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A B S T R A C T

People spend most of their time indoors and are exposed to numerous contaminants in the built environment.
Water management plans implemented in buildings are designed to manage the risks of preventable diseases
caused by drinking water contaminants such as opportunistic pathogens (e.g., Legionella spp.), metals, and
disinfection by-products (DBPs). However, specialized training required to implement water management plans
and heterogeneity in building characteristics limit their widespread adoption. Implementation of machine
learning and artificial intelligence (ML/AI) models in building water settings presents an opportunity for faster,
more widespread use of data-driven water quality management approaches. We demonstrate the utility of
Random Forest and Long Short-Term Memory (LSTM) ML models for predicting a key public health parameter,
free chlorine residual, as a function of data collected from building water quality sensors (ORP, pH, conductivity,
and temperature) as well as WiFi signals as a proxy for building occupancy and water usage in a “green”

Leadership in Energy and Environmental Design (LEED) commercial and institutional building. The models
successfully predicted free chlorine residual declines below 0.2 ppm, a common minimum reference level for
public health protection in drinking water distribution systems. The predictions were valid up to 5 min in
advance, and in some cases reasonably accurate up to 24 h in advance, presenting opportunities for proactive
water quality management as part of a sense-analyze-decide framework. An online data dashboard for visualizing
water quality in the building is presented, with the potential to link these approaches for real-time water quality
management.

1. Introduction

Most children and adults spend 8 h or more per day in commercial
and institutional (C&I) buildings (e.g., offices, schools), and even longer
in elder care facilities or large apartment complexes (Klepeis et al.,
2001). Traditionally, a focus has been placed on managing energy use
related to heating, ventilation, and air conditioning within buildings,
especially within sustainability programs (Bravo et al., 2020; Park et al.,
2020). However, over the past few decades there has been greater vis-
ibility of high-profile incidents wherein water quality within buildings
puts people at risk from lead, copper, waterborne pathogens like
Legionella spp., disinfection by-products (DBPs), or unaesthetic water
(Abokifa et al., 2020; Allen et al., 2017; Baum et al., 2016). Legionella
spp. is the also a leading cause of drinking water-associated outbreaks in

the United States and is of epidemiologic importance globally (CDC,
2018; WHO, 2007).

“Green” buildings are beneficial for sustainability but can have water
quality issues due to stagnant water and low-flow fixtures, although
causal linkages are difficult to assess (Logan-Jackson et al., 2023;
Rhoads et al., 2016; Rhoads and Hammes, 2021). Due in part to regu-
latory requirements (that vary by country and jurisdiction) and logis-
tical inputs, facilities managers have typically relied on limited risk
management tools to improve the quality of water in their buildings (e.
g., water flushing or changing the water heater temperature set point).
Building water management plans are recommended but there is limited
science-based information on how to design and implement them in
practice (NASEM, 2019). Many different water quality management
documents are available (Julien et al., 2020; Singh et al., 2020a);
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however, new proactive, science-based approaches are needed to
advance building water quality due to logistical considerations such as
facilities management personnel time, monitoring costs, heterogeneity
among buildings requiring tailored approaches, and other factors.
Similar approaches in other water quality monitoring contexts have
indicated that optimized water quality network monitoring can reduce
the time and cost associated with detecting pollutants while meeting
water quality goals (Zhu et al., 2019).

Real-time water quality monitoring in premise plumbing environ-
ments has been suggested as the first step toward an approach for pro-
actively managing water quality in buildings (Aden and Boyer, 2022;
Kropp et al., 2022; Richard et al., 2020; Saetta et al., 2021). However,
real-time monitoring of health-relevant parameters such as pathogens,
DBPs, and metals is often not feasible due to technological limitations or
cost, and monitoring is often limited to disinfectant residual (e.g., free
chlorine) or common water quality parameters such as temperature, pH,
conductivity, etc.. Typically, water quality monitoring involves frequent
hands-on calibration or troubleshooting in most cases, and sensors may
not be within budget or feasibility considerations for many buildings as
it is currently performed.

