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Abstract. We develop a new, coordinate-free formulation of Hamiltonian mechanics on
the dual of a Lie algebroid. Our approach uses a connection, rather than coordinates in a
local trivialization, to obtain global expressions for the horizontal and vertical dynamics.
We show that these dynamics can be obtained in two equivalent ways: (1) using the
canonical Lie–Poisson structure, expressed in terms of the connection; or (2) using a novel
variational principle that generalizes Hamilton’s phase space principle.

1. Introduction

The dual g∗ of a Lie algebra g has a canonical (up to sign) Lie–Poisson structure, defined
by the (±) Lie–Poisson brackets

(1) {F,G}±(µ) := ±

⟨︄
µ,

[︃
δF

δµ
,
δG

δµ

]︃⟩︄
.

Here, F,G : g∗ → R, µ ∈ g∗, ⟨·, ·⟩ is the duality pairing between g∗ and g, [·, ·] is the
Lie bracket on g, and δF/δµ ∈ g is the variational derivative defined by

⟨︁
δµ, δF/δµ

⟩︁
=

limϵ→0

[︁
F (µ + ϵ δµ) − F (µ)

]︁
/ϵ for all δµ ∈ g∗. Using the (±) bracket, a Hamiltonian

H : g∗ → R gives rise to the dynamics

(2) µ̇ = ∓ ad∗δH/δµ µ,

which are called the Lie–Poisson equations (Marsden and Ratiu [16]). These arise in diverse
applications ranging from rigid body mechanics to incompressible fluid dynamics.

More generally, one may define a Lie–Poisson structure on the dual of a Lie algebroid
(Courant [5], Weinstein [18]). This includes as special cases not only (1) but also the
canonical Poisson structure on a cotangent bundle or its quotient by a Lie group action. As
such, Lie algebroid duals provide a rich setting for Hamiltonian mechanics and reduction.
However, in contrast to the global, coordinate-free form of (2), Hamilton’s equations in
this more general setting have only been expressed with respect to coordinates in a local
trivialization: cf. Weinstein [18], Mart́ınez [17], de León, Marrero, and Mart́ınez [8].

In this paper, we develop a new, coordinate-free formulation of Hamiltonian mechanics
on the dual of a Lie algebroid. Our approach uses a connection, rather than coordinates in
a local trivialization, to obtain global expressions for the horizontal and vertical dynamics.
In particular, the Lie–Poisson equations (2) are obtained as a special case, with ad∗ arising
from the connection and δH/δµ corresponding to the vertical part of dH. This can be
viewed as a Hamiltonian counterpart to the paper Li, Stern, and Tang [13], which provides
the Lagrangian side of this story.

The paper is organized as follows:

• Section 2 reviews the basic ideas of Lie algebroids, previous work on generalized
Lie–Poisson dynamics in local coordinates, and Lie algebroid connections.

• Section 3 develops a coordinate-free expression for the Lie–Poisson structure on a
Lie algebroid dual relative to a connection, and uses this to derive the horizontal
and vertical dynamics arising from a Hamiltonian.
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• Section 4 introduces a novel variational principle for Hamiltonian dynamics on Lie
algebroid duals, which generalizes Hamilton’s phase space principle in the case
of a cotangent bundle. Using a connection, it is shown that paths satisfying the
variational principle are precisely solutions to the horizontal and vertical Lie–Poisson
equations derived in the preceding section. As special cases, this also generalizes the
Lie–Poisson and Hamilton–Poincaré variational principles of Cendra et al. [1].

• Section 5 concludes the paper with a discussion of the relationship between the
Hamiltonian and Lagrangian formalisms, linking the results of the present paper
with those of Li, Stern, and Tang [13].

Acknowledgments. The authors wish to thank Rui Loja Fernandes for helpful discussions
during the early stages of this project. Jiawei Hu was supported in part by the Freiwald
Scholars program in the Department of Mathematics and Statistics at Washington University
in St. Louis. Ari Stern was supported in part by NSF grants DMS-1913272 and DMS-2208551.

2. Lie algebroid preliminaries

2.1. Lie algebroids. We begin with the definition of a Lie algebroid, along with a few
standard examples. See Mackenzie [14] for a comprehensive reference.

Definition 2.1. A Lie algebroid is a real vector bundle τ : A → Q equipped with a Lie
bracket [·, ·] on the space of sections Γ(A) and a bundle map ρ : A → TQ, called the anchor,
satisfying the Leibniz rule

[X, fY ] = ρ(X)[f ]Y + f [X,Y ],

for all f ∈ C∞(Q) and X,Y ∈ Γ(A).

Remark 2.2. Here and henceforth, we use the notation v[f ] := ⟨df, v⟩ for a tangent vector
or vector field acting as a derivation on smooth functions.

Example 2.3. The tangent bundle τ : TQ → Q is a Lie algebroid, where [·, ·] is the
Jacobi–Lie bracket on vector fields and ρ : TQ → TQ is the identity map.

Example 2.4. A Lie algebra g can be interpreted as a Lie algebroid over a single point
τ : g → •, where [·, ·] is the bracket on g and ρ is trivial.

Example 2.5. Given a principal G-bundle Q → Q/G, one may form the Atiyah algebroid
τ : TQ/G → Q/G, where [·, ·] agrees with the Jacobi–Lie bracket of G-invariant vector
fields on Q, and where ρ agrees with the (G-invariant) tangent map of the principal bundle
projection. Examples 2.3 and 2.4 are the special cases G = {e} and Q = G, respectively.

We are often interested in a particular class of paths in Lie algebroids, especially for
applications in geometric mechanics.

Definition 2.6. Let a : I → A be a path in A, where I is an interval (interpreted as time),
and let q = τ ◦ a : I → Q be the corresponding base path in Q. We say that a is an A-path
over q if it satisfies q̇(t) = ρ

(︁
a(t)

)︁
for all t ∈ I.

For example, TQ-paths are just the tangent prolongations of paths in Q. (In the context of
geometric mechanics, Yoshimura and Marsden [21, 22] call this the “second-order condition.”)
On the other hand, every path in g is a g-path, since the condition to be satisfied is trivial.

2.2. The generalized Lie–Poisson structure on A∗. Let π : A∗ → Q denote the dual
bundle of a Lie algebroid A.
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2.2.1. The (±) Lie–Poisson brackets. In order to define the Lie–Poisson structure on A∗, we
first introduce some useful notation adopted from Marle [15].

Definition 2.7. Given a section X ∈ Γ(A), let ΦX ∈ C∞(A∗) denote the fiberwise-linear
function ΦX(p) = ⟨p,X⟩, where ⟨·, ·⟩ is the duality pairing between A∗ and A.

Definition 2.8. The (±) Lie–Poisson bracket on A∗ is the unique bracket satisfying

(3a) {ΦX ,ΦY }± = ±Φ[X,Y ],

for all X,Y ∈ Γ(A).

