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SUMMARY
There is substantial evidence that neuromodulatory systems critically influence brain state dynamics; how-
ever, most work has been purely descriptive. Here, we quantify, using data combining local inactivation of the
basal forebrain with simultaneousmeasurement of resting-state fMRI activity in the macaque, the causal role
of long-range cholinergic input to the stabilization of brain states in the cerebral cortex. Local inactivation of
the nucleus basalis ofMeynert (nbM) leads to a decrease in the energy barriers required for an fMRI state tran-
sition in cortical ongoing activity. Moreover, the inactivation of particular nbM sub-regions predominantly af-
fects information transfer in cortical regions known to receive direct anatomical projections. We demonstrate
these results in a simple neurodynamical model of cholinergic impact on neuronal firing rates and slow hyper-
polarizing adaptation currents. We conclude that the cholinergic system plays a critical role in stabilizing
macroscale brain state dynamics.
INTRODUCTION

Individual neurons in the cerebral cortex each have a vast num-

ber of structural connections, yet their firing patterns remain rela-

tively flexible and context dependent across multiple time-

scales.1–3 A popular means for characterizing these complex

patterns is to use statistical techniques that estimate a low-

dimensional state-space,4–7 which is a statistical approximation

that permits the identification of brain states and the transitions

between them.5,8–10 Within this state-space perspective, brain

dynamics form smooth trajectories that tend toward locations,

known as ‘‘attractors,’’ that appear as deepened ‘‘wells’’ along

a distributed attractor landscape (Figure 1A). Through this lens,

the computations required for perception, cognition, and action

are proposed to emerge through the realization of specific trajec-

tories across the attractor landscape.7

By way of analogy, we can conceptualize brain states evolving

across an attractor landscape as a ball rolling along a hilly land-

scape (Figure 1A); the ball can easily roll across the landscape if

the topography is relatively flat, whereas the ball could get

‘‘stuck’’ within a deepened well.4,13 This approach affords a

low-dimensional (topographic) representation of systems-level

neural dynamics (Figure 1C). Extending the analogy, transitions

to different brain states can be operationalized as the ‘‘activation
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energy’’ required to reach a particular state; e.g., the amount of

energy that would need to be exerted to move a ball from one

location to another along a hilly landscape (Figure 1A). Impor-

tantly, there are robust ways to quantify the amount of energy

required to transition to a brain state; i.e., by calculating the in-

verse log probability of the likelihood of a particular transition

at a given delay in time (Figure 1A). In this instance, energy is a

descriptive term that does not refer to the metabolic energy

required to enact a transition to a different brain state but rather

describes the likelihood of a brain state occurring. Deep wells in

the attractor landscape designate stable brain states, whereas a

relatively flat landscape is associated with relatively easy shifting

between states.

In previous work, we used this approach to confirm a theoret-

ical prediction;14 namely, that the topography of the attractor

landscape estimated from human resting-state fMRI data should

be differentially modulated by distinct arms of the ascending

neuromodulatory arousal system.13,14 Specifically, we showed

that peaks in blood flowwithin the noradrenergic locus coeruleus

were followed by a relative flattening of the attractor land-

scape,13 whereas peaks in blood flow within the cholinergic nu-

cleus basalis of Meynert preceded deepening of the attractor

landscape.13While these results werewell matched to the cogni-

tive capacities typically linked to these two neuromodulatory
une 25, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. The cholinergic system deepens attractor landscapes

(A) Graphical representation of the effects of acetylcholine (ACh) on facilitating attractor landscape topography, in which brain states are particular locations in a

low-dimensional state space. Neuromodulatory neurotransmitters are proposed to alter the topography of the landscape;11,12 specifically, ACh has been linked

to the deepening of attractors.13

(B) Sagittal graphical representation of a macaque brain with nbM subnuclei projection patterns (Ch4AM and Ch4AL) with inhibition injection from muscimol.

(C) Time series extracted from symmetric ROIs following inactivation of the left nbM (recreated from original Turchi et al. data).

(D) Graphical representation of the influence of the cholinergic system onMSD and ‘‘activation energy’’ required to move; given that ACh acts to deepen the wells

of the attractors and stabilize brain states, we predict that inhibition of the nbMwill lead to a relative flattening of the energy landscape estimated from fMRI data.
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systems,15–19 the results were inherently descriptive. A more

powerful test of our hypothetical framework requires causal

intervention (Figure 1B), with the prediction that inhibition of

the neuromodulatory system should shift the topography of the

attractor landscape toward the opposite extreme (Figure 1D).

