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ABSTRACT

We study the evolution of eccentricity and inclination of massive planets in low-density cavities of protoplanetary discs using
three-dimensional (3D) simulations. When the planet’s orbit is aligned with the equatorial plane of the disc, the eccentricity
increases to high values of 0.7-0.9 due to the resonant interaction with the inner parts of the disc. For planets on inclined orbits,
the eccentricity increases due to the Kozai-Lidov mechanism, where the disc acts as an external massive body, which perturbs
the planet’s orbit. At small inclination angles, <30°, the resonant interaction with the inner disc strongly contributes to the
eccentricity growth, while at larger angles, eccentricity growth is mainly due to the Kozai-Lidov mechanism. We conclude that
planets inside low-density cavities tend to acquire high eccentricity if favourable conditions give sufficient time for growth. The
final value of the planet’s eccentricity after the disc dispersal depends on the planet’s mass and the properties of the cavity and

protoplanetary disc.

Key words: accretion discs —hydrodynamics — planet-disc interactions — protoplanetary discs.

1 INTRODUCTION

Many exoplanets have high eccentricities of their orbits. Giant planets
have eccentricities covering the whole range from zero to near unity
(e.g. Marcy et al. 2005; Kane et al. 2012; Sagear & Ballard 2023).
The phenomenon of non-zero eccentricities has yet to be understood.

Eccentricity and inclination may grow due to the gravitational
interaction between planets (e.g. Rasio & Ford 1996; Lin & Ida
1997; Papaloizou & Terquem 2001; Chatterjee et al. 2008; Juri¢
& Tremaine 2008; Mustill, Davies & Johansen 2017; Anderson,
Lai & Pu 2020; Li et al. 2021) or due to secular perturbations
from exterior stellar or planetary companions due to Kozai-Lidov
mechanism (Kozai 1962; Lidov 1962; Holman, Touma & Tremaine
1997; Takeda & Rasio 2005; Fabrycky & Tremaine 2007; Anderson,
Storch & Lai 2016; Anderson & Lai 2017). On the other hand, they
may vary due to the interaction of a planet with an accretion disc
(e.g. Goldreich & Tremaine 1980).

A planet in the low-density cavity interacts with the inner disc by
eccentric Lindblad resonances (ELRs), and the eccentricity increases
(e.g. Goldreich & Tremaine 1980; Artymowicz et al. 1991; Goldreich
& Sari 2003; Ogilvie & Lubow 2003; Teyssandier & Ogilvie
2016). A low-density cavity may be supported by various physical
mechanisms, e.g. by the magnetosphere of the star (e.g. Konigl 1991;
Hartmann 2000; Romanova & Lovelace 2006; Romanova & Owocki
2015), magnetic wind from the star (e.g. Lovelace, Romanova &
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Barnard 2008; Schnepf et al. 2015; Bai 2016; Wang & Goodman
2017; Elbakyan et al. 2022), or evaporation of the inner disc due to
UV radiation (e.g. Dullemond et al. 2007).

A number of two-dimensional (2D) numerical simulations have
been performed that show that eccentricity can increase due to the
disc—planet resonant interaction (e.g. Papaloizou, Nelson & Masset
2001; DAngelo, Lubow & Bate 2006; Kley & Dirksen 2006; Rice,
Armitage & Hogg 2008; Bitsch et al. 2013a; Dunhill, Alexander
& Armitage 2013; Ragusa et al. 2018; Debras, Baruteau & Donati
2021; Baruteau et al. 2021). In many simulations, only a small value
of eccentricity has been obtained, e ~ 0.1-0.25 (e.g. Papaloizou
et al. 2001; DAngelo et al. 2006; Kley & Dirksen 2006). Larger
eccentricity e &~ 0.4 has been observed by Debras et al. (2021) who
were able to keep the disc-cavity boundary at the same location by
setting a high/low viscosity in the cavity/disc, and by Rice et al.
(2008) who fixed the disc-cavity boundary and calculated the gas
evolution only in the disc. The eccentricity of the planet may also
increase or decrease due to the exchange of eccentricity between the
planet and the disc (e.g. Teyssandier & Ogilvie 2016; Ragusa et al.
2018; Li & Lai 2023).

In our earlier work, we used 2D simulations to investigate
the eccentricity growth of massive planets located in the cav-
ity with the fixed disc-cavity boundary (Romanova et al. 2023,
hereafter R23). We examined a wide range of parameters and
observed that the eccentricity typically increases to high values
of ~0.6-0.8. We investigated different resonances responsible for
eccentricity growth and derived the dependence of the eccen-
tricity growth on various parameters. Simulations confirmed the
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theoretically-predicted result that the eccentricity growth rate is
proportional to the density (characteristic mass) of the disc. There-
fore, simulations are scalable and can be performed for denser
discs during a shorter simulation time. These findings opened a
path for more realistic 3D simulations of the disc—planet interac-
tion.

This paper shows the results of our global 3D simulations of the
disc—planet interaction. We did not fix the disc-cavity boundary and
calculate the gas flow inside and outside the cavity. The low-density
cavity has been supported by the equilibrium initial conditions and
a low disc viscosity. Simulations confirmed that the eccentricity
may increase to very high values of e ~ 0.7-0.9. We investigate the
dependence of the growth rate of eccentricity on different factors,
such as the planet’s mass and the density, viscosity, and mass of the
planet. In models with more massive planets and denser discs, the
torques are higher, and eccentricity increases more rapidly. In models
with lower grid resolution and higher viscosity, the resonances are
not well resolved, and the eccentricity growth is slower.

We also investigate the evolution of the eccentricity and inclination
of planets in inclined orbits. Terquem & Ajmia (2010) have shown
that the orbit of an inner planet can be perturbed by a remote massive
disc due to the Kozai—Lidov mechanism, similar to that when the
perturber is a distant massive planet or a star. They supported their
theoretical findings with N-body numerical simulations (see also
Teyssandier, Terquem & Papaloizou 2013). In their simulations, the
external disc has been fixed. In our work, we calculate the general
3D hydrodynamic model where the density distribution in the disc
changes due to the disc—planet interaction. We observed that the
eccentricity increases and oscillates due to the Kozai-Lidov effect.
We investigated the dependence of the eccentricity growth on the
inclination of the orbit and other parameters.

The plan of the paper is as follows: In Section 2, we describe the
problem set-up and our numerical model. In Sections 3 and 4, we
show the results of simulations in cases of aligned and inclined orbits
of the planet. We conclude in Section 6.

2 PROBLEM SETUP AND NUMERICAL MODEL

We place a star of mass M, in the centre of the coordinate system.
We use a 3D grid in cylindrical coordinates (r, ¢, z). We place a low-
density cavity at radii R, < r < rcay, and high-density disc at radii
Feav < ¥ < R,, where R;, and R, are the inner and outer boundaries
of the simulation region.

We solve a problem in dimensionless form. We measure distances
in units of 7y = 7,y . The inner and outer boundaries are R;, = 0.3 and
R, = 18. The reference mass is the mass of the star, My = M, = Mg,
where we take a Solar mass star as a base. The reference velocity
is given by vy = «/GMy/ry. The time is measured in Keplerian
periods of rotation at r = ry: Py = 27trg/vo. The reference density is
0o = My /rg and the reference surface density is o = M,/ rg. The
reference pressure is pg = pov3. We also determine the dimension-
less mass of the inner disc, g4, such that the dimensional characteristic
mass of the inner disc is Mgy = qaMy, where My = Edorg is
characteristic mass of the inner disc' and, where 49 = gq% is the
characteristic surface density, and therefore g4 = id = Y40/ Xo is
also a dimensionless surface density of the disc at the reference
point r = ry. We drop tilde and hereafter use the dimensionless
surface density X4 as a parameter that characterizes typical mass

Note that many authors use the total mass of the disc in their definition of
qq (e.g. Teyssandier & Ogilvie 2016; Ragusa et al. 2018).
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of the inner disc. In current simulations, we take =4 = 3 x 10~2. For
practical applications, we use the more realistic value of ¥4 = 10~*
(see Table 1).

