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SUMMARY

There is substantial evidence that neuromodulatory systems critically influence brain state dynamics; how-
ever, most work has been purely descriptive. Here, we quantify, using data combining local inactivation of the
basal forebrain with simultaneous measurement of resting-state fMRI activity in the macaque, the causal role
of long-range cholinergic input to the stabilization of brain states in the cerebral cortex. Local inactivation of
the nucleus basalis of Meynert (hbM) leads to a decrease in the energy barriers required for an fMRI state tran-
sition in cortical ongoing activity. Moreover, the inactivation of particular nbM sub-regions predominantly af-
fects information transfer in cortical regions known to receive direct anatomical projections. We demonstrate
these results in a simple neurodynamical model of cholinergic impact on neuronal firing rates and slow hyper-
polarizing adaptation currents. We conclude that the cholinergic system plays a critical role in stabilizing

macroscale brain state dynamics.

INTRODUCTION

Individual neurons in the cerebral cortex each have a vast num-
ber of structural connections, yet their firing patterns remain rela-
tively flexible and context dependent across multiple time-
scales.”™ A popular means for characterizing these complex
patterns is to use statistical techniques that estimate a low-
dimensional state-space,*” which is a statistical approximation
that permits the identification of brain states and the transitions
between them.>®~'° Within this state-space perspective, brain
dynamics form smooth trajectories that tend toward locations,
known as “attractors,” that appear as deepened “wells” along
a distributed attractor landscape (Figure 1A). Through this lens,
the computations required for perception, cognition, and action
are proposed to emerge through the realization of specific trajec-
tories across the attractor landscape.’

By way of analogy, we can conceptualize brain states evolving
across an attractor landscape as a ball rolling along a hilly land-
scape (Figure 1A); the ball can easily roll across the landscape if
the topography is relatively flat, whereas the ball could get
“stuck” within a deepened well.*'® This approach affords a
low-dimensional (topographic) representation of systems-level
neural dynamics (Figure 1C). Extending the analogy, transitions
to different brain states can be operationalized as the “activation
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energy” required to reach a particular state; e.g., the amount of
energy that would need to be exerted to move a ball from one
location to another along a hilly landscape (Figure 1A). Impor-
tantly, there are robust ways to quantify the amount of energy
required to transition to a brain state; i.e., by calculating the in-
verse log probability of the likelihood of a particular transition
at a given delay in time (Figure 1A). In this instance, energy is a
descriptive term that does not refer to the metabolic energy
required to enact a transition to a different brain state but rather
describes the likelihood of a brain state occurring. Deep wells in
the attractor landscape designate stable brain states, whereas a
relatively flat landscape is associated with relatively easy shifting
between states.

In previous work, we used this approach to confirm a theoret-
ical prediction;'* namely, that the topography of the attractor
landscape estimated from human resting-state fMRI data should
be differentially modulated by distinct arms of the ascending
neuromodulatory arousal system.'®"'* Specifically, we showed
that peaks in blood flow within the noradrenergic locus coeruleus
were followed by a relative flattening of the attractor land-
scape,'® whereas peaks in blood flow within the cholinergic nu-
cleus basalis of Meynert preceded deepening of the attractor
landscape.'® While these results were well matched to the cogni-
tive capacities typically linked to these two neuromodulatory
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Figure 1. The cholinergic system deepens attractor landscapes
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(A) Graphical representation of the effects of acetylcholine (ACh) on facilitating attractor landscape topography, in which brain states are particular locations in a

low-dimensional state space. Neuromodulatory neurotransmitters are proposed to alter the topography of the landscape;

to the deepening of attractors.'®

1112 specifically, ACh has been linked

(B) Sagittal graphical representation of a macaque brain with nbM subnuclei projection patterns (Ch4ay and Ch4, ) with inhibition injection from muscimol.
(C) Time series extracted from symmetric ROIs following inactivation of the left nbM (recreated from original Turchi et al. data).

(D) Graphical representation of the influence of the cholinergic system on MSD and “activation energy” required to move; given that ACh acts to deepen the wells
of the attractors and stabilize brain states, we predict that inhibition of the nbM will lead to a relative flattening of the energy landscape estimated from fMRI data.

systems,’®'° the results were inherently descriptive. A more
powerful test of our hypothetical framework requires causal
intervention (Figure 1B), with the prediction that inhibition of
the neuromodulatory system should shift the topography of the
attractor landscape toward the opposite extreme (Figure 1D).