For any f, g ∈ C∞(Q), replacing X and Y in (3a) by fX and gY shows that, in order for
{·, ·}± to satisfy the Leibniz rule, it must also satisfy

{ΦX , g ◦ π}± = ±ρ(X)[g] ◦ π,(3b)

{f ◦ π, g ◦ π}± = 0.(3c)

Since every covector in T ∗
pA

∗ can be written as d(ΦX + f ◦ π)(p) for some X ∈ Γ(A) and
f ∈ C∞(Q) [15, Lemma 6.3.2], this completely defines the Lie–Poisson structure on A∗.
Courant [5, Theorem 2.1.4] shows that the converse also holds: any fiberwise-linear Poisson
structure on a dual vector bundle E∗ → Q determines a Lie algebroid structure on E → Q.

2.2.2. Local coordinates and Hamiltonian dynamics. Let qi be local coordinates for Q and
{eI} be a local basis of sections of A. Let CK

IJ and ρiI be the local-coordinate representations
of [·, ·] and ρ, defined by

[eI , eJ ] = CK
IJeK , ρ(eI) = ρiI

∂

∂qi
.

(We use the Einstein index convention, where there is an implicit sum over repeated indices.)
In the special case of a Lie algebra, CK

IJ are known as structure constants; in the general
case, they depend smoothly on q ∈ Q and are called structure functions.

It follows that qi and µI = ΦeI are local coordinate functions on A∗, where µI gives the
coefficient in the dual basis {eI} of sections of A∗. We can now express the bracket relations
(3), in terms of these local coordinate functions, as

{µI , µJ}± = ±CK
IJµK ,

{µI , q
i}± = ±ρiI ,

{qi, qj}± = 0.

(We commit a slight abuse of notation by identifying qi with qi ◦ π.) It follows that

(4) {F,G}± = ±CK
IJ

∂F

∂µI

∂G

∂µJ
µK ± ρiI

(︃
∂F

∂µI

∂G

∂qi
− ∂F

∂qi
∂G

∂µI

)︃
,

for arbitrary functions F,G ∈ C∞(A∗).
Now, given a Hamiltonian H ∈ C∞(A∗), we recall that Hamilton’s equations are defined

by Ḟ = {F,H}± for all F ∈ C∞(A∗). Taking F to be the coordinate functions qi and µI ,
we obtain

q̇i = ∓ρiI
∂H

∂µI
,(5a)

µ̇I = ±CK
IJ

∂H

∂µJ
µK ± ρiI

∂H

∂qi
,(5b)

which are local-coordinate expressions of the generalized Lie–Poisson equations on A∗.
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Example 2.9. Let τ : TQ → Q be the tangent bundle of Q and π : T ∗Q → Q be the
cotangent bundle. Local coordinates qi on Q give rise to a local basis of sections ∂/∂qi of
TQ. From this, we get so-called canonical coordinates qi, pi on T ∗Q, where pi = Φ∂/∂qi in

the notation used above. (Due to the correspondence between base and fiber coordinates,
we use lowercase indices i, j, k for both.) In these coordinates, we have

Ck
ij = 0, ρij = δij ,

where δij is the Kronecker delta. Thus, (4) gives the (±) brackets on T ∗Q,

(6) {F,G}± = ±
(︃
∂F

∂pi

∂G

∂qi
− ∂F

∂qi
∂G

∂pi

)︃
,

with respect to which Hamilton’s equations (5) are

q̇i = ∓∂H

∂pi
,(7a)

ṗi = ±∂H

∂qi
.(7b)

From this, we see that the (−) bracket gives the usual form of the canonical Poisson structure
and Hamilton’s equations on T ∗Q, while (+) gives the opposite sign convention.

Example 2.10. Let τ : g → • be a Lie algebra and π : g∗ → • its dual, considered as vector
bundles over a single point. Given a basis {eI} of g, the coefficients CK

IJ are the structure
constants of g, and the anchor is trivial. In these coordinates, the (±) brackets (4) on g∗ are

{F,G}± = ±CK
IJ

∂F

∂µI

∂G

∂µJ
µK ,

with respect to which Hamilton’s equations (5) are

µ̇I = ±CK
IJ

∂H

∂µJ
µK .

These are precisely local-coordinate expressions for the (±) Lie–Poisson bracket (1) and
Lie–Poisson equations (2), respectively.

2.3. Connections and variations of A-paths. We recall the notion of connection on
a Lie algebroid due to Crainic and Fernandes [6] (see also Fernandes [9]), along with the
important role that such connections play in calculus of variations for A-paths.

Definition 2.11. Given a Lie algebroid A → Q an A-connection on a vector bundle E → Q
is an R-bilinear map ∇ : Γ(A)× Γ(E) → Γ(E), (X, s) ↦→ ∇Xs, that is C∞(Q)-linear in the
first argument and satisfies a Leibniz rule in the second, i.e.,

∇fXs = f∇Xs, ∇X(fs) = ρ(X)[f ]s+ f∇Xs,

for all f ∈ C∞(Q).

An A-connection on a vector bundle naturally induces an A-connection on the dual bundle.

Definition 2.12. Given an A-connection ∇ on E, the dual connection ∇∗ on E∗ is given by

⟨∇∗
Xσ, s⟩ = ρ(X)

[︁
⟨σ, s⟩

]︁
− ⟨σ,∇Xs⟩,

where X ∈ Γ(A), σ ∈ Γ(E∗), and s ∈ Γ(E).



HAMILTONIAN MECHANICS AND LIE ALGEBROID CONNECTIONS 5

For example, a TQ-connection is the usual notion of a connection on a vector bundle.
Given a TQ-connection ∇ on A, there are two induced A-connections on A, which are
denoted by ∇ and ∇:

∇XY := ∇ρ(X)Y, ∇XY := ∇ρ(Y )X + [X,Y ].

In particular, if ∇ is the trivial T•-connection on g → •, then the induced g-connections are

∇ξη = 0, ∇ξη = [ξ, η] = adξ η,

for ξ, η ∈ g. For A-connections on A itself, such as these, we have a notion of torsion.

Definition 2.13. The torsion of an A-connection ∇ on A is defined to be

T (X,Y ) := ∇XY −∇Y X − [X,Y ].

We note that T : Γ(A) × Γ(A) → Γ(A) is C∞(Q)-bilinear, since the Leibniz-rule terms
from the connection cancel with those from the bracket, so we may treat T as a tensor.
Furthermore, the torsion of ∇ may be written T (X,Y ) = ∇XY −∇XY , which is seen to be
tensorial since it is the difference of two connections.

In addition to using an A-connection ∇ to differentiate along sections, we will also use it
to differentiate along paths.

