

⟨︁
JwK, JvK

⟩︁
E◦
h
+ ⟨w, v⟩E∂

h
, (2.3)

where the inner product of the matrix-valued jumps is taken in the Frobenius sense. Since functions
are single-valued on boundary edges, we leave average and jump undefined on E∂

h .

Lemma 2.3. If (uh, ph, ûh) satisfies (1.4b)–(1.4c), then

{{uh}} = ûh, {{ph}} = 0, on E◦
h,

uh · n = ûh · n, ph · n = 0, on E∂
h .

Proof. Let qh = {{ph}} on E◦
h and qh = (ph · n)n on E∂

h . Taking this as the test function in (1.4b) and
applying the identity (2.3) gives

2
⟨︁
{{uh}} − ûh, {{ph}}

⟩︁
E◦
h
+
⟨︁
(uh − ûh) · n, ph · n

⟩︁
E∂
h
= 0. (2.4)

There are no interior jump-jump or tangential boundary terms, since this choice of qh has JqhK = 0 on

E◦
h and qh × n = 0 on E∂

h . Similarly, Jv̂hK = 0 on E◦
h and v̂h × n = 0 on E∂

h for all v̂h ∈ V̂ h, so (1.4c)
may be rewritten as

2
⟨︁
{{ph}}+ γ

(︁
{{uh}} − ûh

)︁
, v̂h
⟩︁
E◦
h
+
⟨︁
ph · n+ γ(uh − ûh) · n, v̂h · n

⟩︁
E∂
h
= 0. (2.5)

Now, take v̂h = {{uh}} − ûh on E◦
h and v̂h · n = (uh − ûh) · n on E∂

h . The terms involving ph vanish by
(2.4), leaving

2
⟨︁
γ
(︁
{{uh}} − ûh

)︁
, {{uh}} − ûh

⟩︁
E◦
h
+
⟨︁
γ(uh − ûh) · n, (uh − ûh) · n

⟩︁
E∂
h
= 0.

Since γ > 0, it follows that {{uh}} = ûh on E◦
h and uh ·n = ûh ·n on E∂

h , as claimed. Finally, substituting
these equalities into (2.5) gives

2
⟨︁
{{ph}}, v̂h

⟩︁
E◦
h
+ ⟨ph · n, v̂h · n⟩E∂

h
= 0,

so taking v̂h = {{ph}} on E◦
h and v̂h · n = ph · n on E∂

h completes the proof.

1This approach to reduction was inspired by some recent papers on “extended Galerkin” methods [22, 21].
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Remark 2.4. Note that {{w}}e = 0 can be rewritten as w+ = −w−. Since the outer normals satisfy
n+ = −n−, it follows that w+ × n+ = w− × n− and w+ · n+ = w− · n−, i.e., the tangential and normal
components of w agree on both sides of e. Thus, Lemma 2.3 says that the tangential and normal
components of ph and uh− ûh are single-valued, with normal components vanishing on boundary edges.
In particular, the same is therefore true of p̂h, as previously remarked in Section 2.1.

Using Lemma 2.3 and the identity (2.3), observe that the edge terms in (1.4a) reduce to

⟨p̂h, vh⟩∂Th =
1

2

⟨︁
Jp̂hK, JvhK

⟩︁
E◦
h
+ ⟨p̂h × n, vh × n⟩E∂

h

=
1

2

⟨︁
Jph + γuhK, JvhK

⟩︁
E◦
h
+
⟨︁
(ph + γuh)× n, vh × n

⟩︁
E∂
h
,

for all vh ∈ Vh. Similarly, the edge terms in (1.4b) reduce to

⟨uh − ûh, qh⟩∂Th =
1

2

⟨︁
JuhK, JqhK

⟩︁
E◦
h
+ ⟨uh × n, qh × n⟩E∂

h
,

for all qh ∈ Qh. This allows us to eliminate ûh and the equation (1.4c) from the variational problem. A
two-field reduced formulation is defined as follows. Let

Q̊h :=
{︁
qh ∈ Qh : {{qh}} = 0 on E◦

h and qh · n = 0 on E∂
h

}︁
,

and define the bilinear forms ah : Vh × Vh → R and bh : Vh × Q̊h → R by

ah(uh, vh) := (∇ · uh,∇ · vh)Th + (∇× uh,∇× vh)Th + α(uh, vh)Th

+
1

2

⟨︁
γJuhK, JvhK

⟩︁
E◦
h
+ ⟨γuh × n, vh × n⟩E∂

h
,

bh(vh, qh) :=
1

2

⟨︁
JvhK, JqhK

⟩︁
E◦
h
+ ⟨vh × n, qh × n⟩E∂

h
.

We then consider the problem: Find (uh, ph) ∈ Vh × Q̊h such that, for all (vh, qh) ∈ Vh × Q̊h,

ah(uh, vh) + bh(vh, ph) = (f, vh)Th , (2.6a)

bh(uh, qh) = 0. (2.6b)

This resembles a standard two-field hybrid method in saddle-point form, where Q̊h is the space of
Lagrange multipliers. Compare with the nonconforming hybrid method of Raviart and Thomas [31] for
the scalar Poisson equation.

Finally, we may reduce even further to a one-field formulation on

V̊ h :=
{︁
vh ∈ Vh : bh(vh, qh) = 0 for all qh ∈ Q̊h

}︁
,

consisting of degree-(2k − 1) vector fields whose degree ≤ k − 1 moments are continuous on E◦
h and

have vanishing tangential component on E∂
h . We then consider the problem: Find uh ∈ V̊ h such that,

for all vh ∈ V̊ h,
ah(uh, vh) = (f, vh)Th . (2.7)

This is precisely (1.3), modulo a constant factor of 1
2 for the penalty on interior edges, and the

lowest-order case k = 1 recovers the method of Brenner et al. [6].
We have thus shown the equivalence of the three-field, two-field, and one-field formulations, which

we now state as a lemma.

Lemma 2.5. The following are equivalent:

(i) (uh, ph, ûh) ∈ Vh ×Qh × V̂ h is a solution to (1.4);

(ii) (uh, ph) ∈ Vh × Q̊h is a solution to (2.6), ûh = {{uh}} on E◦
h, and ûh · n = uh · n on E∂

h ;
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(iii) uh ∈ V̊ h is a solution to (2.7), ph satisfies (2.6a) for all vh ∈ Vh, and ûh is as in (ii).

2.4. Existence/uniqueness and static condensation

The problem (1.1) is well-posed if and only if α is not an eigenvalue of the vector Laplacian on

H(div; Ω) ∩ H̊(curl; Ω). In particular, the bilinear form

a(u, v) := (∇ · u,∇ · v)Ω + (∇× u,∇× v)Ω + α(u, v)Ω

on H(div; Ω) ∩ H̊(curl; Ω) is coercive if α > 0, and if the complement of Ω is connected (e.g., Ω is
simply connected), then it is also coercive for α = 0 by Friedrichs’s inequality (cf. Monk [28]).

We are now ready to prove our main result on existence and uniqueness for the hybrid method.

Theorem 2.6. For the problems (1.4), (2.6), and (2.7), existence and uniqueness of solutions holds—or
fails to hold—simultaneously for all three. In particular, all three are uniquely solvable if α > 0, and if
the complement of Ω is connected, then this is also true for α = 0.