RESULTS

The cholinergic nucleus basalis of Meynert causally
alters attractor landscape topography

To test for causal evidence of cholinergic attractor deepening,
we leveraged macaque (n = 2) fMRI recordings in which the nu-
cleus basalis of Meynert (nbM) was reversibly inactivated by uni-
lateral injection of muscimol (agonist of GABA4 receptors) into
two different sub-regions: either Ch4,,, (a subdivision of the
nbM that contains magnocellular cholinergic cells that innervate
medial cortical regions) or Ch4,, (a subdivision of the nbM with
projections to the lateral cortex and visual areas; Turchi et al.).
Sham trials in which no injections were performed were used
as controls. Following injections (or sham trials), fMRI (cerebral
blood volume) signals were recorded across the whole brain
(the primary results of this study were published in Turchi
et al.?%), allowing us to quantify changes in brain state associated
with cholinergic inhibition. In the original study, nbM inhibition
caused a reduction in intra-hemispheric signal amplitude, with
only minimally altered functional connectivity patterns observed
at the whole brain level.”° However, the original analyses were
limited to zero-lagged coordination between brain regions,
whereas the attractor landscape perspective is concerned with
how brain states change over short windows of time, not the
overall, time-averaged behavior of the system per se, suggesting
that the two signatures might co-exist in the same data.

To test whether cholinergic inhibition flattened energy barriers,
we required a means to characterize the dynamics of brain state
transitions. Based on previous work, ' we estimated the amount
of brain state change (mean-squared displacement [MSD] in 266
cortical region of interest [ROI] fMRI time series) for a series of
pre-defined temporal delays (repetition time [TR]) at 30 randomly
spaced points across the time series (results were replicated
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with 10-100 random time points). We next calculated the likeli-
hood that each brain state occurred by estimating the probability
of signal displacement at a specific time lag. We then estimated
the energy of each brain state transition as the natural logarithm
of the inverse probability of each brain state occurring at a partic-
ular displacement and temporal delay. In this framework, highly
likely changes in fMRI signal correspond to lower-energy
transitions.

Based on previous theoretical * and empirical '~ work, we pre-
dicted that inhibiting the nbM would impair the ability to deepen
attractor wells (Figures 1D). That is, the attractor landscape
should become “flatter” following nbM inhibition, in that it will
become easier for the brain to shift into new states and not
remain “stuck” in its previous configurations. Despite a lack of
significant differences in zero-lagged inter-regional correlations
(all p > 0.05; STAR Methods; i.e., replicating the main result in
Turchi et al.), we confirmed our hypothesis that inhibition of the
nbM was associated with a decrease in energy barrier for large
brain state transitions later in time relative to control scans (sig-
nificant across all time bins except for TR = 6-7, MSD = 2; Fig-
ure 2A). In contrast to the intra-hemispheric effects observed in
the original study,?° attractor landscape flattening was apparent
in both hemispheres, irrespective of the hemisphere in which the
nbM was inhibited (Figure S1), and also across inhibition sites in
both monkeys (Figure S2), suggesting that the observed effects
in attractor landscape topography may relate both to the primary
effect of nbM inhibition as well as compensatory effects that can
enact inter-hemispheric changes,'® such as interhemispheric
non-cholinergic projections between nbM cells,”' compensatory
activation of other neuromodulatory systems,'**?=>* or a drop in
bilateral inter-hemispheric cortical projections; however, the
precise mechanism is outside the scope of this study.

To quantify the level of “flatness” in the attractor landscape,
we calculated the gradient of the topography following nbM inhi-
bition and control conditions. Due to the complex topography of
the landscapes, results were represented as a difference in
slopes per MSD and TR bin, which we then plotted onto an array
(Figure S4). Inhibiting the nbM led to a marked reduction in the
slope of the landscape following cholinergic inhibition compared
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Figure 2. Lesions of the cholinergic nbM lead to energy landscape flattening

(A) Plot of an example time series across control sessions for both monkeys for 50 regions.

(B) Plot of an example time series across inhibition sessions for both monkeys for 50 regions.

(C) Plot of the average (both monkeys) attractor landscape (changes in fMRI signal activity being measured in relation to MSD value and time represented by TRs)

during no inhibition.

(D) Plot of the average (both monkeys) attractor landscape (changes in fMRI signal activity being measured in relation to MSD value and time represented by TRs)

during nbM inhibition.

(E) 2D plot of the average difference (of both monkeys) in attractor landscape (changes in fMRI signal activity being measured in relation to MSD value and time
represented by TRs) between the nbM being inhibited vs. no inhibition; significantly (o < 0.05, paired t test) different MSD energy values are represented on the

colored 2D plot beneath the difference in the attractor plot.