Definition 2.14. Suppose ∇ is an A-connection on E. Given an A-path a over a base path
q, choose a time-dependent section ξ of A such that ξ

(︁
t, q(t)

)︁
= a(t). Similarly, given a

path u in E over the same base path q, choose a time-dependent section η of E such that
η
(︁
t, q(t)

)︁
= u(t). We then define

∇au(t) := ∂tη
(︁
t, q(t)

)︁
+∇ξη

(︁
t, q(t)

)︁
,

which is independent of the choice of ξ and η.

Finally, we recall the notion of admissible variations of A-paths from Crainic and Fernandes

[6], which can be readily expressed in terms of a connection. As in [6], let ˜︁P (A) denote the

Banach manifold of C1 paths I → A having C2 base paths I → Q, and let P (A) ⊂ ˜︁P (A)
denote the Banach submanifold of A-paths.

Definition 2.15. An admissible variation of a ∈ P (A) is a tangent vector Xb,a ∈ TaP (A),

where b ∈ ˜︁P (A) covers the same base path and vanishes at the endpoints of I, such that the
vertical and horizontal components relative to a TQ-connection ∇ on A are

Xver
b,a = ∇ab, Xhor

b,a = ρ(b).

By vertical and horizontal, we mean the components in the splitting TaA ∼= Aq⊕TqQ induced

by ∇ for each t ∈ I. Note that Xhor
b,a ∈ TqQ is independent of the choice of connection.

Example 2.16. Recall that TQ-paths are tangent prolongations of base paths q : I → Q.
Since the anchor of TQ is the identity, admissible variations are completely determined by
Xhor

b,a = b, which is an arbitrary variation of the base path (usually written δq).

Example 2.17. For a Lie algebra, recall that g-paths are arbitrary paths. Taking ∇ to be
the trivial connection on g, we see that admissible variations of ξ have the restricted form

δξ = η̇ + adξ η,

where η is arbitrary. In the context of Lagrangian mechanics on Lie algebras, these restrictions
on admissible variations are called Lin constraints (Marsden and Ratiu [16, Chapter 13]).
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3. Lie–Poisson structure and equations relative to a connection

3.1. Splitting of T ∗A∗. As in the previous section, let τ : A → Q be a Lie algebroid and
π : A∗ → Q its dual. A TQ-connection ∇ on A gives a splitting of TA into horizontal and
vertical subbundles, which induces a natural splitting of T ∗A∗ as well.

The following lemma gives a convenient coordinate-free expression for this splitting. This
result seems like it ought to be standard, and it may be known to experts, but we were
unable to find it stated explicitly in the literature. We remark that although the result is
stated for a Lie algebroid, which is our application of interest, it holds for connections on
vector bundles more generally.

Lemma 3.1. A TQ-connection ∇ on A induces a splitting T ∗
pA

∗ ∼= Aq⊕T ∗
q Q, where p ∈ A∗

q.
This splitting is characterized by the following condition: For all X ∈ Γ(A) and f ∈ C∞(Q),

d(ΦX + f ◦ π)ver(p) = X(q),(8a)

d(ΦX + f ◦ π)hor(p) = ⟨p,∇X⟩+ df(q).(8b)

By ⟨p,∇X⟩ ∈ T ∗
q Q, we mean the covector whose pairing with v ∈ TqQ is ⟨p,∇vX⟩.

Proof. Given p ∈ A∗
q , recall that the vertical lift Vp : A

∗
q → TpA

∗ is defined by

Vpr :=
d

dϵ
(p+ ϵr)

⃓⃓⃓
ϵ=0

.

Associated to the dual connection ∇∗ on A∗, the horizontal lift Hp : TqQ → TpA
∗ is given by

Hpv = Tµ(v)− Vp(∇∗
vµ),

where µ ∈ Γ(A∗) is any section satisfying µ(q) = p. This is independent of the choice of
section, and together the vertical and horizontal lifts define the splitting

Vp ⊕Hp : A
∗
q ⊕ TqQ

∼=−→ TpA
∗.

See, for instance, Wendl [19, §3.3] and Kolář, Michor, and Slovák [12, §17.9]. By taking the
dual of these vertical and horizontal lifts, we obtain projections

V ∗
p : T ∗

pA
∗ → Aq, α ↦→ αver,

H∗
p : T

∗
pA

∗ → T ∗
q Q, α ↦→ αhor,

and thus a dual splitting

V ∗
p ⊕H∗

p : T
∗
pA

∗ ∼=−→ Aq ⊕ T ∗
q Q.

It remains to show that αver and αhor have the claimed expressions for α = d(ΦX + f ◦π)(p).
First, observe that for all r ∈ A∗

q , we have

⟨dΦX , Vpr⟩ =
d

dϵ
⟨p+ ϵr,X⟩

⃓⃓⃓
ϵ=0

= ⟨r,X⟩.

Furthermore, ⟨︁
d(f ◦ π), Vpr

⟩︁
=

d

dϵ
(f ◦ π)(p+ ϵr)

⃓⃓⃓
ϵ=0

= 0,

since π(p+ ϵr) = q is constant in ϵ. Together, these establish (8a). Next, for all v ∈ TqQ,

⟨dΦX , Hpv⟩ =
⟨︁
dΦX , Tµ(v)− Vp(∇∗

vµ)
⟩︁

= v
[︁
⟨µ,X⟩

]︁
− ⟨∇∗

vµ,X⟩
= ⟨µ,∇vX⟩,
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where the last equality is the defining property of the dual connection ∇∗. Finally,⟨︁
d(f ◦ π), Hpv

⟩︁
=

⟨︁
d(f ◦ π), Tµ(v)− Vp(∇∗

vµ)
⟩︁

=
⟨︁
d(f ◦ π ◦ µ), v

⟩︁
− 0,

= ⟨df, v⟩.

Together, these establish (8b), which completes the proof. □

3.2. Lie–Poisson structure. We now use the splitting in Lemma 3.1 to express the Lie–
Poisson structure on A∗ in terms of the connection ∇. The following result is not new;
we first learned of it from Rui Loja Fernandes, and it appears as an exercise in Crainic,
Fernandes, and Mărcuţ [7, Exercise 13.73]. However, the suggested proof in [7] compares
with a local coordinate expression for the Poisson tensor, and we believe the following
coordinate-free proof is new.

Lemma 3.2. Let ∇ be a TQ-connection on A, and let T : A⊗A → A be the torsion tensor
of the associated A-connection. The (±) Lie–Poisson tensor Π± : T ∗A∗⊗T ∗A∗ → R satisfies

Π±(α, β) = ±
[︂⟨︁
βhor, ρ(αver)

⟩︁
−
⟨︁
αhor, ρ(βver)

⟩︁
−
⟨︁
p, T (αver, βver)

⟩︁]︂
,

for all α, β ∈ T ∗
pA

∗.

