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A B S T R A C T 

We study the evolution of eccentricity and inclination of massive planets in low-density cavities of protoplanetary discs using 

three-dimensional (3D) simulations. When the planet’s orbit is aligned with the equatorial plane of the disc, the eccentricity 

increases to high values of 0.7–0.9 due to the resonant interaction with the inner parts of the disc. For planets on inclined orbits, 

the eccentricity increases due to the Kozai–Lidov mechanism, where the disc acts as an e xternal massiv e body, which perturbs 

the planet’s orbit. At small inclination angles, � 30 
◦, the resonant interaction with the inner disc strongly contributes to the 

eccentricity growth, while at larger angles, eccentricity growth is mainly due to the Kozai–Lidov mechanism. We conclude that 

planets inside low-density cavities tend to acquire high eccentricity if fa v ourable conditions give sufficient time for growth. The 

final value of the planet’s eccentricity after the disc dispersal depends on the planet’s mass and the properties of the cavity and 

protoplanetary disc. 

Key words: accretion discs – hydrodynamics – planet-disc interactions – protoplanetary discs. 

1  I N T RO D U C T I O N  

Man y e xoplanets hav e high eccentricities of their orbits. Giant planets 

hav e eccentricities co v ering the whole range from zero to near unity 

(e.g. Marcy et al. 2005 ; Kane et al. 2012 ; Sagear & Ballard 2023 ). 

The phenomenon of non-zero eccentricities has yet to be understood. 

Eccentricity and inclination may grow due to the gravitational 

interaction between planets (e.g. Rasio & Ford 1996 ; Lin & Ida 

1997 ; Papaloizou & Terquem 2001 ; Chatterjee et al. 2008 ; Juri ́c 

& Tremaine 2008 ; Mustill, Davies & Johansen 2017 ; Anderson, 

Lai & Pu 2020 ; Li et al. 2021 ) or due to secular perturbations 

from exterior stellar or planetary companions due to Kozai–Lidov 

mechanism (Kozai 1962 ; Lidov 1962 ; Holman, Touma & Tremaine 

1997 ; Takeda & Rasio 2005 ; F abryck y & Tremaine 2007 ; Anderson, 

Storch & Lai 2016 ; Anderson & Lai 2017 ). On the other hand, they 

may vary due to the interaction of a planet with an accretion disc 

(e.g. Goldreich & Tremaine 1980 ). 

A planet in the low-density cavity interacts with the inner disc by 

eccentric Lindblad resonances (ELRs), and the eccentricity increases 

(e.g. Goldreich & Tremaine 1980 ; Artymowicz et al. 1991 ; Goldreich 

& Sari 2003 ; Ogilvie & Lubow 2003 ; Teyssandier & Ogilvie 

2016 ). A low-density cavity may be supported by various physical 

mechanisms, e.g. by the magnetosphere of the star (e.g. K ̈onigl 1991 ; 

Hartmann 2000 ; Romanova & Lovelace 2006 ; Romanova & Owocki 

2015 ), magnetic wind from the star (e.g. Lo v elace, Romano va & 

� E-mail: romanova@astro.cornell.edu 

Barnard 2008 ; Schnepf et al. 2015 ; Bai 2016 ; Wang & Goodman 

2017 ; Elbakyan et al. 2022 ), or e v aporation of the inner disc due to 

UV radiation (e.g. Dullemond et al. 2007 ). 

A number of two-dimensional (2D) numerical simulations have 

been performed that show that eccentricity can increase due to the 

disc–planet resonant interaction (e.g. Papaloizou, Nelson & Masset 

2001 ; D ́Angelo, Lubow & Bate 2006 ; Kley & Dirksen 2006 ; Rice, 

Armitage & Hogg 2008 ; Bitsch et al. 2013a ; Dunhill, Alexander 

& Armitage 2013 ; Ragusa et al. 2018 ; Debras, Baruteau & Donati 

2021 ; Baruteau et al. 2021 ). In many simulations, only a small value 

of eccentricity has been obtained, e ∼ 0 . 1 –0 . 25 (e.g. Papaloizou 

et al. 2001 ; D ́Angelo et al. 2006 ; Kley & Dirksen 2006 ). Larger 

eccentricity e ≈ 0 . 4 has been observed by Debras et al. ( 2021 ) who 

were able to keep the disc-cavity boundary at the same location by 

setting a high/low viscosity in the cavity/disc, and by Rice et al. 

( 2008 ) who fixed the disc-cavity boundary and calculated the gas 

evolution only in the disc. The eccentricity of the planet may also 

increase or decrease due to the exchange of eccentricity between the 

planet and the disc (e.g. Teyssandier & Ogilvie 2016 ; Ragusa et al. 

2018 ; Li & Lai 2023 ). 

In our earlier work, we used 2D simulations to investigate 

the eccentricity growth of massive planets located in the cav- 

ity with the fixed disc-cavity boundary (Romanova et al. 2023 , 

hereafter R23 ). We examined a wide range of parameters and 

observed that the eccentricity typically increases to high values 

of ∼0.6–0.8. We investigated different resonances responsible for 

eccentricity growth and derived the dependence of the eccen- 

tricity growth on various parameters. Simulations confirmed the 
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theoretically-predicted result that the eccentricity growth rate is 

proportional to the density (characteristic mass) of the disc. There- 

fore, simulations are scalable and can be performed for denser 

discs during a shorter simulation time. These findings opened a 

path for more realistic 3D simulations of the disc–planet interac- 

tion. 

This paper shows the results of our global 3D simulations of the 

disc–planet interaction. We did not fix the disc-cavity boundary and 

calculate the gas flow inside and outside the cavity. The low-density 

cavity has been supported by the equilibrium initial conditions and 

a low disc viscosity. Simulations confirmed that the eccentricity 

may increase to very high values of e ∼ 0 . 7 –0 . 9. We investigate the 

dependence of the growth rate of eccentricity on different factors, 

such as the planet’s mass and the density , viscosity , and mass of the 

planet. In models with more massive planets and denser discs, the 

torques are higher, and eccentricity increases more rapidly. In models 

with lower grid resolution and higher viscosity, the resonances are 

not well resolved, and the eccentricity growth is slower. 

We also investigate the evolution of the eccentricity and inclination 

of planets in inclined orbits. Terquem & Ajmia ( 2010 ) have shown 

that the orbit of an inner planet can be perturbed by a remote massive 

disc due to the Kozai–Lidov mechanism, similar to that when the 

perturber is a distant massive planet or a star. They supported their 

theoretical findings with N -body numerical simulations (see also 

T eyssandier, T erquem & Papaloizou 2013 ). In their simulations, the 

external disc has been fixed. In our work, we calculate the general 

3D hydrodynamic model where the density distribution in the disc 

changes due to the disc–planet interaction. We observed that the 

eccentricity increases and oscillates due to the Kozai–Lidov effect. 

We investigated the dependence of the eccentricity growth on the 

inclination of the orbit and other parameters. 

The plan of the paper is as follows: In Section 2 , we describe the 

problem set-up and our numerical model. In Sections 3 and 4 , we 

show the results of simulations in cases of aligned and inclined orbits 

of the planet. We conclude in Section 6 . 

2  PROBLEM  SETUP  A N D  N U M E R I C A L  M O D E L  

We place a star of mass M ∗ in the centre of the coordinate system. 

We use a 3D grid in cylindrical coordinates ( r, φ, z). We place a low- 

density cavity at radii R in < r < r cav , and high-density disc at radii 

r cav < r < R o , where R in and R o are the inner and outer boundaries 

of the simulation region. 

We solve a problem in dimensionless form. We measure distances 

in units of r 0 = r cav . The inner and outer boundaries are R in = 0 . 3 and 

R o = 18. The reference mass is the mass of the star, M 0 = M ∗ = M �, 

where we take a Solar mass star as a base. The reference velocity 

is given by v 0 = 
√ 

GM 0 /r 0 . The time is measured in Keplerian 

periods of rotation at r = r 0 : P 0 = 2 πr 0 /v 0 . The reference density is 

ρ0 = M 0 /r 
3 
0 and the reference surface density is � 0 = M 0 /r 

2 
0 . The 

reference pressure is p 0 = ρ0 v 
2 
0 . We also determine the dimension- 

less mass of the inner disc, q d , such that the dimensional characteristic 

mass of the inner disc is M d0 = q d M 0 , where M d0 = � d0 r 
2 
0 is 

characteristic mass of the inner disc 1 and, where � d0 = q d � 0 is the 

characteristic surface density, and therefore q d ≡ ˜ � d = � d0 /� 0 is 

also a dimensionless surface density of the disc at the reference 

point r = r 0 . We drop tilde and hereafter use the dimensionless 

surface density � d as a parameter that characterizes typical mass 

1 Note that many authors use the total mass of the disc in their definition of 

q d (e.g. Teyssandier & Ogilvie 2016 ; Ragusa et al. 2018 ). 

of the inner disc. In current simulations, we take � d = 3 × 10 −2 . For 

practical applications, we use the more realistic value of � d = 10 −4 

(see Table 1 ). 