(F) 2D plot of the average difference (both monkeys) in attractor landscape between the nbM inhibition versus no inhibition; energy is represented on the y axis,
with the time represented on the x axis (across all MSD). Differences in MSD energy are represented on the color bar.

to the control conditions (p < 0.05, permutation tested). These ef-
fects were particularly evident at medium-to-long delays (TR =
2-8,9.7 x 1072 £91 x 10 3vs. 83 x 103+ 7.1 x 1079,
with maximal slope reduction at MSD = 6 and TR = 8 s. We
confirmed that these results were not due to chance by
permuting data labels 5,000 times to estimate a null distribution;
differences in landscape topography were considered signifi-
cant if the original differences (between stimulation and sham)
were more extreme than 99.9% of the null distribution. Our re-
sults therefore provide causal evidence of the hypothesis that
cholinergic projections to the cerebral cortex from the nbM
deepen energy wells in an attractor landscape representing brain
state transitions, potentially by facilitating inter-regional commu-
nication between target regions.'®"*

Cholinergic inhibition interrupts information flow
between cholinergic projection targets

The prediction that cholinergic mechanisms should deepen at-
tractors is based in part on the relatively segregated (as opposed
to diffuse) projections from the nbM to the cerebral cortex.' That
is, cholinergic axons from each nbM subnucleus project to a
distributed, but constrained, set of regions that differs according
to each nbM subnucleus;'® the Ch4,, projects to the primary vi-
sual cortex, anterior auditory association cortex, and medial pre-
frontal cortex (among others), whereas the Ch4 4\, projects to the
retrosplenial cortex, secondary somatosensory cortex, and sub-
genual cingulate cortex (among others; Figure 3A). As a specific

sub-division of the nbM becomes active, the release of acetyl-
choline (ACh) to this set of regions should augment ongoing glu-
tamatergic signaling in those targeted regions, particularly when
considered relative to the remaining (non-targeted) regions that
presumably did not receive a cholinergic boost in the same win-
dow. A key prediction is thus that communication between the
cortical targets of nbM sub-regions should be selectively
impaired during inhibition, relative to pairs of regions that are
not within the downstream projections of the specific subnu-
cleus of the nbM.

To test this hypothesis, we required a term that tracked inter-
regional coupling while also accounting for time delays. To
achieve this aim, we employed a technique from information the-
ory, transfer entropy (TE), to estimate the amount of information
flow between pairs of regions.”® Briefly, TE models the “informa-
tion” transferred from a source process Y to the updates of a
target process X by estimating the amount of information Y pro-
vides about the next state in the future of X in the context of the
targets’ past (Figure 3B). Using the Java Information Dynamics
toolkit (JIDT),?® TE is calculated as the expected mutual informa-
tion from realizations of the source process Y over a delay u to a
given target process X, conditional on the past of the target. In
this way, TE can be calculated between all pairs of cortical
time series for each source and target region.

As predicted, we found that GABAergic inhibition of the nbM
led to a smaller relative TE between regions that were within
each nbM sub-region’s projection targets, relative to pairs of
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Figure 3. Decreased information transfer between targets of lesioned cholinergic projections

(A) Midline and lateral sagittal graphical representation of the distinct regions to which the Ch4,_and Ch4y sub-regions of the nucleus basalis of Meynert (nbM)
project, with dashed lines representing the regions that had a relative decrease in TE between other regions in the brain (p < 0.05, paired t test).

(B) Graphical representation of information theoretical analysis; TE (orange arrow) describes information on the next instance X1 (gray) of a target region that is
provided by the past (Y., orange) of another time series Y in the context of the target’s history.

(C) Decreased TE between pairs of regions with targeted projections from Ch4,,_and Ch4 v when compared to pairs not targeted by Ch4,,_and Ch4ay [gray dots]

(p = 0.0216, paired t test).

regions outside the projections of each nbM sub-region
(p = 0.0216; Figure 3C). This indicates that regions that are
innervated by the nbM cannot interact with one another during
epochs of inhibition of the nbM and thus refines the causal
evidence for the role of the nbM in mediating dynamic
brain state reconfigurations'®?* (see Figure S2 for additional
comparisons).

Cholinergic modulation of the neural mass model drives
deepened attractors

To further demonstrate the dynamical basis of our hypothesis for
the action of ACh on stabilizing attractor landscapes while retain-
ing pairwise correlations (original Turchi et al. results), we con-
structed a minimal dynamical system capable of reproducing
the primary outcomes observed across both studies. The model
consisted of two mutually inhibiting Wilson-Cowan-like®” neural
masses (Figure 4) modulated by adaptation and excitability. The
dynamics consisted of noisy excursions around two stable fixed
points separated by a saddle node with occasional noise-driven
jumps between fixed points (STAR Methods). We tuned the

4 Cell Reports 43, 114359, June 25, 2024

adaptation variable so that it narrowed the basin of attraction
of each fixed point but did not lead to a bifurcation; i.e.,
conserved the stability of all fixed points.

