
FUNCTIONAL EQUIVARIANCE AND MODIFIED VECTOR FIELDS

ARI STERN AND SANAH SURI

Abstract. This paper examines functional equivariance, recently introduced by McLachlan and
Stern [Found. Comput. Math. (2022)], from the perspective of backward error analysis. We
characterize the evolution of certain classes of observables (especially affine and quadratic) by
structure-preserving numerical integrators in terms of their modified vector fields. Several results on
invariant preservation and symplecticity of modified vector fields are thereby generalized to describe
the numerical evolution of non-invariant observables.

1. Introduction

Functional equivariance, recently introduced by McLachlan and Stern [13], is a structure-preserving
property of numerical integrators describing the evolution of certain observables. Given ẏ = f(y), the
chain rule implies that a C1 observable z = F (y) evolves according to ż = F ′(y)f(y). A numerical
integrator is said to be F -functionally equivariant if, when the integrator is applied to ẏ = f(y) for
any f , the numerical evolution of

(︁
y, F (y)

)︁
is identical to that obtained by numerically integrating

the augmented system

ẏ = f(y), ż = F ′(y)f(y).

If Φ is a one-step numerical integrator, Φf is its application to the vector field f , and Φg is its
application to the augmented vector field g(y, z) =

(︁
f(y), F ′(y)f(y)

)︁
, then this is the statement

that the following diagram commutes:

y0 y1

(y0, z0) (y1, z1) .

Φf

(id,F ) (id,F )

Φg

A well-studied special case is when F ′(y)f(y) = 0 and Φ preserves the invariance of F (y) whenever
F is, e.g., affine or quadratic; see Hairer, Lubich, and Wanner [9, Chapter IV] for a survey of such
results. However, there are many important cases discussed in [13] where one may wish to preserve
the evolution of non-invariant observables, e.g., local conservation laws in numerical PDEs.

In this paper, we examine functional equivariance from the perspective of modified vector fields,
which form the foundation for backward error analysis of numerical integrators; cf. [9, Chapter IX]
and references therein. From this point of view, a numerical trajectory of ẏ = f(y) is formally viewed

as a solution to a modified equation ˜︁ẏ = ˜︁f(˜︁y), so the numerical evolution of the observable ˜︁z = F (˜︁y)
is given by ˜︁ż = F ′(˜︁y) ˜︁f(˜︁y). Therefore, F -functional equivariance corresponds to the condition

(1) ˜︁g(︁˜︁y, F (˜︁y))︁ = (︁ ˜︁f(˜︁y), F ′(˜︁y) ˜︁f(˜︁y))︁,
where ˜︁g is the modified vector field of the augmented vector field g given previously. As we will
see, this approach generalizes several well-known results relating invariant-preserving integrators to

modified vector fields, corresponding to the special case where F ′(y)f(y) = 0 implies F ′(˜︁y) ˜︁f(˜︁y) = 0.
The paper is organized as follows:

• Section 2 develops a theory of functional equivariance for integrator maps ϕ : f ↦→ ˜︁f ,
which take vector fields to modified vector fields, as in Munthe-Kaas and Verdier [14] and
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McLachlan, Modin, Munthe-Kaas, and Verdier [11]. This section proves integrator-map
versions of the key results in [13, Section 2].

• Section 3 considers modified vector fields of one-step integrators Φ. In this setting, ˜︁f is a
formal power series in the step size, and its finite truncations are integrator maps in the
sense of the previous section. For F -functionally equivariant integrators, in the sense of [13],
we show that the condition (1) holds term-by-term. Considering truncations therefore links
the results in [13] to those in Section 2 of the present paper.

• Finally, Section 4 discusses the generalization of the results in the preceding sections to
additive and partitioned integrator maps and integrators, including additive/partitioned
Runge–Kutta methods and splitting/composition methods.

Acknowledgments. This material is based upon work supported by the National Science Founda-
tion under Grant No. DMS-2208551.

2. Functional equivariance of integrator maps

2.1. Integrator maps and affine equivariance. Let f ∈ X(Y ) be a smooth vector field on a
Banach space Y , and denote its time-h flow by exphf : Y → Y . A one-step numerical integrator Φ
approximates this flow by Φhf : Y → Y . In backward error analysis, one views this as the flow of a

modified vector field ˜︁f , for which Φhf = exph ˜︁f . However, ˜︁f is typically a formal power series in h,
which must be interpreted as a (possibly divergent) asymptotic expansion rather than a genuine
vector field (Hairer, Lubich, and Wanner [9, Chapter IX]).

To sidestep these technicalities, at least until Section 3, we begin by following Munthe-Kaas and
Verdier [14] and McLachlan, Modin, Munthe-Kaas, and Verdier [11] in first considering integrator
maps, whose modified vector fields are genuine vector fields.

Definition 2.1. An integrator map ϕ is a collection of smooth maps ϕY : X(Y ) → X(Y ), for each
Banach space Y . For f ∈ X(Y ), we will typically write ϕ(f) to mean the same thing as ϕY (f),
which we call the modified vector field of f with respect to ϕ. When ϕ is fixed, we will often denote

the modified vector field simply by ˜︁f .
Remark 2.2. We allow for infinite-dimensional Banach spaces, which are used in some of the PDE
applications discussed in McLachlan and Stern [13]. This is in contrast with [14, 11], who consider
only vector fields on Rn for n ∈ N. We are interested primarily in the algebraic properties of
these methods, and we do not attempt to address the tricky analytical issues that may arise when
considering backward error analysis of integrators on arbitrary Banach spaces.

Fox example, any ϕ defined by a finite B-series (e.g., a finite truncation of the B-series for the
modified vector field of a Runge–Kutta method) gives an integrator map in the sense of the definition
above. Note that infinite B-series may diverge for certain f , even on Rn.

The integrator maps considered in this section will also be affine equivariant in the sense of [11].
By the main result of that paper, this means that they are B-series maps. However, we will usually
not use the equivalent characterization of these maps in terms of trees and elementary differentials,
instead relying primarily on the affine equivariance property in the results to follow.

Definition 2.3. Given a Gâteaux differentiable map χ : Y → U , a pair of vector fields f ∈ X(Y )
and g ∈ X(U) is χ-related if χ′(y)f(y) = g

(︁
χ(y)

)︁
for all y ∈ Y , and we write f ∼χ g. In particular, if

A : Y → U is affine, then f ∼A g whenever A′ ◦ f = g ◦A. An integrator map ϕ is affine equivariant
if f ∼A g implies ϕ(f) ∼A ϕ(g) for all affine maps A between Banach spaces.

2.2. Functional equivariance. We next define functional equivariance for integrator maps.

Definition 2.4. Given a Gâteaux differentiable map F : Y → Z and f ∈ X(Y ), define the augmented
vector field g ∈ X(Y × Z) by g(y, z) =

(︁
f(y), F ′(y)f(y)

)︁
. An integrator map ϕ is F -functionally
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equivariant if ϕ(f) ∼(id,F ) ϕ(g) for all f , which is precisely the condition (1). Given a class of maps
F , we say that ϕ is F-functionally equivariant if it is F -functionally equivariant for all F ∈ F(Y, Z)
and all Banach spaces Y and Z.