Proof. It suffices to show that {F,G}± = Π±(dF,dG) satisfies the bracket relations (3).
First, if α = dΦX(p) and β = dΦY (p), then Lemma 3.1 gives

Π±
(︁
dΦX(p),dΦY (p)

)︁
= ±

[︂
⟨p,∇XY ⟩ − ⟨p,∇Y X⟩ −

⟨︁
p, T (X,Y )

⟩︁]︂
= ±

⟨︁
p, [X,Y ]

⟩︁
,

verifying (3a). Next, if α = dΦX(p) and β = d(g ◦ π)(p), then the two terms involving
βver = 0 vanish, leaving only

Π±
(︁
dΦX(p),d(g ◦ π)(p)

)︁
= ±

⟨︂
dg(q), ρ

(︁
X(q)

)︁⟩︂
= ±ρ(X)[g](q),

verifying (3b). Finally, if α = d(f ◦ π)(p) and β = d(g ◦ π)(p), then all three terms vanish,
since αver = βver = 0. Therefore,

Π±
(︁
d(f ◦ π)(p), d(g ◦ π)(p)

)︁
= 0,

verifying (3c) and completing the proof. □

3.3. Lie–Poisson equations. We are now ready to state our main result, expressing the
(±) Lie–Poisson equations on A∗ relative to a given TQ-connection ∇ on A.

Theorem 3.3. Given H ∈ C∞(A∗), a path p in A∗ with base path q is an integral curve of
the Hamiltonian vector field, with respect to the (±) Lie–Poisson structure, if and only if

q̇ = ρ(a),(9a)

∇∗
ap = ±ρ∗

(︁
dHhor(p)

)︁
,(9b)

where a = ∓dHver(p). The first equation says that a is an A-path, so it is valid to write ∇∗
a.

Proof. By definition, p is an integral curve of H if and only if d
dtF (p) = {F,H}±(p) for all

F ∈ C∞(A∗). It suffices to consider F = f ◦ π for f ∈ C∞(Q) and F = ΦX for X ∈ Γ(A).
First, by the chain rule,

d

dt
(f ◦ π)(p) =

⟨︁
df(q), q̇

⟩︁
,
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while Lemmas 3.1 and 3.2 imply

{f ◦ π,H}±(p) = ∓
⟨︂
df(q), ρ

(︁
dHver(p)

)︁⟩︂
=

⟨︁
df(q), ρ(a)

⟩︁
.

These are equal for all f ∈ C∞(Q) if and only if (9a) holds, i.e., a = ∓dHver(p) is an A-path.
Next, if µ is a time-dependent section of A∗ such that µ

(︁
t, q(t)

)︁
= p(t), then

d

dt
ΦX(p) =

d

dt
⟨µ,X⟩(q)

= ⟨∂tµ,X⟩+ ρ(a)
[︁
⟨µ,X⟩

]︁
= ⟨∂tµ+∇∗

aµ,X⟩+ ⟨µ,∇aX⟩

= ⟨∇∗
ap,X⟩+ ⟨p,∇aX⟩,

while Lemmas 3.1 and 3.2 imply

{ΦX , H}±(p) = ±
[︃⟨︁
dHhor(p), ρ(X)

⟩︁
− ⟨p,∇dHver(p)X⟩ −

⟨︂
p, T

(︁
X,dHver(p)

)︁⟩︂]︃
= ±

[︂⟨︁
dHhor(p), ρ(X)

⟩︁
− ⟨p,∇dHver(p)X⟩

]︂
= ±

⟨︂
ρ∗
(︁
dHhor(p)

)︁
, X

⟩︂
+ ⟨p,∇aX⟩,

using the fact that torsion is the difference between ∇ and ∇. These two expressions are
equal for all X ∈ Γ(A) if and only if (9b) holds. □

We now relate the coordinate-free form of the Lie–Poisson equations in Theorem 3.3 to
the local-coordinate formulation (5). Given local coordinates qi for Q and a local basis of
sections {eI} of A, choose the locally trivial TQ-connection defined by ∇∂/∂qieJ = 0. With
respect to this connection, the vertical and horizontal components of dH are given by

dHver =
∂H

∂µI
eI , dHhor =

∂H

∂qi
dqi.

It follows that a = ∓dHver(p) is an A-path if and only if

q̇i = ∓ρiI
∂H

∂µI
,

which is (5a). Next, if µ is a time-dependent section of A∗ such that µ
(︁
t, q(t)

)︁
= p(t), then

⟨∇∗
ap, eI⟩ = ⟨∂tµ+∇∗

aµ, eI⟩ = µ̇I ∓ CK
IJ

∂H

∂µJ
µK .

Setting this equal to ±
⟨︁
dHhor(p), ρ(eI)

⟩︁
gives

µ̇I ∓ CK
IJ

∂H

∂µJ
µK = ±ρiI

∂H

∂qi
,

which rearranges to (5b).

Remark 3.4. To illustrate that these equations are independent of the TQ-connection chosen,
suppose more generally that ∇∂/∂qieJ = ΓK

iJeK , where ΓK
iJ are Christoffel symbols. Then

dHver =
∂H

∂µI
eI , dHhor =

(︃
∂H

∂qi
+ ΓK

iJ

∂H

∂µJ
µK

)︃
dqi.

Since dHver is the same as above, once again (9a) becomes (5a). Meanwhile, (9b) becomes

µ̇I ± (ρiIΓ
K
iJ − CK

IJ)
∂H

∂µJ
µK = ±ρiI

(︃
∂H

∂qi
+ ΓK

iJ

∂H

∂µJ
µK

)︃
,
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and the connection-dependent terms cancel to give (5b).

3.4. Examples. We now illustrate the results of this section by showing how they give the
canonical structures and dynamics on Lie algebra duals and cotangent bundles.

Example 3.5. If A = g → • is a Lie algebra and ∇ is the trivial T•-connection, then we
have the associated A-connections ∇ = 0, ∇ = ad, and ∇∗

= − ad∗.
Given F ∈ C∞(g∗), we have dF ver = δF/δµ and dF hor = 0, and likewise for G ∈ C∞(g∗).

Since the horizontal components vanish and T (·, ·) = −[·, ·], applying Lemma 3.2 gives

{F,G}±(µ) = ∓
⟨︂
µ, T

(︁
dF ver(µ), dGver(µ)

)︁⟩︂
= ±

⟨︄
µ,

[︃
δF

δµ
,
δG

δµ

]︃⟩︄
,

recovering the (±) Lie–Poisson brackets on g∗ from (1).
Applying Theorem 3.3 to H ∈ C∞(g∗), the horizontal components vanish, and we have

a = ∓δH/δµ. Identifying p with the time-dependent section µ(t, •) = p(t), we get

µ̇± ad∗δH/δµ µ = µ̇+∇∗
aµ = ∇∗

ap = 0,

so (9a) is trivial and (9b) is equivalent to the Lie–Poisson equations (2) on g∗.