We place a planet of mass m p = q p M 0 = 5 × 10 −3 M 0 = 5 M Jup 

inside the cavity at the orbit with the semimajor axis a 0 = 0 . 6. We 

take masses m p = 3 M Jup and 10 M Jup in test simulation runs. We take 

an orbit with a small initial eccentricity e = 0 . 02. It helps to decrease 

the eccentricity damping by the 1st order corotation torque (e.g. 

Goldreich & Sari 2003 ; Ogilvie & Lubow 2003 ). A planet is placed 

either in the equatorial plane of the disc at zero inclination angle, 

i 0 = 0 ◦, or in inclined orbit with inclination angles from i 0 = 5 ◦ up 

to 75 ◦. 

2.1 Initial disc-cavity equilibrium 

We calculate the equilibrium distribution of density and pressure 

in the disc and cavity using an approach described in Romanova 

et al. ( 2019 ). In this approach, it is suggested that the disc has a 

high density, ρd while the cavity has very low density, ρcav 	 ρd . 

To support this configuration, we take a high temperature in the 

cavity and a low temperature in the disc, such that at the disc-cavity 

boundary, the gas pressure in the disc equals the gas pressure in the 

cavity, p d = p cav . 

To construct our initial condition, we first determine the equilib- 

rium in the equatorial plane. The initial density distribution is given 

by 

ρ( r, 0) = 

{ 
ρcav if r < r cav 

ρd 

(
r 

r cav 

)−n 
if r ≥ r cav . 

(1) 

Here, ρcav is the density in the cavity and ρd is the disc density near 

the cavity boundary, r = r cav . Parameter n specifies the radial profile 

of the disc density. We take a similar distribution for pressure in the 

disc and cavity. 

We take a disc with semithickness h/R = 0 . 03 (determined at 

r = r d ) and derive the temperature in the disc from the condition: 

( h/R) d = ( c s /v K ) d , where c s and v K are the sound speed and Kep- 

lerian velocities at r = r d . Using our dimensionalization ( GM = 1, 

r 0 = r cav , v K0 = v 0 = 1), we obtain the temperature at the inner edge 

of the disc: T d = c 2 s = ( h/R) 2 = 0 . 0009. We determine the dimen- 

sionless density ρd at r = r d ( ρd = 0 . 4 in most of our simulations). 

We take much lower density in the cavity, ρcav = 10 −3 ρd . 

At the inner edge of the disc ( r = r d ), we take an equal pressure for 

the disc and cavity in the equatorial plane: p d = p cav . This condition 

provides a zero pressure gradient force at the boundary and the initial 

equilibrium between the disc and cavity. 

The dimentionless temperature is related to density and pressure 

by the ideal gas law, R T ( r) = p( r) /ρ( r). Therefore, T d ρd = T cav ρcav 

and the temperature in the cavity T cav = 10 3 T d is much higher than 

that in the disc. 2 

Initially, the disc is isothermal. The temperature in the cavity is 

also constant. Subsequently, at t > 0, we calculate the temperature 

distribution using the energy equation. 

In our model, the cavity has a very low density, 10 3 times lower 

than in the disc. A planet in the low-density cavity excites the zero- 

2 In protoplanetary discs, the temperature may be low in both the disc and 

cavity (excluding cases where cavities are carved by stellar wind or high- 

energy radiation from the star). We note that the condition of equal pressure 

(a high temperature in the cavity) is not a necessary condition for the final 

equilibrium because the main forces that support the disc are gravitational 

and centrifugal forces, while the pressure gradient force is much smaller. 
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T able 1. T op rows: reference v alues calculated for dif ferent sizes of the disc-cavity boundary r cav . Middle rows: initial v alues of density and surface density 

taken in the model. Bottom rows: Projected values, where we took a small value of the surface density, � d = 10 −4 . 

Reference unit Reference values 

Reference distance r 0 = r cav r 0 [au] 0.1 1.0 10 

Reference velocity v 0 [km s −1 ] 94.3 29.8 9.4 

Reference period P 0 [d] 11.56 365.3 11599 (31.78 yrs) 

Reference density ρ0 [g cm −3 ] 5 . 9 × 10 −4 5 . 9 × 10 −7 5 . 9 × 10 −10 

Reference surface density � 0 [g cm −2 ] 8 . 9 × 10 8 8 . 9 × 10 6 8 . 9 × 10 4 

Values in reference models at � d = 3 . 0 × 10 −2 

Initial density at r = r cav ρd0 [g cm −3 ] 2 . 4 × 10 −4 2 . 4 × 10 −7 2 . 3 × 10 −10 

Initial surface density � d0 [g cm −2 ] 2 . 7 × 10 7 2 . 7 × 10 5 2 . 7 × 10 3 

Projected values at � d = 1 . 0 × 10 −4 

Initial density at r = r cav ρdp [g cm −3 ] 8 . 0 × 10 −7 8 . 0 × 10 −10 8 . 0 × 10 −13 

Initial surface density � dp [g cm −2 ] 8 . 9 × 10 4 8 . 9 × 10 2 8.9 

order Lindblad resonances responsible for the migration. Ho we ver, 

the torques are proportional to the density (e.g. Goldreich & Tremaine 

1979 ) and are 10 3 times smaller than torques acting on a planet 

migrating inside the disc. In simulations, we observed that a planet 

migrates inward as long as some of the Lindblad resonances are 

located inside the disc. Ho we ver, migration stops when all resonances 

are located inside the cavity, and ELRs start acting. The high 

temperature in the cavity does not influence the planet’s migration in 

the cavity. 3 

Next, we assume that there is a hydrostatic equilibrium in the 

vertical direction and build the 3D distribution of density: 

ρ( r, z) = ρ( r, 0) exp 

(
� ( r, 0) − � ( r, z) 

R T ( r, 0) 

)
, (2) 

where � ( r, z) = −GM ∗/ ( r 2 + z 2 ) 1 / 2 is the gravitational potential 

of the star. The expression for pressure is analogous. The azimuthal 

velocity v φ is determined from the balance between gravity and 

pressure gradient forces in the radial direction: 

v φ( r, z) = 

√ 

r 

(
∂ � 

∂ r 
+ 

1 

ρ

∂ p 

∂ r 

)
. (3) 

These formulae allow us to start from a quasi-equilibrium configu- 

ration for the disc and the cavity. 

We obtain the surface density distribution in the disc by integrating 

the volume density ρ in the z-direction: 

� = 

∫ 
ρ d z ∝ H ρ ∝ 

c s ρ

�
∝ 

√ 
pρ

�
∝ r −s , (4) 

where, c s ∝ 
√ 

p/ρ is the sound speed and s = 
3 −2 n 

2 . 

2.2 Calculation of the planet’s orbit 

We calculate the orbit of the planet, taking into account the interaction 

of a planet with the star and the disc. We use the earlier developed 

approaches (e.g. Kley 1998 ; Masset 2000 ; Kley & Nelson 2012 ; 

Comins et al. 2016 ; Romanova et al. 2019 ). We find the position r p 
(the radius vector from the star to the planet) and velocity v p of the 

3 Thermodynamics, viscosity, and irradiation of the disc by a star may change 

the direction of migration of a planet located in the disc (e.g. Bitsch et al. 

2013b ; Pierens & Raymond 2016 ). Ho we ver, in the lo w-density cavity, the 

influence of the high-temperature gas on the planet’s migration is negligibly 

small. 

planet at each time-step solving the equation of motion: 

M p 
d v p 

d t 
= −GM ∗M p 

| r p | 3 
r p −

GM 
2 
p 

| r p | 3 
r p + F disc → p . (5) 

The first term on the right-hand side represents the gravitational 

force from the star. The middle term accounts for the fact that the 

coordinate system is centred on the star and is not inertial. 

F disc → p = 

∫ 
GM p 

| r − r p | 3 
( r − r p ) ρr d r d φ d z (6) 

is a cumulative force acting from the disc to the planet. 