Proof. By Lemma 2.5, unique solvability of (1.4) is equivalent to that of (2.6), since ûh is uniquely
determined by uh, so it suffices to show equivalence of (2.6) and (2.7). Using classic saddle-point theory
(cf. Boffi et al. [5, Theorem 3.2.1]), (2.6) is uniquely solvable if and only if vh ↦→ bh(vh, ·) is surjective
and the restriction of ah(·, ·) to its kernel is an isomorphism. The isomorphism-on-the-kernel condition
is precisely the unique solvability of (2.7), so it remains to show that the surjectivity condition holds.
In fact, we will show something slightly stronger, which is surjectivity of the map Bh : Vh → Q∗

h,

⟨Bhvh, qh⟩Q∗
h×Qh

:= ⟨vh, qh⟩∂Th , which agrees with bh(vh, qh) when qh ∈ Q̊h by (2.3). Given qh ∈ Qh,

on each K ∈ Th there exists vh|K ∈ BSMk(K) whose degree ≤ k − 1 moments agree with qh on
∂K. Combining these into vh ∈ Vh, it follows that ⟨vh, qh⟩∂Th = ⟨qh, qh⟩∂Th , which is strictly positive
whenever qh is nonzero. Hence, the transpose of Bh is injective, so Bh is surjective.
Finally, if α > 0, then ah(·, ·) is clearly positive-definite, so (2.7) is uniquely solvable. If α = 0, then
ah(·, ·) is generally only positive-semidefinite. However, observe that ah(uh, uh) = 0 implies JuhK = 0

on E◦
h and uh × n = 0 on E∂

h , so uh ∈ H(div; Ω) ∩ H̊(curl; Ω) with a(uh, uh) = 0. If the complement of
Ω is connected, then a(·, ·) is coercive, so uh = 0, and thus ah(·, ·) is positive-definite.

Next, we discuss the static condensation of the hybrid method, which eliminates the spaces Vh and
Qh from (1.4) to obtain a smaller global variational problem on V̂ h alone. We take a similar approach
to that used for HDG methods in Cockburn, Gopalakrishnan, and Lazarov [14]. Observe that, given
ûh and f , (1.4a)–(1.4b) state that (uh, ph) ∈ Vh ×Qh solves the local problems

(∇ · uh,∇ · vh)K + (∇× uh,∇× vh)K + α(uh, vh)K + ⟨ph + γuh, vh⟩∂K = (f, vh)K + ⟨γûh, vh⟩∂K ,
⟨uh, qh⟩∂K = ⟨ûh, qh⟩∂K ,

for all K ∈ Th and (vh, qh) ∈ Vh ×Qh. On each K ∈ Th, define the local bilinear forms

aK(uh, vh) := (∇ · uh,∇ · vh)K + (∇× uh,∇× vh)K + α(uh, vh)K + ⟨γuh, vh⟩∂K ,
bK(vh, qh) := ⟨qh, vh⟩∂K .

To separate the influence of ûh and f , we define two local solvers: Find (Uûh,Pûh) ∈ Vh × Qh and
(Uf,Pf) ∈ Vh ×Qh such that

aK(Uûh, vh) + bK(vh,Pûh) = ⟨γûh, vh⟩∂K , aK(Uf, vh) + bK(vh,Pf) = (f, vh)K , (2.8a)

bK(Uûh, qh) = ⟨ûh, qh⟩∂K , bK(Uf, qh) = 0, (2.8b)

for all K ∈ Th and (vh, qh) ∈ Vh ×Qh.

Lemma 2.7. If α ≥ 0, then the local solvers are well-defined, i.e., (2.8) is uniquely solvable.
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Proof. First, we show that
∑︁

K∈Th aK(·, ·) is coercive. This is obvious when α > 0; when α = 0,

aK(uh, uh) = 0 implies that u|∂K = 0, so Friedrichs’s inequality implies u|K = 0. Finally, the surjectivity
of vh ↦→

∑︁
K∈Th bK(vh, ·) = Bhvh has already been shown in the proof of Theorem 2.6.

Assuming the local solvers are well-defined—which always holds for α ≥ 0, by Lemma 2.7—we now
define P̂ûh := Pûh + γ(Uûh − ûh) and P̂f := Pf + γUf . Substituting into (1.4c) and rearranging gives

the condensed problem: Find ûh ∈ V̂ h such that, for all v̂h ∈ V̂ h,

− ⟨P̂ûh, v̂h⟩∂Th = ⟨P̂f, v̂h⟩∂Th . (2.9)

Since the local solvers may be computed element-by-element, in parallel if desired, the condensation
from (1.4) to (2.9) is efficient to implement. The condensed bilinear form âh(ûh, v̂h) := −⟨P̂ûh, v̂h⟩∂Th
on the left-hand side of (2.9) has the following useful symmetric expression.

Lemma 2.8. For all ûh, v̂h ∈ V̂ h,

âh(ûh, v̂h) = (∇ · Uûh,∇ · Uv̂h)Th + (∇× Uûh,∇× Uv̂h)Th + α(Uûh,Uv̂h)Th

+
⟨︁
γ(Uûh − ûh),Uv̂h − v̂h

⟩︁
∂Th

.

Proof. We begin by writing

−⟨P̂ûh, v̂h⟩∂Th = −⟨P̂ûh,Uv̂h⟩∂Th + ⟨P̂ûh,Uv̂h − v̂h⟩∂Th .
For the first term, (2.8a) with vh = Uv̂h implies

−⟨P̂ûh,Uv̂h⟩∂Th = (∇ · Uûh,∇ · Uv̂h)Th + (∇× Uûh,∇× Uv̂h)Th + α(Uûh,Uv̂h)Th .

For the second term, (2.8b) implies ⟨Pûh,Uv̂h − v̂h⟩∂Th = 0, so

⟨P̂ûh,Uv̂h − v̂h⟩∂Th =
⟨︁
γ(Uûh − ûh),Uv̂h − v̂h

⟩︁
∂Th

,

which completes the proof.

Theorem 2.9. Assuming the local solvers are well-defined, (uh, ph, ûh) ∈ Vh ×Qh × V̂ h is a solution
of (1.4) if and only if ûh is a solution of (2.9) with uh = Uûh + Uf and ph = Pûh + Pf . Consequently,
(1.4) is uniquely solvable if and only if (2.9) is. In particular, âh(·, ·) is symmetric positive-definite if
α > 0, and if the complement of Ω is connected, then this is also true for α = 0.

Proof. The equivalence of (1.4) and (2.9) has already been demonstrated in the discussion above.
When α ≥ 0, Lemma 2.7 states that the local solvers are well-defined, and Lemma 2.8 implies that
âh(·, ·) is symmetric positive-semidefinite. Furthermore, if âh(ûh, ûh) = 0, then Uûh = ûh on Eh, so
Uûh ∈ H(div; Ω) ∩ H̊(curl; Ω) with a(Uûh,Uûh) = 0. Hence, as in the proof of Theorem 2.6, âh(·, ·) is
positive-definite whenever a(·, ·) is.

Remark 2.10. These results tell us that static condensation from (1.4) to (2.9) does not merely reduce
the size of the global system. It also makes the system more amenable to efficient global solvers, such
as the conjugate gradient method in the case where (2.9) is positive-definite.

3. Regularity and error analysis

3.1. Weighted Sobolev spaces and regularity

Costabel and Dauge [16] characterize the regularity of solutions to Maxwell’s equations in two dimensions
(as well as in three) using a family of weighted Sobolev spaces due to Kondrat’ev [23]. We now recall

8
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these spaces and give corresponding regularity results for the problem (1.1), combining the approach
used in [16] with that of Brenner et al. [6, Section 2]. For detailed treatments of Kondrat’ev spaces and
elliptic regularity in domains with corners, we refer the reader to Nazarov and Plamenevsky [29] and
Kozlov, Maz’ya, and Rossmann [24].

As in Section 2.1, let rℓ(x) denote the distance from x ∈ Ω to a corner cℓ and r
λ :=

∏︁L
ℓ=1 r

λℓ
ℓ for a

multi-exponent λ = (λ1, . . . , λL). Given a nonnegative integer m, define the weighted Sobolev space

V m
λ (Ω) :=

{︁
ϕ ∈ D′(Ω) : rλ−m+|β|∂βϕ ∈ L2(Ω) for all |β| ≤ m

}︁
,

where β is a multi-index, equipped with the natural norm defined by

∥ϕ∥2m,λ :=
∑︂

|β|≤m

∥rλ−m+|β|∂βϕ∥2Ω.