To model the action of ACh on these neural masses, we simu-
lated two complimentary impacts of ACh on neural dynamics.
The first effect involved a reduction in adaptation, which was
intended to mimic the closure of hyperpolarizing potassium
channels®®); the second increased the excitability of targeted
neurons, leading to greater inhibition through the mutual inhibi-
tory connections of the competing neural masses, a process
akin to cholinergic divisive normalization.”®" Specifically, to
model adaption, we reduced the contribution of the firing rate
to the accumulation of adaptation (from d = 0.25 [Figure 4D,
gray] tod =0.05 [Figure 4D, green]), which led to elongated dwell
times. To model excitability, we implemented a simple form of
divisive normalization by increasing the excitability of both
masses (from a = 0.9 [gray] to a = 1.1 [green)]; Figure 4F), which,
through the (mutual) inhibitory connections between nodes,
effectively led to greater inhibition of the competing mass whose
strength scaled with the firing rate of the first node.
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Figure 4. Computational evidence for cholinergic deepening of attractor wells
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B) Plot of the down-sampled time series of the two neural mass populations.

A) Graphical representation of the neural mass model with adaptation manipulation.

(C) Graphical representation of role of the cholinergic system in facilitating deepened attractor landscapes.

(D) A plot of attractor landscape averaged across time as adaptation is decreased (the dashed line represents d = 0.25, and green represents d = 0.05).

(E) A plot of attractor landscape averaged across time as excitability is increased (the dashed line represents a = 0.9, and green represents a = 1.1).

(F) A plot of attractor landscape averaged across time as excitability is increased and adaptation is decreased (the dashed line represents a = 0.9, d = 0.25, and

green represents a = 1.1, d = 0.05).

To demonstrate the utility of our attractor landscape frame-
work, we subjected the time series outputs of our simple model
to the same analysis used in the macaque resting state fMRI
data. In keeping with our proposed mechanism, heightened
cholinergic input led to a deepened and stabilized attractor land-
scape. The effect was consistent for both reduced adaptation
and heightened excitability, suggesting that the main effect of
ACh is to deepen the resultant energy landscape, making each
fixed point more robust to adaptation. Consistent with the simul-
taneous impact of both reduced adaptation and increased excit-
ability, the combination of reducing adaptation and increasing
excitability (d = 0.25 and a = 0.9 [gray], d = 0.05 and a = 1.1
[green]; Figure 4H) also led to a similar deepening in attractor
landscape topography. By direct implication, blocking ACh
would have the opposite effect; i.e., flattening the energy barrier
between attractors. Importantly, these effects were all evident
despite no change in the zero-lagged correlation between the
time series of the masses. Therefore, we conclude that this sim-
ply mechanistic model of ACh is able to permit both the key result
of our study (namely, weakened attractor stability) while also
recapitulating the main effect observed in the original study.?°

DISCUSSION
In this study, we demonstrated causal evidence that the cholin-

ergic system stabilizes macroscopic brain states, as direct
GABAergic inhibition of the cholinergic system drove a flattening

of the brain’s attractor landscape. We then mechanistically vali-
dated this finding in a bistable neural mass model. These results
support previous work showing that phasic bursts in the cholin-
ergic nbM lead to a deepened energy landscape (Figure 2).
Together, our results advance our understanding of how the
cholinergic forebrain constrains the formation of the brain state
dynamics that form the basis of cognitive and affective brain
states.®!"

The cholinergic system exhibits complex topographical pro-
jections to distributed sets of cortical populations, with the de-
gree of overlap dependent upon the overall interconnectivity
among the same cortical regions.'**> The dynamic topological
sequelae of this organization are directly illustrated by our
demonstration of a decrease in information flow (quantified using
TE) among areas that are innervated by the nbM (Figure 3).*®
Without the cholinergic system innervating these specific areas,
the impact of incoming signals from other surrounding areas (i.e.,
“noise”) will likely have a greater influence, resulting in a
decrease in shared information (i.e., information flow) between
these specific areas. Thus, this result clarifies the role of the
cholinergic system in facilitating complex and adaptive commu-
nication within segregated networks in the cerebral cortex.

To demonstrate the mechanistic validity of our hypothesis, we
constructed a simple bistable neural mass model’’** of the
cholinergic deepening of the attractor landscape (Figure 4). Based
on a wide array of cellular neuroscience findings, we proposed
that the cholinergic system deepens the macroscale attractor

Cell Reports 43, 114359, June 25, 2024 5
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landscapes through the closure of the slow hyperpolarizing potas-
sium channels responsible for adaptation®® and through
increasing the excitability of neurons, which, through the action
of mutual inhibition, had an effect akin to divisive normaliza-
tion.?>®" These effects modeled the action of the cholinergic
reduction of adaptation for each mass, which, in turn, resulted in
elongated dwell times. These changes can be understood in
terms of attractor landscape as the increasing energy barrier
separating the two stable fixed points (Figure 4), an effect that
was replicated by increasing the excitability of each neural popu-
lation and reducing adaptation and increasing excitability in tan-
dem. Importantly, these dynamics occurred in the context of un-
altered zero-lag correlations between nodes (by construction). In
this way, we were able to create a simple model that recapitulated
both our results and those of the original study.?® We therefore
conclude that the cholinergic system is causally related to deep-
ened energy wells within the context of attractor landscapes
defined on whole-brain functional neuroimaging data. It is impor-
tant to note that, while we proposed a microcircuit mechanism for
the cholinergic system facilitating deepen attractor landscapes,
we attempted to explicate the microcircuit mechanism through
the lens of a neural mass model, which incorporates an average
neural population activity. As such, the precise mechanism
relating to blood-oxygen-level-dependent-related changes
observed in fMRI is underdetermined. Whether similar signatures
will occur when interrogating the brain in finer detail, such as in
layer-specific or cell-type-specific brain networks, remains an
important open question for future experiments.