Let us now restrict our attention to affine equivariant integrator maps. We first show that affine
equivariance allows us to characterize ˜︁g(˜︁y, ˜︁z) for all ˜︁z ∈ Z, not just ˜︁z = F (˜︁y). This gives a stronger
notion of what it means for an affine equivariant integrator map to be F -functionally equivariant:

If g is the augmented vector field of f , then ˜︁g is the augmented vector field of ˜︁f .
Proposition 2.5. If ϕ is affine equivariant, then ˜︁g(˜︁y, ˜︁z) = ˜︁g(︁˜︁y, F (˜︁y))︁ for all (˜︁y, ˜︁z) ∈ Y ×Z. Conse-

quently, the F -functional equivariance condition (1) holds if and only if ˜︁g(˜︁y, ˜︁z) = (︁ ˜︁f(˜︁y), F ′(˜︁y) ˜︁f(˜︁y))︁.
Proof. Consider the affine map A(y, z) = (y, z+ c), where c ∈ Z is a constant. Since g depends only
on y, we have g(y, z) = g(y, z + c), i.e., g ∼A g. Affine equivariance therefore implies ˜︁g ∼A ˜︁g, i.e.,˜︁g(˜︁y, ˜︁z) = ˜︁g(˜︁y, ˜︁z + c). For any fixed (˜︁y, ˜︁z) ∈ Y × Z, taking c = F (˜︁y)− ˜︁z completes the proof. □

We next consider the case where F(Y,Z) is the class of affine maps Y → Z. Compare the
following result with [13, Proposition 2.6].

Proposition 2.6. Every affine equivariant integrator map is affine functionally equivariant.

Proof. If F : Y → Z is affine, then so is (id, F ) : Y → Y × Z. Since f and g in Definition 2.4 satisfy
f ∼(id,F ) g, affine equivariance of ϕ implies ϕ(f) ∼(id,F ) ϕ(g). □

We now characterize functional equivariance with respect to more general classes of maps F , such
as quadratic or higher-degree polynomial maps. Since the integrator maps under consideration are
affine equivariant, we make the following natural set of assumptions on F ; cf. [13, Assumption 2.8].

Assumption 2.7. The class of maps F satisfies the following:

• F(Y, Y ) contains the identity map for all Y ;
• F(Y,Z) is a vector space for all Y and Z;
• F is invariant under composition with affine maps, in the following sense: If A : Y → U and
B : V → Z are affine and F ∈ F(U, V ), then B ◦ F ◦A ∈ F(Y,Z).

The main result of this section will relate functional equivariance to the more well-studied notion
of invariant preservation, which we now recall.

Definition 2.8. Given a Gâteaux differentiable map F : Y → Z, an integrator map ϕ is F -invariant
preserving if F ′f = 0 implies F ′ϕ(f) = 0 for all f . We say that ϕ is F-invariant preserving, for a
class of maps F , if ϕ is F -invariant preserving for all F ∈ F(Y,Z) and all Banach spaces Y and Z.

Although functional equivariance seems stronger than invariant preservation, since it accounts
for both invariant and non-invariant observables F , the properties are in fact equivalent for affine
equivariant integrator maps. Compare the following result with [13, Theorem 2.9].

Theorem 2.9. Let F satisfy Assumption 2.7. An affine equivariant integrator map ϕ is F-invariant
preserving if and only if it is F-functionally equivariant.

Proof. (⇒) Suppose ϕ is F-invariant preserving. If F ∈ F(Y,Z), Assumption 2.7 implies that
G(y, z) = F (y) − z is in F(Y × Z,Z). Furthermore, G is an invariant of the augmented vector
field g, since G′(y, z)g(y, z) = F ′(y)f(y)− F ′(y)f(y) = 0. Writing ˜︁g = (˜︁gY , ˜︁gZ), the fact that ϕ is
F-invariant preserving implies

(2) 0 = G′(˜︁y, ˜︁z)˜︁g(˜︁y, ˜︁z) = F ′(˜︁y)˜︁gY (˜︁y, ˜︁z)− ˜︁gZ(˜︁y, ˜︁z),
Now, letting A(y, z) = y be linear projection onto the Y component, g ∼A f implies ˜︁g ∼A

˜︁f by affine

equivariance. This says that ˜︁gY (˜︁y, ˜︁z) = ˜︁f(˜︁y), so we conclude from (2) that ˜︁gZ(˜︁y, ˜︁z) = F ′(˜︁y) ˜︁f(˜︁y).
Hence, ϕ is F-functionally equivariant.
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(⇐) Conversely, suppose ϕ is F-functionally equivariant. If F ∈ F(Y,Z) is an invariant of
f ∈ X(Y ), then the augmented vector field is g(y, z) =

(︁
f(y), 0

)︁
, and F-functional equivariance

implies ˜︁g(︁˜︁y, ˜︁z)︁ =
(︁ ˜︁f(˜︁y), F ′(˜︁y) ˜︁f(˜︁y))︁ by Proposition 2.5. However, taking the linear projection

B(y, z) = z gives g ∼B 0, so affine equivariance implies ˜︁g ∼B
˜︁0 = 0. (As in [11, Lemma 6.1], one

proves ˜︁0 = 0 by considering the affine map from the trivial Banach space to any point of Z.) Thus,

F ′(˜︁y) ˜︁f(˜︁y) = 0, so ϕ is F-invariant preserving. □

Example 2.10. We illustrate functional equivariance for some simple B-series integrator maps,
whose terms are elementary differentials corresponding to rooted trees.

(i) The integrator map (f) = f is the identity, so it is trivially seen to be F -functionally
equivariant with respect to all maps F .

(ii) Consider the integrator map (f) = f ′f . Applying this to the augmented vector field gives

(g) =
(︁
f ′f, F ′f ′f + F ′′(f, f)

)︁
=

(︂
(f), F ′ (f) + F ′′(︁ (f), (f)

)︁)︂
.

If F is affine, then F ′′ = 0, so the last term vanishes and is F -functionally equivariant.
However, if F ′′ ̸= 0, then this generally does not hold. Thus, is affine functionally
equivariant, as guaranteed by Proposition 2.6, but not quadratic functionally equivariant.

(iii) Consider the integrator map (f) = f ′f ′f , whose application to the augmented vector field
is

(g) =
(︁
f ′f ′f, F ′f ′f ′f + F ′′(f ′f, f)

)︁
=

(︂
(f), F ′ (f) + F ′′(︁ (f), (f)

)︁)︂
.

As in the previous example, is affine functionally equivariant, since F ′′ = 0 for affine F ,
but not quadratic functionally equivariant.

(iv) Consider the integrator map (f) = f ′′(f, f), whose application to the augmented vector
field is

(g) =
(︁
f ′′(f, f), F ′f ′′(f, f) + 2F ′′(f ′f, f) + F ′′′(f, f, f)

)︁
=

(︂
(f), F ′ (f) + 2F ′′(︁ (f), (f)

)︁
+ F ′′′(︁ (f), (f), (f)

)︁)︂
As in the last two examples, is affine functionally equivariant, since the F ′′ and F ′′′ terms
vanish, but not quadratic functionally equivariant.