We place a planet of mass m, = gy,My =5 x 1073M, = SMyyp
inside the cavity at the orbit with the semimajor axis ay = 0.6. We
take masses m, = 3Mj,, and 10 My, in test simulation runs. We take
an orbit with a small initial eccentricity e = 0.02. It helps to decrease
the eccentricity damping by the 1st order corotation torque (e.g.
Goldreich & Sari 2003; Ogilvie & Lubow 2003). A planet is placed
either in the equatorial plane of the disc at zero inclination angle,
ip = 0°, or in inclined orbit with inclination angles from iy = 5° up
to 75°.

2.1 Initial disc-cavity equilibrium

We calculate the equilibrium distribution of density and pressure
in the disc and cavity using an approach described in Romanova
et al. (2019). In this approach, it is suggested that the disc has a
high density, pg while the cavity has very low density, pc.y < 4.
To support this configuration, we take a high temperature in the
cavity and a low temperature in the disc, such that at the disc-cavity
boundary, the gas pressure in the disc equals the gas pressure in the
cavity, pa = Peay-

To construct our initial condition, we first determine the equilib-
rium in the equatorial plane. The initial density distribution is given
by

if r <rey

p@r,0) = {pm S\ (D
Pd( ! ) if r > rey.

Tcav

Here, p..y is the density in the cavity and pq is the disc density near
the cavity boundary, r = r., . Parameter n specifies the radial profile
of the disc density. We take a similar distribution for pressure in the
disc and cavity.

We take a disc with semithickness #/R = 0.03 (determined at
r = rq) and derive the temperature in the disc from the condition:
(h/R)4 = (cs/vK)d, Where ¢ and vk are the sound speed and Kep-
lerian velocities at r = rq. Using our dimensionalization (GM =1,
ro = Teavs Vko = Vg = 1), we obtain the temperature at the inner edge
of the disc: Ty = cg = (h/R)?> = 0.0009. We determine the dimen-
sionless density pq at r = rq (pg = 0.4 in most of our simulations).
We take much lower density in the cavity, pc.y = 1073 0d-

At the inner edge of the disc (r = rq4), we take an equal pressure for
the disc and cavity in the equatorial plane: py = pc,y. This condition
provides a zero pressure gradient force at the boundary and the initial
equilibrium between the disc and cavity.

The dimentionless temperature is related to density and pressure
by the ideal gas law, RT (r) = p(r)/p(r). Therefore, Typq = TeavPcav
and the temperature in the cavity T,y = 10°Ty is much higher than
that in the disc.?

Initially, the disc is isothermal. The temperature in the cavity is
also constant. Subsequently, at ¢ > 0, we calculate the temperature
distribution using the energy equation.

In our model, the cavity has a very low density, 10° times lower
than in the disc. A planet in the low-density cavity excites the zero-

2In protoplanetary discs, the temperature may be low in both the disc and
cavity (excluding cases where cavities are carved by stellar wind or high-
energy radiation from the star). We note that the condition of equal pressure
(a high temperature in the cavity) is not a necessary condition for the final
equilibrium because the main forces that support the disc are gravitational
and centrifugal forces, while the pressure gradient force is much smaller.
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Table 1. Top rows: reference values calculated for different sizes of the disc-cavity boundary rcay. Middle rows: initial values of density and surface density
taken in the model. Bottom rows: Projected values, where we took a small value of the surface density, X4 = 1074

Reference unit

Reference values

Reference distance ro = rcay ro [au] 0.1
Reference velocity vo [km s_'] 94.3
Reference period Py [d] 11.56
Reference density po [g cm™3] 59 % 1074
Reference surface density Yo [g cm~2] 8.9 x 108
Initial density at r = reay pdo [g cm™3] 24 x 1074
Initial surface density Yo [g cm™2] 2.7 x 107
Initial density at r = rcay pap L2 cm ™3] 8.0 x 1077
Initial surface density Zap g cm™2] 8.9 x 10*

1.0 10
29.8 9.4
365.3 11599 (31.78 yrs)
5.9 %1077 5.9 x 10710
8.9 x 10° 8.9 x 10*
Values in reference models at =4 = 3.0 x 1072
2.4 x 1077 2.3 x 10710
2.7 x 10° 2.7 x 103
Projected values at 4 = 1.0 x 10~
8.0 x 10710 8.0 x 10713
8.9 x 10? 8.9

order Lindblad resonances responsible for the migration. However,
the torques are proportional to the density (e.g. Goldreich & Tremaine
1979) and are 103 times smaller than torques acting on a planet
migrating inside the disc. In simulations, we observed that a planet
migrates inward as long as some of the Lindblad resonances are
located inside the disc. However, migration stops when all resonances
are located inside the cavity, and ELRs start acting. The high
temperature in the cavity does not influence the planet’s migration in
the cavity.?

Next, we assume that there is a hydrostatic equilibrium in the
vertical direction and build the 3D distribution of density:
®(r, 0) — O(r, z))

(@3]

p(r,z) = p(r,O)eXp( RTT.0)

where ®(r,z) = —GM, /(r? + z*)'/? is the gravitational potential
of the star. The expression for pressure is analogous. The azimuthal
velocity v, is determined from the balance between gravity and
pressure gradient forces in the radial direction:

.2 6<I>+ 19p
vp(r,z2) = jr{ —+—=—1.
o 2 or  p or

These formulae allow us to start from a quasi-equilibrium configu-
ration for the disc and the cavity.

We obtain the surface density distribution in the disc by integrating
the volume density p in the z-direction:

(3

Z:/pdz(XHpO(c o« YPP o ps, )

—2n

where, ¢, o «/p/p is the sound speed and s = 3 >

2.2 Calculation of the planet’s orbit

We calculate the orbit of the planet, taking into account the interaction
of a planet with the star and the disc. We use the earlier developed
approaches (e.g. Kley 1998; Masset 2000; Kley & Nelson 2012;
Comins et al. 2016; Romanova et al. 2019). We find the position r,,
(the radius vector from the star to the planet) and velocity v, of the

3Thermodynamics, viscosity, and irradiation of the disc by a star may change
the direction of migration of a planet located in the disc (e.g. Bitsch et al.
2013b; Pierens & Raymond 2016). However, in the low-density cavity, the
influence of the high-temperature gas on the planet’s migration is negligibly
small.

planet at each time-step solving the equation of motion:

dv GM.M, GM?

L - u prp_ Erp+Fdisc~>p~ (5)
|r p|"

The first term on the right-hand side represents the gravitational

force from the star. The middle term accounts for the fact that the

coordinate system is centred on the star and is not inertial.

P P

_ _ GM, B
Fosesp= | ———= @ —rpprdrdedz 6)
[r —rpl?

is a cumulative force acting from the disc to the planet.
We calculate the planet’s orbital energy and angular momentum
per unit mass using the calculated values of r, and v),:

1 GM,
E, = E|vp|2 - *

and L, = rp, x vy, (@)
p

We use these relationships to calculate the semimajor axis and
eccentricity of the planet’s orbit at each time-step:

1 GM, Ly
ap = —x ande, = /1 — . ®)
2 E, GM.a,

We calculate the inclination angle of the orbit as

L,
ip = arccos (T:)’ (&)

where L, is the z-component of the angular momentum.