RESULTS

The cholinergic nucleus basalis of Meynert causally
alters attractor landscape topography
To test for causal evidence of cholinergic attractor deepening,

we leveraged macaque (n = 2) fMRI recordings in which the nu-

cleus basalis of Meynert (nbM) was reversibly inactivated by uni-

lateral injection of muscimol (agonist of GABAA receptors) into

two different sub-regions: either Ch4AM (a subdivision of the

nbM that contains magnocellular cholinergic cells that innervate

medial cortical regions) or Ch4AL (a subdivision of the nbM with

projections to the lateral cortex and visual areas; Turchi et al.).

Sham trials in which no injections were performed were used

as controls. Following injections (or sham trials), fMRI (cerebral

blood volume) signals were recorded across the whole brain

(the primary results of this study were published in Turchi

et al.20), allowing us to quantify changes in brain state associated

with cholinergic inhibition. In the original study, nbM inhibition

caused a reduction in intra-hemispheric signal amplitude, with

only minimally altered functional connectivity patterns observed

at the whole brain level.20 However, the original analyses were

limited to zero-lagged coordination between brain regions,

whereas the attractor landscape perspective is concerned with

how brain states change over short windows of time, not the

overall, time-averaged behavior of the system per se, suggesting

that the two signatures might co-exist in the same data.

To test whether cholinergic inhibition flattened energy barriers,

we required a means to characterize the dynamics of brain state

transitions. Based on previous work,13 we estimated the amount

of brain state change (mean-squared displacement [MSD] in 266

cortical region of interest [ROI] fMRI time series) for a series of

pre-defined temporal delays (repetition time [TR]) at 30 randomly

spaced points across the time series (results were replicated
2 Cell Reports 43, 114359, June 25, 2024
with 10–100 random time points). We next calculated the likeli-

hood that each brain state occurred by estimating the probability

of signal displacement at a specific time lag. We then estimated

the energy of each brain state transition as the natural logarithm

of the inverse probability of each brain state occurring at a partic-

ular displacement and temporal delay. In this framework, highly

likely changes in fMRI signal correspond to lower-energy

transitions.

Based on previous theoretical14 and empirical13 work, we pre-

dicted that inhibiting the nbM would impair the ability to deepen

attractor wells (Figures 1D). That is, the attractor landscape

should become ‘‘flatter’’ following nbM inhibition, in that it will

become easier for the brain to shift into new states and not

remain ‘‘stuck’’ in its previous configurations. Despite a lack of

significant differences in zero-lagged inter-regional correlations

(all p > 0.05; STAR Methods; i.e., replicating the main result in

Turchi et al.), we confirmed our hypothesis that inhibition of the

nbM was associated with a decrease in energy barrier for large

brain state transitions later in time relative to control scans (sig-

nificant across all time bins except for TR = 6–7, MSD = 2; Fig-

ure 2A). In contrast to the intra-hemispheric effects observed in

the original study,20 attractor landscape flattening was apparent

in both hemispheres, irrespective of the hemisphere in which the

nbM was inhibited (Figure S1), and also across inhibition sites in

both monkeys (Figure S2), suggesting that the observed effects

in attractor landscape topographymay relate both to the primary

effect of nbM inhibition as well as compensatory effects that can

enact inter-hemispheric changes,14 such as interhemispheric

non-cholinergic projections between nbMcells,21 compensatory

activation of other neuromodulatory systems,13,22–24 or a drop in

bilateral inter-hemispheric cortical projections; however, the

precise mechanism is outside the scope of this study.

To quantify the level of ‘‘flatness’’ in the attractor landscape,

we calculated the gradient of the topography following nbM inhi-

bition and control conditions. Due to the complex topography of

the landscapes, results were represented as a difference in

slopes per MSD and TR bin, which we then plotted onto an array

(Figure S4). Inhibiting the nbM led to a marked reduction in the

slope of the landscape following cholinergic inhibition compared
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Figure 2. Lesions of the cholinergic nbM lead to energy landscape flattening

(A) Plot of an example time series across control sessions for both monkeys for 50 regions.

(B) Plot of an example time series across inhibition sessions for both monkeys for 50 regions.