Nevertheless, a ready-to-use, data-to-analysis framework for online
premise plumbing water quality sensors could help to manage water
quality and protect public health. Automated data visualization and
analysis could alleviate stresses on building management staff. This
approach is currently underutilized in practice. Both mechanistic and
data-driven approaches have been used to address water quality (Sup-
plemental Table S1). For example, Saetta et al. (2021) used data mining
methods to predict chlorine residuals in premise plumbing using
low-cost sensors (Saetta et al., 2021). Machine learning and artificial
intelligence (ML/AI) techniques have been used to predict various
water-related events in buildings (Kropp et al., 2022) but have not yet
been bridged with physics-based or water quality predictive models
(Heida et al., 2022; Palmegiani et al., 2022). Models using EPANET or
Simdeum are under development to examine the impacts of local-scale
premise plumbing hydraulics on water quality phenomena but have
not yet been applied in routine practice (Clements et al., 2023; Gha-
semzadeh, 2023). Water quality applications of sensors and ML in
environmental studies are complicated by factors such as data non-
stationarity due to sensor drift and calibration, changing hydraulics
and/or water use patterns, and complexities surrounding missing data
and time series information (Zhu et al., 2023).

The objectives of this work are therefore to: (1) propose a data
collection and visualization framework for premise plumbing water
quality sensors; (2) predict chlorine residual in premise plumbing using
sensor data and ML models; (3) identify important variables and quan-
tify accuracy of predictions as a function of lead time, which tests the ML
model’s ability to predict future chlorine concentration based on current
sensor data; and (4) discuss the implications of ML for water quality
management in buildings and needs for sensor accuracy and perfor-
mance. Practical management includes stakeholder-centric goals for
evaluating a warning signal when free chlorine is below a threshold, and
predicting chlorine residual decreases ahead of time in order to antici-
pate and prevent a lapse in water quality.

2. Results and discussion

2.1. Water quality data and dashboard

An online dashboard was created to collect, organize, and visualize
the high resolution sensor data (Supplemental Fig. S1). The dashboard
allowed for real-timemonitoring of pH, conductivity, temperature, ORP,
DO, and free chlorine values for the 2nd, 3rd, and 7th floors of the
building. The data are aggregated using a Google sheets database and
Python was used with the Dash framework to create dynamic interactive
graphical visualizations of the data. The graphs are on separate tabs for
each floor and there is an option for the user to download the displayed

data as a CSV file. The user can select between 3 data range options: 1
day, 2 days, or all available days of data stored locally since a pre-
determined starting time and has the option to show the mean value of
each parameter on their respective graph.

Stakeholders for a building water quality dashboard include building
managers, technical building staff like plumbers, and building occu-
pants. Other individuals and organizations who might be interested in a
building water quality dashboard include architects, municipal water
department, and plumbing manufacturers. The dashboard in Supple-
mental Fig. S1 was designed to display data trends and could be tailored
to different stakeholders. A user could monitor the dashboard for spe-
cific values of chlorine residual and note when the values are below a
reference point (e.g., 0.2 mg/L) indicating that there may be insufficient
residual present for microbial control and decide to perform actions such
as flushing the fixtures. Additional information from other sensors could
also indicate if a water quality change has occurred, which could trigger
other actions related to other water system maintenance actions (e.g.,
examining the operation of the water softener, water heater, or other
components). For example, as the use of dashboards has proliferated for
wastewater quality data visualization (Naughton et al., 2023), their use
could also be expanded more broadly for use in drinking water quality
notifications at the facility level to provide advanced notification to
buildingmanagers when parameters are out of their desirable range, and
ultimately be used to trigger water quality management activities (e.g.,
collecting a grab sample or actuating a solenoid valve to flush a fixture in
response to a water quality trigger) in response to water quality pre-
dictions in advance of an adverse water quality event.