2.3 Evolution of the disc

The evolution of the disc has been calculated using earlier-developed
approaches (Koldoba et al. 2016; Romanova et al. 2019). Below, we
briefly describe the numerical model. We model the evolution of the
accretion disc using 3D equations of hydrodynamics:

oU .

§+V-F(U)=Q, (10)
where U is the vector of conserved variables and F (17 ) is the vector
of fluxes:

U =1p.pS. pvl",

and Q = [0, 0, —pV @] is the vector of source terms; p is the density,
v is the velocity vector, § = p/p” is the entropy function; we take
y = 5/3 in all models, ® is the gravitational potential of the star—
planet system and M is the momentum flux tensor, with components
M;; = pviv; + 8;;p — 1;;, where p is the fluid pressure and §;; is

F(U) = [p¥, pBS, M]”, (11)

MNRAS 532, 3509-3525 (2024)
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Table 2. Parameters in main reference models. We name reference models
using parameters n and io: n1.5i0, n1.8i0, n1.5i45, n1.8i45, etc.

Parameter Value
mass of the planet (in M) qp=35x 1073
mass of the planet in Jupiter mass M, =5
semithickness of the disc h =0.03
reference surface density Yg=3x 1072
coefficient of viscosity a=3x10"*
slope in p distribution n=150r1.8
semimajor axis of the planet ap = 0.6
initial eccentricity ep = 0.02
inclination of planet’s orbit iop = 0° or 45°

the Kronecker symbol; 7;; is the tensor of viscous stresses (we take
into account only r¢ and z¢ components). In our code, we use the
entropy balance equation instead of the full energy equation. We
include a viscosity term, with the viscosity coefficient in the form of
o-viscosity, vyis = acgH (Shakura & Sunyaev 1973).

The equations of hydrodynamics are integrated numerically using
an explicit conservative Godunov-type numerical scheme (Koldoba
et al. 2016). At the external boundaries, we use ‘free’ boundary
conditions 0A/9dr = 0 and 0A/0z = O for all variables A. At these
conditions, matter freely flows out of the simulation region. We
place an additional condition: we forbid the inward flow of matter
into the simulation region. At the inner boundary, we use fixed
boundary conditions. They provide better results compared with the
free conditions. The density in the cavity is very low, and only an
insignificant amount of matter accumulates at the boundary during
the simulation run. We also use the procedure of damping waves
at the inner and outer boundaries, following Fromang, Terquem &
Nelson (2005). In addition, we place an exponential cut to the density
distribution at the radius » = 0.7R, (with the width of exponential
decay of 0.2R,) to be sure that the external boundary does not
influence the result.

The simulation region represents a flat cylinder that stretches in the
radial direction between the inner and outer boundaries, 0.3 < R <
18, and in the vertical direction between values of —1.5 < z < 1.5.
The grid is evenly spaced in the azimuthal and vertical directions,
where the number of grid cells in most of the simulations is Ny = 300
and N, = 72, respectively. In the radial direction, N, = 168, and the
size of grids increases with the distance from the star such that the
grids have approximately a square shape. The code is parallelized
using MPI. Typical number of processors per one simulation run is
280.

2.4 Reference models

In the reference models, we take a planet of mass M, = 5M; (g, =
5 x 107%) and a disc with a reference surface density $q = 3 x 1072,
viscosity coefficient @ = 3 x 10~* and semithickness of the disc
h = H/r = 0.03 (determined at the inner edge of the disc, r = re,y).
We take two values of slopes in the equatorial density distribution
n = 1.5 and 1.8, which correspond to slopes in the surface density
distribution: s = 0 and 0.3, respectively. We place a planet in the
orbit with a semimajor axis ap = 0.6 (see Table 2 for parameters in
Reference model). In test models of R23, we observed that in models
with 0.6 < gy < 1.0, the result is very similar. However, initially,
a planet migrates inward due to the principal 1:2 outer Lindblad
resonance (OLR), and only later, when a¢ =~ 0.6, the eccentricity
starts to increase due to 1:3 ELR. That is why, to save computing
time, we place a planet at ap = 0.6.

MNRAS 532, 3509-3525 (2024)

We take non-zero initial eccentricity, ey = 0.02. In test models
of R23 with zero eccentricity, there is an interval of time where
the eccentricity increases, but slowly, due to the opposing action
of the 1:2 eccentric corotation resonance (ECR), which damps the
eccentricity. However, the ECR resonance is saturated in models with
a small initial eccentricity (e.g. Goldreich & Sari 2003; Ogilvie &
Lubow 2003). To save computing time, we take ¢y = 0.02 in all our
models.

We take the inclination angle of the orbit iy = 0 in models where
a planet is located in the plane of the disc and different values of iy
in models where we investigate inclined orbits. We name reference
models using parameters n and iy (n1.5i0, n1.8i0, n1.5i45, etc.)
In these models, we take common parameters shown in Table 2. If
we change other parameters, then we specify them in the text and
supplementary tables.

2.5 Testing initial equilibrium

First, we take a planet with zero mass m, = 0 and test the stability
of our initial conditions determined by equations (1)—(4). Fig. 1
compares density distributions at different moments in time. Right-
hand panels show rz projections of the density distribution at r = 0
(top panel) and at moments # = 100 and 400. The left-hand panels
show the radial distribution of the equatorial density p (top) and
surface density X. One can see that initially, the density distribution
changed slightly, but at later times, it stayed approximately the
same. Therefore, the initial conditions described in Section 2.1
provide a good equilibrium between matter in the disc and cavity.
The simulation time of ¢ = 400 is longer than the duration of
our simulation runs. We conclude that this initial set-up can be
used as a base for our 3D simulations. These initial conditions
may directly describe inner cavities around the star formed by the
magnetosphere, stellar wind, or high-energy radiation from the star.
Cavities at larger distances from the star may have dust, pebbles,
and regions of forming planets. In cavities, located away from the
star, the temperature can be low. In our model, the density in the
cavity is so low that neither density nor high temperature influence
the dynamics of the planet. Planet interacts gravitationally only with
a star and the disc.

3 PLANETS AT ALIGNED ORBITS

First, we take a reference model n1.5i0 with typical reference
parameters (see Table 2) and place an orbit of the planet in the
equatorial plane of the disc (at inclination angle iy = 0). We keep a
planet in a fixed orbit during the first 10 rotations of the inner disc
and then release it. The 1st row from the top of Fig. 2 shows the
surface density distribution, 2, in the inner part of the simulation
region, near the cavity. One can see two tight spiral waves at t = 50
and three waves at t = 70, 90, 120. These waves are similar to waves
observed in 2D simulations of R23. They correspond to m = 2 and
3 modes of the ELR. They drive the eccentricity of the planet up to
e~ 0.8.

The 2nd row from the top shows the surface density distribution in
the whole simulation region. One can see that a one-armed density
wave forms in the inner disc and propagates to large distances.

The 3rd row shows that the m = 2 and 3 resonant ELR density
waves also present in the equatorial density distribution. The 4th row
shows the equatorial density distribution in the whole region.