Example 3.6. Suppose A = TQ → Q is a tangent bundle. As in Example 2.9, let qi be
local coordinates on Q, ∂/∂qi be the corresponding local basis of sections of TQ, and qi, pi
be canonical coordinates for T ∗Q. Take the locally trivial connection ∇∂/∂qi(∂/∂q

j) = 0.

(This may not be globally trivial, but Remark 3.4 shows that there is no loss of generality.)

Since [∂/∂qi, ∂/∂qj ] = 0, it follows that ∇ and ∇∗
are also trivial in local coordinates.

Given F ∈ C∞(T ∗Q), the vertical and horizontal components of dF are

dF ver =
∂F

∂pi

∂

∂qi
, dF hor =

∂F

∂qi
dqi,

and likewise for G ∈ C∞(T ∗Q). Since ρ is the identity on TQ and ∇ is torsion-free,
Lemma 3.2 gives

{F,G}± = ±
[︁
⟨dGhor,dF ver⟩ − ⟨dF hor,dGver⟩

]︁
= ±

(︃
∂F

∂pi

∂G

∂qi
− ∂F

∂qi
∂G

∂pi

)︃
,

recovering the previous expression (6) for the (±) brackets. Again, we note that the (−)
bracket agrees with the commonly-used sign convention for the canonical Poisson structure
on a cotangent bundle, e.g., as in Marsden and Ratiu [16].

Applying Theorem 3.3 to H ∈ C∞(T ∗Q), we have

a = ∓∂H

∂pi

∂

∂qi
.

Since ρ is the identity and ∇∗
is trivial in local coordinates, (9) gives

q̇i = ∓∂H

∂pi
,

ṗi = ±∂H

∂qi
,

recovering the (±) Hamilton’s equations (7).

We give one more example, on the cotangent bundle, where we apply Theorem 3.3 to a
Hamiltonian arising from a metric on Q, obtaining coordinate-free dynamics in terms of the
Levi-Civita connection.
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Example 3.7. Let g : TQ⊗TQ → R be a (pseudo-)Riemannian metric on Q. Let g♭ : TQ →
T ∗Q denote the bundle map v ↦→ g(v, ·) and g♯ := (g♭)−1 : T ∗Q → TQ. Now, suppose we
have a Hamiltonian in the form

(10) H(q, p) =
1

2

⟨︁
p, g♯(p)

⟩︁
+ U(q),

where U ∈ C∞(Q) is a potential energy function.
Equip T ∗Q with the canonical (−) Poisson structure, and let ∇ be the Levi-Civita

connection on Q. It follows that

dHver(q, p) = g♯(p), dHhor(q, p) = dU(q),

where the kinetic-energy part of the Hamiltonian does not contribute to the horizontal part
due to the metric-compatibility of ∇. Furthermore, since ∇ is torsion-free, we have ∇ = ∇.
Since ρ is the identity and a = g♯(p), we see that (9) gives the equations

q̇ = g♯(p),

∇∗
q̇p = −dU(q).

In particular, the case U = 0 corresponds to geodesic flow. Note that applying g♯ to both
sides of the second equation, and substituting the first, gives the second-order dynamics

∇q̇ q̇ = − gradU(q).

3.5. Systems arising from Lie algebroid metrics. We now generalize Example 3.7
to the case where A is an arbitrary Lie algebroid over Q, equipped with a bundle metric
g : A⊗A → R, and (10) is a kinetic-plus-potential Hamiltonian on A∗. Our approach extends
that of Mart́ınez [17] for the case of action algebroids; see also Cortés and Mart́ınez [4] for a
related approach in the context of Lagrangian control systems.

Some caution is required: while there is a suitable notion of Levi-Civita (metric-compatible,
torsion-free) A-connection [4, 3, 10], this A-connection generally does not arise from a
TQ-connection ∇. For example, when A = g → •, the trivial connection is the unique
T•-connection, but its associated A-connection has torsion −[·, ·], which is nonvanishing
unless g is abelian. Instead, since g is a bundle metric, we may only assume the existence
(but not necessarily uniqueness) of a metric-compatible TQ-connection ∇, whose associated
A-connection may have nonvanishing torsion. (See the remark following Proposition III.1.5
in Kobayashi and Nomizu [11] on the existence of bundle-metric-compatible connections.)

Metric-compatibility of ∇ gives the same splitting of dH into vertical and horizontal parts
as in Example 3.7. Taking the (−) Lie–Poisson structure, we therefore have a = g♯(p) and

q̇ = ρ(a),(11a)

∇∗
ap = −ρ∗

(︁
dU(q)

)︁
.(11b)

Here, ∇ generally differs from ∇ and need not be metric-compatible, so applying g♯ to (11b)
is not as simple as before. We first define an additional A-connection

∇†
XY := g♯

(︁
∇∗

Xg♭(Y )
)︁
, X, Y ∈ Γ(A),

which is directly verified to satisfy Definition 2.11. Next, as in Cortés and Mart́ınez [4], we
define the gradient of U with respect to the Lie algebroid metric to be the section

gradU := g♯ ◦ ρ∗ ◦ dU ∈ Γ(A).

Therefore, applying g♯ to both sides of (11b) gives

(12) ∇†
aa = − gradU(q),

and the case U = 0 gives geodesic flow with respect to the A-connection ∇†
.
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Although ∇†
is generally distinct from the Levi-Civita A-connection ∇g, we next show

that in fact ∇†
aa = ∇g

aa. Thus ∇†
and ∇g are interchangeable in (12), and in particular

they have the same geodesic flow.

Lemma 3.8. Let A be a Lie algebroid over Q equipped with a bundle metric g. For any
bundle-metric-compatible TQ-connection ∇, the Levi-Civita connection ∇g satisfies

∇g
XY =

1

2

(︁
∇†

XY +∇†
Y X + [X,Y ]

)︁
,

for all X,Y ∈ Γ(A). That is, ∇g = 1
2

(︁
∇†

+∇†)︁
.

Proof. From [4, Proposition 2.6], the Levi-Civita connection is determined by

2g(∇g
XY,Z) = ρ(X)

[︁
g(Y,Z)

]︁
+ ρ(Y )

[︁
g(X,Z)

]︁
− ρ(Z)

[︁
g(X,Y )

]︁
− g

(︁
X, [Y, Z]

)︁
− g

(︁
Y, [X,Z]

)︁
+ g

(︁
Z, [X,Y ]

)︁
,

for all X,Y, Z ∈ Γ(A), which is a generalization of the usual tangent bundle formula. Now,

by the definitions of ∇†
, the dual connection ∇∗

, and ∇ itself, we have

ρ(X)
[︁
g(Y, Z)

]︁
= g(∇†

XY,Z) + g(Y,∇XZ)

= g(∇†
XY,Z) + g(Y,∇ZX + [X,Z]),

and likewise,

ρ(Y )
[︁
g(X,Z)

]︁
= g(∇†

Y X,Z) + g(X,∇ZY + [Y,Z])

On the other hand, metric-compatibility of ∇ gives

ρ(Z)
[︁
g(X,Y )

]︁
= g(∇ZX,Y ) + g(X,∇ZY ).