Sensor data for chlorine, conductivity, oxidation–reduction potential
(ORP), pH, and temperate collected over the course of the study are
shown in Fig. 1. Data were collected from June 6, 2020 to May 31, 2021
with additional details on sensor measurements in Section 3.1. The
water quality trends shown in Fig. 1 are typical for a building where
water quality parameters can vary due to a combination of building
characteristics, operational practices, and seasonal changes in water
quality (Richard et al., 2021). For example, on a daily time scale, the free
chlorine residual increases as fresh water from the distribution system
enters the building when occupants are in the building using water, and
then decays when occupants leave. In contrast, conductivity varies to a
lesser degree on the time scale of days and instead changes seasonally.
Although there are general trends for building water quality that can be
expected, ML techniques have the potential to provide new insights and
improved management of water use and water quality in buildings. 73,
504 datapoints were available after cleaning. Erroneous values (e.g.,
‘NA’ values, or signals for water quality variables recorded as ‘99′) were
omitted from the analysis.

2.2. Chlorine predictability with ML

Using five input variables (conductivity, temperature, ORP, pH, and
WiFi network activity as a proxy of building occupancy), a Random
Forest (RF) regression model was able to predict free chlorine concen-
trations with a 5-min lead time with a R2 value of 0.9 and RMSE of 0.033
(ppm) evaluated on a test dataset withheld from training. The RF
regression model outperformed a baseline multilinear regression model,
which yielded a R2 value of 0.265 and RMSE of 0.09 (ppm). Fig. 2 (a, c)
shows the time series plot of predicted and in situ test data. The RF
regression predicted values aligns well with the pattern of in situ data.
Notably, the RF regression model tends to underestimate high values
and overestimate low values, a known issue for various ML techniques as
they are essentially interpolators. This could be problematic for low
values in the case of free chlorine residual due to a desirable residual of
0.02–4 mg/L in the drinking water distribution system, with a value of
>0.2 ppm at the distribution system point of entry cited for public health
protection (USEPA, 2004; WHO, 2011). There is not currently a regu-
latory value specific to chlorine residual detection at the point of entry to
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buildings; however, 0.2 ppm is commonly used as a reference point.
However, some outliers may be caused by sensor errors. Additionally,
limitations in the sensitivity of sensors lead to artifacts which can be

seen as discontinuous patterns in the data (see chlorine and pH data in
Figs. 1 and 2).

In a separate test, we used a deep learning algorithm (Long Short-

Fig. 1. Water quality data over course of the study (left) and representative of a short-term period during which additional analysis was performed (right). Note
water quality changes occur on hly, daily, weekly, and seasonal time scales.

Fig. 2. Sensor-measured data and one time-step ahead ((k = 1), 5 min lead-time) chlorine predicted by Random Forest regression (a) measured time series for entire
2020 and Random Forest regression predicted test data; (b) scatter plot of Random Forest regression predicted test data versus the measured test data, and (c)
zoomed-in time series plot during a representative period.
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Term Memory, LSTM) to predict free chlorine concentration using time
series of the five input variables in a sequence-to-sequence (seq2seq)
framework. Specifically, the LSTM model takes the sequential inputs, in
this case, the time series of the five input variables, and predicts the
chlorine concertation as a time series. The LSTMmodel yielded lower R2
and higher RMSE than RF results (Supplemental Fig. S2), likely due to
nonstationarity of input variables. Specifically, temporal variations were
found in input variables but did not always result in changes in free
chlorine concentration, while short spikes (including possible outliers)
of free chlorine concentration may occur when input variables remain
relatively stable. The mismatch of temporal variations between input
and target is likely due to physicochemical and microbial processes that
took place during the study duration, potentially related to stagnation,
varying building operational conditions, seasonal temperature fluctua-
tions, changes in source water quality, occupancy changes, and/or
sensor data error (S Joshi et al., 2023). This suggests that sequential
inputs, which incorporate historical information, may introduce noise
into the model, making it challenging for the model to discern mean-
ingful patterns between inputs and outputs when underlying processes
are not fully captured by data.

Random Forest (RF) classification also shows promising accuracy in
predicting free chlorine low values with an overall accuracy of 95.5 %.
True Positive (TP) represents the correctly predicted true label “1”,
representing chlorine concentration lower than 0.2 ppm, while True
Negative (TN) is vice versa. A False Positive (FP) occurs when the model
predicts 0 but the label is 1, whereas False Negative (FN) is the
misclassification of label 1 as 0. Our dataset had more labeled values of
“1” than “0” (62 %:38 %). Given the minor imbalance and the focus on
predicting “1” class, we chose not to process data to enforce class bal-
ance. For problems with more pronounced class imbalance and where
the focus is to predict the class with fewer samples, e.g., an imbalance
beyond 90:10 (He and Garcia, 2009) or more, it may be desirable to use
downsampling and upweighting techniques (Drummond and Holte,
2003) to encourage the model to learn from the minor class.