The bottom left-hand panels of the same figure show the temporal
evolution of orbital parameters (top) and coordinates of the planet
(bottom). One can see that the eccentricity increases during ¢ ~ 120,
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Figure 1. Left-hand panel: Linear distribution of the density o and surface density ¥ in the inner disc in models with zero planet mass m, = 0 at# = 0 (dashed
line) and 100, 400. Right-hand panel:rz-slices of the density distribution p, at the same moments in time.

reaches e ~ (.8, and then varies in the interval of 0.7 < e < 0.9. The
semimajor axis initially decreases and then increases.

We use the Cartesian coordinates to track the position of the planet,
where coordinates x and y are located in the equatorial plane of the
disc, and the z-coordinate coincides with the z-coordinate of the
cylindrical system. One can see that x and y coordinates increase,
and at t &~ 120, they reach the inner parts of the disc-cavity boundary
at r &~ 1-1.1. Oscillations of x and y coordinates reflect precession
of the planet’s orbit with a typical time-scale of fp. & 25-30 (see
more details in Section 5).

The bottom right-hand panels show the rz-slices of the density
distribution at # = 0 and 120. One can see that during the simulation,
the disc changed its structure due to interaction with the planet.
Changes are more significant than in the zero-mass planet’s model
(see Fig. 1). However, the low-density cavity is present, and the disc
can be used to investigate the current problem.

When the planet reaches the inner parts of the disc, the ec-
centricity starts decreasing due to the coorbital corotation torque.
At the cavity boundary, this torque is asymmetric and tends
to move a planet to larger radii (e.g. Masset et al. 2006;
Romanova et al. 2019). This may explain why the semimajor
axis increases after ¢+ &~ 120. The ELR resonances tend to move
to larger radii. However, a planet also moves to larger radii. This
provides quasi-stationary situation when the eccentricity is high for
a while. On the other hand, ELR resonances in the disc become
non-axisymmetric, and precession of matter in the inner disc may
gradually smear resonances. This also stops the planet’s eccentricity
growth.* The final eccentricity of the planet depends on the particular
situation, such as the rate of the disc dispersal.

Fig. 3 shows the same values but in reference model 71.8i0, where
the surface density decreases with the distance as ¥ ~ r~%3. One

4A planet continues interacting with the disc gravitationally and may
exchange its eccentricity with the disc. Ragusa et al. (2018) performed long-
lasting 2D simulations of the disc—planet interaction at late states of evolution
and low masses of the disc, and observed that a planet and a disc exchange
eccentricity quasiperiodically (and in antiphase) for a long time.

can see that similar ELR resonances are observed in the inner disc.
However, the one-armed density wave is weaker.

3.1 Dependence on parameters

We take reference models n1.5i0 and 71.8i{0 and investigate the
eccentricity growth at different parameters (see Table 3 for set of
parameters).

3.1.1 Dependence on the mass of the planet

We performed simulations at the lower, m, = 3M; and higher,
mp = 10Mj mass of the planet. Left-hand panel of Fig. 4 shows
that in both models, the eccentricity increased up to e =~ 0.8-0.9.
However, the eccentricity growth rate is smaller/larger in models
with a smaller/larger planet mass. The right-hand panels of the same
figure show that the amplitude of ELR density waves is larger in
models with larger planet mass. These simulations show that the
torque increases with the planet’s mass, as predicted in theory.

3.1.2 Dependence on viscosity

We performed test simulations at several values of the a-parameter
of viscosity from o = 1072 up to 3 x 10~*. The left-hand panel of
Fig. 5 shows the eccentricity variation at different «. The results are
almost the same at = 10~3 and 3 x 10~*. However, the eccentricity
increases slower when o =3 x 1073 and even slower when o =
1072, Right-hand panels show that the ELR density waves becomes
more smeared in models with higher values of « taken at moments
t = 50 (top panels) and 80 (bottom panels). This result is similar to
our 2D simulations (R23). Both types of simulations show that the
action of ELRs decreases at higher viscosities in the disc.

3.1.3 Dependence on the grid resolution

The grid resolution taken in our models is Ny x Ny x N, = 168 x
300 x 72. For comparison, we calculated models with a lower and
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t=0 2 50

orbital elements

coordinates

Figure 2. Simulation results of the disc—planet interaction in model 71.5i0. The top row of panels shows the surface density distribution ¥ in the inner part of
the simulation region at different moments in time, ¢. The 2nd row shows the same but in the whole simulation region. The 3rd and 4th rows show the same but
for the volume density distribution p in the equatorial plane. The blue and red colours show the lowest/highest values of surface density and density. Bottom
left-hand panels: Top: temporal evolution of the semimajor axis, a, and eccentricity, e. Bottom: temporal evolution of the planet’s coordinates, x, y, z. The time
is measured in periods of Keplerian rotation at the initial location of the cavity boundary, rcay = 1. Bottom right-hand panels: density distribution in the rz-plane

att = 0 and 120.

Table 3. A set of parameters used to test a reference model n1.5:0.

Testing models with aligned orbits (ip = 0) at different parameters

Mass of the planet mp(My) 0 3 5 10
Viscosity «-parameter 3x 1074 1x1073 3x 1073 1 %1072
Grid resolution Ny 100 200 300 400
Slope in the density distribution n 1.5 1.8 2 2.5

higher grid resolutions: 70 x 100 x 24, 119 x 200 x 48, and 217 x
400 x 96.

Left-hand panel of Fig. 6 shows that at the higher grid resolution
(Ny = 400), the curve for eccentricity evolution almost coincides
with that for Ny = 300 grid. However, the simulations are 2.6 times
slower. At the lower grid resolution (N4 = 100 and 200), the
simulations are faster. However, the eccentricity increases increases
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slower or decreases (see pink and green lines in the figure). That is
why we chose the grid Ny = 300 in our simulations.

Both 2D and 3D simulations show the necessity of high grid
resolution while modelling ELRs. Models with a low grid resolution
may show a lower eccentricities compared with the higher grid
resolution and, hence, may underestimate the final value of the planet
eccentricity.
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Figure 3. Same as in Fig. 2 but for reference model n1.8/0. Note that we use slightly different colour bars at different scales to show the fine structure of ELRs
in enlarged plots and features in the whole disc in expanded plots.
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Figure 4. Left-hand panel: Eccentricity evolution in the model n1.50 at different masses of the planet, mp. The time is measured in periods of Keplerian
rotation at the initial location of the cavity boundary, rcay = 1. Right-hand panels: Top: the surface density distribution for these models at moments when
e ~ 0.4. Bottom: The surface density distributions in the equatorial plane of the above figures along x-direction (marked in dashed lines).
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Figure 5. Left-hand panel: Eccentricity evolution in model 71.5i0 but with different values of the a-parameter of viscosity in the disc. Right-hand panels:
Equatorial density distribution at different values of a-parameter at times ¢ = 50 (top panels) and 80 (bottom panels).
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Figure 6. Left-hand panel: Eccentricity evolution in models with parameters of the reference model #1.5i0 but with different grid resolutions Ny =
400, 300, 200, 100. Right-hand panels: Top: Equatorial density distribution at + = 50 and at different grids. Bottom: the same, but a part of the region

and the grid are shown.

Right-hand panels of Fig. 6 show the equatorial density distribution
after + = 50 rotations in simulations with different grids. The bottom
panels show a part of the simulation region and the grid. One can
see that at grid resolutions Ny = 400 and 300, the ELR density
waves are well resolved (with many grids across the wave) and are of
high density (amplitude, red colour). At the lower grid, Ny = 200,
the density waves are resolved only by a few grid cells, and the
amplitude of waves is smaller (yellow colour). At even a lower grid
resolution, Ny = 100, the grid does not resolve the wave, and we do
not observe the wave. We think that at lower grid resolutions, the
numerical diffusivity is high and the denser matter of spiral waves
diffuses away from their initial positions.