Given the complex and diverse impacts of the cholinergic sys-
tem, the precise microcircuit properties that mediate these
cholinergic effects remain somewhat enigmatic, and often we
rely upon inferred measures of brain activity that have been
linked to cholinergic modulation to explicate its mechanisms of
actions. For instance, divisive normalization®®~®' and temporal
prolongation®**® are measures that have been extensively linked
to cholinergic modulation. We now briefly detail the role of ACh in
each of these computational signatures.

Normalization arises when the amount of inhibition within a
population of cells is proportional to the total activity in the pop-
ulation, so that, if the excitability of one subset of a population is
increased, the others receive greater inhibition.>” This process
has been suggested as a neural mechanism of focused atten-
tion.®” ACh has been shown to facilitate normalization by hetero-
geneous cholinergic receptor expression, which both promotes
excitability in one cortical layer and inhibits interneurons, causing
nonlinear integration of output neural activity.*®*° While not
entirely equivalent, we proposed that increasing excitability in
subsets of neural populations (exemplified in our model through
a microscale mechanism) would likely be an interpretable micro-
circuit mechanism that underlies cortical normalization.

Temporal prolongation instead refers to the augmentation of
the intrinsic timescale of cortical neurons; i.e., the stabilization
of cortical activity. Through the prolongation of NMDA dendritic
spike generation, which shifts cortical pyramidal neurons into a
“sustained depolarized state,” ACh is thought to facilitate short-
ening of membrane time constants, which further tunes temporal
discrimination across distant synaptic inputs.*>*54%*" |n prac-
tice, temporal prolongation and normalization are likely inter-
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related in that any modulatory input that drives stabilization
through either influencing the temporal scale of activity and/or
the balance of excitation/inhibition (normalization) would lead
to a stable attractor; which we have evidenced both through
our experimental findings and our neural mass model.

Given the proposed importance of the cholinergic system in
cognitive and adaptive behaviors,**™*° it is important that we
design future experiments that investigate the interactions be-
tween the selective cholinergic manipulations in the nbM and
sustained focus within cognitively challenging tasks*”*¢ as well
as the encoding of contents into episodic memory.** Based
upon our findings, we anticipate that specific task-relevant net-
works (such as the ventral attention’® and default networks®®)
will be supported by patterns of cholinergic innervation and,
thus, that these sub-networks should be recruited in distinct
cognitive scenarios. Future work should attempt to characterize
the distinct cognitive capacities in manipulating cholinergic tone
so as to determine whether there are specific overlapping cir-
cuits that facilitate these different capacities.

Limitations of the study

The proposed mechanism of cholinergic attractor landscape
deepening requires further interrogation through additional
empirical experiments and more sophisticated computational
modeling approaches. For instance, a potential limitation of our
approach is that there are heterogeneous groups of cells within
the nbM, each of which could have also been inactivated through
muscimol injection, resulting in interaction of cholinergic and glu-
tamatergic inhibition that could cloud the interpretation of our re-
sults.?® This concern could be mitigated by using more precise
causal approaches, such as opto- or chemogenetics, that target
specific populations of cells within a target region. In addition,
there are other compensatory neuromodulatory mechanisms
that could be contributing to the results of this study, and future
work should attempt to modulate the multiple arms of the neuro-
modulatory system to further explicate their combined role in
brain dynamics. To this end, more nuanced computational
models would allow us to consider the influence of normalization
and prolongation at a more fine-grained scale by building a
model that incorporates the cellular structural complexity of a
range of different cholinergic receptors,*’*'? |ayer-specific
modulation,”**™° and the summation of the cholinergic sys-
tems’ influence across these heterogeneous layer-specific mod-
ulations. Given the heterogeneity of receptor expression across
the neuroaxis, there is reason to expect that the impact of ACh
on neural dynamics may be similarly heterogeneous.*°*¢-°¢ Ulti-
mately, we anticipate that models with these features will provide
more robust fits to electrophysiological and functional neuroi-
maging data than simplified models, particularly in cognitive
contexts that recruit cholinergic engagement.