This space also has the following equivalent characterization: If Ω = Ω0 ∪
⋃︁L

ℓ=1Ωℓ, where Ω0 contains

none of the corners and Ωℓ contains only corner cℓ, then

V m
λ (Ω) =

{︁
ϕ ∈ D′(Ω) : ϕ|Ω0 ∈ Hm(Ω0), and r

λℓ−m+|β|
ℓ ∂βϕ|Ωℓ

∈ L2(Ωℓ) for all ℓ and |β| ≤ m
}︁
,

since rℓ ∼ 1 on Ω0 for all ℓ, and rℓ′ ∼ 1 on Ωℓ for ℓ
′ ̸= ℓ.

From the definitions, we immediately obtain the continuous inclusion

V m+1
λ+1 (Ω) ⊂ V m

λ (Ω),

which may be interpolated to obtain fractional-order spaces. That is, if s ≥ 0, then V s
λ (Ω) may be

defined by complex interpolation between V
⌊s⌋+1
λ−s+⌊s⌋+1(Ω) and V

⌊s⌋
λ−s+⌊s⌋(Ω), cf. [33, Section 2.4.5]. It

follows that, more generally,

V s+ϵ
λ+ϵ (Ω) ⊂ V s

λ (Ω),

for all s ≥ 0 and ϵ > 0. Additionally, the continuous inclusions V m
λ′ (Ω) ⊂ V m

λ (Ω) for λ′ ≤ λ and
V m
0 (Ω) ⊂ Hm(Ω) extend in the obvious way from nonnegative integer m to real s ≥ 0.

Remark 3.1. Schneider [33] uses an alternative notation for Kondrat’ev spaces,

Km
p,a(Ω) :=

{︁
ϕ ∈ D′(Ω) : r|β|−a∂βϕ ∈ Lp(Ω) for all |β| ≤ m

}︁
,

so V m
λ (Ω) = Km

2,m−λ(Ω). For example, the inclusion Km+1
p,a (Ω) ⊂ Km

p,a(Ω) in the notation of [33] gives

V m+1
λ+1 (Ω) ⊂ V m

λ (Ω) in our notation, since p = 2 and a = m − λ = (m + 1) − (λ + 1). Fractional
Kondrat’ev spaces are denoted in [33] by Ks

p,a(Ω), and similarly we have V s
λ (Ω) = Ks

2,s−λ(Ω).
Finally, we note that an intrinsic treatment of fractional weighted Sobolev spaces may be found in

Dauge [18, Appendix A].

Suppose now that u ∈ H(div; Ω) ∩ H̊(curl; Ω) satisfies (1.1). We recall that ∇ · u ∈ H̊
1
(Ω), since it

can be seen as the solution to the Dirichlet problem

−∆(∇ · u) = ∇ · (f − αu) ∈ H−1(Ω).

Likewise, ∇ × u ∈ H1(Ω), since it can be seen as the zero-mean solution to a Neumann problem.
See Costabel and Dauge [15, Theorem 1.2] and similar arguments in Brenner et al. [6, Section 2]. Using
this, we may now obtain a minimum weighted Sobolev regularity result for u itself.

Theorem 3.2. If u satisfies (1.1), then u ∈
[︁
V 2
2−2µ+ϵ(Ω)

]︁2
for all ϵ > 0. Furthermore, if (1.1) is

well-posed, then we have the stability estimate ∥u∥2,2−2µ+ϵ ≲ ∥f∥Ω.
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Proof. As in Brenner et al. [6, Section 2], it is sufficient to establish regularity and stability for Ω
simply connected, since the general case follows by a partition of unity argument.
Assuming Ω is simply connected, we can express u in terms of its Helmholtz decomposition u =

∇ϕ+∇× ψ, where ϕ ∈ H̊
1
(Ω) and ψ ∈ H1(Ω) solve

−∆ϕ = −∇ · u, −∆ψ = ∇× u,

with homogeneous Dirichlet and Neumann boundary conditions, respectively. For uniqueness, we take∫︁
Ω ψ = 0. To determine the regularity of ϕ and ψ, we follow Chapter 2 of Nazarov and Plamenevsky [29],

which characterizes the regularity of solutions to Dirichlet and Neumann problems in plane domains
with corner points; similar results are also found in Kozlov et al. [24, §6.6.1–6.6.2].
Hardy’s inequality givesH1(Ω) ⊂ V 1

ϵ (Ω) for all ϵ > 0, and µ ≤ 1 implies V 1
ϵ (Ω) ⊂ V 1

2−2µ+ϵ(Ω). Therefore,

the right-hand sides −∇ · u and ∇× u are both in V 1
2−2µ+ϵ(Ω). Furthermore, since 0 < 2µℓ − ϵ < π/ωℓ

holds for all ℓ when ϵ is sufficiently small, Theorem 3.1 in [29, Chapter 2] implies

ϕ ∈ V 3
2−2µ+ϵ(Ω), ∥ϕ∥3,2−2µ+ϵ ≲ ∥∇ · u∥1,2−2µ+ϵ,

and Theorem 4.2 in [29, Chapter 2] implies

ψ ∈ V 3
2−2µ+ϵ(Ω), ∥ψ∥3,2−2µ+ϵ ≲ ∥∇ × u∥1,2−2µ+ϵ.

By u = ∇ϕ+∇× ψ and the continuity of the inclusion H1(Ω) ⊂ V 1
2−2µ+ϵ(Ω), we thus obtain

u ∈
[︁
V 2
2−2µ+ϵ(Ω)

]︁2
, ∥u∥2,2−2µ+ϵ ≲ ∥∇ · u∥1 + ∥∇ × u∥1, (3.1)

where ∥·∥1 is the H1 norm. This proves the first statement.
Now, observe that the strong form (1.2a) rearranges to

−∇∇ · u+∇×∇× u = f − αu,

where the left-hand side is an L2-orthogonal sum. Therefore, by the Pythagorean theorem,

|∇ · u|21 + |∇ × u|21 = ∥f − αu∥2Ω =⇒ |∇ · u|1 + |∇ × u|1 ≲ ∥f∥Ω + ∥u∥Ω,
where |·|1 is the H1 seminorm. Combining this with (3.1) gives

∥u∥2,2−2µ+ϵ ≲ ∥f∥Ω + ∥u∥Ω + ∥∇ · u∥Ω + ∥∇ × u∥Ω.
Finally, if (1.1) is well-posed, then ∥u∥Ω + ∥∇ · u∥Ω + ∥∇× u∥Ω ≲ ∥f∥Ω, which completes the proof.

Most of the subsequent error analysis will use the following corollary of Theorem 3.2.

Corollary 3.3. If s < µℓ for all ℓ, then u ∈
[︁
V s+1
1−µ (Ω)

]︁2
and ∇ · u,∇× u ∈ V s

µ−1(Ω). Furthermore, if

(1.1) is well-posed, then we have the stability estimate

∥u∥s+1,1−µ + ∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1 ≲ ∥f∥Ω.

Proof. Pick ϵ > 0 such that s < µℓ − ϵ for all ℓ. Then this follows by the continuous inclusions

V 2
2−2µ+ϵ(Ω) = V

s+1+(1−s)
1−µ+(1−µ+ϵ)(Ω) ⊂ V

s+1+(1−s)
1−µ+(1−s) (Ω) ⊂ V s+1

1−µ (Ω)

and

H1(Ω) ⊂ V 1
ϵ (Ω) = V

s+(1−s)
µ−1+(1−µ+ϵ)(Ω) ⊂ V

s+(1−s)
µ−1+(1−s)(Ω) ⊂ V s

µ−1(Ω),

together with Theorem 3.2.

Finally, we note that this also implies the following well-known unweighted Sobolev regularity result,
cf. Assous, Ciarlet, and Sonnendrücker [2].