We should note that at the lower density of the inner disc and lower
mass of the planet, the torques are weaker, and the grid resolution
should be higher to resolve ELRs. For example, in R23, at the low-
disc density, g¢ = Xq = 3 X 1074, the grid resolution of Ny = 600
was necessary to resolve ELRs. However, in current 3D simulations
where T4 =3 x 1072, the disc density is high, and the grid with
Ny = 300 is sufficient.

3.1.4 Dependence on the slope of the density distribution

We compared the eccentricity evolution at different initial slopes of
the density distribution in the disc. We took discs with equatorial den-
sity distributions p ~ r~" withn = 1.5, 1.8, 2, 2.5. They correspond
to the surface density distributions: £ ~ r~*, with s = 0, 0.3, 0.5, 1.
The right-hand panel of Fig. 7 shows the initial density and surface
density distributions with radius. The left-hand panel shows that the
eccentricity increases slower in models with steeper slopes in density
distribution. We think that the eccentricity growth rate decreases with
n because at steeper density distributions, the inner disc mass Zgor3
and the total mass of the disc is smaller. When we increase the
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density 1.5-2 times, we observe faster eccentricity growth. After
multiple experiments with different s, we conclude that the steeper
density distribution is not a factor that may stop eccentricity growth.

3.1.5 Comparison of 3D and 2D simulations

We compared the eccentricity evolution in our reference 3D models
n1.5i0 and n1.8i0 with 2D models calculated at the same physical
parameters (see Table 2) and the grid. We also compared 3D models
with a 2D model of R23 where the cavity radius has been fixed and
simulations of the gas flow were performed only at the radius » > 7,y
(see complete set of parameters in Table 4). The left and right-hand
panels of Fig. 8 compare the eccentricity evolution in 3D and 2D
simulations in models with n = 1.5 and 1.8. One can see that in 2D
model 2D-300, the eccentricity increases with the same rate as in the
3D model up to e &~ 0.2. Subsequently, it decreases. The eccentricity
increases again but does not reach high values, like in the 3D model.
In test 2D simulation with a higher grid resolution, Ny = 600 (model
2D-600), the eccentricity increases faster and reaches higher values
than in model 2D-300. In the model with the fixed cavity (2D-cav-
600) calculated using R23 approach but at the same parameters as in
3D models, the eccentricity initially increases slower than in 3D, but
subsequently, it grows to high values, like in the 3D model (see blue
lines in Fig. 8). These simulations stopped when the planet reached
the cavity boundary. So, we observed that 2D models with non-
fixed boundaries show slower eccentricity growth than 3D models.
This phenomenon may be due to the faster eccentricity growth in
3D models, as discussed by Teyssandier & Ogilvie (2016). They
found that the eccentricity growth rate due to ELRs is 2—4 orders of
magnitude larger in 3D models than in 2D models (see growth rate
in adiabatic models in their Table 6). This issue should be studied
separately.
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Figure 7. Left-hand panel: Eccentricity evolution in models with different slopes n in the equatorial density distributions p ~ r~". Right-hand panel: Initial
equatorial density distribution and surface density distribution, ¥ ~ r~*, with radius in models with different n.
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Figure 8. Left-hand panel: Eccentricity evolution in 3D model n1.5/0 (3D-300) and 2D models with similar parameters. 2D models were calculated at grids
Ny = 300 (2D-300) and 600 (2D-600). A model 2D-cav-600 corresponds to the fixed cavity model of R23 taken at the grid resolution of Ny = 640 (see also

Table 4). Right-hand panel: The same but for the model n1.8i0.

Table 4. Models used for comparisons of the 3D and 2D models. See comparisons in Fig. 8.

Model 3D-300 2D-600 2D-300 2D-cav-600
grid/dimension 3D 2D 2D 2D (fixed cavity)
Ny 300 600 300 640

N 168 406 203 336

N, 72 - -

Table 5. Simulations were performed at a variety of the initial inclination angles of the planet’s orbit, ig, and two values of the density slope in the disc, n = 1.5

and 1.8. Names of models are constructed using the values of n and i¢.

Parameter/model n1.5i0 nl.5i5 nl.5i15 n1.5i30 nl.5i45 n1.5i60 nl.5i75

io 0° 5° 15° 30° 45° 60° 75°
slope, n 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Parameter/model n1.8i0 n1.8i5 nl.8i15 n1.8i30 nl.8i45 n1.8i60 nl.8i75

io 0° 5° 15° 30° 45° 60° 75°
slope, n 1.8 1.8 1.8 1.8 1.8 1.8 1.8
3.1.6 Time-scales of eccentricity growth eccentricity growth as:

From the left-hand panel of Fig. 8, we estimate the eccentricity T 1 1

growth rate in 3D simulations: ¢;! = d(Ine)/dr ~ 0.024 and the Toee = 4.14 x 10° yr( Feay ) ( d4) (ﬂ> . (12)
time-scale t... & 43.48. This value is relevant to our reference model, 10au 10~ 5M;

where 4 = 3 x 1072. Our earlier 2D simulations performed in the
range of 1072 < £y < 10~* have shown that t! ~ ¥, and also
1ol ~ mp, which is in accord with theoretical studies (e.g. Goldreich
& Tremaine 1980). Here, we project the time-scale of the eccentricity
growth to more realistic parameters of X4 = 10~*. We also convert
time to dimensional units, taking into account that we measure time
in units of Py = 27rg /vy = 27r2)? //GMg,. We take reyy = 10au as

a reference scale (see Table 1). We obtain the dimensional time of

Eccentricity will grow if the cavity does not change its position
significantly or the disc does not disperse. For example, if the cavity
is present during T, = 10°yr, then the eccentricity will increase
significantly, if Teee < Teay, or if the cavity radius

Teay

5 2/3
Feaw < 18 au 2 ) (e .
106yr ) \ 10~ ) \ 5M;
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Planets in a small-sized cavity have a high rate of eccentricity growth.
They may have several episodes of eccentricity growth (due to the
above-discussed mechanisms) and decay due to local corotation
torque when the planet starts entering the inner disc.

4 PLANETS ON INCLINED ORBITS:
KOZAI-LIDOV EFFECT

Next, we placed a planet in an inclined orbit with different inclination
angles iy. We observed that the eccentricity typically increases, and it
also oscillates. The inclination angle also oscillates, but in antiphase
with eccentricity. We suggest that we observe the Kozai—Lidov
mechanism, where the disc acts as a massive object that perturbs
the planet’s orbit.

4.1 Planet-planet/star and planet—disc interaction

Below, we briefly summarize the theory of the Kozai-Lidov mech-
anism in cases of the planet—planet/star interaction (e.g. Kozai
1962; Lidov 1962; Innanen et al. 1997), and planet—disc interaction
(Terquem & Ajmia 2010).

If a planet of mass m,, located at an inclined orbit with semimajor
axis a,,, and interacts with a massive object (a planet or a star) of mass
M, located at the circular orbit of radius R, > a,, then the secular
perturbation by the distant companion causes the eccentricity e, of
the inner planet and the mutual inclination i of two orbits to oscillate
in time in antiphase. In this situation, the component of the angular
momentum of the inner orbit perpendicular to the orbital plane, L,
is constant and proportional to

L, o 4/1— ef) cosi = const. (14)

This equation shows that the decrease of the inclination angle i leads
to the increase of the eccentricity e, and vice versa. As a result, the
eccentricity and inclination oscillate in the antiphase, and eccentricity
can also be pumped to the orbit at the expense of inclination and vice
versa.