2.3. Multiple lead time steps predictability

Fig. 3 illustrates the prediction accuracy of ML regression and clas-
sification models with different lead time-step (denotated as “k ” in
Section 3.3), i.e., how accurate the current inputs can predict the free
chlorine in the future time steps. For both models, an increase in lead
time-step results in slightly decreased accuracy despite fluctuations due
to randomness inherent to the algorithm and induced in data splitting.
RF regression shows robust performance, maintaining a low RMSE of

0.04 (ppm) even with a lead time of 288-time steps (24 h). Similarly, the
accuracy of RF classification predicting labels 24 h later remains around
94.5 %. Because of autocorrelation in input variables and free chlorine
concentration (Supplemental Fig. S3), the models were able to learn the
relation between free chlorine concentration in the future and the five
input variables at current time step and thus forecast free chlorine
concentration with high accuracy. Fig. 4 shows the variable importance
scores of RF regression and RF classification based on a permutation
method described in Section 3.2. The importance scores were calculated
for each lead time and then averaged. Conductivity resulted in the
highest score (i.e., conductivity was most important for predicting free
chlorine), while occupancy was the least important feature. This agrees
with partial dependence plots (Supplemental Figs. S4 and S5), which
show the marginal effect of each input variable on the model prediction.
Specifically, the RF regression (Supplemental Fig. S4) tends to result in
lower free chlorine values related with an increase in conductivity,
while it is insensitive to changes in building occupancy. Similarly, the RF
classification tends to have a high possibility of a free chlorine value
<0.2 ppm (indicated as “label 1″) with an increase in conductivity
(Supplemental Fig. S5). The variable importance score of temperature
and ORP has a different ranking between RF regression and RF classi-
fication. The classifier model relies more on distinguishing the boundary
(threshold-based label) compared to the regression model producing
continuous output. Additionally, the partial dependence plots (PDP) and
variable importance results of temperature and ORP result may be
confounded by the correlation (Pearson correlation r is −0.57) between
them (Fig. 5). This is expected given that temperature affects the rate of
the chemical reactions that affect ORP, with warmer water tending to
have a lower ORP than colder water (Nordstrom and Wilde, 1998).
Correlations between pH and conductivity as well as occupancy (Pear-
son correlation r are 0.33 and 0.30) may reflect the effects of water usage
on intermittent water chemistry. Free chlorine and conductivity
demonstrated moderate correlation, which may be due to the presence
of chloride ions formed from chlorine. In addition, to assess the necessity
of using all sensors, we conducted two experiments using only the top 3
and top 2 most important variables from Fig. 4. This led to lower per-
formance for both the RF regression and classification models (Supple-
mental Fig. S6). These comparisons demonstrate that information from a
single sensor is less informative than using data from a combination of
sensors to feed into a ML approach.

For comparison of the ML approaches with a baseline “simple”

approach, multiple linear regression (MLR) and logistic regression were
performed with five input variables and a lead time of one step. Their
performance was compared to the RF regression and RF classification

Fig. 3. Prediction performance of the Random Forest regression and classification model with lead-time ranging from 5 min to 24 h with a timestep of 1 h. (a) root-
mean-square error (RMSE) for regression and (b) accuracy rate for classification.
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models, respectively. The MLR model (Supplemental Fig. S7) model was
evaluated on the same data as the RF and LSTM models and yielded an
R2 of 0.265 and RMSE of 0.09 ppm. The performance of the MLR model
was substantially lower than the performance of the RF and LSTM
models, suggesting the potential value of MLmethods for predicting free
chlorine concentration. Meanwhile, the logistic regression model (Sup-
plemental Table S2), using the same data as RF classification, achieved
an accuracy of 70.9 %, lower than RF classification. These comparisons
demonstrate the need for using more sophisticated ML approaches for
this problem.