(v) Finally, consider the integrator map ϕ(f) = f ′f ′f − 1
2f

′′(f, f), i.e., ϕ = − 1
2 . Combining

the calculations in the previous two examples, we get

ϕ(g) =
(︂
f ′f ′f − 1

2f
′′(f, f), F ′(︁f ′f ′f − 1

2f
′′(f, f)

)︁
− 1

2F
′′′(f, f, f)

)︂
=

(︂
ϕ(f), F ′ϕ(f)− 1

2F
′′′(︁ (f), (f), (f)

)︁)︂
,

where subtraction causes the F ′′ terms to cancel. Thus, ϕ is quadratic functionally equi-
variant, since F ′′′ = 0 for quadratic F , but not cubic functionally equivariant. Regarding
the general impossibility of cubic functional equivariance for B-series methods (i.e., B-series
other than the exact flow), see McLachlan and Stern [13, Corollary 2.10(c)], which uses
results of Chartier and Murua [6] and Iserles, Quispel, and Tse [10] on cubic invariant
preservation.

We remark that the modified vector field for the implicit midpoint method is given by a B-series

+
(︂ 1

12
− 1

24

)︂
+ · · · .
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From (i) and (v), we see that the terms at each order are quadratic functionally equivariant integrator
maps, corresponding to the fact that the implicit midpoint method is quadratic functionally
equivariant. This is an example of a more general link between functional equivariance of integrators
and their modified vector fields, which will be explored in Section 3.

2.3. Closure under differentiation and observables involving variations. We are often
interested in the evolution of observables of the variational equation

(3) ẏ = f(y), η̇ = f ′(y)η,

where η ∈ Y is called a variation of y. For example, the canonical symplectic two-form is a
quadratic observable depending on two variations of y, and it is invariant whenever f is a canonical
Hamiltonian vector field. In order to describe the numerical evolution of this and other observables
depending on variations, we develop the notion of closure under differentiation for affine equivariant
integrator maps. The idea of closure under differentiation and its connection with symplecticity,
particularly for Runge–Kutta methods, was pioneered by Bochev and Scovel [3]. We adapt the
approach of McLachlan and Stern [13, Section 2.3] for affine equivariant integrators.

Definition 2.11. Given f ∈ X(Y ), define δf ∈ X(Y ×Y ) by δf(y, η) =
(︁
f(y), f ′(y)η

)︁
, corresponding

to the variational system (3). An integrator map ϕ is closed under differentiation if ϕ(δf) = δϕ(f)
for all f .

Remark 2.12. The vector field δf is called the tangent lift of f by Bochev and Scovel [3]; elsewhere,
it is called the complete lift of f , cf. Yano and Kobayashi [15].

Compare the following result with [13, Theorem 2.12].

Theorem 2.13. Affine equivariant integrator maps are closed under differentiation.

Proof. Given f ∈ X(Y ), consider the system

ẋ = f(x), ẏ = f(y),

corresponding to the vector field f × f ∈ X(Y × Y ). Since f × f ∼A f , where A is either of the
projections (x, y) ↦→ x or (x, y) ↦→ y, affine equivariance of ϕ implies that ϕ(f × f) ∼A ϕ(f) and
thus ϕ(f × f) = ϕ(f)×ϕ(f). Now, taking F (x, y) = (x− y)/ϵ for ϵ > 0 gives the augmented system

(4) ẋ = f(x), ẏ = f(y), ż =
f(x)− f(y)

ϵ
.

Since F is affine, Proposition 2.6 says that applying ϕ to this augmented system gives

(5) ˜︁ẋ = ˜︁f(˜︁x), ˜︁ẏ = ˜︁f(˜︁y), ˜︁ż = ˜︁f(˜︁x)− ˜︁f(˜︁y)
ϵ

,

which is the augmented system of ϕ(f × f) = ϕ(f)×ϕ(f). Now, letting x = y+ ϵη in (4) and taking
ϵ→ 0, the z-component converges to f ′(y)η. Similarly, letting ˜︁x = ˜︁y + ϵ˜︁η in (5) and taking ϵ→ 0,

the ˜︁z-component converges to ˜︁f ′(˜︁y)˜︁η. Since ϕ is smooth and maps (4) to (5) for all ϵ, we conclude
that ϕ(δf) = δϕ(f), which completes the proof. □

We immediately obtain the following corollary for observables of the variational equation; compare
[13, Corollary 2.13].

Corollary 2.14. Let f ∈ X(Y ) and F : Y × Y → Z, and suppose ϕ is affine equivariant and
F -functionally equivariant. If g ∈ X(Y × Y × Z) is the augmented vector field of δf ,

g(y, η, z) =
(︂
f(y), f ′(y)η, F ′(y, η)

(︁
f(y), f ′(y)η

)︁)︂
,

then ˜︁g is the augmented vector field of δ ˜︁f ,˜︁g(˜︁y, ˜︁η, ˜︁z) = (︂ ˜︁f(˜︁y), ˜︁f ′(˜︁y)˜︁η, F ′(˜︁y, ˜︁η)(︁ ˜︁f(˜︁y), ˜︁f ′(˜︁y)˜︁η)︁)︂.
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That is, ϕ
(︁
(δf, F ′δf)

)︁
=

(︁
δϕ(f), F ′δϕ(f)

)︁
.

Proof. We have ϕ
(︁
(δf, F ′δf)

)︁
=

(︁
ϕ(δf), F ′ϕ(δf)

)︁
=

(︁
δϕ(f), F ′δϕ(f)

)︁
, where the first equality holds

by F -functional equivariance and the second equality holds by closure under differentiation. □

We can easily extend Corollary 2.14 to observables depending on two or more variations. For
instance, if ξ and η are each variations of y, then (y, ξ, η) ∈ Y × Y × Y satisfies

(6) ẏ = f(y), ξ̇ = f ′(y)ξ, η̇ = f ′(y)η.

This is A-related to δf , where A is either of the projections (y, ξ, η) ↦→ (y, ξ) or (y, ξ, η) ↦→ (y, η), so
affine equivariance of ϕ implies that we have

(7) ˜︁ẏ = ˜︁f(˜︁y), ˜︁ξ̇ = ˜︁f ′(˜︁y)˜︁ξ, ˜︁η̇ = ˜︁f ′(˜︁y)˜︁η.
If ϕ is F -functionally equivariant for some F : Y × Y × Y → Z, we may then conclude that it maps
the augmented vector field of (6) to that of (7).

A particularly important instance of this, which generalizes the result that quadratic invariant
preserving B-series are symplectic, is worked out in the following example.

Example 2.15. If F (y, ξ, η) = ω(ξ, η), where ω : Y × Y → Z is a continuous bilinear map, then we
augment (6) by the equation ż = (Lfω)y(ξ, η). Here, (Lfω)y is the Lie derivative of ω along f at y.
Hence, the augmented vector field is

g(y, ξ, η, z) =
(︁
f(y), f ′(y)ξ, f ′(y)η, (Lfω)y(ξ, η)

)︁
.

If ϕ is quadratic functionally equivariant, then it follows that ˜︁g is the augmented vector field of (7),˜︁g(˜︁y, ˜︁ξ, ˜︁η, ˜︁z) = (︁ ˜︁f(˜︁y), ˜︁f ′(˜︁y)˜︁ξ, ˜︁f ′(˜︁y)˜︁η, (L ˜︁fω)˜︁y(˜︁ξ, ˜︁η))︁.
In particular, if Lfω = 0, then Theorem 2.9 implies that L ˜︁fω = 0 as well. As a special case, if (Y, ω)

is a symplectic vector space and f is a symplectic vector field, then ˜︁f is also symplectic.