In conclusion, we provided causal evidence of the cholinergic
system mediating deep-well attractor landscapes in brain state
shifts. Our findings build upon a body of work highlighting the
importance of the ascending arousal system in modulating
global brain state reconfigurations.”'®'*?%5" They further
emphasize the importance of considering the influence of neuro-
modulatory systems in adaptive neural reconfigurations and
their implication for overall brain function.
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rhesus macaque (Macaca mulatta) NIMH/NIH N/A

Deposited data

Raw and pre-processed data Turchi et al.° N/A

Atlas-based regions of interest Reveley et al.*® N/A

Analyzed data This paper https://doi.org/10.5281/zenodo.11324156
Model data This paper: Github data https://doi.org/10.5281/zenodo.11324156
Software and algorithms

MATLAB MathWorks https://mathworks.com/products/matlab.htmi
Brain Dynamics Toolbox Heitmann et al.*® https://bdtoolbox.org/

Java Information Dynamics Toolkit (jidt) Lizier*® https://github.com/jlizier/jidt

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, A/Prof.
James M. Shine (mac.shine@sydney.edu.au).

Materials availability
This study did not generate new unique reagents.

Data and code availability
o All fMRI data recorded is accessible upon reasonable request from the lead contact. All neural mass model data is available
within the following repository, https://doi.org/10.5281/zenodo.11324156
o All original code is publicly available through the following repository, https://doi.org/10.5281/zenodo.11324156
® Any additional information required to reanalyse the data reported in this work paper is available from the lead contact upon
request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Guidelines established by the Institute of Animal Research and approved by the National Institute of Mental Health (NIMH) Animal
Care and Use Committee, were followed for all experimental procedures.

Two female rhesus monkeys (Macaca mulatta, 4-5 years old, 4.5-5.5-kgs at start of experiment) participated in the study. Both
participants were socially housed, with a different female conspecific companion, in light (fixed 12hr light/dark cycle), humidity
and temperature-controlled rooms. They received meals of nuts, fruits, and primate chow, and had access to water (ad libitum). Their
healthy was consistently monitored by veterinary staff.

METHOD DETAILS

MRI acquisitions

We acquired an existing dataset of two macaque monkeys that had unilateral injections of muscimol (agonist of GABA receptors,
with 18mM-44mM, 1.8-2.46 L) into either Ch4ay (centered on anterior-medial cluster of Ch4ay) or Ch4,, (targeted lateral regions of
the Ch4,)); with no manipulation as controlled trials. The two monkeys underwent resting-state functional MRI scanning across the
whole brain (we were provided with a sub-sample two monkeys, 21 scans of unilateral inactivation of Ch4,y (MonkeyF, left hemi-
sphere 11 scans) and 33 scans of unilateral inactivation of Ch4,_ (MonkeyZ, left hemisphere 15 scans), further 20 scans of no injection
for control), obtaining cerebral blood volume as fMRI signal (4.7T/60cm vertical scanner, custom-built transmit-receiver RF coil, func-
tional MRI acquired with EPI, TR = 2.5s, TE = 14ms, voxel = 1.5mm isotropic, 42 sagittal slices, FOV = 96mm, each scan acquisition of
30mins; the primary results of this study were published in Turchi et al. 2018). All fMRI scans underwent standardized pre-processing
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from Turchi et al., 2018 methods; which included slice-timing correction, correction of magnetic field inhomogeneities, motion co-
registration, 2mm spatial smoothing, skull-stripping and removal of the first seven time frames of the time-series (AFNI/SUMA pack-
age https://afni.nimh.nih.gov/afni), regions of interest were defined through the anatomical parcellation D99 atlas.*®

Brain-state attractor landscape analysis

In order to evaluate the changes of fMRI signal activity in relation to inhibition of the nbM, we utilised the approach introduced in Munn
et al., 2021 (code for this analysis available https://doi.org/10.5281/zenodo.11324156). Briefly, this approach estimates the likelihood
that a given brain state x;, will changes into another distinct brain state xi,,t, within a given time window t. We inferred the attractor land-
scape by examining the likelihood of changes in the instantaneous fMRI signal (brain-state) for a given temporal delay (TR = repetition
time) for each of 266 cortical ROls at 30 random, equally-spaced starting time-points across the timeseries. Changes in fMRI signal were
quantified using the fMRI signal mean-squared displacement (MSD) across varying time-lags t (30 randomly spaced start points). First,
we calculated the mean squared displacement (MSD), which measures the average <>, deviation of the signal activity for r nodes

MS8Dy;, = <}Xt0+t - Xt0|2>r-

Then, we estimated the probability of a fMRI signal displacement at a time-lag t, P(MSDy). The probability distribution was calcu-
lated from MSDy;, samplings by a Gaussian kernel density estimation (K),

P(MSD,) = ZK(MSD“" )

i=1

and we calculated the probability distribution for t between 1 and 8 TR and MSD between 0 and 5. We parameterised the MSD
range by taking the maximal MSD value for the histogram of all MSD values across the timeseries. We determined the TR range
by taking the autocorrelation of the timeseries and taking the maximal time of the autocorrelation. We then calculated the energy,
E, of fMRI signal MSD attractor state at a given time-lag t, as the natural logarithm of the inverse probability:

“ = "(eruso)

This approach indicates that a highly probable relative change in fMRI signal (calculated by MSD) corresponds to a low energy (i.e.,
small E), and an unlikely change in fMRI signal requires a higher energy (i.e., large E)."® The attractor landscapes are represented as
the energy for a given MSD at a given temporal displacement (TR).