(C) Plot of the average (both monkeys) attractor landscape (changes in fMRI signal activity being measured in relation to MSD value and time represented by TRs)

during no inhibition.

(D) Plot of the average (both monkeys) attractor landscape (changes in fMRI signal activity being measured in relation to MSD value and time represented by TRs)

during nbM inhibition.

(E) 2D plot of the average difference (of both monkeys) in attractor landscape (changes in fMRI signal activity being measured in relation to MSD value and time

represented by TRs) between the nbM being inhibited vs. no inhibition; significantly (p < 0.05, paired t test) different MSD energy values are represented on the

colored 2D plot beneath the difference in the attractor plot.

(F) 2D plot of the average difference (both monkeys) in attractor landscape between the nbM inhibition versus no inhibition; energy is represented on the y axis,

with the time represented on the x axis (across all MSD). Differences in MSD energy are represented on the color bar.
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to the control conditions (p < 0.05, permutation tested). These ef-

fects were particularly evident at medium-to-long delays (TR =

2–8, 9.7 3 10�3 ± 9.1 3 10�3 vs. 8.3 3 10�3 ± 7.1 3 10�3),

with maximal slope reduction at MSD = 6 and TR = 8 s. We

confirmed that these results were not due to chance by

permuting data labels 5,000 times to estimate a null distribution;

differences in landscape topography were considered signifi-

cant if the original differences (between stimulation and sham)

were more extreme than 99.9% of the null distribution. Our re-

sults therefore provide causal evidence of the hypothesis that

cholinergic projections to the cerebral cortex from the nbM

deepen energywells in an attractor landscape representing brain

state transitions, potentially by facilitating inter-regional commu-

nication between target regions.13,14

Cholinergic inhibition interrupts information flow
between cholinergic projection targets
The prediction that cholinergic mechanisms should deepen at-

tractors is based in part on the relatively segregated (as opposed

to diffuse) projections from the nbM to the cerebral cortex.14 That

is, cholinergic axons from each nbM subnucleus project to a

distributed, but constrained, set of regions that differs according

to each nbM subnucleus;15 the Ch4AL projects to the primary vi-

sual cortex, anterior auditory association cortex, andmedial pre-

frontal cortex (among others), whereas the Ch4AM projects to the

retrosplenial cortex, secondary somatosensory cortex, and sub-

genual cingulate cortex (among others; Figure 3A). As a specific
sub-division of the nbM becomes active, the release of acetyl-

choline (ACh) to this set of regions should augment ongoing glu-

tamatergic signaling in those targeted regions, particularly when

considered relative to the remaining (non-targeted) regions that

presumably did not receive a cholinergic boost in the same win-

dow. A key prediction is thus that communication between the

cortical targets of nbM sub-regions should be selectively

impaired during inhibition, relative to pairs of regions that are

not within the downstream projections of the specific subnu-

cleus of the nbM.

To test this hypothesis, we required a term that tracked inter-

regional coupling while also accounting for time delays. To

achieve this aim, we employed a technique from information the-

ory, transfer entropy (TE), to estimate the amount of information

flow between pairs of regions.25 Briefly, TE models the ‘‘informa-

tion’’ transferred from a source process Y to the updates of a

target process X by estimating the amount of information Y pro-

vides about the next state in the future of X in the context of the

targets’ past (Figure 3B). Using the Java Information Dynamics

toolkit (JIDT),26 TE is calculated as the expected mutual informa-

tion from realizations of the source process Y over a delay u to a

given target process X, conditional on the past of the target. In

this way, TE can be calculated between all pairs of cortical

time series for each source and target region.

As predicted, we found that GABAergic inhibition of the nbM

led to a smaller relative TE between regions that were within

each nbM sub-region’s projection targets, relative to pairs of
Cell Reports 43, 114359, June 25, 2024 3



Figure 3. Decreased information transfer between targets of lesioned cholinergic projections

(A) Midline and lateral sagittal graphical representation of the distinct regions to which the Ch4AL and Ch4AM sub-regions of the nucleus basalis of Meynert (nbM)

project, with dashed lines representing the regions that had a relative decrease in TE between other regions in the brain (p < 0.05, paired t test).

(B) Graphical representation of information theoretical analysis; TE (orange arrow) describes information on the next instance Xn+1 (gray) of a target region that is

provided by the past (Yn+1, orange) of another time series Y in the context of the target’s history.