2.4. Quadratic functionally equivariant B-series. McLachlan et al. [11] proved that affine
equivariant integrator maps are precisely those that can be represented by a B-series. Let T denote
the set of rooted trees. As in Example 2.10, we identify each τ ∈ T with the integrator map taking

f to its corresponding elementary differential: (f) = f , (f) = f ′f , (f) = f ′f ′f , (f) = f ′′(f, f),
etc. We can thus express any affine equivariant integrator map as a B-series

ϕ =
∑︂
τ∈T

b(τ)

σ(τ)
τ,

where σ(τ) is the symmetry coefficient of τ . This section will assume that the reader is familiar
with B-series, and we refer to Hairer et al. [9] and Butcher [4] for a comprehensive treatment.

Hairer et al. [9, Theorem IX.9.3] prove that the truncated modified vector field of a B-series
integrator is symplectic, and thus also quadratic invariant preserving, if and only if

(8) b(u ◦ v) + b(v ◦ u) = 0, ∀u, v ∈ T,

where ◦ is the Butcher product on rooted trees. Example 2.10(v), which has b( ) = 1 and b( ) = −1,

can be seen to satisfy this condition condition, since ◦ = and ◦ = . The proof given in [9,
Theorem IX.9.3] makes use of the symplecticity criterion of Calvo and Sanz-Serna [5] for B-series
integrators in terms of their coefficients a(τ), along with a recursion formula relating these to the
b(τ) coefficients of the modified vector field. We remark that preservation of quadratic invariants by
Runge–Kutta methods was first characterized by Cooper [7].

Here, we give a new, direct proof of the criterion (8) for quadratic functional equivariance
of integrator maps. Our task is simplified substantially by the fact that quadratic functional
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equivariance describes the evolution of observables for arbitrary vector fields f , not just Hamiltonian
vector fields or those preserving a particular invariant.

Theorem 2.16. A B-series integrator map is quadratic functionally equivariant if and only if its
coefficients satisfy b(u ◦ v) + b(v ◦ u) = 0 for all u, v ∈ T .

Proof. We write each rooted tree as τ = [τ1, . . . , τm], denoting that the root of τ has m children,
which are the roots of subtrees τ1, . . . , τm. Let F : Y → Z be quadratic, meaning that F ′′′ = 0.
Applying τ to g = (f, F ′f) and using the Leibniz rule to differentiate the product F ′f gives

τ(g) =

(︃
τ(f), F ′τ(f) +

m∑︂
i=1

F ′′(︁[τ1, . . . , ˆ︁τi, . . . , τm](f), τi(f)
)︁)︃
,

where ˆ︁τi denotes that the subtree τi is omitted. Letting u = [τ1, . . . , ˆ︁τi, . . . , τm] and v = τi, we see
that each term in the sum above can be rewritten as F ′′(︁u(f), v(f))︁ with u ◦ v = τ . However,
this term can appear more than once if v = τi for multiple values of i. Recall that the symmetry
coefficient σ(τ) is defined recursively by

σ(τ) = σ(τ1) · · ·σ(τm)µ1! · · ·µk!,

where µ1, . . . , µk count the number of occurrences of each unique tree in the list τ1, . . . , τm, k ≤ m.
If µj is the number of times τi appears in τ , then

σ(u) = σ(τ1) · · · ˆ︁σ(τi) · · ·σ(τm)µ1! · · · (µj − 1)! · · ·µk!,

and since v = τi, it follows that

µj =
σ(u ◦ v)
σ(u)σ(v)

.

This is precisely the number of times F ′′(︁u(f), v(f))︁ appears in the sum, which we now rewrite as

m∑︂
i=1

F ′′(︁[τ1, . . . , ˆ︁τi, . . . , τm](f), τi(f)
)︁
=

∑︂
u◦v=τ

σ(u ◦ v)
σ(u)σ(v)

F ′′(︁u(f), v(f))︁.
Thus, summing the terms of the B-series and rewriting

∑︁
τ∈T

∑︁
u◦v=τ as a sum over u, v ∈ T , we get

ϕ(g) =

(︃
ϕ(f), F ′ϕ(f) +

∑︂
u,v∈T

b(u ◦ v)
σ(u)σ(v)

F ′′(︁u(f), v(f))︁)︃.
Now, ϕ is quadratic functionally equivariant if and only if the extra terms in this sum cancel for
all f and F . We have F ′′(︁u(f), v(f))︁ = F ′′(︁v(f), u(f))︁, by symmetry of the Hessian, but no other
relations among the terms in general. (See below for further discussion of this claim.) Hence, these
extra terms cancel generically if and only if b(u ◦ v) + b(v ◦ u) = 0 for all u, v ∈ T . □

The “only if” conclusion depends on the fact that, for all u, v ∈ T , one may construct f and F such
that F ′′(︁u(f), v(f))︁ = F ′′(︁v(f), u(f))︁ are the only nonvanishing Hessian terms at some point. When
F corresponds to the canonical symplectic form, Calvo and Sanz-Serna [5, Lemma 5.1] construct a
Hamiltonian vector field f that has this property. (See also Hairer et al. [9, Theorem VI.7.4], which
gives a similar construction that works for both B-series and P-series.) We give a self-contained
proof in Appendix A, where the construction of f and F is simplified by the fact that we are not
constrained to the symplectic setting.



8 ARI STERN AND SANAH SURI

3. Modified vector fields of functionally equivariant integrators

3.1. Modified vector fields and relatedness. We now consider the case where we are given
a numerical integrator Φ rather than an integrator map. As in Hairer et al. [9, Chapter IX], we
suppose that Φhf may be expanded as a formal power series in h,

Φhf = id + hf + h2d2 + h3d3 + · · · .

We then seek a modified vector field ˜︁f , also expressed as a formal power series,˜︁f = f + hf2 + h2f3 + · · · ,

such that Φhf = exph ˜︁f , in the sense that the power series match term-by-term. Matching these
terms yields a recurrence for fj in terms of the given dj [9, Equation IX.1.4].

We begin by extending the notion of χ-relatedness to modified vector fields, then prove a general
result linking this to properties of the integrator Φ. This result will be instrumental in characterizing
the modified vector fields of affine equivariant and functionally equivariant integrators.

Definition 3.1. Let ˜︁f = f+hf2+h
2f3+ · · · and ˜︁g = g+hg2+h

2g3+ · · · , where f, f2, f3, . . . ∈ X(Y )

and g, g2, g3, . . . ∈ X(U). Given χ : Y → U , define ˜︁f ∼χ ˜︁g to mean that f ∼χ g and fj ∼χ gj for all

j = 2, 3, . . . , i.e., ˜︁f and ˜︁g are term-by-term χ-related.

Theorem 3.2. Given an integrator Φ, let ˜︁f and ˜︁g be the modified vector fields of f and g, respectively.

If χ ◦ Φhf = Φhg ◦ χ for all sufficiently small h, then ˜︁f ∼χ ˜︁g. Furthermore, if χ ◦ Φhf and Φhg ◦ χ
are both real analytic in h at h = 0, then the converse holds.

Proof. If ˜︁f and ˜︁g are actual vector fields, then χ ◦ exph ˜︁f = exph˜︁g ◦ χ for all h if and only if˜︁f ∼χ ˜︁g. This is a standard result on vector fields and flows, cf. Abraham, Marsden, and Ratiu [1,

Proposition 4.2.4]. To extend this to the case where ˜︁f and ˜︁g are formal power series in h, we use an
induction argument on the truncations, which are actual vector fields.