Corollary 3.4. If s < min
(︁
1, π/(2ωℓ)

)︁
for all ℓ, then u ∈

[︁
V 2s
0 (Ω)

]︁2 ⊂
[︁
H2s(Ω)

]︁2
. Furthermore, if

(1.1) is well-posed, then we have the stability estimate ∥u∥2s ≲ ∥f∥Ω.
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Proof. Since µℓ may be taken arbitrarily close to min
(︁
1, π/(2ωℓ)

)︁
, choose µℓ so that s < µℓ for all ℓ.

Then Corollary 3.3 implies u ∈
[︁
V s+1
1−µ (Ω)

]︁2
, and we have the continuous inclusions

V s+1
1−µ (Ω) = V

2s+(1−s)
1−µ (Ω) ⊂ V

2s+(1−s)
1−s (Ω) ⊂ V 2s

0 (Ω) ⊂ H2s(Ω),

which completes the proof.

In particular, since ωℓ < 2π for all ℓ, we may take s > 1
4 in Corollary 3.4 to conclude that

u ∈
[︁
Hσ(Ω)

]︁2
with σ > 1

2 .

3.2. Preliminary estimates

We now establish two weighted Sobolev norm approximation results that will be useful in the subsequent
error analysis; compare Lemmas 5.2 and 5.3 in [9].

For the remainder of the paper, we assume that Th is shape-regular, but we make no additional
assumptions about quasi-uniformity or grading. Let hK denote the diameter of K ∈ Th and h :=
maxK∈Th hK . We denote the weighted Sobolev norm on V s

λ (Ω)|K by ∥·∥s,λ,K (with distances taken to
the corners of Ω, not those of K) and the ordinary Sobolev seminorm on Hs(K) by |·|s,K .

Lemma 3.5. If v ∈
[︁
Hσ(Ω) ∩ V s+1

1−µ (Ω)
]︁2

with σ > 1
2 and s ≤ k, then[︁

Φµ(e)
]︁2

|e|
∥v −Πhv∥2e ≲ h2sK∥v∥2s+1,1−µ,K ,

for all K ∈ Th and e ⊂ ∂K.

Proof. If K does not have any of the corners cℓ as a vertex, then v|K ∈
[︁
Hs+1(K)

]︁2
, so the trace

inequality with scaling and Bramble–Hilbert lemma imply

|e|−1∥v −Πhv∥2e ≲ h−2
K ∥v −Πhv∥2K + |v −Πhv|21,K ≲ h2sK |v|2s+1,K .

By shape regularity, we have Φµ(e) = r1−µ(me) ∼ r1−µ(x) for all x ∈ K, and therefore[︁
Φµ(e)

]︁2
|e|

∥v −Πhv∥2e ≲ h2sK
[︁
Φµ(e)

]︁2|v|2s+1,K ≲ h2sK∥v∥2s+1,1−µ,K .

On the other hand, if K has cℓ as a vertex, then the inclusions V s+1
1−µℓ

(K) ⊂ V s+µℓ
0 (K) ⊂ Hs+µℓ(K)

imply v|K ∈
[︁
Hs+µℓ(K)

]︁2
. Hence, the trace inequality with scaling and Bramble–Hilbert give

|e|−1∥v −Πhv∥2e ≲ h−2
K ∥v −Πhv∥2K + h

2min(1,σ)−2
K |v −Πhv|2min(1,σ),K

≲ h
2(s+µℓ)−2
K |v|2s+µℓ,K

.

In this case, Φµ(e) ∼ r1−µℓ
ℓ (me) ∼ h1−µℓ

K , and therefore[︁
Φµ(e)

]︁2
|e|

∥v −Πhv∥2e ≲ h2sK |v|2s+µℓ,K
≲ h2sK∥v∥2s+1,1−µ,K ,

where the last inequality is due to the continuity of the inclusion V s+1
1−µ (K) ⊂ Hs+µℓ(K).

Lemma 3.6. If η ∈ H1(Ω) ∩ V s
µ−1(Ω) with s ≤ k, then

|e|[︁
Φµ(e)

]︁2 ∥η − Phη∥2e ≲ h2sK∥η∥2s,µ−1,K ,

for all K ∈ Th and e ⊂ ∂K.
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Proof. Since µ− 1 ≤ 0, we have η ∈ V s
µ−1(Ω) ⊂ V s

0 (Ω) ⊂ Hs(Ω). Thus, for all K ∈ Th and e ⊂ ∂K,
the trace inequality with scaling and Bramble–Hilbert lemma give

|e|∥η − Phη∥2e ≲ ∥η − Phη∥2K + h2K |η − Phη|21,K ≲ h2sK |η|2s,K .

By shape regularity,
[︁
Φµ(e)

]︁−1
= rµ−1(me) ≲ rµ−1(x) for all x ∈ K, and therefore

|e|[︁
Φµ(e)

]︁2 ∥η − Phη∥2e ≲ h2sK
[︁
Φµ(e)

]︁−2|η|2s,K ≲ h2sK∥η∥2s,µ−1,K ,

which completes the proof.

3.3. Error estimates

We now estimate the error u− uh, where u satisfies (1.1) and uh satisfies (2.7). The argument follows
a similar general outline to that in Brenner et al. [6], but the details differ in several important
respects—especially in the use of weighted Sobolev regularity hypotheses and higher-order polynomial
approximation, and in the absence of mesh-grading assumptions.

As in [6], we will first estimate the error in the mesh-dependent energy norm

∥v∥2h := ∥v∥2Ω + ∥∇ · v∥2Th + ∥∇ × v∥2Th +
1

2

⟨︁
γJvK, JvK

⟩︁
E◦
h
+ ⟨γv × n, v × n⟩E∂

h
.

If we extend ah(·, ·) from V̊ h to H(div; Ω) ∩ H̊(curl; Ω) + V̊ h, then in the special case α = 1, this is
precisely the norm associated to ah(·, ·) considered as an inner product.

For arbitrary α, we immediately see that ah(·, ·) is bounded with respect to ∥·∥h. For α > 0, we have
the coercivity condition

ah(v, v) ≥ min(1, α)∥v∥2h.
If the complement of Ω is connected, then we also have coercivity for α = 0, by the argument in
the proof of Theorem 2.6. In general, for α ≤ 0, we have a G̊arding inequality (which is actually an
equality),

ah(v, v) +
(︁
|α|+ 1

)︁
∥v∥2Ω = ∥v∥2h.

This implies the following Strang-type abstract estimates, whose proofs are identical to those of
Lemma 3.5 and Lemma 3.6 in Brenner et al. [10].

Lemma 3.7. If α > 0, u is the solution to (1.1), and uh is the solution to (2.7), then

∥u− uh∥h ≲ inf
vh∈V̊ h

∥u− vh∥h + sup
0̸=wh∈V̊ h

ah(u− uh, wh)

∥wh∥h
, (3.2)

and if the complement of Ω is connected, then this also holds for α = 0. If α ≤ 0, u satisfies (1.1), and
uh satisfies (2.7), then

∥u− uh∥h ≲ inf
vh∈V̊ h

∥u− vh∥h + sup
0̸=wh∈V̊ h

ah(u− uh, wh)

∥wh∥h
+ ∥u− uh∥Ω. (3.3)

We will proceed by estimating the two terms on the right-hand side of (3.2), which correspond to
approximation error and consistency error, respectively.