2.4. Implications for building water quality management

The current work presents novel ML algorithms applied to predicting
a key health-relevant variable for managing water quality in buildings,
free chlorine residual. The ML models predicted free chlorine with
reasonable accuracy (RMSE<0.042 ppm, accuracy>94 %) up to 24 h
reliably in advance. A data dashboard for real-time water quality visu-
alization was developed, showing 5-min data for water quality sensors
on multiple building floors for pH, temperature, ORP, and free chlorine.
The goal of the current analysis is to ultimately integrate the developed
ML algorithms with the data dashboard for real-time water quality
management, for example via notification of trained personnel, auto-
mated valve operation, or temperature setting control with a goal of

some period of advance notice. As data dashboards have proliferated for
use in wastewater testing and public health decision-making (Naughton
et al., 2023), there is a need for this technology to be used for
decision-making for drinking water quality and other aspects of the in-
door built environment where the majority of human exposures will
occur (Klepeis et al., 2001).

Current data visualization methods like those that involve data
dashboards (Supplemental Information Fig. S1) often place the burden
of decision-making on the stakeholder or user. While this type of
approach provides current and historical data, it does not make use of
data analysis in real time to form predictions, which is the goal of a
“sense-analyze-decide” framework. A more advanced dashboard could
show predictions and alerts, and then the stakeholder or user could
perform, or be better to perform, a corrective action. The duration of
corrective action would be dependent on the goals of the end user.
Ideally, the visualization component of the sense-analyze-decide
framework would be present at each stage of the process. A vision for
this integration along with associated research needs is described in
Table 2. While other work has sought to evaluate the needs of building
facilities managers with respect to water quality (Rasheduzzaman et al.,
2023, 2021; Singh et al., 2022, 2020b) there is no single data lead-time
that is appropriate for all end users. Consultation with the facilities
managers involved directly in this work indicated that at least a 1-h lead
time, and up to 24 h for shift and activity planning would be beneficial
for decision-making. User testing and consultation for the development
of more applied user tools is needed to inform future work.

2.5. Limitations and uncertainty

While AI/ML frameworks present great promise for predicting water
quality variables over time (Supplemental Table S1), there were several
limitations of the current work, including sensor drift, stepwise short-
term changes, shifting baseline values, the need for manual sensor
calibration, and limitations related to free chlorine detection resolution,
particularly at levels below 0.2 ppm. Additional validation of chlorine
sensors would be beneficial to perform to quantify the uncertainty
associated with each sensor and further validate the free chlorine
measurements, e.g., using standard methods (Wendelken et al., 2009).
Concordance between free chlorine sensor measurements and grab
samples were demonstrated through periodic checks during the current
study period against handheld Hach chlorine analyzers to within 10 %.
The sensors in this study were used due to their ease of integration with
microcomputers (e.g., Raspberry Pi) and sensor networks. Other exam-
ples of the sensors used in this study in other studies (Martinez Paz et al.,
2024, 2022) have noted reliable results with infrequent calibration as
specified by the manufacturer. Nevertheless, additional parallel com-
parisons between different quantification methods and sensor types

Fig. 4. Permutation based importance scores of Random Forest models for (a) score that based on decrease of R2 for Random Forest regression; (b) score that based
on decrease of accuracy for Random Forest classification. The important scores of features are median and error bar shows 95 % distribution of all experiments results
that with lead - time ranging from 5 min to 24 h.

Fig. 5. Pearson correlation coefficient matrix among inputs (pH, conductivity,
temperature, ORP, and occupancy) and target (free chlorine concentration).

S. Wei et al.
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would be beneficial for calibrating and reality-checking sensor mea-
surements over time as a function of different water qualities and user
maintenance/calibration approaches.

The sensor flow cell maintained a continuous, but low, flow of water
through the sensors. However, the character of the water flowing
through the sensor was influenced by the flow or stagnation conditions
happening in the area of the building where the sensor was located and
could have influenced correlations among variables. As a result of un-
certainty introduced by sensor limitations, relative comparisons of
variables and trend detection may be better suited for analysis compared
to absolute value thresholds as addressed in the current work.