First, observe that

χ ◦ Φhf (y) = χ ◦
[︁
id + hf +O(h2)

]︁
(y) = χ(y) + hχ′(y)f(y) +O(h2),

Φhg ◦ χ(y) =
[︁
id + hg +O(h2)

]︁
◦ χ(y) = χ(y) + hg

(︁
χ(y)

)︁
+O(h2),

where we have linearized χ about y on the first line. Matching terms implies f ∼χ g, which
establishes the base case. For the induction step, suppose that f ∼χ g, . . . , fj−1 ∼χ gj−1. Then

χ ◦ Φhf (y) = χ ◦
[︁
exp(hf + · · ·+ hjfj) +O(hj+1)

]︁
(y)

= χ ◦
[︁
exp(hf + · · ·+ hj−1fj−1) + hjfj +O(hj+1)

]︁
(y)

= χ ◦ exp(hf + · · ·+ hj−1fj−1)(y) + hjχ′(y)fj(y) +O(hj+1).(9)

Here, the second line uses the fact that all higher-order exponential terms involving hjfj are O(hj+1),
and the third line linearizes χ about exp(hf + · · ·+ hj−1fj−1)(y). Similarly,

Φhg ◦ χ(y) =
[︁
exp(hg + · · ·+ hjgj) +O(hj+1)

]︁
◦ χ(y)

=
[︁
exp(hg + · · ·+ hj−1gj−1) + hjgj +O(hj+1)

]︁
◦ χ(y)

= exp(hg + · · ·+ hj−1gj−1) ◦ χ(y) + hjgj
(︁
χ(y)

)︁
+O(hj+1).(10)

By the inductive assumption, hf + · · ·+ hj−1fj−1 ∼χ hg + · · ·+ hj−1gj−1, i.e., the truncations are
χ-related. Therefore, applying [1, Proposition 4.2.4], we have

χ ◦ exp(hf + · · ·+ hj−1fj−1) = exp(hg + · · ·+ hj−1gj−1) ◦ χ.

Hence, if (9) and (10) are equal, then we may cancel the first term of each to conclude fj ∼χ gj .
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Conversely, the analyticity assumption allows us to conclude the equality of χ ◦ Φhf (y) and
Φhg ◦ χ(y) for sufficiently small h from the equality of their power series. □

Remark 3.3. This can be seen as a generalization of Theorems IX.5.1 and IX.5.2 in Hairer et al. [9],
which cover the case where χ is a parametrization of a manifold.

3.2. Affine equivariant integrators. The terms dj and fj in the power series for Φhf and ˜︁f ,
respectively, depend on f but not on h. Hence, they may be seen as arising from integrator maps
δj(f) = dj and ϕj(f) = fj . Moreover, each of these is homogeneous of degree j, meaning that
δj(hf) = hjdj and ϕj(hf) = hjfj .

We now discuss the relationship between affine equivariance of the integrator Φ and that of the
integrator maps δj and ϕj .

Definition 3.4. An integrator Φ is affine equivariant if f ∼A g implies A ◦ Φf = Φg ◦A whenever
A is an affine map.

Corollary 3.5. If the integrator Φ is affine equivariant, then so are the integrator maps ϕj. The
converse is true if Φhf is real analytic in h at h = 0 for all f .

Proof. Apply Theorem 3.2, where χ = A is any affine map. □

An analogous result is true for the δj . One way to see this would be to apply the main result of

McLachlan et al. [11] to conclude that ˜︁f is a B-series in f , then use the fact that the exponential
of a B-series is also a B-series. However, the following self-contained, tree-free proof uses only the
basic properties of affine equivariance.

Proposition 3.6. If the integrator Φ is affine equivariant, then so are the integrator maps δj. The
converse is true if Φhf is real analytic in h at h = 0 for all f .

Proof. Let f ∼A g for some affine map A. Since A is affine, we have A ◦ Φhf −A = A′ ◦ (Φhf − id),
and therefore

A ◦ Φhf = A+ h(A′ ◦ f) + h2(A′ ◦ d2) + h3(A′ ◦ d3) + · · · .

Next, writing δj(g) = ej , we have

Φhg ◦A = A+ h(g ◦A) + h2(e2 ◦A) + h3(e3 ◦A) + · · · .
Thus, if A ◦ Φhf = Φhg ◦A, then the power series agree term-by-term, which means that dj ∼A ej .
Conversely, assuming analyticity, equality of the power series implies equality of the maps. □

Remark 3.7. The forward direction is essentially a version of the “transfer argument” in [11,
Proposition 6.2]. Since Φ is an affine equivariant integrator, Φ− id is an affine equivariant integrator
map. Thus, the terms δj in the Taylor series of Φ − id at 0 are also affine equivariant integrator
maps.

3.3. Functionally equivariant integrators. We now consider the relationship between functional
equivariance of integrators, in the sense of McLachlan and Stern [13], and that of the integrator
maps ϕj constituting the terms of the modified vector field. We first recall the definition from [13]
stated in the introduction.

Definition 3.8. Given a Gâteaux differentiable map F : Y → Z, a numerical integrator Φ is
F -functionally equivariant if (id, F ) ◦Φf = Φg ◦ (id, F ) for all f ∈ X(Y ), where g ∈ X(Y ×Z) is the
augmented vector field of f . Given a class of maps F , the integrator is F-functionally equivariant if
this holds for all F ∈ F(Y,Z) and all Banach spaces Y and Z.

Corollary 3.9. If the integrator Φ is F -functionally equivariant, then so are the integrator maps ϕj.
The converse is true if F is real analytic and if Φhf is real analytic in h at h = 0 for all f .
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Proof. Apply Theorem 3.2, where χ = (id, F ). □

Remark 3.10. Unlike many of the results in Section 2, this corollary does not require the additional
assumption of affine equivariance. However, if we do have affine equivariance, then combining
Corollaries 3.5 and 3.9 links the results of Section 2 for affine equivariant integrator maps to the
corresponding results of McLachlan and Stern [13] for affine equivariant integrators.

Remark 3.11. Except in the case where F is affine, we generally do not have a version of Proposi-
tion 3.6, in either direction, for F -functional equivariance of the integrator maps δj . For example,
the implicit midpoint method Φ = id+ + 1

2 + · · · is a quadratic functionally equivariant integrator,

but δ2 = 1
2 is not a quadratic functionally equivariant integrator map, as shown in Example 2.10(iii).

On the other hand, Euler’s method Φ = id+ has δj = 0 for all j = 2, 3, . . . , and trivially 0 ∼(id,F ) 0
for any F whatsoever, but Euler’s method is not quadratic functionally equivariant.

4. Generalization to additive and partitioned methods

The integrator maps and integrators discussed in the preceding sections include Runge–Kutta
and B-series methods, but not additive methods (such as additive Runge–Kutta and NB-series
methods [2] and splitting/composition methods [12]) or partitioned methods (such as partitioned
Runge–Kutta methods and P-series methods [8]). In this section, we briefly discuss the extension
of the foregoing theory to these two classes of methods. For each class, we modify the notion
of integrator map and functional equivariance, similarly to how this was done for integrators in
McLachlan and Stern [13, Section 5].