Lemma 3.8. If u ∈
[︁
V s+1
1−µ (Ω)

]︁2
and ∇ · u,∇× u ∈ V s

µ−1(Ω) with s ≤ k, then

inf
vh∈V̊ h

∥u− vh∥h ≤ ∥u−Πhu∥h ≲ hs
(︁
∥u∥s+1,1−µ + ∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1

)︁
.
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Proof. The first inequality holds since the BSM projection maps u ∈
[︁
Hσ(Ω)

]︁2
with σ > 1

2 to

Πhu ∈ V̊ h. Next, letting µmin := minℓ µℓ, the continuous inclusion V s+1
1−µ (Ω) ⊂ Hs+µmin(Ω) implies that

u ∈
[︁
Hs+µmin(Ω)

]︁2
, so polynomial approximation theory gives

∥u−Πhu∥2K ≲ h
2(s+µmin)
K |u|2s+µmin,K

≲ h
2(s+µmin)
K ∥u∥2s+1,1−µ,K . (3.4)

Furthermore, Lemma 2.2 and V s
µ−1(Ω) ⊂ Hs(Ω) imply⃦⃦

∇ · (u−Πhu)
⃦⃦2
K

=
⃦⃦
(∇ · u)− Ph(∇ · u)

⃦⃦2
K

≲ h2sK |∇ · u|2s,K ≲ h2sK∥∇ · u∥2s,µ−1,K , (3.5a)⃦⃦
∇× (u−Πhu)

⃦⃦2
K

=
⃦⃦
(∇× u)− Ph(∇× u)

⃦⃦2
K

≲ h2sK |∇ × u|2s,K ≲ h2sK∥∇ × u∥2s,µ−1,K . (3.5b)

It remains to estimate the contributions from the penalty terms. Observe that, for e ∈ E◦
h,⟨︁

γJu−ΠhuK, Ju−ΠhuK
⟩︁
e
≤ 2
(︂⟨︁
γ(u−Πhu), u−Πhu

⟩︁
e+

+
⟨︁
γ(u−Πhu), u−Πhu

⟩︁
e−

)︂
,

by the parallelogram identity. Therefore,⟨︁
γJu−ΠhuK, Ju−ΠhuK

⟩︁
E◦
h
+
⟨︁
γ(u−Πhu)× n, (u−Πhu)× n

⟩︁
E∂
h
≤ 2
⟨︁
γ(u−Πhu), u−Πhu

⟩︁
∂Th

,

so it suffices to estimate the contribution from each K ∈ Th and e ⊂ ∂K. By Lemma 3.5,⟨︁
γ(u−Πhu), (u−Πhu)

⟩︁
∂K

≲ h2sK∥u∥2s+1,1−µ,K . (3.6)

Finally, combining (3.4), (3.5), and (3.6) and summing over K ∈ Th completes the proof.

Lemma 3.9. Suppose u satisfies (1.1) and uh satisfies (2.7). If ∇ · u,∇× u ∈ V s
µ−1(Ω) with s ≤ k,

then

sup
0̸=wh∈V̊ h

ah(u− uh, wh)

∥wh∥h
≲ hs

(︁
∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1

)︁
.

Proof. Subtracting (2.7) from (2.1) with v = vh = wh ∈ V̊ h, we get

ah(u− uh, wh) = ⟨∇ · u,wh · n⟩∂Th − ⟨∇× u,wh × n⟩∂Th
=
⟨︁
∇ · u, Jwh · nK

⟩︁
E◦
h
−
⟨︁
∇× u, Jwh × nK

⟩︁
E◦
h
− ⟨∇× u,wh × n⟩E∂

h
, (3.7)

where we have denoted the normal and tangential jump components on e ∈ E◦
h by

Jwh · nKe := w+
h · n+ + w−

h · n−, Jwh × nKe := w+
h × n+ + w−

h × n−.

The condition wh ∈ V̊ h says that Jwh · nKe and Jwh × nKe are each L2-orthogonal to Pk−1(e) for e ∈ E◦
h,

and that wh × n|e is L2-orthogonal to Pk−1(e) for e ∈ E∂
h . Therefore, letting Ph be projection onto

either triangle K± containing e ∈ E◦
h, since Ph(∇ · u)|e ∈ Pk−1(e), it follows that⟨︁

∇ · u, Jwh · nK
⟩︁
E◦
h
=
⟨︁
∇ · u− Ph(∇ · u), Jwh · nK

⟩︁
E◦
h

=
⟨︂
γ−1/2

[︁
∇ · u− Ph(∇ · u)

]︁
, γ1/2Jwh · nK

⟩︂
E◦
h

≤
⃦⃦⃦
γ−1/2

[︁
∇ · u− Ph(∇ · u)

]︁⃦⃦⃦
E◦
h

⃦⃦⃦
γ1/2Jwh · nK

⃦⃦⃦
E◦
h

,

where the last step uses the Cauchy–Schwarz inequality. Applying Lemma 3.6 with η = ∇ · u to the
first term and the definition of the energy norm to the second, we conclude that⟨︁

∇ · u, Jwh · nK
⟩︁
E◦
h
≲ hs

⃦⃦
∇ · u∥s,µ−1∥wh∥h.

Similarly,

−
⟨︁
∇× u, Jwh × nK

⟩︁
E◦
h
− ⟨∇× u,wh × n⟩E∂

h
≲ hs∥∇ × u∥s,µ−1∥wh∥h,

and the result follows.
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Next, we use a duality argument to control the error in the L2 norm.

Lemma 3.10. Suppose u satisfies (1.1) and uh satisfies (2.7). Suppose also that ∇·u,∇×u ∈ V s
µ−1(Ω)

with s ≤ k, and let t < µmin. If (1.1) is well-posed, then

∥u− uh∥Ω ≲ hs+t
(︁
∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1

)︁
+ ht∥u− uh∥h

Proof. Let z ∈ H(div; Ω) ∩ H̊(curl; Ω) be the solution to

(∇ · v,∇ · z)Ω + (∇× v,∇× z)Ω + α(v, z)Ω = (v, u− uh)Ω, (3.8)

for all v ∈ H(div; Ω) ∩ H̊(curl; Ω). By Corollary 3.3, z ∈
[︁
V t+1
1−µ(Ω)

]︁2
and ∇ · z,∇× z ∈ V t

µ−1(Ω), and
we have the stability estimate

∥z∥t+1,1−µ + ∥∇ · z∥t,µ−1 + ∥∇ × z∥t,µ−1 ≲ ∥u− uh∥Ω. (3.9)

Hence, Lemma 3.8 implies

∥z −Πhz∥h ≲ ht∥u− uh∥Ω. (3.10)

To express ∥u− uh∥2Ω in terms of z, we would like to take v = u− uh in (3.8), but we cannot do so

since generally uh /∈ H(div; Ω) ∩ H̊(curl; Ω). Instead, integrating by parts as in (2.1) gives

∥u− uh∥2Ω = ah(u− uh, z) + ⟨uh · n,∇ · z⟩∂Th − ⟨uh × n,∇× z⟩∂Th ,
= ah(u− uh, z) +

⟨︁
Juh · nK,∇ · z

⟩︁
E◦
h
−
⟨︁
Juh × nK,∇× z

⟩︁
E◦
h
− ⟨uh × n,∇× z⟩E∂

h
, (3.11)

which we will estimate term-by-term.
For the first term of (3.11), we write

ah(u− uh, z) = ah(u− uh, z −Πhz) + ah(u− uh,Πhz).

By the boundedness of ah(·, ·) in the energy norm and (3.10), we have

ah(u− uh, z −Πhz) ≲ ht∥u− uh∥h∥u− uh∥Ω.
Next, by (3.7) with wh = Πhz ∈ V̊ h, we have

ah(u− uh,Πhz) =
⟨︁
∇ · u, JΠhz · nK

⟩︁
E◦
h
−
⟨︁
∇× u, JΠhz × nK

⟩︁
E◦
h
− ⟨∇× u,Πhz × n⟩E∂

h
.