Substituting these into the formula for ∇g and canceling terms, we obtain

2g(∇g
XY,Z) = g

(︁
∇†

XY +∇†
Y X + [X,Y ], Z

)︁
,

which completes the proof. □

Corollary 3.9. For all X ∈ Γ(A), we have ∇g
XX = ∇†

XX. In particular, an A-path a
satisfies (12) if and only if

∇g
aa = − gradU(q).

Example 3.10. When ∇ is the Levi-Civita connection on A = TQ → Q, we have ∇†
=

∇ = ∇ and thus recover the equations obtained in Example 3.7.

Example 3.11. The special case where A is an action algebroid recovers the equations of
Mart́ınez [17], as we now show. An (infinitesimal) action of a Lie algebra g on Q is a Lie
algebra homomorphism g → X(Q), ξ ↦→ ξQ. The associated action algebroid is the trivial
bundle A = Q× g → Q, where ρ(q, ξ) = ξQ(q). The Lie bracket on Γ(A) is determined by
requiring that it agree with the bracket of g on constant sections, where ξ ∈ g is identified
with the constant section q ↦→ (q, ξ), and extended to arbitrary sections by the Leibniz rule.
We take the standard connection on a trivial bundle, where ∇ξ = 0 on constant sections.

Now, an inner product on g gives a bundle metric on A that is constant with respect to
the basepoint, i.e., gq(ξ, η) = g(ξ, η), so ∇ is a metric-compatible connection. It follows that

∇ξη = adξ η, ∇
∗
ξµ = − ad∗ξ µ, and ∇†

ξη = − ad†ξ η for constant sections ξ, η ∈ g and µ ∈ g∗.

Writing a(t) =
(︁
q(t), ξ(t)

)︁
and p(t) =

(︁
q(t), µ(t)

)︁
, we have ξ = g♯(µ), and (11) becomes

q̇ = ξQ(q),

µ̇− ad∗ξ µ = −ρ∗
(︁
dU(q)

)︁
.
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Applying g♯ to both sides of the second equation gives

ξ̇ − ad†ξ ξ = − gradU(q),

as in Mart́ınez [17]. Lemma 3.8 recovers the formula ∇g
ξη = 1

2

(︁
− ad†ξ η − ad†η ξ + [ξ, η]

)︁
for

constant sections ξ, η ∈ g, as in Cortés and Mart́ınez [4, Section 7].

Remark 3.12. See Grabowska, Urbański, and Grabowski [10] for an application of generalized
geodesic flow on a Lie algebroid to Wong’s equations [20], which are a classic example in
reduction theory. See also Li, Stern, and Tang [13, Example 3.18] for a discussion of this
example from the Lagrangian point of view.

4. Generalization of Hamilton’s phase space principle

4.1. The variational principle. In this section, we establish a variational principle for a
Hamiltonian H ∈ C∞(A∗) whose critical paths are solutions to the generalized Lie–Poisson
dynamics (9). We begin by describing the admissible paths and variations.

Definition 4.1. An (A ⊕ A∗)-path is a C1 path (a, p) : I → A ⊕ A∗ over a C2 base path

q = τ ◦a = π ◦p : I → Q such that q̇ = ρ(a), i.e., a is an A-path. Let P (A⊕A∗) ⊂ ˜︁P (A⊕A∗)
denote the Banach submanifold of (A⊕A∗)-paths, among all C1 paths with C2 base paths.

An admissible variation of (a, p) ∈ P (A⊕A∗) is a tangent vector (δa, δp) ∈ T(a,p)P (A⊕A∗)
such that δa = Xb,a ∈ TaP (A) is admissible in the sense of Definition 2.15. Relative to a
TQ-connection ∇ on A, we have

δaver = ∇ab, δpver = r, δahor = δphor = ρ(b),

where (b, r) ∈ ˜︁P (A⊕A∗) covers the same base path q, where b vanishes at the endpoints of
I, and where b and r may otherwise be arbitrary.

Note that δahor = δphor is necessary for (δa, δp) to be tangent to P (A⊕ A∗), which we
can see by differentiating the condition τ ◦ a = π ◦ p.

Remark 4.2. An alternative perspective is that A ⊕ A∗ → Q is in fact a Lie algebroid,
where the anchor is (a, p) ↦→ ρ(a) and the Lie bracket is just that for the A-component.
From this point of view, (A⊕A∗)-paths and admissible variations are a special case of the
earlier definitions in Section 2. In particular, we may make use of the results in Crainic and
Fernandes [6, Section 4.2] regarding the Banach manifold structure of P (A⊕A∗).

The usual techniques of calculus of variations may now be applied to P (A⊕A∗). Given a
functional S : P (A⊕A∗) → R, we denote

δS(a, p) :=
⟨︁
dS(a, p), (δa, δp)

⟩︁
,

where (δa, δp) is an admissible variation of (a, p). If ϵ ↦→ (aϵ, pϵ) ∈ P (A ⊕ A∗) is a curve,
i.e., a homotopy of (A ⊕ A∗)-paths, such that d

dϵ(aϵ, pϵ)
⃓⃓
ϵ=0

= (δa, δp), then we have

δS(a, p) = d
dϵS(aϵ, pϵ)

⃓⃓
ϵ=0

. In particular, when S has the form

S(a, p) =

∫︂
I
L
(︁
a(t), p(t)

)︁
dt,

for some L : A⊕A∗ → R, then differentiating under the integral sign gives

δS(a, p) =

∫︂
I

∂

∂ϵ
L
(︁
aϵ(t), pϵ(t)

)︁⃓⃓⃓
ϵ=0

dt =

∫︂
I

⟨︂
dL

(︁
a(t), p(t)

)︁
,
(︁
δa(t), δp(t)

)︁⟩︂
dt.