We calculate the planet’s orbital energy and angular momentum 

per unit mass using the calculated values of r p and v p : 

E p = 
1 

2 
| v p | 2 −

GM ∗
r p 

and L p = r p × v p . (7) 

We use these relationships to calculate the semimajor axis and 

eccentricity of the planet’s orbit at each time-step: 

a p = −1 

2 

GM ∗
E p 

and e p = 

√ 

1 −
L 2 p 

GM ∗a p 
. (8) 

We calculate the inclination angle of the orbit as 

i p = arccos 

(
L zp 

L p 

)
, (9) 

where L zp is the z-component of the angular momentum. 

2.3 Evolution of the disc 

The evolution of the disc has been calculated using earlier-developed 

approaches (Koldoba et al. 2016 ; Romanova et al. 2019 ). Below, we 

briefly describe the numerical model. We model the evolution of the 

accretion disc using 3D equations of hydrodynamics: 

∂ 
 U 

∂ t 
+ ∇ · 
 F ( 
 U ) = 
 Q , (10) 

where 
 U is the vector of conserved variables and 
 F ( 
 U ) is the vector 

of fluxes: 


 U = [ ρ, ρS , ρ
 v ] T , 
 F ( 
 U ) = [ ρ
 v , ρ
 v S, M ] T , (11) 

and 
 Q = [0 , 0 , −ρ∇� ] is the vector of source terms; ρ is the density, 


 v is the velocity vector, S ≡ p/ργ is the entropy function; we take 

γ = 5 / 3 in all models, � is the gravitational potential of the star–

planet system and M is the momentum flux tensor, with components 

M ij = ρv i v j + δij p − τij , where p is the fluid pressure and δij is 
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Table 2. Parameters in main reference models. We name reference models 

using parameters n and i 0 : n 1 . 5 i0, n 1 . 8 i0, n 1 . 5 i45, n 1 . 8 i45, etc. 

Parameter Value 

mass of the planet (in M �) q p = 5 × 10 −3 

mass of the planet in Jupiter mass M p = 5 

semithickness of the disc h = 0 . 03 

reference surface density � d = 3 × 10 −2 

coefficient of viscosity α = 3 × 10 −4 

slope in ρ distribution n = 1 . 5 or 1.8 

semimajor axis of the planet a 0 = 0 . 6 

initial eccentricity e 0 = 0 . 02 

inclination of planet’s orbit i 0 = 0 ◦ or 45 ◦

the Kronecker symbol; τij is the tensor of viscous stresses (we take 

into account only rφ and zφ components). In our code, we use the 

entropy balance equation instead of the full energy equation. We 

include a viscosity term, with the viscosity coefficient in the form of 

α-viscosity, νvis = αc s H (Shakura & Sunyaev 1973 ). 

The equations of hydrodynamics are integrated numerically using 

an explicit conserv ati ve Godunov-type numerical scheme (Koldoba 

et al. 2016 ). At the external boundaries, we use ‘free’ boundary 

conditions ∂ A/ ∂ r = 0 and ∂ A/ ∂ z = 0 for all variables A . At these 

conditions, matter freely flows out of the simulation region. We 

place an additional condition: we forbid the inward flow of matter 

into the simulation region. At the inner boundary, we use fixed 

boundary conditions. They provide better results compared with the 

free conditions. The density in the cavity is very low, and only an 

insignificant amount of matter accumulates at the boundary during 

the simulation run. We also use the procedure of damping waves 

at the inner and outer boundaries, following Fromang, Terquem & 

Nelson ( 2005 ). In addition, we place an exponential cut to the density 

distribution at the radius r = 0 . 7 R o (with the width of exponential 

decay of 0 . 2 R o ) to be sure that the external boundary does not 

influence the result. 

The simulation region represents a flat cylinder that stretches in the 

radial direction between the inner and outer boundaries, 0 . 3 < R < 

18, and in the vertical direction between values of −1 . 5 < z < 1 . 5. 

The grid is evenly spaced in the azimuthal and vertical directions, 

where the number of grid cells in most of the simulations is N φ = 300 

and N z = 72, respectively. In the radial direction, N r = 168, and the 

size of grids increases with the distance from the star such that the 

grids have approximately a square shape. The code is parallelized 

using MPI. Typical number of processors per one simulation run is 

280. 

2.4 Reference models 

In the reference models, we take a planet of mass M p = 5 M J ( q p = 

5 × 10 −3 ) and a disc with a reference surface density � d = 3 × 10 −2 , 

viscosity coefficient α = 3 × 10 −4 and semithickness of the disc 

h = H /r = 0 . 03 (determined at the inner edge of the disc, r = r cav ). 

We take two values of slopes in the equatorial density distribution 

n = 1 . 5 and 1.8, which correspond to slopes in the surface density 

distribution: s = 0 and 0.3, respectively. We place a planet in the 

orbit with a semimajor axis a 0 = 0 . 6 (see Table 2 for parameters in 

Reference model). In test models of R23 , we observed that in models 

with 0 . 6 < a 0 < 1 . 0, the result is very similar. Ho we ver, initially, 

a planet migrates inward due to the principal 1:2 outer Lindblad 

resonance (OLR), and only later, when a 0 ≈ 0 . 6, the eccentricity 

starts to increase due to 1:3 ELR. That is why, to save computing 

time, we place a planet at a 0 = 0 . 6. 

We take non-zero initial eccentricity, e 0 = 0 . 02. In test models 

of R23 with zero eccentricity, there is an interval of time where 

the eccentricity increases, but slowly, due to the opposing action 

of the 1:2 eccentric corotation resonance (ECR), which damps the 

eccentricity. Ho we ver, the ECR resonance is saturated in models with 

a small initial eccentricity (e.g. Goldreich & Sari 2003 ; Ogilvie & 

Lubow 2003 ). To save computing time, we take e 0 = 0 . 02 in all our 

models. 

We take the inclination angle of the orbit i 0 = 0 in models where 

a planet is located in the plane of the disc and dif ferent v alues of i 0 
in models where we investigate inclined orbits. We name reference 

models using parameters n and i 0 ( n 1 . 5 i 0, n 1 . 8 i 0, n 1 . 5 i 45, etc.) 

In these models, we take common parameters shown in Table 2 . If 

we change other parameters, then we specify them in the text and 

supplementary tables. 

2.5 Testing initial equilibrium 

First, we take a planet with zero mass m p = 0 and test the stability 

of our initial conditions determined by equations ( 1 )–(4). Fig. 1 

compares density distributions at different moments in time. Right- 

hand panels show rz projections of the density distribution at t = 0 

(top panel) and at moments t = 100 and 400. The left-hand panels 

show the radial distribution of the equatorial density ρ (top) and 

surface density �. One can see that initially, the density distribution 

changed slightly, but at later times, it stayed approximately the 

same. Therefore, the initial conditions described in Section 2.1 

provide a good equilibrium between matter in the disc and cavity. 

The simulation time of t = 400 is longer than the duration of 

our simulation runs. We conclude that this initial set-up can be 

used as a base for our 3D simulations. These initial conditions 

may directly describe inner cavities around the star formed by the 

magnetosphere, stellar wind, or high-energy radiation from the star. 

Cavities at larger distances from the star may have dust, pebbles, 

and regions of forming planets. In cavities, located away from the 

star, the temperature can be low. In our model, the density in the 

cavity is so low that neither density nor high temperature influence 

the dynamics of the planet. Planet interacts gravitationally only with 

a star and the disc. 

3  PLANETS  AT  A L I G N E D  O R B I T S  

First, we take a reference model n 1 . 5 i0 with typical reference 

parameters (see Table 2 ) and place an orbit of the planet in the 

equatorial plane of the disc (at inclination angle i 0 = 0). We keep a 

planet in a fixed orbit during the first 10 rotations of the inner disc 

and then release it. The 1st row from the top of Fig. 2 shows the 

surface density distribution, �, in the inner part of the simulation 

region, near the cavity. One can see two tight spiral waves at t = 50 

and three waves at t = 70 , 90 , 120. These waves are similar to waves 

observed in 2D simulations of R23 . They correspond to m = 2 and 

3 modes of the ELR. The y driv e the eccentricity of the planet up to 

e ≈ 0 . 8. 

The 2nd row from the top shows the surface density distribution in 

the whole simulation region. One can see that a one-armed density 

wave forms in the inner disc and propagates to large distances. 

The 3rd row shows that the m = 2 and 3 resonant ELR density 

waves also present in the equatorial density distribution. The 4th row 

shows the equatorial density distribution in the whole region. 