By a similar argument to that used in Lemma 3.9, along with the fact that Jz · nK = 0,⟨︁
∇ · u, JΠhz · nK

⟩︁
E◦
h
=
⟨︂
∇ · u− Ph(∇ · u),

q
(Πhz − z) · n

y⟩︂
E◦
h

=
⟨︂
γ−1/2

[︁
∇ · u− Ph(∇ · u)

]︁
, γ1/2

q
(Πhz − z) · n

y⟩︂
E◦
h

≤
⃦⃦⃦
γ−1/2

[︁
∇ · u− Ph(∇ · u)

]︁⃦⃦⃦
E◦
h

⃦⃦⃦
γ1/2

q
(z −Πhz) · n

y⃦⃦⃦
E◦
h

≲ hs∥∇ · u∥s,µ−1∥z −Πhz∥h
≲ hs+t∥∇ · u∥s,µ−1∥u− uh∥Ω,

where the last two lines use Lemma 3.6 with η = ∇ · u and (3.10). Similarly,

−
⟨︁
∇× u, JΠhz × nK

⟩︁
E◦
h
− ⟨∇× u,Πhz × n⟩E∂

h
≲ hs+t∥∇ × u∥s,µ−1∥u− uh∥Ω.

Thus, we have estimated the first term of (3.11) by

ah(u− uh, z) ≲
[︂
hs+t

(︁
∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1

)︁
+ ht∥u− uh∥h

]︂
∥u− uh∥Ω. (3.12)
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For the remaining terms of (3.11), we use a similar argument to the one above to get⟨︁
Juh · nK,∇ · z

⟩︁
E◦
h
=
⟨︂q

(uh − u) · n
y
,∇ · z − Ph(∇ · z)

⟩︂
E◦
h

=
⟨︂
γ1/2

q
(uh − u) · n

y
, γ−1/2

[︁
∇ · z − Ph(∇ · z)

]︁⟩︂
E◦
h

≤
⃦⃦⃦
γ1/2

q
(u− uh) · n

y⃦⃦⃦
E◦
h

⃦⃦⃦
γ−1/2

[︁
∇ · z − Ph(∇ · z)

]︁⃦⃦⃦
E◦
h

≲ ht∥u− uh∥h∥∇ · z∥t,µ−1

≲ ht∥u− uh∥h∥u− uh∥Ω, (3.13)

where the last two lines use Lemma 3.6 with η = ∇ · z and (3.9). Likewise,

−
⟨︁
Juh×nK,∇× z

⟩︁
E◦
h
−⟨uh×n,∇× z⟩E∂

h
≲ ht∥u−uh∥h∥∇× z∥t,µ−1 ≲ ht∥u−uh∥h∥u−uh∥Ω. (3.14)

Altogether, estimating (3.11) by combining (3.12), (3.13), and (3.14), we have

∥u− uh∥2Ω ≲
[︂
hs+t

(︁
∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1

)︁
+ ht∥u− uh∥h

]︂
∥u− uh∥Ω,

which completes the proof.

Finally, we are ready to state the main energy and L2 error estimates.

Theorem 3.11. Suppose u satisfies (1.1) with u ∈
[︁
V s+1
1−µ (Ω)

]︁2
and ∇ · u,∇ × u ∈ V s

µ−1(Ω), where

s ≤ k, and let t < µmin. If α > 0, then the solution uh to (2.7) satisfies the error estimates

∥u− uh∥h ≲ hs
(︁
∥u∥s+1,1−µ + ∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1

)︁
,

∥u− uh∥Ω ≲ hs+t
(︁
∥u∥s+1,1−µ + ∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1

)︁
,

and if the complement of Ω is connected, then this also holds for α = 0. If α < 0 and (1.1) is well-posed,
then (2.7) is uniquely solvable for sufficiently small h, and the solution uh satisfies these same estimates.

Proof. If α > 0, or if α = 0 with Ω having connected complement, then the proof is fairly immediate.
The energy estimate follows from the abstract estimate (3.2) in Lemma 3.7, together with Lemmas 3.8
and 3.9, and the L2 estimate follows by Lemma 3.10.
When α < 0 is such that (1.1) is well-posed, we follow the approach in Brenner et al. [10, Theorem
4.5], which uses a technique for indefinite problems due to Schatz [32]. Suppose that uh satisfies (2.7).
From the abstract estimate (3.3) in Lemma 3.7, along with Lemmas 3.8, 3.9, and 3.10, we have

∥u− uh∥h ≤ C
[︂
hs
(︁
∥u∥s+1,1−µ + ∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1

)︁
+ ht∥u− uh∥h

]︂
, (3.15)

where the constant C has been made explicit. Now, choose h∗ small enough that Cht∗ < 1. It follows
that, whenever h ≤ h∗, we may subtract Cht∥u− uh∥h from both sides of (3.15) to obtain

∥u− uh∥h ≲ hs
(︁
∥u∥s+1,1−µ + ∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1

)︁
.

In particular, when f = 0, well-posedness of (1.1) gives the unique solution u = 0, and ∥uh∥h ≲ 0
implies that (2.7) has the unique solution uh = 0. Hence, (2.7) is uniquely solvable and satisfies the
energy estimate whenever h ≤ h∗, and the L2 estimate follows by another application of Lemma 3.10.

Corollary 3.12 (minimum-regularity case). If α > 0, u is the solution to (1.1), and uh is the solution
to (2.7), then for all s < µmin, we have the error estimates

∥u− uh∥h ≲ hs∥f∥Ω,
∥u− uh∥Ω ≲ h2s∥f∥Ω,
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k = 1 k = 2 k = 3

N ∥u− uh∥h rate ∥u− uh∥Ω rate ∥u− uh∥h rate ∥u− uh∥Ω rate ∥u− uh∥h rate ∥u− uh∥Ω rate

2 2.62e−3 4.10e−4 7.21e−4 8.79e−5 1.52e−4 1.61e−5
4 1.30e−3 1.00 8.98e−5 2.19 2.02e−4 1.84 1.27e−5 2.79 2.02e−5 2.92 1.00e−6 4.01

8 6.39e−4 1.03 2.04e−5 2.14 5.31e−5 1.93 1.74e−6 2.87 2.51e−6 3.01 5.93e−8 4.08
16 3.16e−4 1.02 4.87e−6 2.07 1.35e−5 1.97 2.26e−7 2.94 3.11e−7 3.01 3.58e−9 4.05

32 1.57e−4 1.01 1.19e−6 2.03 3.41e−6 1.99 2.88e−8 2.98 3.86e−8 3.01 2.20e−10 4.03

64 7.83e−5 1.00 2.95e−7 2.01 8.54e−7 2.00 3.62e−9 2.99 4.82e−9 3.00 1.36e−11 4.01

Table 1. Convergence to a smooth solution on a square domain.

and if the complement of Ω is connected, then this also holds for α = 0. If α < 0 and (1.1) is well-posed,
then these estimates hold for sufficiently small h.

Proof. This is immediate from Corollary 3.3 and Theorem 3.11 with s = t.

4. Numerical experiments

In this section, we present numerical experiments illustrating the convergence behavior of the method,
showing how convergence is affected by the interior angles of Ω and by the regularity of the exact
solution u, and relating these numerical results to the theoretical results of Section 3. For all numerical
experiments, we take α = 1.

All computations have been carried out using the Firedrake finite element library [30] (version
0.13.0+4959.gac22e4c5), and a Firedrake component called Slate [19] was used to implement the local
solvers for static condensation and postprocessing.

4.1. Smooth solution on square domain

We begin by considering the square domain Ω =
(︁
0, 12
)︁2
. Since all four corners of Ω are π/2, we have

µ = (1, 1, 1, 1). Given N ∈ N, we construct a uniform triangle mesh by partitioning Ω uniformly into
N ×N squares, then dividing each into two triangles.

Table 1 shows the result of applying our method to the problem whose exact solution is

u =

[︄
(x3/3− x2/4)(y2 − y/2) sin y

(y3/3− y2/4)(x2 − x/2) cosx

]︄
.

(This is the same u that Brenner et al. [6] use for their numerical experiments on the square.) Since u
is smooth, we observe convergence rates of k for the energy error and k + 1 for the L2 error, consistent
with Theorem 3.11.