4.1. Additive methods. An additive method is applied to a vector field f ∈ X(Y ) after it has

been decomposed into a sum f = f [1] + · · ·+ f [N ], and different decompositions of the same f may
yield different numerical trajectories.

Definition 4.1. An additive integrator map is a collection of smooth maps

ϕY : X(Y )× · · · × X(Y )⏞ ⏟⏟ ⏞
N

→ X(Y )

for each Banach space Y , where N ∈ N is the same for all Y . We denote the application of ϕ to

f = f [1] + · · ·+ f [N ] ∈ X(Y ) by ˜︁f = ϕ(f [1], . . . , f [N ]), where it is understood that ˜︁f depends on the
decomposition and not just on f itself.

The following definitions extend the notions of affine equivariance and functional equivariance to
additive integrator maps.

Definition 4.2. An additive integrator map ϕ is N -affine equivariant if, for all affine maps A, we
have ϕ(f [1], . . . , f [N ]) ∼A ϕ(g

[1], . . . , g[N ]) whenever f [ν] ∼A g
[ν] for all ν = 1, . . . , N .

Definition 4.3. Given a Gâteaux differentiable map F : Y → Z and f [1], . . . , f [N ] ∈ X(Y ), let

g[ν](y, z) =
(︁
f [ν](y), F ′(y)f [ν](y)

)︁
∈ X(Y ×Z) be the augmented vector field of f [ν] for ν = 1, . . . , N .

An additive integrator map ϕ is F -functionally equivariant if ϕ(f [1], . . . , f [N ]) ∼(id,F ) ϕ(g
[1], . . . , g[N ])

for all f [1], . . . , f [N ] ∈ X(Y ), and F-functionally equivariant if this holds for all F ∈ F(Y, Z) and all
Banach spaces Y and Z.

We next prove a version of Proposition 2.5, which strengthens the notion of functional equivariance
for N -affine equivariant methods.

Proposition 4.4. If ϕ is N -affine equivariant, then ˜︁g(˜︁y, ˜︁z) = ˜︁g(︁˜︁y, F (˜︁y))︁ for all (˜︁y, ˜︁z) ∈ Y ×Z. Con-

sequently, the F -functional equivariance condition (1) holds if and only if ˜︁g(˜︁y, ˜︁z) = (︁ ˜︁f(˜︁y), F ′(˜︁y) ˜︁f(˜︁y))︁.
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Proof. The proof is essentially the same as that of Proposition 2.5. Consider the affine map
A(y, z) = (y, z + c), where c ∈ Z is a constant. Since each g[ν] depends only on y, we have

g[ν] ∼A g
[ν] for ν = 1, . . . , N . Thus, N -affine equivariance implies ˜︁g ∼A ˜︁g, i.e., ˜︁g(˜︁y, ˜︁z) = ˜︁g(˜︁y, ˜︁z + c),

so taking c = F (˜︁y)− ˜︁z completes the proof. □

Compare the following with [13, Proposition 5.3].

Proposition 4.5. Every N -affine equivariant integrator map is affine functionally equivariant.

Proof. As in the proof of Proposition 2.6, if F is affine, then so is (id, F ). Since f [ν] ∼(id,F ) g
[ν] for

ν = 1, . . . , N , if ϕ is N -affine equivariant, then ϕ(f [1], . . . , f [N ]) ∼(id,F ) ϕ(g
[1], . . . , g[N ]). □

Before proving an additive version of Theorem 2.9, we note an important distinction between
ordinary and additive integrator maps. Affine equivariant integrator maps preserve affine invariants,
since f ∼A 0 implies ϕ(f) ∼A ϕ(0) = 0. In contrast, it is possible for an additive integrator map to
be N -affine equivariant but not preserve affine invariants of f , since f ∼A 0 does not necessarily
imply f [ν] ∼A 0 for all ν = 1, . . . , N , unless A is also an invariant of each individual f [ν]. This is
illustrated in the following examples.

Example 4.6. We consider affine invariant preservation of some simple NB-series with N = 2.
These can be represented in terms of trees with black and white vertices, cf. Araújo, Murua, and
Sanz-Serna [2].

(i) The integrator maps (f [1], f [2]) = f [1] and (f [1], f [2]) = f [2] do not necessarily preserve

affine invariants of f , since we may have A′f = 0 but A′f [ν] ̸= 0 for ν = 1, 2. However, the
integrator map ( + )(f [1], f [2]) = f clearly does preserve affine invariants of f .

(ii) Similarly, (f [1], f [2]) = f [1]′f [1] and (f [1], f [2]) = f [2]′f [1] do not necessarily preserve affine

invariants of f . However, ( + )(f [1], f [2]) = f ′f [1] does, since A′f = 0 implies that

A′f ′f [1] = (A′f)′f [1] = 0.

In general, the condition for NB-series to preserve affine invariants of f , for arbitrary decompositions,
is that trees must have the same coefficients if they differ only in the color of their roots. Indeed, if
[τ1, . . . , τm][ν] denotes the N -colored tree whose root has the color ν, and whose children are the
roots of the subtrees τ1, . . . , τm, then these having equal coefficients allows us to collect the terms

A′
N∑︂
ν=1

[τ1, . . . , τm][ν](f [1], . . . , f [N ]) = A′
N∑︂
ν=1

(f [ν])(m)
(︂
τ1(f

[1], . . . , f [N ]), . . . , τm(f [1], . . . , f [N ])
)︂

= (A′f)(m)
(︂
τ1(f

[1], . . . , f [N ]), . . . , τm(f [1], . . . , f [N ])
)︂
,

which vanishes if A′f = 0.

Thus, the (⇐) direction of Theorem 2.9 does not hold for N -affine equivariant integrators, even
when F is the class of affine maps, but it does hold if we require the the additional condition of
affine invariant preservation. Compare the following with [13, Theorem 5.7].

Theorem 4.7. Let F satisfy Assumption 2.7. An N-affine equivariant integrator map ϕ is F-
invariant preserving if and only if it is F-functionally equivariant and affine invariant preserving.

Proof. (⇒) Suppose ϕ is F -invariant preserving. The proof of F -functional equivariance is essentially
the same as in Theorem 2.9. The only notable modification is that, at the step where A(y, z) = y is

the linear projection onto Y , we use g[ν] ∼A f
[ν] for ν = 1, . . . , N to conclude that ˜︁g ∼A

˜︁f by N -affine
equivariance. Furthermore, affine invariant preservation follows from F -invariant preservation, since
Assumption 2.7 implies that F includes all affine maps.

(⇐) Conversely, suppose that ϕ is F -functionally equivariant and affine invariant preserving. Just
as in the proof of Theorem 2.9, if F ∈ F(Y,Z) is an invariant of f ∈ X(Y ), then g(y, z) =

(︁
f(y), 0

)︁
,
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and F-functional equivariance implies ˜︁g(˜︁y, ˜︁z) = (︁ ˜︁f(˜︁y), F ′(˜︁y) ˜︁f(˜︁y))︁. Finally, the linear projection

B(y, z) = z is an affine invariant of g and thus of ˜︁g, so F ′(˜︁y) ˜︁f(˜︁y) = 0. □

We next give an integrator map version of [13, Corollary 5.9], which says that a consistent splitting
method cannot preserve affine invariants unless it equals the exact flow. Modified vector fields of
splitting methods contain only the terms f [1], . . . , f [N ] and their iterated Jacobi–Lie brackets, as a
consequence of the Baker–Campbell–Hausdorff formula [9, Section IX.4]. Since Jacobi–Lie brackets
of χ-related vector fields are χ-related for any χ whatsoever [1, Proposition 4.2.25], it follows that
modified vector fields of splitting methods are N -affine equivariant and F -functionally equivariant
with respect to all maps F . To prove that any consistent integrator map with this property must
agree with the exact flow, we first establish the following consequence of consistency.