The bottom left-hand panels of the same figure show the temporal 

evolution of orbital parameters (top) and coordinates of the planet 

(bottom). One can see that the eccentricity increases during t ≈ 120, 
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Figure 1. Left-hand panel: Linear distribution of the density ρ and surface density � in the inner disc in models with zero planet mass m p = 0 at t = 0 (dashed 

line) and 100, 400. Right-hand panel: rz-slices of the density distribution ρ, at the same moments in time. 

reaches e ≈ 0 . 8, and then varies in the interval of 0 . 7 � e � 0 . 9. The 

semimajor axis initially decreases and then increases. 

We use the Cartesian coordinates to track the position of the planet, 

where coordinates x and y are located in the equatorial plane of the 

disc, and the z-coordinate coincides with the z-coordinate of the 

cylindrical system. One can see that x and y coordinates increase, 

and at t ≈ 120, they reach the inner parts of the disc-cavity boundary 

at r ≈ 1 –1 . 1. Oscillations of x and y coordinates reflect precession 

of the planet’s orbit with a typical time-scale of t prec ≈ 25 –30 (see 

more details in Section 5 ). 

The bottom right-hand panels show the rz-slices of the density 

distribution at t = 0 and 120. One can see that during the simulation, 

the disc changed its structure due to interaction with the planet. 

Changes are more significant than in the zero-mass planet’s model 

(see Fig. 1 ). Ho we ver, the lo w-density cavity is present, and the disc 

can be used to investigate the current problem. 

When the planet reaches the inner parts of the disc, the ec- 

centricity starts decreasing due to the coorbital corotation torque. 

At the cavity boundary, this torque is asymmetric and tends 

to mo v e a planet to larger radii (e.g. Masset et al. 2006 ; 

Romanova et al. 2019 ). This may explain why the semimajor 

axis increases after t ≈ 120. The ELR resonances tend to mo v e 

to larger radii. Ho we ver, a planet also moves to larger radii. This 

provides quasi-stationary situation when the eccentricity is high for 

a while. On the other hand, ELR resonances in the disc become 

non-axisymmetric, and precession of matter in the inner disc may 

gradually smear resonances. This also stops the planet’s eccentricity 

growth. 4 The final eccentricity of the planet depends on the particular 

situation, such as the rate of the disc dispersal. 

Fig. 3 shows the same values but in reference model n 1 . 8 i0, where 

the surface density decreases with the distance as � ∼ r −0 . 3 . One 

4 A planet continues interacting with the disc gravitationally and may 

exchange its eccentricity with the disc. Ragusa et al. ( 2018 ) performed long- 

lasting 2D simulations of the disc–planet interaction at late states of evolution 

and low masses of the disc, and observed that a planet and a disc exchange 

eccentricity quasiperiodically (and in antiphase) for a long time. 

can see that similar ELR resonances are observed in the inner disc. 

Ho we ver, the one-armed density wave is weaker. 

3.1 Dependence on parameters 

We take reference models n 1 . 5 i0 and n 1 . 8 i0 and investigate the 

eccentricity growth at different parameters (see Table 3 for set of 

parameters). 

3.1.1 Dependence on the mass of the planet 

We performed simulations at the lower, m p = 3 M J and higher, 

m p = 10 M J mass of the planet. Left-hand panel of Fig. 4 shows 

that in both models, the eccentricity increased up to e ≈ 0 . 8 –0 . 9. 

Ho we ver, the eccentricity growth rate is smaller/larger in models 

with a smaller/larger planet mass. The right-hand panels of the same 

figure show that the amplitude of ELR density waves is larger in 

models with larger planet mass. These simulations show that the 

torque increases with the planet’s mass, as predicted in theory. 

3.1.2 Dependence on viscosity 

We performed test simulations at se veral v alues of the α-parameter 

of viscosity from α = 10 −2 up to 3 × 10 −4 . The left-hand panel of 

Fig. 5 shows the eccentricity variation at different α. The results are 

almost the same at α = 10 −3 and 3 × 10 −4 . Ho we ver, the eccentricity 

increases slower when α = 3 × 10 −3 and even slower when α = 

10 −2 . Right-hand panels show that the ELR density waves becomes 

more smeared in models with higher values of α taken at moments 

t = 50 (top panels) and 80 (bottom panels). This result is similar to 

our 2D simulations ( R23 ). Both types of simulations show that the 

action of ELRs decreases at higher viscosities in the disc. 

3.1.3 Dependence on the grid resolution 

The grid resolution taken in our models is N r × N φ × N z = 168 ×
300 × 72. For comparison, we calculated models with a lower and 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
3
2
/3

/3
5
0
9
/7

7
1
0
1
1
8
 b

y
 C

o
rn

e
ll U

n
iv

e
rs

ity
 u

s
e
r o

n
 3

1
 A

u
g
u
s
t 2

0
2
4



3514 M. M. Romanova et al. 

MNRAS 532, 3509–3525 (2024) 

Figure 2. Simulation results of the disc–planet interaction in model n 1 . 5 i0. The top row of panels shows the surface density distribution � in the inner part of 

the simulation region at different moments in time, t . The 2nd ro w sho ws the same but in the whole simulation region. The 3rd and 4th rows show the same but 

for the volume density distribution ρ in the equatorial plane. The blue and red colours show the lowest/highest values of surface density and density. Bottom 

left-hand panels : Top: temporal evolution of the semimajor axis, a, and eccentricity, e. Bottom: temporal evolution of the planet’s coordinates, x , y , z. The time 

is measured in periods of Keplerian rotation at the initial location of the cavity boundary, r cav = 1. Bottom right-hand panels: density distribution in the rz-plane 

at t = 0 and 120. 

Table 3. A set of parameters used to test a reference model n 1 . 5 i0. 

Testing models with aligned orbits ( i 0 = 0) at different parameters 

Mass of the planet m p ( M J ) 0 3 5 10 

Viscosity α-parameter 3 × 10 −4 1 × 10 −3 3 × 10 −3 1 × 10 −2 

Grid resolution N φ 100 200 300 400 

Slope in the density distribution n 1.5 1.8 2 2.5 

higher grid resolutions: 70 × 100 × 24, 119 × 200 × 48, and 217 ×
400 × 96. 

Left-hand panel of Fig. 6 shows that at the higher grid resolution 

( N φ = 400), the curve for eccentricity evolution almost coincides 

with that for N φ = 300 grid. Ho we ver, the simulations are 2.6 times 

slower. At the lower grid resolution ( N φ = 100 and 200), the 

simulations are faster. Ho we ver, the eccentricity increases increases 

slower or decreases (see pink and green lines in the figure). That is 

why we chose the grid N φ = 300 in our simulations. 

Both 2D and 3D simulations show the necessity of high grid 

resolution while modelling ELRs. Models with a low grid resolution 

may show a lower eccentricities compared with the higher grid 

resolution and, hence, may underestimate the final value of the planet 

eccentricity. 
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Figure 3. Same as in Fig. 2 but for reference model n 1 . 8 i0. Note that we use slightly different colour bars at different scales to show the fine structure of ELRs 

in enlarged plots and features in the whole disc in expanded plots. 

Figure 4. Left-hand panel: Eccentricity evolution in the model n 1 . 5 i0 at different masses of the planet, m p . The time is measured in periods of Keplerian 

rotation at the initial location of the cavity boundary, r cav = 1. Right-hand panels: Top: the surface density distribution for these models at moments when 

e ≈ 0 . 4. Bottom: The surface density distributions in the equatorial plane of the abo v e figures along x -direction (marked in dashed lines). 
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Figure 5. Left-hand panel: Eccentricity evolution in model n 1 . 5 i0 but with dif ferent v alues of the α-parameter of viscosity in the disc. Right-hand panels: 

Equatorial density distribution at different values of α-parameter at times t = 50 (top panels) and 80 (bottom panels). 

Figure 6. Left-hand panel: Eccentricity evolution in models with parameters of the reference model n 1 . 5 i0 but with different grid resolutions N φ = 

400 , 300 , 200 , 100. Right-hand panels: Top: Equatorial density distribution at t = 50 and at different grids. Bottom: the same, but a part of the region 

and the grid are shown. 

Right-hand panels of Fig. 6 show the equatorial density distribution 

after t = 50 rotations in simulations with different grids. The bottom 

panels show a part of the simulation region and the grid. One can 

see that at grid resolutions N φ = 400 and 300, the ELR density 

waves are well resolved (with many grids across the wave) and are of 

high density (amplitude, red colour). At the lower grid, N φ = 200, 

the density waves are resolved only by a few grid cells, and the 

amplitude of waves is smaller (yellow colour). At even a lower grid 

resolution, N φ = 100, the grid does not resolve the wave, and we do 

not observe the wave. We think that at lower grid resolutions, the 

numerical dif fusi vity is high and the denser matter of spiral waves 

diffuses away from their initial positions. 