4.2. Minimum-regularity solutions on L-shaped domain

We next consider the L-shaped domain Ω =
(︁
−1

2 ,
1
2

)︁2 \ [︁0, 12]︁2. This has a reentrant corner at the origin
with angle ω1 = 3π/2, so we may take any µ1 < 1/3. The remaining corners cℓ have ωℓ = π/2 and thus
µℓ = 1 for ℓ = 2, . . . , 6. Given N ∈ N, we construct a uniform triangle mesh of Ω by taking a uniform

2N × 2N mesh of the square
(︁
−1

2 ,
1
2

)︁2
, as in Section 4.1, and removing the first quadrant.
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4.2.1. Minimum-regularity singular harmonic vector field

In polar coordinates (r, θ), we first consider the problem whose exact solution is

u = ∇×

(︄
r2/3 cos

[︃
2

3

(︂
θ − π

2

)︂]︃)︄
,

which is a harmonic vector field with ∇ · u = 0 and ∇× u = 0. We observe that u ∈
[︁
V m
m−1/3−µ(Ω)

]︁2
for all m, since the condition for ∂βu to be in the appropriate weighted L2 space in a δ-neighborhood
of the origin is ∫︂ δ

0

(︁
r−1/3−µ1+|β|r2/3−1−|β|)︁2r dr = ∫︂ δ

0
r2(1/3−µ1)−1 dr <∞,

which holds since µ1 < 1/3. (Compare Costabel and Dauge [16, Theorem 6.1].) By interpolation, we

get u ∈
[︁
V

1/3+1
1−µ (Ω)

]︁2
, so the hypotheses of the error estimates in Section 3.3 hold with s = 1/3.

Remark 4.1. Although u does not satisfy the homogeneous boundary condition u× n = 0 on all of
∂Ω, it does satisfy this condition on the boundary edges θ = π/2 and θ = 2π adjacent to the reentrant
corner. Thus, taking ϕ to be a smooth cutoff function supported in a small neighborhood of the origin,
we may write u = uϕ+ u(1− ϕ), where uϕ satisfies the homogeneous boundary condition and u(1− ϕ)
is a smooth extension of the inhomogeneous boundary condition. It follows that u and uϕ have the
same regularity, and standard arguments may be used to extend the numerical properties of the method
from the homogeneous boundary value problem with exact solution uϕ to the inhomogeneous boundary
value problem with exact solution u.

Table 2 shows the results of applying our method to this problem, where the inhomogeneous boundary
conditions are imposed on ûh × n by interpolating u× n on E∂

h . Since s = 1/3, we observe minimal
convergence rates of approximately 1/3 for the energy error and 2/3 for the L2 error for all k, consistent
with Theorem 3.11.

4.2.2. Minimum-regularity nonsingular vector field

The next example shows that even a nonsingular vector field may have minimum regularity, owing to
the conditions ∇ · u,∇× u ∈ V s

µ−1(Ω). Given arbitrarily small ϵ > 0, consider the problem whose exact
solution is

u = ∇× r2+ϵ,

where the inhomogeneous boundary conditions may also be dealt with as in Remark 4.1. By a similar

calculation as for the singular harmonic vector field, we have u ∈
[︁
V m
m−5/3−µ(Ω)

]︁2
for all m, and

thus u ∈
[︁
V

5/3+1
1−µ (Ω)

]︁2
. However, we merely have ∇ × u ∈ V m

m−1/3+µ−1(Ω) for all m, provided that

1/3− ϵ < µ1 < 1/3, since∫︂ δ

0
(r−1/3+µ1−1+|β|rϵ−|β|)2r dr =

∫︂ δ

0
r2(µ1−1/3+ϵ)−1 dr <∞.

and interpolation gives ∇ × u ∈ V
1/3
µ−1(Ω). Hence, even though u does not have a singularity at the

origin, the regularity hypotheses of Theorem 3.11 hold merely with s = 1/3.
Table 3 shows the results of applying our method to this problem with ϵ = 0.001. As with the

previous example, since s = 1/3, we observe minimal convergence rates of approximately 1/3 for the
energy error and 2/3 for the L2 error for all k, consistent with Theorem 3.11.
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k = 1 k = 2 k = 3

N ∥u− uh∥h rate ∥u− uh∥Ω rate ∥u− uh∥h rate ∥u− uh∥Ω rate ∥u− uh∥h rate ∥u− uh∥Ω rate

2 2.23e−1 7.71e−2 1.60e−1 5.73e−2 1.45e−1 4.42e−2
4 1.77e−1 0.33 5.02e−2 0.62 1.24e−1 0.36 3.69e−2 0.64 1.13e−1 0.35 2.82e−2 0.65

8 1.40e−1 0.34 3.23e−2 0.64 9.73e−2 0.35 2.35e−2 0.65 8.92e−2 0.35 1.79e−2 0.66
16 1.11e−1 0.34 2.07e−2 0.65 7.64e−2 0.35 1.49e−2 0.66 7.03e−2 0.34 1.13e−2 0.66

32 8.76e−2 0.34 1.31e−2 0.65 6.03e−2 0.34 9.40e−3 0.66 5.56e−2 0.34 7.13e−3 0.66

64 6.93e−2 0.34 8.32e−3 0.66 4.77e−2 0.34 5.93e−3 0.66 4.40e−2 0.34 4.50e−3 0.66

Table 2. Convergence to the minimum-regularity singular harmonic on an L-shaped
domain.

k = 1 k = 2 k = 3

N ∥u− uh∥h rate ∥u− uh∥Ω rate ∥u− uh∥h rate ∥u− uh∥Ω rate ∥u− uh∥h rate ∥u− uh∥Ω rate

2 7.23e−3 3.65e−3 4.52e−3 1.94e−3 2.96e−3 1.04e−3

4 6.06e−3 0.26 2.57e−3 0.50 3.71e−3 0.28 1.31e−3 0.56 2.40e−3 0.30 6.87e−4 0.60

8 4.98e−3 0.28 1.75e−3 0.56 3.02e−3 0.30 8.66e−4 0.60 1.93e−3 0.31 4.46e−4 0.62
16 4.05e−3 0.30 1.16e−3 0.59 2.43e−3 0.31 5.63e−4 0.62 1.55e−3 0.32 2.87e−4 0.64

32 3.26e−3 0.31 7.54e−4 0.62 1.95e−3 0.32 3.62e−4 0.64 1.24e−3 0.33 1.83e−4 0.65

64 2.61e−3 0.32 4.85e−4 0.64 1.55e−3 0.33 2.31e−4 0.65 9.85e−4 0.33 1.16e−4 0.66

Table 3. Convergence to a minimum-regularity nonsingular solution on an L-shaped
domain.

4.3. Higher-regularity solutions on L-shaped domain

Finally, we present numerical results for convergence to solutions with higher regularity on the L-shaped
domain, observing improved convergence for larger k. As in Section 4.2, we consider both a harmonic
and a non-harmonic example—here, both having s = 7/3—on the same family of uniform meshes,
where inhomogeneous boundary conditions for u× n on ∂Ω are handled in the same way.