Terquem & Ajmia (2010) considered the interaction of the planet
on the inclined orbit with the external remote disc and noticed that the
potential for the planet—planet interaction is similar to that for planet—
disc interaction (compare their formulas 4 and 5). They concluded
that the Kozai-Lidov mechanism should also operate in the case of
the remote discs.

The maximum value of the eccentricity which can be reached
during this process is

5 12
Emax = <1 - gcos2 ic> , (15)

and therefore the initial inclination iy should be larger than the critical
value i, &~ 39° which is determined from condition cos? i, = 3/5.

The time #., to reach ey, starting from ey in both models is
(Innanen et al. 1997):

tey 2 ~1/2 'max
v _ 0.42(sin2 i — 7> In (e—> (16)
T 5 €

R\’ /M, P

T=K(— — =, (7
ap M' )2

where P is the period of the planet’s rotation. For planet—planet/star

interaction: M’ = M, R’ = R,,, and K = 1. For planet—disc inter-
action (Terquem & Ajmia 2010): M’ = My is the total mass of the
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disc, R" = R,, and

_ 49 —n7")
B

where n = R;y/R,, Rin, and R, are the inner and outer radii of the
disc, s, is the power in the surface density distribution (Terquem &
Ajmia 2010). If the eccentricity oscillates between ey and e, then
the period of oscillations is Pyg. = 2fey.

Terquem & Ajmia (2010) (and also Teyssandier et al. 2013)
performed numerical simulations using earlier developed N-body
code (Papaloizou & Terquem 2001) and confirmed these theoretical
results. In particular, they have shown that 7., increases when R,
increases, and also f., increases when the disc mass My decreases,
which is in accord with equation 17. Teyssandier et al. (2013)
confirmed the action of this Kozai-Lidov mechanism at various
parameters of the model.

18

4.2 3D simulations of planets on inclined orbits

‘We put a planet on inclined orbits with different inclination angles iy
and two types of discs with n = 1.5 and 1.8 (see Table 5).

4.2.1 Disc—planet interaction in model n1.5i45

As an example, we take one of the reference models, n1.5i45, and
show results for the disc—planet interaction in detail.

Top panels of Fig. 9 and the 3rd row from the top show that ELR
waves form in the inner disc both in the surface density (top row) and
the equatorial density distribution (3rd row). The m = 2 modes are
clearly observed. The 2nd row shows the density distribution in the
disc. The 4th row shows the equatorial density distribution, which
decreases rapidly with radius. The bottom left-hand panels show that
the eccentricity oscillates but increases on average up to e ~ 0.7-0.9
after ¢+ ~ 70. The inclination strongly oscillates and decreases on
average. The bottom right-hand panels show the variation of the
planet’s coordinates (top) and the rz-slice of the density distribution
(bottom). One can see that in equatorial x- and y-coordinates, the
planet reaches the inner disc radius of r ~ 1-1.2, which leads to
a variation of its eccentricity around a large value of ~0.8. There
are also large-scale variations of the x- and y-coordinates due to the
precession of the orbit. The z-component decreases with time. The
bottom right-hand panel shows that the disc is not symmetric about
the equatorial plane due to the disc—planet interaction.

4.2.2 Models with n = 1.5 and different i

We took our reference model with n = 1.5 but placed a planet in or-
bits with different inclination angles: iy = 5°, 15°, 30°,45°, 60°, 75°.

We observed that in models with relatively small inclination
angles, ip = 5°-30°, ELR resonances were excited in the inner disc,
which are similar to those in the model with iy = 0°. The eccentricity
evolution and the growth rates are similar to those in the model with
ip = 0° (see the top left-hand panel of Fig. 10). The bottom left-
hand panel shows that the inclination angle decreased on average but
strongly oscillates after time ¢ > 50-70. At inclination angle iy =
30°, the eccentricity increases faster than in models with smaller ij.

At larger inclination angles, iy = 45° and 60°, the eccentricity
initially strongly oscillates and reaches e ~ 0.6. Later, it increases to
higher values of e & 0.7-0.9. The inclination of the orbit decreases
on average and strongly oscillates (see right-hand panels in Fig. 10).

The top panels of Fig. 11 show variations in eccentricity and
inclination, which were placed side by side on the same panels.
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Figure 9. Top 4 rows: The same as in Fig. 2 but for the model n1.5i45. Bottom left-hand panels: Top: temporal evolution of the semimajor axis, a, and
eccentricity, e. Bottom: temporal evolution of the inclination of the orbit, i. Bottom right-hand panels: Top: temporal evolution of the planet’s coordinates,

X, y, z. Bottom: density distribution in the rz-plane at = 120.

The bottom panels show a part of the simulation time with a higher
temporal resolution. One can see that the inclination and eccentricity
oscillate in the antiphase, as predicted by the Kozai-Lidov mecha-
nism. We observed such antiphase oscillations in all simulation runs
with inclined orbits. We think we observe the eccentricity growth
and its oscillations due to the Kozai-Lidov mechanism.

4.2.3 Models with n = 1.8 and different iy

We repeat the above simulations using a reference model with a
steeper density distribution, n = 1.8. The top left-hand panel of
Fig. 12 shows that in models with relatively small inclination angles,
ip = 15° and 30°, the eccentricity increases similar to that in the
model with zero inclination (n1.8i0). However, the eccentricity
increases ~1.8 times slower compared with models where n = 1.5.
The bottom left-hand panel shows that the inclination oscillates and
decreases on average.

The right-hand panels of the same figure show the eccentricity and
inclination in models with high inclination angles. One can see that

the eccentricity strongly oscillates and reaches values of e ~ 0.55 in
the model with i, = 45° and ¢ ~ 0.8 in the model with i, = 60°. The
inclination angle also strongly oscillates and decreases on average.
The time-scale of oscillations is ~3 times longer in models with
n = 1.8 compared with models n = 1.5. We suggest that this is
because atn = 1.8, the disc has a lower mass compared withn = 1.5
models. Equation (17) from the theory shows that the time-scale of
oscillations is inversely proportional to the mass of the disc, My. The
mass of the disc in the model n1.8i45 is approximately 1.8 times
smaller than that in the model n1.5i45. Comparisons show a correct
tendency towards longer time-scales.

4.2.4 Dependence of the maximum eccentricity em,x on iy

According to the theory, the maximum value of the eccentricity
should increase with inclination of the orbit (see equation 15). From
this equation, it follows that for inclinations iy =45°, 60°, and 75°, the
maximum eccentricities are e, ~ 0.41, 0.76, 0.94, respectively.
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Figure 10. Left-hand panels: Temporal evolution of the eccentricity, e and inclination, i in models with n = 1.5 and initial values of the orbit inclination:
io = 0°, 15°,30°. Right-hand panels: The same but for iy = 45°, 60°.
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Figure 11. Top panels: Temporal evolution of the eccentricity, e and inclination, i in models n1.5i45 and n1.5i60, where the eccentricity and inclination are
shown at the same plot. Bottom panels: The same, but during shorter time intervals.
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Figure 13. Top panel: Eccentricity evolution in the model with n = 1.8 at different initial values of the inclination angle of the orbit: iy = 45°, 60°, and 75°.
Dashed horizontal lines show an approximate value of the eccentricity amplitude for each model. Bottom panel: Same, but for the inclination angle.