We should note that at the lower density of the inner disc and lower 

mass of the planet, the torques are weaker, and the grid resolution 

should be higher to resolve ELRs. For example, in R23 , at the low- 

disc density, q d = � d = 3 × 10 −4 , the grid resolution of N φ = 600 

was necessary to resolve ELRs. Ho we ver, in current 3D simulations 

where � d = 3 × 10 −2 , the disc density is high, and the grid with 

N φ = 300 is sufficient. 

3.1.4 Dependence on the slope of the density distribution 

We compared the eccentricity evolution at different initial slopes of 

the density distribution in the disc. We took discs with equatorial den- 

sity distributions ρ ∼ r −n with n = 1 . 5 , 1 . 8 , 2 , 2 . 5. They correspond 

to the surface density distributions: � ∼ r −s , with s = 0 , 0 . 3 , 0 . 5 , 1. 

The right-hand panel of Fig. 7 shows the initial density and surface 

density distributions with radius. The left-hand panel shows that the 

eccentricity increases slower in models with steeper slopes in density 

distribution. We think that the eccentricity growth rate decreases with 

n because at steeper density distributions, the inner disc mass � d0 r 
2 
0 

and the total mass of the disc is smaller. When we increase the 

density 1.5–2 times, we observe faster eccentricity growth. After 

multiple experiments with different s, we conclude that the steeper 

density distribution is not a factor that may stop eccentricity growth. 

3.1.5 Comparison of 3D and 2D simulations 

We compared the eccentricity evolution in our reference 3D models 

n 1 . 5 i0 and n 1 . 8 i0 with 2D models calculated at the same physical 

parameters (see Table 2 ) and the grid. We also compared 3D models 

with a 2D model of R23 where the cavity radius has been fixed and 

simulations of the gas flow were performed only at the radius r > r cav 

(see complete set of parameters in Table 4 ). The left and right-hand 

panels of Fig. 8 compare the eccentricity evolution in 3D and 2D 

simulations in models with n = 1 . 5 and 1.8. One can see that in 2D 

model 2D-300, the eccentricity increases with the same rate as in the 

3D model up to e ≈ 0 . 2. Subsequently, it decreases. The eccentricity 

increases again but does not reach high values, like in the 3D model. 

In test 2D simulation with a higher grid resolution, N φ = 600 (model 

2D-600), the eccentricity increases faster and reaches higher values 

than in model 2D-300. In the model with the fixed cavity (2D-cav- 

600) calculated using R23 approach but at the same parameters as in 

3D models, the eccentricity initially increases slower than in 3D, but 

subsequently, it grows to high values, like in the 3D model (see blue 

lines in Fig. 8 ). These simulations stopped when the planet reached 

the cavity boundary. So, we observed that 2D models with non- 

fixed boundaries sho w slo wer eccentricity growth than 3D models. 

This phenomenon may be due to the faster eccentricity growth in 

3D models, as discussed by Teyssandier & Ogilvie ( 2016 ). They 

found that the eccentricity growth rate due to ELRs is 2–4 orders of 

magnitude larger in 3D models than in 2D models (see growth rate 

in adiabatic models in their Table 6 ). This issue should be studied 

separately. 
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Figure 7. Left-hand panel: Eccentricity evolution in models with different slopes n in the equatorial density distributions ρ ∼ r −n . Right-hand panel: Initial 

equatorial density distribution and surface density distribution, � ∼ r −s , with radius in models with different n . 

Figure 8. Left-hand panel: Eccentricity evolution in 3D model n 1 . 5 i0 (3D-300) and 2D models with similar parameters. 2D models were calculated at grids 

N φ = 300 (2D-300) and 600 (2D-600). A model 2D-cav-600 corresponds to the fixed cavity model of R23 taken at the grid resolution of N φ = 640 (see also 

Table 4 ). Right-hand panel: The same but for the model n 1 . 8 i0. 

Table 4. Models used for comparisons of the 3D and 2D models. See comparisons in Fig. 8 . 

Model 3D-300 2D-600 2D-300 2D-cav-600 

grid/dimension 3D 2D 2D 2D (fixed cavity) 

N φ 300 600 300 640 

N r 168 406 203 336 

N z 72 – – –

Table 5. Simulations were performed at a variety of the initial inclination angles of the planet’s orbit, i 0 , and two values of the density slope in the disc, n = 1 . 5 

and 1.8. Names of models are constructed using the values of n and i 0 . 

Parameter/model n 1 . 5 i0 n 1 . 5 i5 n 1 . 5 i15 n 1 . 5 i30 n 1 . 5 i45 n 1 . 5 i60 n 1 . 5 i75 

i 0 0 ◦ 5 ◦ 15 ◦ 30 ◦ 45 ◦ 60 ◦ 75 ◦

slope, n 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

Parameter/model n 1 . 8 i0 n 1 . 8 i5 n 1 . 8 i15 n 1 . 8 i30 n 1 . 8 i45 n 1 . 8 i60 n 1 . 8 i75 

i 0 0 ◦ 5 ◦ 15 ◦ 30 ◦ 45 ◦ 60 ◦ 75 ◦

slope, n 1.8 1.8 1.8 1.8 1.8 1.8 1.8 

3.1.6 Time-scales of eccentricity growth 

From the left-hand panel of Fig. 8 , we estimate the eccentricity 

growth rate in 3D simulations: t −1 
ecc = d( ln e) / d t ≈ 0 . 024 and the 

time-scale t ecc ≈ 43 . 48. This value is relevant to our reference model, 

where � d = 3 × 10 −2 . Our earlier 2D simulations performed in the 

range of 10 −2 < � d < 10 −4 have shown that t −1 
ecc ∼ � d and also 

t −1 
ecc ∼ m p , which is in accord with theoretical studies (e.g. Goldreich 

& Tremaine 1980 ). Here, we project the time-scale of the eccentricity 

growth to more realistic parameters of � d = 10 −4 . We also convert 

time to dimensional units, taking into account that we measure time 

in units of P 0 = 2 πr 0 /v 0 = 2 πr 3 / 2 cav / 
√ 

G M �. We take r cav = 10 au as 

a reference scale (see Table 1 ). We obtain the dimensional time of 

eccentricity growth as: 

T ecc ≈ 4 . 14 × 10 5 yr 

(
r cav 

10 au 

)3 / 2 (
� d 

10 −4 

)−1 (
m p 

5 M J 

)−1 

. (12) 

Eccentricity will grow if the cavity does not change its position 

significantly or the disc does not disperse. For example, if the cavity 

is present during T cav = 10 6 yr, then the eccentricity will increase 

significantly, if T ecc � T cav , or if the cavity radius 

r cav � 18 au 

[(
T cav 

10 6 yr 

)(
� d 

10 −4 

)(
m p 

5 M J 

)]2 / 3 

. (13) 
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Planets in a small-sized cavity have a high rate of eccentricity growth. 

They may have several episodes of eccentricity growth (due to the 

abo v e-discussed mechanisms) and decay due to local corotation 

torque when the planet starts entering the inner disc. 

4  PLANETS  O N  INCLINED  ORBITS:  

KO ZAI–LIDOV  EFFECT  

Next, we placed a planet in an inclined orbit with different inclination 

angles i 0 . We observed that the eccentricity typically increases, and it 

also oscillates. The inclination angle also oscillates, but in antiphase 

with eccentricity. We suggest that we observe the Kozai–Lidov 

mechanism, where the disc acts as a massive object that perturbs 

the planet’s orbit. 

4.1 Planet–planet/star and planet–disc interaction 

Below, we briefly summarize the theory of the Kozai–Lidov mech- 

anism in cases of the planet–planet/star interaction (e.g. Kozai 

1962 ; Lidov 1962 ; Innanen et al. 1997 ), and planet–disc interaction 

(Terquem & Ajmia 2010 ). 

If a planet of mass m p located at an inclined orbit with semimajor 

axis a p , and interacts with a massive object (a planet or a star) of mass 

M p located at the circular orbit of radius R p � a p , then the secular 

perturbation by the distant companion causes the eccentricity e p of 

the inner planet and the mutual inclination i of two orbits to oscillate 

in time in antiphase. In this situation, the component of the angular 

momentum of the inner orbit perpendicular to the orbital plane, L z 

is constant and proportional to 

L z ∝ 

√ 

1 − e 2 p cos i = const . (14) 

This equation shows that the decrease of the inclination angle i leads 

to the increase of the eccentricity e p , and vice versa. As a result, the 

eccentricity and inclination oscillate in the antiphase, and eccentricity 

can also be pumped to the orbit at the expense of inclination and vice 

versa. 