Lemma 4.8. Suppose an N -affine equivariant integrator map ϕ satisfies the consistency condition
ϕ(hf [1], . . . , hf [N ]) = hf + o(h). If f [ν] is constant for all ν = 1, . . . , N , then ϕ(f [1], . . . , f [N ]) = f .

Proof. Let A(y) = y + c for some constant c ∈ Y . If each f [ν] is constant, then f [ν] ∼A f
[ν], so N -

affine equivariance implies ˜︁f ∼A
˜︁f , i.e., ˜︁f is also constant. On the other hand, letting B(y) = hy, we

have f [ν] ∼B hf [ν], so applying N -affine equivariance again, we have ˜︁f ∼B
˜︂hf , i.e., h ˜︁f(˜︁y) = ˜︂hf(h˜︁y).

Since both h ˜︁f and ˜︂hf are constant, we get h ˜︁f = ˜︂hf = hf + o(h) by the consistency condition. Thus,˜︁f = f + o(1), but since this does not depend on h at all, we conclude that ˜︁f = f . □

Theorem 4.9. Consider consistent, N -affine equivariant integrator maps that are F -functionally
equivariant for all maps F (e.g., those arising from splitting methods). The unique such integrator

map preserving affine invariants is ϕ(f [1], . . . , f [N ]) = f , i.e., the exact flow.

Proof. By Theorem 4.7, any such ϕ preserving affine invariants must preserve all invariants. Given
f ∈ X(Y ), consider the vector field (f, 1) ∈ X(Y × R). This augments ẏ = f(y) by the equation
ṫ = 1, where t may be seen as time. Thus, F (y, t) = exp(−tf)(y) is an invariant of (f, 1).

Now, suppose we split (f, 1) into (f [ν], c[ν]), where c[ν] ∈ R are constants summing to 1. By

Lemma 4.8 and N -affine equivariance with respect to (y, t) ↦→ t, we have ˜︁(f, 1) = ( ˜︁f, 1). Since ϕ

preserves the invariant F , we conclude that exp(−tf)(˜︁y) is an invariant of ( ˜︁f, 1), and thus ˜︁f = f . □

Remark 4.10. Without the consistency hypothesis, which allows us to use Lemma 4.8, ṫ = 1 does

not necessarily imply ˜︁ṫ = 1. This allows for the possibility ˜︁f = cf with c ̸= 1, giving a time
reparametrization of the exact flow.

Finally, we note that Theorem 3.2 holds virtually unchanged for the relationship of additive
integrators to their modified vector fields, where we need only replace Φhf by Φhf [1],...,hf [N ] and Φhg

by Φhg[1],...,hg[N ] . Thus, we immediately get additive-integrator versions of Corollary 3.5 for N -affine

equivariance and Corollary 3.9 for F -functional equivariance, in the sense of [13, Section 5.1].

4.2. Partitioned methods. A partitioned method is based on a partitioning Y = Y [1]⊕· · ·⊕Y [N ].
These are similar to additive methods, except the decomposition f = f [1] + · · ·+ f [N ] is uniquely
determined by the partitioning of Y .

Definition 4.11. A partitioned integrator map is a collection of smooth maps

ϕY [1]⊕···⊕Y [N ] : X(Y ) → X(Y ),

for each partitioned Banach space Y =
⨁︁N

ν=1 Y
[ν], where N ∈ N is fixed. For a given partitioning

of Y , we simply write ˜︁f = ϕ(f) for f ∈ X(Y ).

For partitioned methods, rather than considering all affine maps between Banach spaces, we
consider particular affine maps that respect the partitioning, cf. [13, Definition 5.10].
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Definition 4.12. Given partitioned spaces Y =
⨁︁N

ν=1 Y
[ν] and U =

⨁︁N
ν=1 U

[ν], a map A : Y → U

is P-affine if it decomposes as A =
⨁︁N

ν=1A
[ν], where each A[ν] : Y [ν] → U [ν] is affine. A partitioned

integrator map ϕ is P-affine equivariant if f ∼A g implies ϕ(f) ∼A ϕ(g) for all P-affine maps A.

Remark 4.13. When A is P-affine, f ∼A g is equivalent to f [ν] ∼A[ν] g[ν] for all ν = 1, . . . , N .

In particular, let A : Y → R be an affine functional, and partition R[µ] = R and R[ν] = {0} for

ν ̸= µ. Then A is P-affine if and only if A = A[µ], i.e., A depends only on Y [µ] [13, Example 5.11].
The following integrator-map version of [13, Proposition 5.12] shows how N -affine equivariant

integrator maps (e.g., NB-series) give rise to P-affine equivariant integrator maps (e.g., P-series).

Proposition 4.14. If an additive integrator map ψ is N-affine equivariant, then the partitioned
integrator map ϕ(f) = ψ(f [1], . . . , f [N ]) is P-affine equivariant.

Proof. This follows immediately from the definitions, since P-affine maps are affine. □

The definition of F - and F-functional equivariance is the same as in Definition 2.4, where
given partitions Y =

⨁︁N
ν=1 Y

[ν] and Z =
⨁︁N

ν=1 Z
[ν], we apply ϕ to the augmented vector field by

partitioning the product Y ×Z =
⨁︁N

ν=1(Y
[ν]×Z [ν]). To prove a partitioned version of Theorem 2.9,

we must introduce a P-affine version of Assumption 2.7; cf. [13, Assumption 5.14]. Important
examples of F satisfying these assumptions are P-affine maps, all affine maps, quadratic maps that
are at most bilinear with respect to the partition, and all quadratic maps, cf. [13, Examples 5.16–5.19].

Assumption 4.15. Assume that:

• F(Y, Y ) contains the identity map for all Y =
⨁︁N

ν=1 Y
[ν];

• F(Y,Z) is a vector space for all Y =
⨁︁N

ν=1 Y
[ν] and Z =

⨁︁N
ν=1 Z

[ν];
• F is invariant under composition with P-affine maps, in the following sense: If A : Y → U and
B : V → Z are P-affine and F ∈ F(U, V ), then B ◦ F ◦A ∈ F(Y, Z), for all Y =

⨁︁N
ν=1 Y

[ν],

Z =
⨁︁N

ν=1 Z
[ν], U =

⨁︁N
ν=1 U

[ν], and V =
⨁︁N

ν=1 V
[ν].

Compare the following to [13, Theorem 5.15].

Theorem 4.16. Let F satisfy Assumption 4.15. A P-affine equivariant integrator map ϕ is
F-invariant preserving if and only if it is F-functionally equivariant.