For notational simplicity, we now suppress the dependence of the integrand on t. The
TQ-connection ∇ can be used to expand the integrand into vertical and horizontal parts,⟨︁

dL(a, p), (δa, δp)
⟩︁
=

⟨︁
dLver(a, p), (∇ab, r)

⟩︁
+
⟨︁
dLhor(a, p), ρ(b)

⟩︁
.
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Denoting dLver =: (dLver
a , dLver

p ), we therefore obtain the variational formula

δS(a, p) =

∫︂
I

(︂⟨︁
dLver

a (a, p),∇ab
⟩︁
+
⟨︁
r, dLver

p (a, p)
⟩︁
+
⟨︁
dLhor(a, p), ρ(b)

⟩︁)︂
dt

=

∫︂
I

(︃⟨︂
−∇∗

adLver
a (a, p) + ρ∗

(︁
dLhor(a, p)

)︁
, b
⟩︂
+
⟨︁
r, dLver

p (a, p)
⟩︁)︃

dt

On the second line, we integrate by parts using the dual connection ∇∗
a and the fact that

b vanishes at the endpoints of I. Since b and r are otherwise arbitrary paths over q, we
conclude that δS(a, p) = 0 for all admissible variations (δa, δp) if and only if

(13) ∇∗
adLver

a (a, p) = ρ∗
(︁
dLhor(a, p)

)︁
, dLver

p (a, p) = 0.

In light of Remark 4.2, this can be seen as a particular case of the Euler–Lagrange–Poincaré
equations in Li et al. [13, Theorem 3.12], discussed further in Section 5, where L is a
Lagrangian on A⊕A∗ viewed as a Lie algebroid.

Note that, using the vertical lifts Va : Aq → TaA and Vp : A
∗
q → TpA

∗, we can write⟨︁
dLver

a (a, p),∇ab
⟩︁
=

⟨︁
dL(a, p), Va(∇ab)

⟩︁
=

d

dϵ
L(a+ ϵ∇ab, p)

⃓⃓⃓
ϵ=0⟨︁

r, dLver
p (a, p)

⟩︁
=

⟨︁
Vpr, dL(a, p)

⟩︁
=

d

dϵ
L(a, p+ ϵr)

⃓⃓⃓
ϵ=0

,

so dLver
a and dLver

p are simply the fiber derivatives of L along the A and A∗ fibers, respectively.
We now show that a particular choice of L gives a variational principle equivalent to the

generalized Lie–Poisson equations for H.

Theorem 4.3. Given a Hamiltonian H ∈ C∞(A∗), an (A⊕A∗)-path (a, p) satisfies the (±)
generalized Lie–Poisson equations (9) with a = ∓dHver(p) if and only if

δ

∫︂
I

(︁
⟨p, a⟩ ±H(p)

)︁
dt = 0,

with respect to admissible variations.

Proof. Equation (9a) is just the A-path condition for a, so it holds automatically for (A⊕A∗)-
paths. Let L(a, p) = ⟨p, a⟩ ±H(p), and let ∇ be a TQ-connection on A. Taking the fiber
derivatives of L, as above, we see that

dLver
a (a, p) = p, dLver

p (a, p) = a± dHver(p).

Next, to show that the horizontal derivative of ϕ(a, p) := ⟨a, p⟩ vanishes, we use the horizontal
lifts Ha : TqQ → TaA of ∇ and Hp : TqQ → TpA

∗ of ∇∗. Similarly to the proof of Lemma 3.1,
if ξ ∈ Γ(A) and µ ∈ Γ(A∗) satisfy ξ(q) = a and µ(q) = p, and if v ∈ TqQ, then⟨︁

dϕhor(a, p), v
⟩︁
=

⟨︁
dϕ(a, p), (Hav,Hpv)

⟩︁
=

⟨︂
dϕ(a, p),

(︁
Tξ(v)− Va(∇vξ), Tµ(v)− Vp(∇∗

vµ)
)︁⟩︂

=
⟨︁
dϕ(a, p), T (ξ, µ)(v)

⟩︁
−
⟨︁
dϕver

a (a, p),∇vξ
⟩︁
−
⟨︁
∇∗

vµ, dϕ
ver
p (a, p)

⟩︁
= v

[︁
⟨ξ, µ⟩

]︁
− ⟨µ,∇vξ⟩ − ⟨∇∗

vµ, ξ⟩
= 0,

where the last equality is the defining property of ∇∗. (The preceding lines can be seen as
the Leibniz rule for the covariant derivative of the tensor ϕ : A⊗A∗ → R.) Thus,

dLhor(a, p) = ±dHhor(p).

We conclude that (13) holds if and only if (9b) and a = ∓dHver(p) hold. □
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Example 4.4. If A = g → • is a Lie algebra, the variational principle of Theorem 4.3 can
be restated as follows: Find (ξ, µ) : I → g⊕ g∗ such that

δ

∫︂
I

(︁
⟨µ, ξ⟩ ±H(µ)

)︁
dt = 0,

where δξ = η̇ + [ξ, η] for arbitrary η : I → g vanishing at the endpoints of I, and where δµ is
arbitrary with no boundary conditions. This recovers the Lie–Poisson variational principle
of Cendra et al. [1, Theorem 2.1], who present it for the (−) Lie–Poisson equations.

Example 4.5. If A = TQ → Q is the tangent bundle, recall that the TQ-path condition is
a = q̇, since ρ is the identity map. Thus, TQ-paths are identified (via tangent prolongation)
with paths in Q, and it follows that (TQ ⊕ T ∗Q)-paths are identified with paths in T ∗Q.
Hence, Theorem 4.3 gives the equivalence of the (±) Hamilton’s equations (7) with

δ

∫︂
I

(︁
⟨p, q̇⟩ ±H(q, p)

)︁
dt = 0.

The (−) case, which is the usual sign convention, recovers Hamilton’s phase space principle.

4.2. Special case: the Hamilton–Poincaré variational principle and equations. If
A = TQ/G → Q/G is the Atiyah algebroid of a principal bundle Q → Q/G, we now show
that Theorem 4.3 recovers the equivalence of the Hamilton–Poincaré variational principle
and Hamilton–Poincaré equations of Cendra et al. [1, Theorem 8.1]. This is similar to the Lie
algebroid approach to the Lagrange–Poincaré variational principle and Lagrange–Poincaré
equations in Li, Stern, and Tang [13, Section 2.4], from which we adapt some of the details.
Note that the base of this algebroid is Q/G rather than Q.

As in [13], we begin by observing that a principal connection is a right splitting of the
Atiyah sequence

0 → ˜︁g → TQ/G
ρ−→ T (Q/G) → 0,

where ˜︁g denotes the adjoint bundle Q ×G g, and where a left splitting is a principal
connection 1-form (Mackenzie [14, Chapter 5]). This gives a splitting of the Atiyah algebroid
A = TQ/G ∼= T (Q/G)⊕ ˜︁g, where ρ is the projection onto the first component. In terms of
this splitting, the bracket of two sections ξ = (X, ξ) and η = (Y, η) is[︁

(X, ξ), (Y, η)
]︁
=

(︁
[X,Y ], ˜︁∇Xη − ˜︁∇Y ξ + [ξ, η]− ˜︁R(X,Y )

)︁
,

where ˜︁∇ is the covariant derivative and ˜︁R the curvature form of the principal connection (Li
et al. [13, Equation 3.4], Cendra et al. [2, Theorem 5.2.4], Mackenzie [14, Theorem 7.3.7]).