We calculated an average attractor landscape for each condition (left hemisphere injection, right hemisphere injection and control)
for each monkey. Then, we calculated the difference between the attractor landscapes by taking the difference between the nbM
inhibition attractor landscape normalised by the control attractor landscape for each monkey. We ran paired t-tests to determine
the significantly different points between the nbM inhibition compared to the control. To further investigate the attractor landscape,
we also ran the above calculations by concatenating the time-series for all the same conditions (all runs for the left and right hemi-
sphere injection, and control) and running the attractor landscape across the concatenated time-series, which reproduced the re-
sults. We established no significant difference in the attractor landscape when comparing between left and right hemisphere injection
conditions (See Figure S2). In addition, we calculated the difference between ipsilateral and contralateral hemispheric attractor land-
scapes, by calculating the attractor landscape across ipsilateral (same hemisphere as inhibitory hemisphere injection) and contra-
lateral ROls (opposite hemisphere to inhibitory hemisphere injection) for both left and right hemisphere injection conditions. We
ran a paired t test of the difference between hemispheric attractor landscape for either ipsilateral/contralateral ROls and correspond-
ing hemisphere control attractor landscape (i.e., ipsilateral left ROls with left hemisphere control condition ROIs) (see Figure S3). We
calculated whether there were differences between ipsilateral/contralateral left hemisphere inhibition versus ipsilateral/contralateral
right hemisphere inhibition attractor landscapes (paired t test); and corrected for multiple comparisons with equivalent hemisphere
control attractor landscapes (see Figure S3).

To determine the difference in the ‘flatness’ of the attractor landscape between nbM inhibition and control, we calculated the
topography gradient for both nbM inhibition and control for each monkey. We used an inbuilt MATLAB (Version 2022b) ‘gradient’
function, which calculates the slope of a given vector field for f(x4, ....x,) and separately f(y, ....yn), which in this case were the points
of x,y on our attractor landscape plots:

i) = (61‘ of 5f>

o
We then determined the maximal difference in the slope for the inhibition of the nbM compared to control.

Information theoretic analysis

The information-theoretic measures we employed on this data are based upon a Shannon entropy model of information storage and

transfer of information.®® This “information dynamics” approach considers how information in a variable X,,,1 at a given time, n + 1,
can be modeling by considering samples of this and other processes at the previous time points. Past information from a process X
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that contributes to its own future state is considered information storage, and information that contributes from other sources Y is
considered information transfer between X and Y.

We were interested in how information transfer between different regions in the brain changed during cholinergic inhibition. More
specifically, transfer entropy models the information transferred from a source process Y (one region of interest) to the updates of a
target process X (another region of interest), by estimating the amount of information Y provides about the next state in the future X in
the context of the targets’ past.?® This is quantified as the expected mutual information from realizations of the previous value Y,, of
the source process to realizations of the next value in the target process X,.,i; conditioned on the previous state
ng‘) = {Xn—k=1)r---» Xn -1, Xn} Of the target:

Tyox(k,7) = |< Yo Xoer ‘Xﬁkn))

We used an auto-embedding function to set the (k, ) parameters to maximize active information storage of the target with addi-
tional bias correction®’? (with maximum allowed values of k = 10 and = 2). We obtained a TE value for each region-to-region edge
across the runs for each condition (we computed a single TE using the time-series for all runs in the same condition) for each monkey.
We calculated the difference in region-to-region specific TE by grouping the regions based of Ch4,,_and Ch4,y projection patterns
during inhibition and performed a paired t test between the region-to-region TE that had passed a statistical significance permutation
test with a 0.05 threshold (1000 iterations for each TE edge). We also performed paired t test between the region-to-region TE for
comparison between inhibition of acetylcholine and ‘sham’ injection (for which results are presented in Figure S2).