(C) Decreased TE between pairs of regions with targeted projections fromCh4AL andCh4AMwhen compared to pairs not targeted byCh4AL andCh4AM [gray dots]

(p = 0.0216, paired t test).
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regions outside the projections of each nbM sub-region

(p = 0.0216; Figure 3C). This indicates that regions that are

innervated by the nbM cannot interact with one another during

epochs of inhibition of the nbM and thus refines the causal

evidence for the role of the nbM in mediating dynamic

brain state reconfigurations13,24 (see Figure S2 for additional

comparisons).

Cholinergic modulation of the neural mass model drives
deepened attractors
To further demonstrate the dynamical basis of our hypothesis for

the action of ACh on stabilizing attractor landscapeswhile retain-

ing pairwise correlations (original Turchi et al. results), we con-

structed a minimal dynamical system capable of reproducing

the primary outcomes observed across both studies. The model

consisted of two mutually inhibiting Wilson-Cowan-like27 neural

masses (Figure 4) modulated by adaptation and excitability. The

dynamics consisted of noisy excursions around two stable fixed

points separated by a saddle node with occasional noise-driven

jumps between fixed points (STAR Methods). We tuned the
4 Cell Reports 43, 114359, June 25, 2024
adaptation variable so that it narrowed the basin of attraction

of each fixed point but did not lead to a bifurcation; i.e.,

conserved the stability of all fixed points.

To model the action of ACh on these neural masses, we simu-

lated two complimentary impacts of ACh on neural dynamics.

The first effect involved a reduction in adaptation, which was

intended to mimic the closure of hyperpolarizing potassium

channels28); the second increased the excitability of targeted

neurons, leading to greater inhibition through the mutual inhibi-

tory connections of the competing neural masses, a process

akin to cholinergic divisive normalization.29–31 Specifically, to

model adaption, we reduced the contribution of the firing rate

to the accumulation of adaptation (from d = 0.25 [Figure 4D,

gray] to d = 0.05 [Figure 4D, green]), which led to elongated dwell

times. To model excitability, we implemented a simple form of

divisive normalization by increasing the excitability of both

masses (from a = 0.9 [gray] to a = 1.1 [green]; Figure 4F), which,

through the (mutual) inhibitory connections between nodes,

effectively led to greater inhibition of the competing mass whose

strength scaled with the firing rate of the first node.
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Figure 4. Computational evidence for cholinergic deepening of attractor wells
(A) Graphical representation of the neural mass model with adaptation manipulation.

(B) Plot of the down-sampled time series of the two neural mass populations.

(C) Graphical representation of role of the cholinergic system in facilitating deepened attractor landscapes.

(D) A plot of attractor landscape averaged across time as adaptation is decreased (the dashed line represents d = 0.25, and green represents d = 0.05).

(E) A plot of attractor landscape averaged across time as excitability is increased (the dashed line represents a = 0.9, and green represents a = 1.1).

(F) A plot of attractor landscape averaged across time as excitability is increased and adaptation is decreased (the dashed line represents a = 0.9, d = 0.25, and

green represents a = 1.1, d = 0.05).
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To demonstrate the utility of our attractor landscape frame-

work, we subjected the time series outputs of our simple model

to the same analysis used in the macaque resting state fMRI

data. In keeping with our proposed mechanism, heightened

cholinergic input led to a deepened and stabilized attractor land-

scape. The effect was consistent for both reduced adaptation

and heightened excitability, suggesting that the main effect of

ACh is to deepen the resultant energy landscape, making each

fixed point more robust to adaptation. Consistent with the simul-

taneous impact of both reduced adaptation and increased excit-

ability, the combination of reducing adaptation and increasing

excitability (d = 0.25 and a = 0.9 [gray], d = 0.05 and a = 1.1

[green]; Figure 4H) also led to a similar deepening in attractor

landscape topography. By direct implication, blocking ACh

would have the opposite effect; i.e., flattening the energy barrier

between attractors. Importantly, these effects were all evident

despite no change in the zero-lagged correlation between the

time series of the masses. Therefore, we conclude that this sim-

plymechanisticmodel of ACh is able to permit both the key result

of our study (namely, weakened attractor stability) while also

recapitulating the main effect observed in the original study.20

DISCUSSION

In this study, we demonstrated causal evidence that the cholin-

ergic system stabilizes macroscopic brain states, as direct

GABAergic inhibition of the cholinergic system drove a flattening
of the brain’s attractor landscape. We then mechanistically vali-

dated this finding in a bistable neural mass model. These results

support previous work showing that phasic bursts in the cholin-

ergic nbM lead to a deepened energy landscape (Figure 2).