4.3.1. Higher-regularity harmonic vector field

Consider the problem whose exact solution is

u = ∇×

(︄
r8/3 cos

[︃
8

3

(︂
θ − π

2

)︂]︃)︄
,

which is a harmonic vector field with ∇ · u = 0 and ∇ × u = 0. By a similar calculation to that in

Section 4.2.1, we get u ∈
[︁
V m
m−7/3−µ(Ω)

]︁2
for all m. By interpolation, we see that u ∈

[︁
V

7/3+1
1−µ (Ω)

]︁2
, so

the hypotheses of the error estimates in Section 3.3 hold with s = 7/3.
Table 4 shows the results of applying our method to this problem. Since s ≤ 3, for k = 3 we observe

the maximum convergence rates predicted by Theorem 3.11: roughly 7/3 for the energy error and 8/3
for the L2 error. For k = 2, however, we also observe rates of approximately 7/3 for the energy error
and 8/3 for the L2 error. This is explained by the fact that u is the curl of a harmonic function, and
BSMk(K) contains gradients (hence curls) of harmonic polynomials with degree ≤ 2k. In this special
case, the condition s ≤ k in the approximation estimate Lemma 3.8 improves to s ≤ 2k − 1, while the
consistency error in Lemma 3.9 vanishes due to ∇ · u = 0 and ∇× u = 0. For k = 1, we observe the
expected energy-norm convergence rate of 1, but the L2-norm convergence rate of 2 is better than the
duality-based estimate of 4/3 in Theorem 3.11. We do not yet have a satisfying analytical explanation
for this better-than-expected gap between the energy-norm and L2-norm rates when s > k; see further
discussion in the next example and in Section 5.
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k = 1 k = 2 k = 3

N ∥u− uh∥h rate ∥u− uh∥Ω rate ∥u− uh∥h rate ∥u− uh∥Ω rate ∥u− uh∥h rate ∥u− uh∥Ω rate

2 1.08e−1 1.79e−2 8.62e−4 2.28e−4 1.56e−4 3.84e−5
4 5.50e−2 0.97 4.49e−3 2.00 1.72e−4 2.32 3.63e−5 2.65 3.07e−5 2.34 6.12e−6 2.65

8 2.79e−2 0.98 1.12e−3 2.00 3.42e−5 2.33 5.73e−6 2.66 6.06e−6 2.34 9.69e−7 2.66
16 1.40e−2 0.99 2.79e−4 2.00 6.77e−6 2.34 9.05e−7 2.66 1.20e−6 2.34 1.53e−7 2.66

32 7.04e−3 0.99 6.96e−5 2.00 1.34e−6 2.34 1.43e−7 2.67 2.37e−7 2.34 2.41e−8 2.67

64 3.53e−3 1.00 1.74e−5 2.00 2.66e−7 2.34 2.25e−8 2.67 4.69e−8 2.34 3.80e−9 2.67

Table 4. Convergence to a higher-regularity harmonic vector field on an L-shaped
domain.

k = 1 k = 2 k = 3

N ∥u− uh∥h rate ∥u− uh∥Ω rate ∥u− uh∥h rate ∥u− uh∥Ω rate ∥u− uh∥h rate ∥u− uh∥Ω rate

2 2.67e+0 8.25e−1 5.33e−1 1.82e−1 6.84e−5 2.18e−5

4 1.31e+0 1.02 2.03e−1 2.02 1.47e−1 1.86 3.29e−2 2.47 1.42e−5 2.27 3.58e−6 2.61

8 6.47e−1 1.02 5.02e−2 2.01 3.89e−2 1.92 5.62e−3 2.55 2.87e−6 2.30 5.80e−7 2.63
16 3.20e−1 1.01 1.24e−2 2.01 1.00e−2 1.96 9.28e−4 2.60 5.76e−7 2.32 9.30e−8 2.64

32 1.59e−1 1.01 3.09e−3 2.01 2.55e−3 1.98 1.50e−4 2.63 1.15e−7 2.33 1.48e−8 2.65

64 7.95e−2 1.00 7.68e−4 2.01 6.44e−4 1.99 2.41e−5 2.64 2.29e−8 2.33 2.35e−9 2.66

Table 5. Convergence to a higher-regularity non-harmonic vector field on an L-shaped
domain.

4.3.2. Higher-regularity non-harmonic vector field

Given arbitrarily small ϵ > 0, consider the problem whose exact solution is

u = ∇× r4+ϵ.

By a similar calculation to that in Section 4.2.2, we have u ∈
[︁
V m
m−11/3−µ(Ω)

]︁2
for all m, and thus

u ∈
[︁
V

11/3+1
1−µ (Ω)

]︁2
. However, we merely have ∇ × u ∈ V m

m−7/3+µ−1(Ω) for all m, provided that

1/3 − ϵ < µ1 < 1/3, so interpolation gives ∇ × u ∈ V
7/3
µ−1(Ω). Hence, the regularity hypotheses of

Theorem 3.11 hold merely with s = 7/3.
Table 5 shows the results of applying our method to this problem with ϵ = 0.001. For all k, we observe

a convergence rate of approximately min(k, 7/3) in the energy norm, consistent with Theorem 3.11.
This also supports the argument that the improved energy error in Section 4.3.1, which is not observed
here, was due to that exact solution being the curl of a harmonic function. For k = 3, we observe the
expected L2-norm convergence rate of approximately 8/3. However, for k = 2 and k = 1, we observe
better-than-expected rates of 8/3 (rather than 7/3) and 2 (rather than 4/3), respectively, similar to
what we saw with the k = 1 case in Section 4.3.1.

5. Conclusion

We have presented a nonconforming primal hybrid finite element method for the two-dimensional
vector Laplacian that extends the P1-nonconforming method of Brenner et al. [6] to arbitrary order k.
The method uses only standard polynomial finite elements, although the more exotic BSM element and
projection play a key role in the analysis, and the method may be implemented efficiently using static
condensation. Using the weighted Sobolev spaces of Kondrat’ev for domains with corners, we have
obtained error estimates that hold on general shape-regular meshes, without mesh-grading conditions.
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These estimates establish the convergence of the method, even for minimum-regularity solutions with
corner singularities, and the convergence rate improves with k to the extent regularity allows.

Let us conclude with a brief discussion of one area where the numerical experiments in Section 4
suggest possible room for improvement. Dropping the hypothesis that s ≤ k, we may rewrite the
estimates of Theorem 3.11 as

∥u− uh∥h ≲ hmin(k,s)
(︁
∥u∥s+1,1−µ + ∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1

)︁
, (5.1)

∥u− uh∥Ω ≲ hmin(k,s)+t
(︁
∥u∥s+1,1−µ + ∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1

)︁
. (5.2)

From the numerical experiments, it appears that the energy estimate (5.1) is sharp, and in general one
cannot relax the restriction t < µmin in the L2 estimate (5.2). However, when s > k, it appears that a
sharper estimate than (5.2) holds, which we now state as a conjecture.

Conjecture 5.1. Under the conditions of Theorem 3.11 (except for the condition s ≤ k),

∥u− uh∥Ω ≲ hmin(k+1,s+t)
(︁
∥u∥s+1,1−µ + ∥∇ · u∥s,µ−1 + ∥∇ × u∥s,µ−1

)︁
.

Establishing this would require some new analytical arguments, perhaps involving weighted-norm
error estimates. Indeed, a duality estimate of the sort in Lemma 3.10 can only give an L2 error estimate
of the form (5.2), where the improvement over the energy rate is the same for all k, and the numerical
experiments suggest that there is no way to sharpen this uniformly in k.

Finally, it is natural to ask how the two-dimensional method presented in this paper might be
generalized to three dimensions. In contrast with some other approaches that are limited to dimension
two—such as methods that use the Hodge decomposition to transform vector problems into scalar
problems [7, 25, 26, 8]—the variational form of the hybrid method (1.4) extends naturally to the
three-dimensional case. The main challenge is to choose suitable finite element spaces and a suitable
penalty, and here there are two obstacles to overcome. First, when k > 1, we do not yet know a
three-dimensional version of the BSM element and commuting projection, which would be needed to
make the analysis work. (A naive extension to three dimensions fails to satisfy unisolvence when k = 2,
as shown by Mirebeau [27].) Consequently, it is not clear what polynomial degrees would be needed for

the finite element spaces Vh, Qh, and V̂ h. Second, the weighted Sobolev analysis in three-dimensional
domains becomes more complicated, since singularities can form along boundary edges, as well as
at corners where edges meet, cf. Costabel and Dauge [16]. Consequently, a penalty γ would need to
be carefully constructed, likely involving the distances both to edges and to corners with suitable
exponents.
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