The regression model predicts reference free chlorine concentration
values, which helps stakeholders make informed adjustments to build-
ing water systems. On the other hand, the classification model offers
early warnings by predicting whether free chlorine levels will meet
critical thresholds, enabling immediate responses. Both models are
necessary as they address different aspects of decision-making: regres-
sion offers a value that can be used as a reference for stakeholder long-
term planning, and adjustments, while classification for immediate,
threshold-based actions. By presenting both, we demonstrate how
sensor data can support a wide range of decision-making needs,
enhancing the overall utility of ML in monitoring chlorine
concentrations.

The partial dependence plot (PDP) shows how changes in one feature
affect the overall prediction and provide insights into the impact of
uncertainty in the feature on model prediction uncertainty. When the
PDP shows a steep slope in a specific range of a feature, uncertainties in
that range have a higher impact on predictions, and vice versa for milder
slopes. An example of this is shown in Fig. S4, where the PDP of con-
ductivity has a steep and varying slope in the range of 500-1500 uS/cm.
In particular, sensor error when conductivity is around 1300 uS/cmmay
cause predicted free chlorine concentration to fluctuate around the
threshold (0.2 ppm).

As AI/ML methods proliferate for use in the water sector, there is a
need to understand the implications of error propagation on model
outputs. This could include a comparison of how the quality of the
sensor, including sensor drift or error affects decision switchover points
for water quality management (i.e., when, how often, and how much to
flush the water system). Cost-benefit evaluations have indicated that
combinations of lower-cost sensors and/or grab samples could achieve
water quality benefits, indicating that there may be tradeoffs in the
value of information between reducing error associated with a particular
sensor vs. switching the combination of overall sensors used for pre-
diction of a given water quality outcome like free chlorine residual
(Saetta et al., 2021). Sensitivity analysis to examine the impact of sensor
error on ML model fitting approaches, as well as the additional value of
information approaches to weigh the cost of obtaining additional in-
formation or error reduction and dependency of the management
approach on this cost would be beneficial (Luhede et al., 2024). This can
help to inform considerations regarding the true applicability (robust-
ness versus fragility) of the models. The need for understanding the
specific drivers of uncertainty is increasingly addressed usingMLmodels
that combine physics-based approaches with data-driven models in
environmental fields (Fung et al., 2021; Sayed et al., 2023; Zhao et al.,
2023). Despite these limitations, the current work is a step forward for
advancing a “sense-analyze-decide” framework for building water
management that could operate within a multi-pronged digital building
management system that advances sustainability and efficiency goals
while protecting public health.

3. Methodology

3.1. Data collection and data visualization dashboard

Sensors were installed on the 2nd, 3rd, and 7th floors of the building
and calibrated once per week (for pH, ORP, DO, and conductivity

sensors). Data were recorded every 5 min for pH (AtlasScientific #ENV-
40-pH), temperature (AtlasScientific #PT-1000), conductivity (Atlas-
Scientific #ENV-40-EC-K1.0), oxidation–reduction potential (ORP)
(AtlasScientific #ENV-40-ORP), dissolved oxygen (CO) (AtlasScientific
#ENV-40-DOX), and free chlorine (Chemtrol PPMFC002). The sensors
were installed and operated following manufacturer guidelines. The free
chlorine sensor used in this work was a membrane-based, amperometric
chlorine sensor that measured HOCl and OCl−. The sensor had an
operating pH range of 5.5 to 9.5 according to the manufacturer. Both
HOCl and OCl− diffused through the membrane where OCl− was con-
verted to HOCl in a low pH environment, and HOCl was detected.
Therefore, the sensor signal was proportional to the sum of HOCl and
OCl− in the bulk water, and pH correction or buffer addition was not
required. The sensors were installed in a flow cell that operated with
continuous water flow. Calibrations for pH, ORP, DO, and conductivity
sensors were performed weekly on Friday mornings during the study
period. The manufacturer stated that calibration of the free chlorine
sensors is not necessary, however, the gel in the sensors was checked
every ~6 months and gel was replaced when necessary. In all cases, the
sensor returned ± 10 % of the spiked value. The 5 to 20 min calibration
periods are not expected to have introduced significant bias due to the
small number of data points.