Terquem & Ajmia ( 2010 ) considered the interaction of the planet 

on the inclined orbit with the external remote disc and noticed that the 

potential for the planet–planet interaction is similar to that for planet–

disc interaction (compare their formulas 4 and 5). They concluded 

that the Kozai–Lidov mechanism should also operate in the case of 

the remote discs. 

The maximum value of the eccentricity which can be reached 

during this process is 

e max = 

(
1 − 5 

3 
cos 2 i c 

)1 / 2 

, (15) 

and therefore the initial inclination i 0 should be larger than the critical 

value i c ≈ 39 ◦ which is determined from condition cos 2 i c = 3 / 5. 

The time t ev to reach e max starting from e 0 in both models is 

(Innanen et al. 1997 ): 

t ev 

τ
= 0 . 42 

(
sin 2 i 0 −

2 

5 

)−1 / 2 

ln 

(
e max 

e 0 

)
, (16) 

τ = K 

(
R 

′ 

a p 

)3 (
M ∗
M ′ 

)
P 

2 π
, (17) 

where P is the period of the planet’s rotation. For planet–planet/star 

interaction: M 
′ = M p , R 

′ = R p , and K = 1. For planet–disc inter- 

action (Terquem & Ajmia 2010 ): M 
′ = M d is the total mass of the 

disc, R 
′ = R o , and 

K = 
(1 + s)(1 − η−s+ 2 ) 

( s − 2)(1 − η−s−1 ) 
, (18) 

where η = R in /R o , R in , and R o are the inner and outer radii of the 

disc, s, is the power in the surface density distribution (Terquem & 

Ajmia 2010 ). If the eccentricity oscillates between e 0 and e max then 

the period of oscillations is P osc = 2 t ev . 

Terquem & Ajmia ( 2010 ) (and also Teyssandier et al. 2013 ) 

performed numerical simulations using earlier developed N -body 

code (Papaloizou & Terquem 2001 ) and confirmed these theoretical 

results. In particular, they have shown that t ev increases when R o 

increases, and also t ev increases when the disc mass M d decreases, 

which is in accord with equation 17 . Teyssandier et al. ( 2013 ) 

confirmed the action of this Kozai–Lidov mechanism at various 

parameters of the model. 

4.2 3D simulations of planets on inclined orbits 

We put a planet on inclined orbits with different inclination angles i 0 
and two types of discs with n = 1 . 5 and 1.8 (see Table 5 ). 

4.2.1 Disc–planet interaction in model n 1 . 5 i45 

As an example, we take one of the reference models, n 1 . 5 i45, and 

show results for the disc–planet interaction in detail. 

Top panels of Fig. 9 and the 3rd row from the top show that ELR 

waves form in the inner disc both in the surface density (top row) and 

the equatorial density distribution (3rd row). The m = 2 modes are 

clearly observed. The 2nd row shows the density distribution in the 

disc. The 4th row shows the equatorial density distribution, which 

decreases rapidly with radius. The bottom left-hand panels show that 

the eccentricity oscillates but increases on average up to e ∼ 0 . 7 –0 . 9 

after t ≈ 70. The inclination strongly oscillates and decreases on 

average. The bottom right-hand panels show the variation of the 

planet’s coordinates (top) and the rz-slice of the density distribution 

(bottom). One can see that in equatorial x - and y- coordinates, the 

planet reaches the inner disc radius of r ∼ 1 –1 . 2, which leads to 

a variation of its eccentricity around a large value of ∼0.8. There 

are also large-scale variations of the x - and y -coordinates due to the 

precession of the orbit. The z-component decreases with time. The 

bottom right-hand panel shows that the disc is not symmetric about 

the equatorial plane due to the disc–planet interaction. 

4.2.2 Models with n = 1 . 5 and different i 0 

We took our reference model with n = 1 . 5 but placed a planet in or- 

bits with different inclination angles: i 0 = 5 ◦, 15 ◦, 30 ◦, 45 ◦, 60 ◦, 75 ◦. 

We observed that in models with relatively small inclination 

angles, i 0 = 5 ◦–30 ◦, ELR resonances were excited in the inner disc, 

which are similar to those in the model with i 0 = 0 ◦. The eccentricity 

evolution and the growth rates are similar to those in the model with 

i 0 = 0 ◦ (see the top left-hand panel of Fig. 10 ). The bottom left- 

hand panel shows that the inclination angle decreased on average but 

strongly oscillates after time t > 50 –70. At inclination angle i 0 = 

30 ◦, the eccentricity increases faster than in models with smaller i 0 . 

At larger inclination angles, i 0 = 45 ◦ and 60 ◦, the eccentricity 

initially strongly oscillates and reaches e ≈ 0 . 6. Later, it increases to 

higher values of e ≈ 0 . 7 –0 . 9. The inclination of the orbit decreases 

on average and strongly oscillates (see right-hand panels in Fig. 10 ). 

The top panels of Fig. 11 show variations in eccentricity and 

inclination, which were placed side by side on the same panels. 
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Figure 9. T op 4 rows: The same as in Fig. 2 but for the model n 1 . 5 i45. Bottom left-hand panels : Top: temporal evolution of the semimajor axis, a, and 

eccentricity, e. Bottom: temporal evolution of the inclination of the orbit, i. Bottom right-hand panels: Top: temporal evolution of the planet’s coordinates, 

x , y , z. Bottom: density distribution in the rz-plane at t = 120. 

The bottom panels show a part of the simulation time with a higher 

temporal resolution. One can see that the inclination and eccentricity 

oscillate in the antiphase, as predicted by the Kozai–Lidov mecha- 

nism. We observed such antiphase oscillations in all simulation runs 

with inclined orbits. We think we observe the eccentricity growth 

and its oscillations due to the Kozai–Lidov mechanism. 

4.2.3 Models with n = 1 . 8 and different i 0 

We repeat the abo v e simulations using a reference model with a 

steeper density distribution, n = 1 . 8. The top left-hand panel of 

Fig. 12 shows that in models with relatively small inclination angles, 

i 0 = 15 ◦ and 30 ◦, the eccentricity increases similar to that in the 

model with zero inclination ( n 1 . 8 i0). Ho we ver, the eccentricity 

increases ∼1.8 times slower compared with models where n = 1 . 5. 

The bottom left-hand panel shows that the inclination oscillates and 

decreases on average. 

The right-hand panels of the same figure show the eccentricity and 

inclination in models with high inclination angles. One can see that 

the eccentricity strongly oscillates and reaches values of e ≈ 0 . 55 in 

the model with i 0 = 45 ◦ and e ≈ 0 . 8 in the model with i 0 = 60 ◦. The 

inclination angle also strongly oscillates and decreases on average. 

The time-scale of oscillations is ∼3 times longer in models with 

n = 1 . 8 compared with models n = 1 . 5. We suggest that this is 

because at n = 1 . 8, the disc has a lower mass compared with n = 1 . 5 

models. Equation ( 17 ) from the theory shows that the time-scale of 

oscillations is inversely proportional to the mass of the disc, M d . The 

mass of the disc in the model n 1 . 8 i45 is approximately 1.8 times 

smaller than that in the model n 1 . 5 i45. Comparisons show a correct 

tendency towards longer time-scales. 

4.2.4 Dependence of the maximum eccentricity e max on i 0 

According to the theory, the maximum value of the eccentricity 

should increase with inclination of the orbit (see equation 15 ). From 

this equation, it follows that for inclinations i 0 = 45 ◦, 60 ◦, and 75 ◦, the 

maximum eccentricities are e max ≈ 0 . 41 , 0 . 76 , 0 . 94, respectively. 
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Figure 10. Left-hand panels: Temporal evolution of the eccentricity, e and inclination, i in models with n = 1 . 5 and initial values of the orbit inclination: 

i 0 = 0 ◦, 15 ◦, 30 ◦. Right-hand panels: The same but for i 0 = 45 ◦, 60 ◦. 

Figure 11. Top panels: Temporal evolution of the eccentricity, e and inclination, i in models n1.5i45 and n1.5i60 , where the eccentricity and inclination are 

shown at the same plot. Bottom panels: The same, but during shorter time intervals. 

Figure 12. The same as in Fig. 10 but for reference models with n = 1 . 8 and different i 0 . 
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Figure 13. Top panel: Eccentricity evolution in the model with n = 1 . 8 at different initial values of the inclination angle of the orbit: i 0 = 45 ◦, 60 ◦, and 75 ◦. 

Dashed horizontal lines show an approximate value of the eccentricity amplitude for each model. Bottom panel: Same, but for the inclination angle. 