Table 6. Densities pg and corresponding surface densities 24 used to derive the dependence of the oscillation time #,sc from the inner density of the disc (see

Fig. 14).
Reference desity pq 0.8 0.6 0.4 0.3 0.2 0.133 0.1 0.068 0.05
Reference surface density 24 0.06 0.045 0.03 0.0225 0.015 0.01 0.0075 0.0051 0.00375

We took a model with n = 1.8 and compared maximum eccen-
tricity values in models with iy = 45°, 60°, and 75°. We chose early
moments before other processes started to influence the eccentricity
growth. Top panel of Fig. 13 shows that ey, is larger in models with
larger initial inclination. From the plot (see dashed horizontal lines
in the plot), we obtain:: ep, =~ 0.46, 0.73, 0.92 for models with iy =
45°, 60°, and 75°, respectively. These values are very close to those
predicted by the theory. We suggest that our model is close to the
theoretical model by Terquem & Ajmia (2010) because at n = 1.8,
most of the mass is in the outer regions of the disc, which is close
to the theoretical model, where the disc is located far away from
the planet. The bottom panel of Fig. 13 shows that the amplitude of
inclination also increases with ij.

4.2.5 Time-scale of eccentricity growth in oscillations

In this experiment, we fix the disc radii and structure but change
the reference surface density %4 (see Table 6). This way, we change
the mass of the disc. We observed that the time-scale of oscillations
increases when X4 decreases. Fig. 14 shows the dependence of the
period of oscillations 7o on 1/% is similar in models with n = 1.5
and 1.8. The dependence is approximately linear for 1/%4 = 100.
From the plot, we derive an approximate dependence:

fose  0.53 (27" — 18). (19)

At small values of 34, we obtain fos &~ 0.53%; ' In our models, the
mass of the disc My ~ X4 and therefore, #,s. ~ 1/Mj, as predicted
in theoretical models (see equation 17).
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Figure 14. Period of Kozai-Lidov oscillations obtained in simulations of
discs with different initial surface densities in models n1.5i45 and n1.8i45.
The dashed line shows the dependence taken for analytical estimates and
projections in equations (17) and (20).

Equation (19) is in dimensionless units. For practical applications,
we convert this equation to dimensional units using the projected
value of the characteristic disc mass of 4 = 10~*. We take into
account that we measure time in rotational periods at r = r¢,, and
take r.,y = 10 au as a reference scale (see Table 1), and obtain:

Toe ~ 3.18 x 10%yr 2 P E (20)
) 10au 10—

This time-scale is comparable with the time-scale of eccentricity
growth due to ELRs (see equation 12).
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Table 7. The mode number m, type of resonance, res, resonant radii rres/dp,
coefficients A and B for ELRs and their ratios.

m res Fres/dp A B A/B
2 1:3 2.080 0.607 1.849 0.328
3 2:4 1.587 5.201 3.594 1.447
4 3:5 1.406 7.362 5.604 1.314

We also compared the time-scale of eccentricity growth f., given
by the theory (see equations 16—18) with that obtained in our simu-
lations. As an example, we use a model 71.5i60, which shows high-
amplitude oscillations, and consider the 3rd peak in the eccentricity
curve shown in the top right-hand panel of Fig. 11 (we take one
of the early moments when the disc is approximately homogeneous
and the density wave did not form yet). In the 3-rd peak ¢y = 0.1,
emax ~ 0.6. We take ap, = 0.6 and Ry = 13 (the radius of exponential
cut) and obtain n & 0.077. We also obtain K ~ 0.041, ., /T ~ 1.27.
We calculate the dimensionless mass of the disc as My ~ 15.8 and
obtain the final value of time in our dimensionless units as ., ~ 15.7.
We compare this value with the time of eccentricity growth in the 3rd
peak obtained from the figure, which is z, & 9. One can see that the
difference is in the factor of 1.7, which is in reasonable agreement
with the theory.

5 ECCENTRICITY OF THE DISC AND
PRECESSION

A planet on the eccentric orbit excites eccentricity in the disc (e.g.
Ogilvie 2007). The linear analysis (performed for small eccentricities
of the planet and the disc) shows that the eccentricities of the planet
and the disc are coupled through resonant interactions (e.g. Ogilvie
2007; Teyssandier & Ogilvie 2016). To compare our results with
theory, we use formulae for the temporal evolution of complex
eccentricities from Teyssandier & Ogilvie (2016) (see their equations
14 and 15). A single ELR contributes to the evolution of eccentricities
of the planet and the disc (in the vicinity of the resonance) in the
following way:

dE GM? E
Myd’Q,( =2 ) = —2LE,B |- Ak /2F27[rdr,
P 0t Jgir M., BEq

ey

GM?
Er2§2<%) =-—LSABE, (1 - @)F, (22)
ELR M BEP

*

where E, = e ¢’ and Eq = eqe’™, e, = |E,|, eq = | E4|; W, and
wy are the arguments of the pericentre of the planet’s and disc’s
semimajor axes, respectively. Here, F = w| lA[(r — Ires)/wL — 1]
is a function of resonant radius 7., resonant width w; and dimen-
sionless function A. Values w;, and function A describe the radial
profile of the ELR resonance.

In our simulations, we observe formation of ELR waves with mode
numbers m = 2, 3 and sometimes m = 4. Table 7 shows the values
of coefficients A and B for these resonaces and the resonant radii
T'tes (see an extended version of the table in Teyssandier & Ogilvie
2016).

In the above sections, we calculated the evolution of the planet’s
eccentricity. Below, we study the disc eccentricity and precession of
the planet and disc.
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5.1 Disc eccentricity

We calculate the distribution of the disc eccentricity with radius using
an approach based on the angular momentum deficit (hereafter AMD)
Aq4(r) (e.g. Ragusa et al. 2018). The angular momentum deficit of
the ring is Aq(r) = Jeire(r) — Ja(r), where

Jcim(r)zfz\/mdd), gz _GM

is the circular angular momentum of the ring in the disc located at
radius r, and Jy(r) = f Xrvg dg. is the real angular momentum of
the ring at the radius r. The eccentricity of the ring is

24400
ed(r) N Jcirc(r) . (23)

Our disc has a finite thickness and therefore is not precisely
Keplerian due to the pressure component. In the calculation of the
disc eccentricity, we subtracted this background eccentricity (see also
Ragusa et al. 2024).

Fig. 15 shows the distribution of eq(r) at different moments in
time in models n1.5i0 and n1.8i0 (see left-hand and right-hand
panels, respectively). In both models, the disc eccentricity is larger
in the inner disc (in the region of ELRs). Eccentricity in the inner disc
increases with time in both models. Eccentricity in the rest of the disc
increases most of the time in the model 71.5{0 and reaches ¢4 ~ 0.1
on average at t = 110. In the model n1.8i0, the disc eccentricity
varies and is eg & 0.05-0.06 on average.

Next, we calculate the evolution of eccentricity with time. For that,
we take the average eccentricity value in some radii interval. The left-
hand panel of Fig. 16 shows the temporal evolution of eccentricity
where we took the averaged value in the interval of radii 1 <r < 3
(where ELR resonances are located). One can see that the inner disc
eccentricity gradually increases in both models. The right-hand panel
shows the temporal variation of eccentricities averaged at 1 < r <
12. One can see that the eccentricity of the whole disc varies quasi-
periodically, with a quasi-period of 30-40 in model n1.5i0 and a
slightly longer quasi-period in model n1.8i0.