The sensor inputs were converted from analog to digital signals using
manufacturer supplied circuits. Sensor data were wirelessly uploaded to
a Google Sheets repository. Full description of the sensor systems are
described previously (Saetta et al., 2021). The current work advances
the analysis in Saetta et al. (2021) due to the inclusion of future time
(forecasting) predictions and use of a more comprehensive dataset from
June 2020- May 2021 (compared to September 2019- February 2020 in
the original modeling effort). The current dataset is much larger and
provided a more complete dataset with fewer missing values for the
LSTM framework. Additional types of ML models were fit in the current
analysis, including LSTM, a novel approach for predicting water quality
data.

Occupancy data were collected as described previously (Aden and
Boyer, 2022; Sayalee Joshi et al., 2023). Data from a 1-year period (June
2020 through May 2021) were used for model training, validation and
test dataset. The validation data are used for tunning ML model hyper-
parameters and early stopping specifically for LSTM. The google sheets
data were used to display the sensor data trends utilizing a dashboard
style user interface hosted on a web server. The dashboard also allowed
for user access and download of sensor data.

3.2. ML models

Experiments were conducted using three ML models: RF regression,
RF classification, and LSTM. RF is a non-parametric ML algorithm that
constructs an ensemble of decision trees. Each tree is constructed based
on a bootstrap sample (i.e., sample with replacement) of the training
dataset. Typically, about one third of training data is not selected in a
bootstrap sample; these data points are referred to as out-of-bag (oob)
data and can be used to assess the generalization performance of the
tree. RF makes predictions by averaging outputs of all trees (Breiman,
2001). RF has achieved state-of-the-art performance in numerous ap-
plications (Díaz-Uriarte and Alvarez de Andrés, 2006; Wang et al., 2021;
Wei et al., 2022) and is designed to alleviate overfitting issues attributed
to an individual decision tree. RF also calculates variable importance
scores, which characterize the importance of each input variable for
predicting the target variable (free chlorine concentration in this study).
For each input variable, the algorithm randomly permutes its value
while keeping other variables unchanged, train the model on permu-
tated data, and then evaluates model accuracy using the oob data. The
variable importance score shows the decreased model performance from
the baseline model trained with non-permuted data (Breiman, 2001;
Molnar, 2020). In this study, the mean square error (MSE) is used to
construct the trees, while R2 is used to calculate variable importance

S. Wei et al.



Water Research X 24 (2024) 100244

7

scores, following the default option in the scikit-learn package.
LSTM networks are a type of recurrent neural networks specifically

designed for sequences such as sentences and time series (Graves et al.,
2013). At a given time step, the network uses “gates” to process inputs,
update the cell memory, which stores past information, and output
prediction for the current time step. As such, LSTMs are capable of
modeling temporal dynamics underlying sequential data in applications
from various disciplines (Kratzert et al., 2018).

3.3. Data preparation and experiments

Data were cleaned by first removing any extraneous values caused by
sensor errors. To differentiate between any hardware and software er-
rors during the data collection periods, hardware errors (i.e., IOErrors)
were assigned a value of 99. All other errors associated with storage or
data transfer via network were reported as “NA”. For instances where
one or more sensors reported an error, all data points for that specific
time point were excluded from analysis. WiFi login data and sensor data
were combined based on time. WiFi data were reported hourly while
sensor data were reported every 5 min. The WiFi data were assumed to
be constant over the entire hour for which they were reported. The last
reported WiFi data value was assigned to each time step (e.g., WiFi login
count for 2:00PM was assigned to 2:05PM, 2:10PM, etc., until 3:00PM).

Each RF experiment utilized five inputs at a given time step (occu-
pancy, ORP, pH, conductivity, and temperature, denoted as xt) to pre-
dict the free chlorine concentration for future time steps yt+k, where k is
the lead time step. For both RF regression and classification, data pairs of
{xt , yt+k

} were randomly split into training, validation, and test sets in a
6:2:2 ratio. Inputs are normalized to range [0,1] before being fed into
models. To evaluate the performance of the models, we calculated root
mean square error (RMSE) and the coefficient of determination R2 for
the regression models, and accuracy rate, calculated as the percentage of
correctly predicted labels, and confusion matrix for the classification
models (Table 1). In the RF classification experiment we preprocessed
the target data into binary labels using a threshold of 0.2 (ppm) (WHO,
2011). A label of “1” represented any chlorine value lower than 0.2,
while “0” represented free chlorine values larger than 0.2. Approxi-
mately 62 % of the targets were classified as label “1”, while 38 % were
labeled as “0”. We used stratified sampling during the random split to
ensure that the class proportions were the same for the train, validation,
and test sets.