Table 6. Densities ρd and corresponding surface densities � d used to derive the dependence of the oscillation time t osc from the inner density of the disc (see 

Fig. 14 ). 

Reference desity ρd 0.8 0.6 0.4 0.3 0.2 0.133 0.1 0.068 0.05 

Reference surface density � d 0.06 0.045 0.03 0.0225 0.015 0.01 0.0075 0.0051 0.00375 

We took a model with n = 1 . 8 and compared maximum eccen- 

tricity values in models with i 0 = 45 ◦, 60 ◦, and 75 ◦. We chose early 

moments before other processes started to influence the eccentricity 

growth. Top panel of Fig. 13 shows that e max is larger in models with 

larger initial inclination. From the plot (see dashed horizontal lines 

in the plot), we obtain:: e max ≈ 0 . 46 , 0 . 73 , 0 . 92 for models with i 0 = 

45 ◦, 60 ◦, and 75 ◦, respecti vely. These v alues are very close to those 

predicted by the theory. We suggest that our model is close to the 

theoretical model by Terquem & Ajmia ( 2010 ) because at n = 1 . 8, 

most of the mass is in the outer regions of the disc, which is close 

to the theoretical model, where the disc is located f ar aw ay from 

the planet. The bottom panel of Fig. 13 shows that the amplitude of 

inclination also increases with i 0 . 

4.2.5 Time-scale of eccentricity growth in oscillations 

In this experiment, we fix the disc radii and structure but change 

the reference surface density � d (see Table 6 ). This way, we change 

the mass of the disc. We observed that the time-scale of oscillations 

increases when � d decreases. Fig. 14 shows the dependence of the 

period of oscillations t osc on 1 /� d is similar in models with n = 1.5 

and 1.8. The dependence is approximately linear for 1 /� d � 100. 

From the plot, we derive an approximate dependence: 

t osc ≈ 0 . 53 
(
� 

−1 
d − 18 

)
. (19) 

At small values of � d , we obtain t osc ≈ 0 . 53 � 
−1 
d . In our models, the 

mass of the disc M d ∼ � d and therefore, t osc ∼ 1 /M d , as predicted 

in theoretical models (see equation 17 ). 

Figure 14. Period of Kozai–Lidov oscillations obtained in simulations of 

discs with different initial surface densities in models n 1 . 5 i45 and n 1 . 8 i45. 

The dashed line shows the dependence taken for analytical estimates and 

projections in equations ( 17 ) and ( 20 ). 

Equation ( 19 ) is in dimensionless units. For practical applications, 

we convert this equation to dimensional units using the projected 

value of the characteristic disc mass of � d = 10 −4 . We take into 

account that we measure time in rotational periods at r = r cav and 

take r cav = 10 au as a reference scale (see Table 1 ), and obtain: 

T osc ≈ 3 . 18 × 10 5 yr 

(
r cav 

10 au 

)3 / 2 (
� d 

10 −4 

)−1 

. (20) 

This time-scale is comparable with the time-scale of eccentricity 

growth due to ELRs (see equation 12 ). 
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Table 7. The mode number m , type of resonance, res , resonant radii r res /a p , 

coefficients A and B for ELRs and their ratios. 

m res r res /a p A B A / B 

2 1:3 2.080 0.607 1.849 0.328 

3 2:4 1.587 5.201 3.594 1.447 

4 3:5 1.406 7.362 5.604 1.314 

We also compared the time-scale of eccentricity growth t ev given 

by the theory (see equations 16 –18 ) with that obtained in our simu- 

lations. As an example, we use a model n 1 . 5 i60, which shows high- 

amplitude oscillations, and consider the 3rd peak in the eccentricity 

curve shown in the top right-hand panel of Fig. 11 (we take one 

of the early moments when the disc is approximately homogeneous 

and the density wave did not form yet). In the 3-rd peak e 0 ≈ 0 . 1, 

e max ≈ 0 . 6. We take a p = 0 . 6 and R d = 13 (the radius of exponential 

cut) and obtain η ≈ 0 . 077. We also obtain K ≈ 0 . 041, t ev /τ ≈ 1 . 27. 

We calculate the dimensionless mass of the disc as M d ≈ 15 . 8 and 

obtain the final value of time in our dimensionless units as t ev ≈ 15 . 7. 

We compare this value with the time of eccentricity growth in the 3rd 

peak obtained from the figure, which is t sim ≈ 9. One can see that the 

difference is in the factor of 1.7, which is in reasonable agreement 

with the theory. 

5  ECCENTRICITY  O F  T H E  DISC  A N D  

PRECESSION  

A planet on the eccentric orbit excites eccentricity in the disc (e.g. 

Ogilvie 2007 ). The linear analysis (performed for small eccentricities 

of the planet and the disc) shows that the eccentricities of the planet 

and the disc are coupled through resonant interactions (e.g. Ogilvie 

2007 ; Teyssandier & Ogilvie 2016 ). To compare our results with 

theory, we use formulae for the temporal evolution of complex 

eccentricities from Teyssandier & Ogilvie ( 2016 ) (see their equations 

14 and 15). A single ELR contributes to the evolution of eccentricities 

of the planet and the disc (in the vicinity of the resonance) in the 

following way: 

M p a 
2 
p �p 

(
∂ E p 

∂ t 

)

ELR 

= 
GM 

2 
p 

M � 
E p B 

2 

(
1 − A E d 

BE d 

)∫ 
�F 2 πr d r, 

(21) 

� r 2 �

(
∂ E d 

∂ t 

)

ELR 

= −
GM 

2 
p 

M � 
� AB E p 

(
1 − A E d 

B E p 

)
F , (22) 

where E p = e p e 
i w̄ p and E d = e d e 

i w̄ d , e p = | E p | , e d = | E d | ; w̄ p and 

w̄ d are the arguments of the pericentre of the planet’s and disc’s 

semimajor ax es, respectiv ely. Here, F = w 
−1 
L � [( r − r res ) / w L − 1] 

is a function of resonant radius r res , resonant width w L and dimen- 

sionless function � . Values w L and function � describe the radial 

profile of the ELR resonance. 

In our simulations, we observe formation of ELR waves with mode 

numbers m = 2 , 3 and sometimes m = 4. Table 7 shows the values 

of coefficients A and B for these resonaces and the resonant radii 

r res (see an extended version of the table in Teyssandier & Ogilvie 

2016 ). 

In the abo v e sections, we calculated the evolution of the planet’s 

eccentricity . Below , we study the disc eccentricity and precession of 

the planet and disc. 

5.1 Disc eccentricity 

We calculate the distribution of the disc eccentricity with radius using 

an approach based on the angular momentum deficit (hereafter AMD) 

A d ( r) (e.g. Ragusa et al. 2018 ). The angular momentum deficit of 

the ring is A d ( r) = J circ ( r) − J d ( r) , where 

J circ ( r) = 

∫ 
� 

√ 
GMa d φ, a = −GM 

2 E 
, E = −GM 

r 
+ 

v 2 

2 

is the circular angular momentum of the ring in the disc located at 

radius r , and J d ( r) = 
∫ 

�rv φ d φ. is the real angular momentum of 

the ring at the radius r . The eccentricity of the ring is 

e d ( r) = 

√ 

2 A d ( r) 

J circ ( r) 
. (23) 

Our disc has a finite thickness and therefore is not precisely 

Keplerian due to the pressure component. In the calculation of the 

disc eccentricity, we subtracted this background eccentricity (see also 

Ragusa et al. 2024 ). 

Fig. 15 shows the distribution of e d ( r) at different moments in 

time in models n 1 . 5 i0 and n 1 . 8 i0 (see left-hand and right-hand 

panels, respectively). In both models, the disc eccentricity is larger 

in the inner disc (in the region of ELRs). Eccentricity in the inner disc 

increases with time in both models. Eccentricity in the rest of the disc 

increases most of the time in the model n 1 . 5 i0 and reaches e d ≈ 0 . 1 

on average at t = 110. In the model n 1 . 8 i0, the disc eccentricity 

varies and is e d ≈ 0 . 05 –0 . 06 on average. 

Next, we calculate the evolution of eccentricity with time. For that, 

we take the average eccentricity value in some radii interval. The left- 

hand panel of Fig. 16 shows the temporal evolution of eccentricity 

where we took the averaged value in the interval of radii 1 < r < 3 

(where ELR resonances are located). One can see that the inner disc 

eccentricity gradually increases in both models. The right-hand panel 

shows the temporal variation of eccentricities averaged at 1 < r < 

12. One can see that the eccentricity of the whole disc varies quasi- 

periodically, with a quasi-period of 30–40 in model n 1 . 5 i0 and a 

slightly longer quasi-period in model n 1 . 8 i0. 