Excitatory-inhibitory neural mass model

To clarify the relationship between our hypothesised cholinergic mechanisms and the attractor landscape analysis we built a toy (bi-
stable) system consisting of two Wilson-Cowan excitatory masses with mutual inhibition. In order to reduce our system to the phase
plane we did not explicitly model inhibition. To capture the cholinergic effects on population level neuronal dynamics we added a slow
adaptation variable to each mass leading to the following four dimensional system of equations.

teE; = — E;+(1 — E)f(aEy — E; — Hy)
mH; = — H; +bE;

By = — Ex+(1 — Ex)f(aE, — E; — Hy)
tiHy = — Hy+bE;,

Where f(x) = (1+e~*®*~ 9)~1 is a sigmoidal activation function. The structure of this model is similar to a number of previous
models of bistable neuronal phenomena and shares many of their dynamical properties.>**>%%¢® The parameters of the model
are given in table . Following standard separation of timescales arguments®* we leveraged the fact that 1t < 74 allowing us partition
the dynamics of the system into two phases. In the first phase we treat adaptation as constant and allow the firing rates to (rapidly)
converge to their equilibrium values given by the intersection of the nullclines E; = E» = 0. The nullclines had three intersections
(see Figure S7) defining the fixed points (E1*, E>*) of the system. In the second slow phase, adaptation converged to its equilibrium
value H; = bE{*,H, = bE,". For all parameter settings included in the simulations the system had two stable fixed points separated
by a saddle node (i.e., the value of the Jacobian at the two stable fixed points had a positive determinant and negative trace, sepa-
rated by a fixed point with a negative determinant.®® Adaptation modulated the basin of attraction of each fixed point but did not
change their stability. To study the dynamics of the system under noise converted the above system of ordinary differential equations
into a system of stochastic differential equations with additive Gaussian noise dW = &+/dtN(0,1). Because the fixed points did not
change their stability, large jumps in state space were noise driven. To study the hypothesised role of acetylcholine of the attractor
landscape of our model we swept the a (excitability) and b (adaptation) parameter between a range of 0.5-1.5 with low values for b
parameter and high values a parameter mimicking a highly cholinergic state. All simulations were run in the Brain Dynamics Toolbox
(Version 2022b., MATLAB, Version 2022b)°° using the Euler-Maruyama solver with a timestep of dt = 0.001. For computational
efficiency we then down sampled the simulated time-series by an order of 1000 (into ~10ms time-bins) and ran the down sampled
time-series for both neural populations (together) through the above-mentioned attractor landscape analysis (running standardised
optimisation of the TRs bins and range of MSD for the following timeseries).

Table of parameters and corresponding values for the simple toy model of
acetylcholine modulation of neural masses

Parameter Values

TE 1

(Continued on next page)

12 Cell Reports 43, 114359, June 25, 2024



Cell Reports ¢? CellP’ress

OPEN ACCESS

Continued

Parameter Values

TH 1000

a 0.9-1.1

d 0.05-0.25
o 0.1

o 1.5

d 6

QUANTIFICATION AND STATISTICAL ANALYSIS

We calculated an average attractor landscape for each condition (left hemisphere injection, right hemisphere injection and control) for
each monkey. Then, we calculated the difference between the attractor landscapes by taking the difference between the nbM inhi-
bition attractor landscape normalised by the control attractor landscape for each monkey. We ran paired t-tests to determine the
significantly different points between the nbM inhibition compared to the control. To further investigate the attractor landscape,
we also ran the above calculations by concatenating the time-series for all the same conditions (all runs for the left and right hemi-
sphere injection, and control) and running the attractor landscape across the concatenated time-series, which reproduced the re-
sults. We established no significant difference in the attractor landscape when comparing between left and right hemisphere injection
conditions (See Figure S2). In addition, we calculated the difference between ipsilateral and contralateral hemispheric attractor land-
scapes, by calculating the attractor landscape across ipsilateral (same hemisphere as inhibitory hemisphere injection) and contra-
lateral ROls (opposite hemisphere to inhibitory hemisphere injection) for both left and right hemisphere injection conditions. We
ran a paired t test of the difference between hemispheric attractor landscape for either ipsilateral/contralateral ROls and correspond-
ing hemisphere control attractor landscape (i.e., ipsilateral left ROls with left hemisphere control condition ROIs) (see Figure S3). We
calculated whether there were differences between ipsilateral/contralateral left hemisphere inhibition versus ipsilateral/contralateral
right hemisphere inhibition attractor landscapes (paired t test); and corrected for multiple comparisons with equivalent hemisphere
control attractor landscapes (see Figure S3). We obtained a TE value for each region-to-region edge across the runs for each con-
dition (we computed a single TE using the time-series for all runs in the same condition) for each monkey. We calculated the differ-
ence in region-to-region specific TE by grouping the regions based of Ch4, and Ch4ay projection patterns during inhibition and
performed a paired t test between the region-to-region TE that had passed a statistical significance permutation test with a 0.05
threshold (1000 iterations for each TE edge). We also performed paired t test between the region-to-region TE for comparison be-
tween inhibition of acetylcholine and ‘sham’ injection (for which results are presented in Figure S2).
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