Together, our results advance our understanding of how the

cholinergic forebrain constrains the formation of the brain state

dynamics that form the basis of cognitive and affective brain

states.8,11

The cholinergic system exhibits complex topographical pro-

jections to distributed sets of cortical populations, with the de-

gree of overlap dependent upon the overall interconnectivity

among the same cortical regions.15,32 The dynamic topological

sequelae of this organization are directly illustrated by our

demonstration of a decrease in information flow (quantified using

TE) among areas that are innervated by the nbM (Figure 3).33

Without the cholinergic system innervating these specific areas,

the impact of incoming signals from other surrounding areas (i.e.,

‘‘noise’’) will likely have a greater influence, resulting in a

decrease in shared information (i.e., information flow) between

these specific areas. Thus, this result clarifies the role of the

cholinergic system in facilitating complex and adaptive commu-

nication within segregated networks in the cerebral cortex.

To demonstrate the mechanistic validity of our hypothesis, we

constructed a simple bistable neural mass model27,34 of the

cholinergic deepening of the attractor landscape (Figure 4). Based

on a wide array of cellular neuroscience findings, we proposed

that the cholinergic system deepens the macroscale attractor
Cell Reports 43, 114359, June 25, 2024 5
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landscapes through the closure of the slowhyperpolarizing potas-

sium channels responsible for adaptation28 and through

increasing the excitability of neurons, which, through the action

of mutual inhibition, had an effect akin to divisive normaliza-

tion.29–31 These effects modeled the action of the cholinergic

reduction of adaptation for each mass, which, in turn, resulted in

elongated dwell times. These changes can be understood in

terms of attractor landscape as the increasing energy barrier

separating the two stable fixed points (Figure 4), an effect that

was replicated by increasing the excitability of each neural popu-

lation and reducing adaptation and increasing excitability in tan-

dem. Importantly, these dynamics occurred in the context of un-

altered zero-lag correlations between nodes (by construction). In

this way, wewere able to create a simplemodel that recapitulated

both our results and those of the original study.20 We therefore

conclude that the cholinergic system is causally related to deep-

ened energy wells within the context of attractor landscapes

defined on whole-brain functional neuroimaging data. It is impor-

tant to note that, while we proposed amicrocircuit mechanism for

the cholinergic system facilitating deepen attractor landscapes,

we attempted to explicate the microcircuit mechanism through

the lens of a neural mass model, which incorporates an average

neural population activity. As such, the precise mechanism

relating to blood-oxygen-level-dependent-related changes

observed in fMRI is underdetermined. Whether similar signatures

will occur when interrogating the brain in finer detail, such as in

layer-specific or cell-type-specific brain networks, remains an

important open question for future experiments.

Given the complex and diverse impacts of the cholinergic sys-

tem, the precise microcircuit properties that mediate these

cholinergic effects remain somewhat enigmatic, and often we

rely upon inferred measures of brain activity that have been

linked to cholinergic modulation to explicate its mechanisms of

actions. For instance, divisive normalization29–31 and temporal

prolongation35,36 aremeasures that have been extensively linked

to cholinergic modulation. We now briefly detail the role of ACh in

each of these computational signatures.

Normalization arises when the amount of inhibition within a

population of cells is proportional to the total activity in the pop-

ulation, so that, if the excitability of one subset of a population is

increased, the others receive greater inhibition.37 This process

has been suggested as a neural mechanism of focused atten-

tion.37 ACh has been shown to facilitate normalization by hetero-

geneous cholinergic receptor expression, which both promotes

excitability in one cortical layer and inhibits interneurons, causing

nonlinear integration of output neural activity.38,39 While not

entirely equivalent, we proposed that increasing excitability in

subsets of neural populations (exemplified in our model through

a microscale mechanism) would likely be an interpretable micro-

circuit mechanism that underlies cortical normalization.