Now, we can compare simulation results with theoretical expecta- 

tions. Here, we neglect the precession and take the absolute values, 

e p = | E p | and e d = | E d | (like we did in R23 ). According to the 

theory (see equation 21 ), the planet’s eccentricity will increase if 

the value in the brackets (1 − A e d / Be p ) > 0, that is if e p > A / Be d . 

As an example, we take a model n 1 . 5 i0 and some moment in time 

t = 50. From the left bottom panel of Fig. 2 , we obtain the planet 

eccentricity e p ≈ 0 . 25, and from the left-hand panel of Fig. 16 , the 

inner disc eccentricity: e d ≈ 0 . 025. Simulations show that at this 

time, ELR 1:3 resonance dominates ( m = 2). Taking the value of 

A / B for 1:3 resonance from Table 7 and e d = 0 . 025, we obtain 

that condition for planet eccentricity growth becomes e p > 0 . 008. 

This condition is satisfied, and the planet’s eccentricity will grow. 

Comparisons at other times show a similar result, and therefore in our 

model, conditions are al w ays f a v ourable for the planet’s eccentricity 

growth. 

Similar estimates for the disc eccentricity growth (see equation 22 ) 

show that the disc eccentricity cannot grow at any values of e d 
and e p obtained in simulations. We suggest that relatively small 

eccentricities of the disc observed in our simulations may be 

connected with this theoretical prediction. 
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Figure 15. Radial distribution of the disc eccentricity at different moments of time obtained in models n 1 . 5 i0 (left-hand panel) and n 1 . 8 i0 (right-hand panel). 

Figure 16. Left-hand panel: Temporal variation of the averaged eccentricity of the disc ē d in models n 1 . 5 i0 and n 1 . 8 i0 calculated for the inner part of the disc 

in the interval of radii 1 < r < 3. Right-hand panel: Same, but for the disc eccentricity taken in the interval of radii 1 < r < 12. 

5.2 Precession 

Simulations show that the planet’s orbit precesses counterclockwise. 

The bottom left-hand panels of Figs 2 and 3 show coordinates x and 

y of the planet’s orbit in the equatorial plane. The waves in the curve 

reflect the precession of the planet. The amplitude of waves increases 

due to the increase of eccentricity. Period of planet precession is 

T prec ≈ 25 –30 in model n 1 . 5 i0 and T prec ≈ 30 –35 in model n 1 . 8 i0. 

Test simulations of model n 1 . 5 i0 at a twice as low and high inner 

surface density of the disc � d = 0 . 015 and 0.06 have shown that 

the period of precession is larger in models with a lower density 

of the disc. The disc also precesses. The precession can be tracked 

using the orientation of the density wave seen in the surface density 

distributions (see Fig. 2 ). 5 

Fig. 17 shows an episode of precession in models n 1 . 5 i0 and 

n 1 . 8 i0 in greater detail. The top left-hand panels show the time 

sequence of the surface density distribution during an interval of time 

�t = 80 –110 in model n 1 . 5 i0. It shows that the density wave in the 

disc precesses counterclockwise with a period of T prec ≈ 25 –30. The 

bottom left-hand panel shows that a planet precesses approximately 

with the same period. 

Right top panels of Fig. 17 show the same but for the model n 1 . 8 i0. 

The top panels show that the spiral wave is only slightly visible. We 

suggest that in this model, where the surface density decreases with 

5 The density wave tracks the precession of the disc only approximately. 

Teyssandier & Ogilvie ( 2016 ) note that eccentricity excited in the inner 

parts of the disc propagates out in the form of a one-armed density wave. 

It is probable that the density wave results from the fact that initially, the 

rings of matter in the disc have different precession rates and different lines 

of percenters, which are more aligned in the inner parts of the disc where 

processes are faster (see an illustration of this effect in fig. 1 of Ragusa et al. 

2024 ). 

radius, lines of pericentres become aligned more rapidly than in the 

previous model of homogeneous disc. The bottom panel shows that 

the planet precesses with a period of T prec ≈ 30 –35. 

According to equations ( 21 ) and ( 22 ), the precession of the planet 

and disc can influence the rate of eccentricity growth (Teyssandier & 

Ogilvie 2016 ). From simulations, we see that the planet and disc 

precess couterclockwise approximately at the same rate. If they 

precess with precisely the same rate and have the same phase, then 

w̄ p − w̄ d = 0 and e i( ̄w p −w̄ d ) = 1. In the opposite situation, if they 

precess in antiphase, ω p − ω d = π and e i( ω d −ω p ) = −1. In both cases, 

the value in brackets in the right-hand side of equation ( 21 ) is positive 

and planet’s eccentricity will grow. 

6  C O N C L U S I O N S  

We have investigated the evolution of the eccentricity of massive 

planets located inside cavities of protoplanetary discs. The main 

conclusions are the following: 

(1) In models with aligned orbits ( i 0 = 0): 

(a) The eccentricity increases up to high values of e ∼
0 . 7 –0 . 9 due to the ELR resonances excited in the inner disc. 

Resonances with modes m = 2 and 3 dominate. The eccentricity 

increases any time when ELR waves are excited in the disc. This 

process is similar to that observed in 2D simulations of R23 . 

(b) The characteristic time of eccentricity growth increases 

in models with smaller planet mass due to smaller torque acting 

on the disc. The amplitude of ELR waves is smaller in models 

with smaller planet mass. 

(c) At higher viscosity in the disc, the ELR density waves 

become smeared, and eccentricity growth decreases. 
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Figure 17. Top panels: Density distribution in the disc during the sequence of times shows the precession of the disc in models n 1 . 5 i0 (left four panels) and 

n 1 . 8 i0 (right four panels). Bottom panels: Variation of xy-coordinates of the planet in the equatorial plane shows the precession of the planet. 

(d) The grid resolution is an essential factor. At a low grid 

resolution, the number of grids could not be sufficient to 

resolv e ELR wav es. In addition, the amplitude of density wav es 

decreases due to the numerical dif fusi vity. 

(e) The disc eccentricity slowly increases with time, with the 

largest eccentricity at the inner disc. It increases with the growth 

of the planet’s eccentricity. Planet–disc interaction leads to the 

precession of the planet’s orbit. The density waves or other 

inhomogeneities in the disc precess with comparable period. 

Disc eccentricity and its influence on the planet’s orbit should 

be further studied in models with lower disc density and longer 

simulation runs. 

(2) In models with inclined orbits ( i 0 �= 0): 

(a) At relatively small inclination angles, i 0 � 30 ◦, the ec- 

centricity increases up to e ∼ 0 . 7 –0 . 9 due to the ELRs, like 

in models with i 0 = 0. The Kozai–Lidov oscillations of small 

amplitude are observed. The orbital inclination decreases on 

average. 

(b) At large inclination angles, i 0 = 45 ◦, 60 ◦, and 90 ◦

eccentricity and inclination strongly oscillate in the antiphase, 

like in the original Kozai–Lidov mechanism. 

(c) The amplitude of oscillations increases when i 0 increases 

and reaches e ≈ 0 . 9 in the case of i 0 = 75 ◦. The time-scale 

of eccentricity growth increases when the characteristic disc’s 

mass decreases. 

(d) Eccentricity may also increase on average due to ELRs. 

The abo v e simulations show good potential for explaining the ec- 

centricity of exoplanets, including very high eccentricities. Ho we ver, 

the final eccentricity at the time of disc dispersal can be different, 

and it depends on a number of factors. One of the important factors 

is the size of the disc-cavity boundary. At relatively small sizes, say, 

at r cav � 10 au, the eccentricity increases rapidly, and the planet may 

enter the inner disc and lose eccentricity due to the local corotation 

torque. Later, if the disc mo v es a way, the eccentricity may increase 

again. Therefore, several episodes of eccentricity growth and decay 

may occur. In the case of planets on inclined orbits, several Kozai–

Lido v c ycles of eccentricity oscillation are e xpected. On the other 

hand, for cavities located at much larger distances, the eccentricity 

increases slowly, and only a part of the eccentricity growth cycle is 

expected. 

Our simulations were performed at a high density (and mass) of the 

disc, which provided higher torques between the planet and the disc 

and helped to decrease computing time. We scale simulations to lower 

densities and longer time-scales using the theoretical prediction that 

the eccentricity growth rate is inversely proportional to the density 

(e.g. Goldreich & Tremaine 1980 ) and results of 2D simulations 

of R23 , which confirmed this dependence. Future 3D simulations 

should be done at the lower density in the disc and also in discs with 

a steeper density distribution. 
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