Proof. The proof is essentially identical to that of Theorem 2.9. For the (⇒) direction, we use the
fact that the linear projection A : Y × Z → Y is P-affine, since it decomposes into the projections
A[ν] : Y [ν] × Z [ν] → Y [ν]. For the (⇐) direction, we similarly use the fact that B : Y × Z → Z is

P-affine, since it decomposes into B[ν] : Y [ν]×Z [ν] → Z [ν]. At the final step, we have ˜︁0 = 0, since the
affine map from the trivial Banach space (with trivial partitioning) to any point of Z is P-affine. □

Theorem 3.2 holds unchanged for the relationship of partitioned integrators to their modified
vector fields. Thus, we immediately get partitioned-integrator versions of Corollary 3.5 for P-affine
equivariance and Corollary 3.9 for F -functional equivariance, in the sense of [13, Section 5.2].

4.3. Closure under differentiation and symplecticity. Finally, we generalize Theorem 2.13
to N -affine and P-affine equivariant methods, allowing the functional equivariance results to be
extended to observables depending on variations. Definition 2.11 of closure under differentiation is
formally unchanged for partitioned integrator maps; for additive integrator maps, we modify it in
the obvious way, as follows.

Definition 4.17. An additive integrator map ϕ is closed under differentiation if

ϕ(δf [1], . . . , δf [N ]) = δϕ(f [1], . . . , f [N ]).

Compare the following to [13, Theorem 5.20].
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Theorem 4.18. N -affine and P-affine integrator maps are closed under differentiation.

Proof. The proof is essentially the same as that of Theorem 2.13. The only modification needed is
to specify the additive decomposition or partitioning of the augmented system (4) to which ϕ is
applied in order to obtain (5). If ϕ is an additive integrator then we decompose (4) into

f(x) =

N∑︂
ν=1

f [ν](x), f(y) =

N∑︂
ν=1

f [ν](y),
f(x)− f(y)

ϵ
=

N∑︂
ν=1

f [ν](x)− f [ν](y)

ϵ
.

If ϕ is P-affine equivariant, we partition Y × Y × Y =
⨁︁N

ν=1(Y
[ν] × Y [ν] × Y [ν]). □

When ω : Y × Y → Z is a continuous bilinear map on Y , it follows that Example 2.15 extends
mutatis mutandis to N -affine and P-affine equivariant integrator maps—and in particular, those
preserving quadratic invariants are symplectic.

For NB-series, a similar argument to Theorem 2.16 gives the quadratic functional equivariance
condition b(u ◦ v) + b(v ◦ u) = 0 for all N -colored trees u and v. Together with the affine invariant
preservation condition that b(τ) is independent of the color of the root (Example 4.6), we recover a
modified-vector-field version of Araújo et al. [2, Theorem 3], which states that these maps must
therefore correspond to ordinary symplectic B-series.

On the other hand, if ω is at most bilinear with respect to a partition Y =
⨁︁N

ν=1 Y
[ν] (i.e., the

Y [ν] × Y [ν] blocks are trivial), then F ′′(︁u(f), v(f))︁ = 0 when u and v have the same colored root.
Hence, the condition b(u ◦ v) + b(v ◦ u) = 0 need only hold for trees with different-colored roots.
In particular, when ω is the canonical symplectic form on Y = E ⊕E∗, applying this with N = 2
recovers Hairer et al. [9, Theorem IX.10.4] on modified vector fields of symplectic P-series.

Appendix A. Necessity proof for quadratic functionally equivariant B-series

In this appendix, we prove that for all u, v ∈ T , it is possible to construct a vector field f and
quadratic F such that F ′′(︁u(f), v(f))︁ = F ′′(︁v(f), u(f))︁ is the only nonvanishing Hessian term at
some point (i.e., F ′′ vanishes on all other pairs of trees). This completes the proof of Theorem 2.16 by
establishing the necessity of the condition b(u◦v)+ b(v ◦u) = 0 for quadratic functional equivariance
of a B-series integrator map.

We begin with a vector field construction for an individual tree τ , which we subsequently apply
to u and v to prove the claim above. Let |τ | denote the order of τ , i.e., its number of vertices.

Lemma A.1. Given τ ∈ T , there exists a vector field f on R|τ | such that

θ(f)|τ |(0) =

{︄
σ(τ), if θ = τ,

0, otherwise.

Proof. Label the vertices of τ by 1, . . . , |τ |, where i = |τ | is the root. For each vertex i with children

j1, . . . , jk, define the ith component of f at y = (y1, . . . , y|τ |) ∈ R|τ | to be

fi(y) = yj1 · · · yjk .

In the case k = 0 (i.e., vertex i is a leaf), we use the convention that the empty product is 1. We
claim that this f has the desired property.

The proof of this claim is by induction on the height of τ . The base case τ = is trivial. For the
induction step, write τ = [τ1, . . . , τm], and suppose without loss of generality that the children of
the root are labeled 1, . . . ,m accordingly. By definition,

τ(f) = f (m)
(︁
τ1(f), . . . , τm(f)

)︁
.
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Using the inductive assumption, we have

(11) τj(f)i(0) =

{︄
σ(τj), if τi = τj ,

0, otherwise,

where i and j range over 1, . . . ,m. Next, since f|τ |(y) = y1 · · · ym, we have

(12) f
(m)
|τ | (0) =

∑︂
π∈Sm

dyπ(1) ⊗ · · · ⊗ dyπ(m),

where Sm is the symmetric group on m elements, so that π is a permutation of {1, . . . ,m}. Applying
this to (11), each nonvanishing term evaluates to σ(τ1) · · ·σ(τm), and the nonvanishing terms
correspond to π that permute identical trees among τ1, . . . , τm. The number of such permutations
is precisely µ1! · · ·µk!, where the µj count the occurrences of each unique tree, as in the proof of
Theorem 2.16. Therefore,

τ(f)|τ |(0) = σ(τ1) · · ·σ(τm)µ1! · · ·µk! = σ(τ).

Finally, suppose θ ̸= τ , and write θ = [θ1, . . . , θn]. If n ̸= m, then we have f
(n)
|τ | (0) = 0, so

θ(f)|τ |(0) = 0. Otherwise, [θ1, . . . , θm] is not a permutation of [τ1, . . . , τm], so for all π ∈ Sm, there
exists some j such that θj ̸= τπ(j). In this case, (11) implies θj(f)π(j)(0) = 0, so every term in (12)

vanishes when evaluated on
(︁
θ1(f)(0), . . . , θm(f)(0)

)︁
, and again θ(f)|τ |(0) = 0. □

Lemma A.2. Given u, v ∈ T , there exists a vector field f and quadratic functional F on Y = R|u|+|v|

such that

F ′′(︁τ(f), θ(f))︁(0) {̸︄= 0, if (τ, θ) = (u, v) or (τ, θ) = (v, u),

= 0, otherwise.

Proof. Similarly to Lemma A.1, label the vertices of u by 1, . . . , |u|, where i = |u| is the root. For
each vertex i with children j1, . . . , jk, let

fi(y) = yj1 · · · yjk .
Repeat this for v, labeling its vertices by |u|+ 1, . . . , |u|+ |v|, where i = |u|+ |v| is the root. Now,
define the quadratic functional

F (y) = y|u|y|u|+|v|,

so that

F ′′(︁τ(f), θ(f))︁ = τ(f)|u|θ(f)|u|+|v| + τ(f)|u|+|v|θ(f)|u|.

If τ = u and θ = v, or vice versa, then Lemma A.1 implies that evaluating this at y = 0 gives
2σ(u)σ(v) if u = v and σ(u)σ(v) if u ̸= v. If τ and θ are not u and v, then Lemma A.1 implies that
both terms vanish at y = 0. □
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