Now, we can compare simulation results with theoretical expecta-
tions. Here, we neglect the precession and take the absolute values,
e, = |Ep| and eq = |Eq4| (like we did in R23). According to the
theory (see equation 21), the planet’s eccentricity will increase if
the value in the brackets (1 — Aeq/Bep) > 0, that is if e, > A/Bey.
As an example, we take a model 71.5i0 and some moment in time
t = 50. From the left bottom panel of Fig. 2, we obtain the planet
eccentricity e, ~ 0.25, and from the left-hand panel of Fig. 16, the
inner disc eccentricity: eq ~ 0.025. Simulations show that at this
time, ELR 1:3 resonance dominates (m = 2). Taking the value of
A/B for 1:3 resonance from Table 7 and eq = 0.025, we obtain
that condition for planet eccentricity growth becomes e, > 0.008.
This condition is satisfied, and the planet’s eccentricity will grow.
Comparisons at other times show a similar result, and therefore in our
model, conditions are always favourable for the planet’s eccentricity
growth.

Similar estimates for the disc eccentricity growth (see equation 22)
show that the disc eccentricity cannot grow at any values of eg
and e, obtained in simulations. We suggest that relatively small
eccentricities of the disc observed in our simulations may be
connected with this theoretical prediction.
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Figure 15. Radial distribution of the disc eccentricity at different moments of time obtained in models n1.5:0 (left-hand panel) and n1.8i0 (right-hand panel).
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Figure 16. Left-hand panel: Temporal variation of the averaged eccentricity of the disc g in models 71.5/0 and n1.8i0 calculated for the inner part of the disc
in the interval of radii 1 < r < 3. Right-hand panel: Same, but for the disc eccentricity taken in the interval of radii 1 < r < 12.

5.2 Precession

Simulations show that the planet’s orbit precesses counterclockwise.
The bottom left-hand panels of Figs 2 and 3 show coordinates x and
y of the planet’s orbit in the equatorial plane. The waves in the curve
reflect the precession of the planet. The amplitude of waves increases
due to the increase of eccentricity. Period of planet precession is
Tpree A 25-30 in model n1.5i0 and Ty &~ 30-35 in model n1.8i0.
Test simulations of model 71.50 at a twice as low and high inner
surface density of the disc X4 = 0.015 and 0.06 have shown that
the period of precession is larger in models with a lower density
of the disc. The disc also precesses. The precession can be tracked
using the orientation of the density wave seen in the surface density
distributions (see Fig. 2).

Fig. 17 shows an episode of precession in models 71.5/0 and
n1.8i0 in greater detail. The top left-hand panels show the time
sequence of the surface density distribution during an interval of time
At = 80-110 in model n1.5i0. It shows that the density wave in the
disc precesses counterclockwise with a period of Tpe. ~ 25-30. The
bottom left-hand panel shows that a planet precesses approximately
with the same period.

Right top panels of Fig. 17 show the same but for the model n1.8i0.
The top panels show that the spiral wave is only slightly visible. We
suggest that in this model, where the surface density decreases with

SThe density wave tracks the precession of the disc only approximately.
Teyssandier & Ogilvie (2016) note that eccentricity excited in the inner
parts of the disc propagates out in the form of a one-armed density wave.
It is probable that the density wave results from the fact that initially, the
rings of matter in the disc have different precession rates and different lines
of percenters, which are more aligned in the inner parts of the disc where
processes are faster (see an illustration of this effect in fig. 1 of Ragusa et al.
2024).

radius, lines of pericentres become aligned more rapidly than in the
previous model of homogeneous disc. The bottom panel shows that
the planet precesses with a period of Ty & 30-35.

According to equations (21) and (22), the precession of the planet
and disc can influence the rate of eccentricity growth (Teyssandier &
Ogilvie 2016). From simulations, we see that the planet and disc
precess couterclockwise approximately at the same rate. If they
precess with precisely the same rate and have the same phase, then
W, — wq = 0 and e/~ = 1. In the opposite situation, if they
precess in antiphase, , — wg = and e/~ = —1. In both cases,
the value in brackets in the right-hand side of equation (21) is positive
and planet’s eccentricity will grow.

6 CONCLUSIONS

We have investigated the evolution of the eccentricity of massive
planets located inside cavities of protoplanetary discs. The main
conclusions are the following:

(1) In models with aligned orbits (i, = 0):

(a) The eccentricity increases up to high values of e ~
0.7-0.9 due to the ELR resonances excited in the inner disc.
Resonances with modes m = 2 and 3 dominate. The eccentricity
increases any time when ELR waves are excited in the disc. This
process is similar to that observed in 2D simulations of R23.

(b) The characteristic time of eccentricity growth increases
in models with smaller planet mass due to smaller torque acting
on the disc. The amplitude of ELR waves is smaller in models
with smaller planet mass.

(c) At higher viscosity in the disc, the ELR density waves
become smeared, and eccentricity growth decreases.
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Figure 17. Top panels: Density distribution in the disc during the sequence of times shows the precession of the disc in models n1.5i0 (left four panels) and
n1.8i0 (right four panels). Bottom panels: Variation of xy-coordinates of the planet in the equatorial plane shows the precession of the planet.

(d) The grid resolution is an essential factor. At a low grid
resolution, the number of grids could not be sufficient to
resolve ELR waves. In addition, the amplitude of density waves
decreases due to the numerical diffusivity.

(e) The disc eccentricity slowly increases with time, with the
largest eccentricity at the inner disc. It increases with the growth
of the planet’s eccentricity. Planet—disc interaction leads to the
precession of the planet’s orbit. The density waves or other
inhomogeneities in the disc precess with comparable period.
Disc eccentricity and its influence on the planet’s orbit should
be further studied in models with lower disc density and longer
simulation runs.

(2) In models with inclined orbits (iy # 0):

(a) At relatively small inclination angles, iy < 30°, the ec-
centricity increases up to e ~ 0.7-0.9 due to the ELRs, like
in models with iy = 0. The Kozai-Lidov oscillations of small
amplitude are observed. The orbital inclination decreases on
average.

(b) At large inclination angles, iy = 45°, 60°, and 90°
eccentricity and inclination strongly oscillate in the antiphase,
like in the original Kozai—Lidov mechanism.

(c) The amplitude of oscillations increases when i, increases
and reaches ¢ ~ 0.9 in the case of iy = 75°. The time-scale
of eccentricity growth increases when the characteristic disc’s
mass decreases.

(d) Eccentricity may also increase on average due to ELRs.

The above simulations show good potential for explaining the ec-
centricity of exoplanets, including very high eccentricities. However,
the final eccentricity at the time of disc dispersal can be different,
and it depends on a number of factors. One of the important factors
is the size of the disc-cavity boundary. At relatively small sizes, say,
at reyy S 10 au, the eccentricity increases rapidly, and the planet may
enter the inner disc and lose eccentricity due to the local corotation
torque. Later, if the disc moves away, the eccentricity may increase
again. Therefore, several episodes of eccentricity growth and decay
may occur. In the case of planets on inclined orbits, several Kozai—
Lidov cycles of eccentricity oscillation are expected. On the other
hand, for cavities located at much larger distances, the eccentricity
increases slowly, and only a part of the eccentricity growth cycle is
expected.

Our simulations were performed at a high density (and mass) of the
disc, which provided higher torques between the planet and the disc
and helped to decrease computing time. We scale simulations to lower
densities and longer time-scales using the theoretical prediction that

MNRAS 532, 3509-3525 (2024)

the eccentricity growth rate is inversely proportional to the density
(e.g. Goldreich & Tremaine 1980) and results of 2D simulations
of R23, which confirmed this dependence. Future 3D simulations
should be done at the lower density in the disc and also in discs with
a steeper density distribution.
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