Given an A-path a = (x, ẋ, v), where x is the base path in Q/G, and an arbitrary path
b = (x, δx, η) in A, it follows from a calculation in [13, Section 3.4] that admissible variations
have horizontal component ρ(b) = δx and vertical component

(14) ∇ab =
(︁
∇ẋ(δx), ˜︁∇ẋη + [v, η]− ˜︁R(ẋ, δx)

)︁
.

That is, admissible variations have the form δa = (δx, δẋ, δv), where

δẋ = ∇ẋ(δx), δv = ˜︁∇ẋη + [v, η]− ˜︁R(ẋ, δx),

and where δx and η both vanish at the endpoints of I. Finally, using the principal connection
to split A∗ = T ∗Q/G ∼= T ∗(Q/G) ⊕ ˜︁g∗, we can write p = (x, y, µ), whose variations have
the form δp = (δx, δy, δµ), where δy and δµ are arbitrary. It follows that the variational
principle in Theorem 4.3 can be written as

δ

∫︂
I

(︁
⟨y, ẋ⟩+ ⟨µ, v⟩ ±H(x, y, µ)

)︁
dt = 0,
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subject to the admissible variations above. The (−) case is precisely the Hamilton–Poincaré
variational principle of Cendra et al. [1, Theorem 8.1].

Let us now see how this corresponds to the generalized Lie–Poisson equations. First,
observe that (9a) says that a = (x, ẋ, v) is an A-path, so a = ∓dHver(p) becomes

ẋ = ∓∂H

∂y
,(15a)

v = ∓∂H

∂µ
.(15b)

Next, observe that, for p = (x, y, µ) and arbitrary b = (x, δx, η), by (14) we have

⟨p,∇ab⟩ =
⟨︁
y,∇ẋ(δx)

⟩︁
+
⟨︁
µ, ˜︁∇ẋη + [v, η]− ˜︁R(ẋ, δx)

⟩︁
,

from which it follows that

∇∗
ap =

(︂
∇∗

ẋy +
⟨︁
µ, ˜︁R(ẋ, ·)

⟩︁
, ˜︁∇∗

ẋµ− ad∗v µ
)︂
.

Finally, equation (9b) says that this is equal to

±ρ∗
(︁
dHhor(p)

)︁
=

(︃
±∂H

∂x
, 0

)︃
.

That is,

∇∗
ẋy = ±∂H

∂x
−
⟨︁
µ, ˜︁R(ẋ, ·)

⟩︁
,(15c) ˜︁∇∗

ẋµ = ad∗v µ.(15d)

In the (−) case, (15) is the coordinate-free form of the Hamilton–Poincaré equations in
Cendra et al. [1], modulo small differences in notation, e.g., [1] write both covariant derivatives

∇ẋ and ˜︁∇ẋ as D/Dt.

5. Correspondence to the Lagrangian case

We conclude with a discussion of the relationship between Hamiltonian mechanics on
A∗ and Lagrangian mechanics on A, linking the results of the present paper to those of Li,
Stern, and Tang [13].

Definition 5.1. We say H ∈ C∞(A∗) is hyperregular if dHver : A∗ → A is a diffeomorphism.
Likewise, L ∈ C∞(A) is hyperregular if dLver : A → A∗ is a diffeomorphism.

Remark 5.2. Here, dHver and dLver are defined independently of a choice of connection,
since they are simply the derivatives along fibers. These fiber derivatives are often denoted
(especially in the case A = TQ) by FH and FL and called Legendre transformations.

IfH ∈ C∞(A∗) is a hyperregular Hamiltonian, and A∗ is equipped with the (±) generalized
Lie–Poisson structure, we define the Lagrangian L ∈ C∞(A) by

(16a) L(a) = ⟨p, a⟩ ±H(p),

where p ∈ A∗ is defined implicitly by a = ∓dHver(p). It follows by a short calculation using
the chain rule that L is also hyperregular with

(16b) p = dLver(a).

(See Marsden and Ratiu [16, Exercise 7.2-3] for the case of arbitrary vector bundles.)
Conversely, given a hyperregular Lagrangian L ∈ C∞(A), we may define H ∈ C∞(A∗) by

(17a) H(p) = ∓
(︁
⟨p, a⟩ − L(a)

)︁
,
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where a ∈ A is defined implicitly by p = dLver(a). A calculation similar to the one described
above shows that H is also hyperregular with

(17b) a = ∓dHver(p).

Thus, the hypothesis of hyperregularity allows one to start with either a Hamiltonian or
Lagrangian and pass to the other.

The following theorem summarizes the main results of this paper, along with those of Li,
Stern, and Tang [13], and establishes their relationship. Compare Cendra et al. [1, Theorem
8.1] for the special case of the Atiyah algebroid discussed in Section 4.2.

Theorem 5.3. Let (a, p) be an (A⊕A∗)-path, and let ∇ be a TQ-connection on A. Given
a Hamiltonian H ∈ C∞(A∗), the following are equivalent:

(i) The variational principle

δ

∫︂
I

(︁
⟨p, a⟩ ±H(p)

)︁
dt = 0

holds with respect to admissible variations of (A⊕A∗)-paths.
(ii) The generalized Lie–Poisson equations

∇∗
ap = ±ρ∗

(︁
dHhor(p)

)︁
hold with a = ∓dHver(p).

Given a Lagrangian L ∈ C∞(A), the following are equivalent:

(iii) The variational principle

δ

∫︂
I
L(a) dt = 0

holds with respect to admissible variations of A-paths, and p = dLver(a).
(iv) The Euler–Lagrange–Poincaré equations

∇∗
ap = ρ∗

(︁
dLhor(a)

)︁
hold with p = dLver(a).

Under the hypothesis of hyperregularity, all of (i)–(iv) are equivalent.

Remark 5.4. In [13], ∇∗
a does not denote the dual connection but rather the adjoint of ∇a,

similar to ad and ad∗. This is −∇∗
a in the notation of the present paper, leading to a change

of sign in the Euler–Lagrange–Poincaré equations.

Proof. The equivalence of (i) and (ii) is Theorem 4.3, and that of (iii) and (iv) is [13, Theorem
3.12]. Under the hypothesis of hyperregularity, (i) implies (iii) by (16), and conversely, (iii)
implies (i) by (17). □
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[10] K. Grabowska, P. Urbański, and J. Grabowski, Geometrical mechanics on algebroids, Int. J. Geom.
Methods Mod. Phys., 3 (2006), pp. 559–575.

[11] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a
division of John Wiley & Sons, Inc.), New York-London, 1963.
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