We used grid search to tune the hypermeters to minimize MSE
(regression) or Accuracy (classification), indicating as the fraction of
correct predictions, on validation data. For RF regression, the search
space for hyperparameters are: maximum number features per tree: {2,
3, 4, 5}; minimum sample leaf size: {20, 40, 50, 60, 80}. For RF clas-
sification: maximum number features per tree: {2, 3, 4, 5}; min-
mumsample leaf size: {20, 40, 50, 60, 80}. The RF regression experiment
had hyperparameters of number of estimators=800; maximum number
features per tree=3; minimum sample leaf=20. The RF classification
experiment had hyperparameters of number of estimators=800;
maximum number features per tree=4; minimum sample leaf=20.

The LSTM regression model uses one-layer sequence-to-sequence
LSTM with 512 hidden units. The model is trained using the Adam
optimizer (Kingma and Ba, 2017) with a learning rate of 10−4 and MSE

loss. A 30 % dropout is added at fully connected layers to prevent
overfitting. The learning rate and dropout rate were tuned based onMSE
loss on validation dataset. The grid search range for the learning rate is
{5 × 10−5, 7 × 10–5, 1 × 10−4, 5× 10−4, 1 × 10−3}, while the range for
dropout rates is {0.1, 0.2, 0.3, 0.4, 0.5}. Input and output data for this
experiment are time series with a length of 60, i.e., we seek[xt−59, …,

xt ] to
[yt−59+k,…,yt+k

], k is the lead time step. In our implementation of
the LSTM model, the output of each time step, yt+k, is calculated using
input variables up to t . The data were partitioned into chunks with no
overlapping between chunks.

Data availability

Data used for model training are provided in the supplementary
materials. Source code are available for download from: https://github.
com/GW-ASU/predict_chlorine_residual.
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Table 1
Confusion matrix for one-time-step ahead prediction (k = 1 ) using Random
Forest classification. Label 1 represents chlorine concentrations lower than 0.2
ppm, while label 0 represents the opposite. The model achieves an overall ac-
curacy of 95.5 % (TP + TN) and a 4.5 % error rate (FP + FN).

Predicted
Label 1 Label 0

Measured Label 1 TP= 59.7 % FN= 2.1 %
Label 0 FP=2.4 % TN=35.8 %

Table 2
Sense-analyze-decide framework vision and research needs for building water
quality.
Framework
step

Vision for future applicability
in field settings

Research needs and challenges

Sense -Data from sensors are
displayed in real-time along
with historical data in a data
dashboard

-Additional calibration and
validation of sensor
measurements needed across
various sensor types
-Field testing of sensor
performance under realistic
conditions (e.g., various
calibration and/or sensor
maintenance regimes and water
qualities), robust derivation of
detection limits and collection of
data to support uncertainty
analysis
-Performing user needs
assessment to inform dashboard
user interface

Analyze -Predicted (i.e., future time
points) data are displayed
along with real-time and
historical data. For example, a
plot or time-series could show
the chlorine concentration on
the 3rd floor at real-time, 1 h
prior to real-time, and 1 h into
the future

-Evaluation of impact of sensor
errors and uncertainty, and
implications for error
propagation, model fitting, and
decision-making
-Approaches for automating ML
data storage and processing in
real-time

Decide -Forecasted predictions are
linked to action (e.g.,
prompting a facilities manager
to make a decision based on
when chlorine is predicted to
decrease below detection, or
actuating a valve)

-Performing user decision-
mapping to better understand
user community needs and
feedback loops with
communication approaches
-Linking decision trigger points
to automated water quality
management (e.g., performing
automated flushing)
-Evaluating the cost-benefit of
different approaches, accounting
for impacts on sustainability and
health
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