Temporal prolongation instead refers to the augmentation of

the intrinsic timescale of cortical neurons; i.e., the stabilization

of cortical activity. Through the prolongation of NMDA dendritic

spike generation, which shifts cortical pyramidal neurons into a

‘‘sustained depolarized state,’’ ACh is thought to facilitate short-

ening of membrane time constants, which further tunes temporal

discrimination across distant synaptic inputs.35,36,40,41 In prac-

tice, temporal prolongation and normalization are likely inter-
6 Cell Reports 43, 114359, June 25, 2024
related in that any modulatory input that drives stabilization

through either influencing the temporal scale of activity and/or

the balance of excitation/inhibition (normalization) would lead

to a stable attractor; which we have evidenced both through

our experimental findings and our neural mass model.

Given the proposed importance of the cholinergic system in

cognitive and adaptive behaviors,42–46 it is important that we

design future experiments that investigate the interactions be-

tween the selective cholinergic manipulations in the nbM and

sustained focus within cognitively challenging tasks47,48 as well

as the encoding of contents into episodic memory.43 Based

upon our findings, we anticipate that specific task-relevant net-

works (such as the ventral attention49 and default networks50)

will be supported by patterns of cholinergic innervation and,

thus, that these sub-networks should be recruited in distinct

cognitive scenarios. Future work should attempt to characterize

the distinct cognitive capacities in manipulating cholinergic tone

so as to determine whether there are specific overlapping cir-

cuits that facilitate these different capacities.

Limitations of the study
The proposed mechanism of cholinergic attractor landscape

deepening requires further interrogation through additional

empirical experiments and more sophisticated computational

modeling approaches. For instance, a potential limitation of our

approach is that there are heterogeneous groups of cells within

the nbM, each of which could have also been inactivated through

muscimol injection, resulting in interaction of cholinergic and glu-

tamatergic inhibition that could cloud the interpretation of our re-

sults.20 This concern could be mitigated by using more precise

causal approaches, such as opto- or chemogenetics, that target

specific populations of cells within a target region. In addition,

there are other compensatory neuromodulatory mechanisms

that could be contributing to the results of this study, and future

work should attempt to modulate the multiple arms of the neuro-

modulatory system to further explicate their combined role in

brain dynamics. To this end, more nuanced computational

models would allow us to consider the influence of normalization

and prolongation at a more fine-grained scale by building a

model that incorporates the cellular structural complexity of a

range of different cholinergic receptors,47,51,52 layer-specific

modulation,47,53–55 and the summation of the cholinergic sys-

tems’ influence across these heterogeneous layer-specific mod-

ulations. Given the heterogeneity of receptor expression across

the neuroaxis, there is reason to expect that the impact of ACh

on neural dynamics may be similarly heterogeneous.30,38,56 Ulti-

mately, we anticipate thatmodels with these featureswill provide

more robust fits to electrophysiological and functional neuroi-

maging data than simplified models, particularly in cognitive

contexts that recruit cholinergic engagement.

In conclusion, we provided causal evidence of the cholinergic

system mediating deep-well attractor landscapes in brain state

shifts. Our findings build upon a body of work highlighting the

importance of the ascending arousal system in modulating

global brain state reconfigurations.2,13,14,24,57 They further

emphasize the importance of considering the influence of neuro-

modulatory systems in adaptive neural reconfigurations and

their implication for overall brain function.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rhesus macaque (Macaca mulatta) NIMH/NIH N/A

Deposited data

Raw and pre-processed data Turchi et al.20 N/A

Atlas-based regions of interest Reveley et al.58 N/A

Analyzed data This paper https://doi.org/10.5281/zenodo.11324156

Model data This paper: Github data https://doi.org/10.5281/zenodo.11324156

Software and algorithms

MATLAB MathWorks https://mathworks.com/products/matlab.html

Brain Dynamics Toolbox Heitmann et al.59 https://bdtoolbox.org/

Java Information Dynamics Toolkit (jidt) Lizier26 https://github.com/jlizier/jidt
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, A/Prof.

James M. Shine (mac.shine@sydney.edu.au).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All fMRI data recorded is accessible upon reasonable request from the lead contact. All neural mass model data is available

within the following repository, https://doi.org/10.5281/zenodo.11324156

d All original code is publicly available through the following repository, https://doi.org/10.5281/zenodo.11324156

d Any additional information required to reanalyse the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Guidelines established by the Institute of Animal Research and approved by the National Institute of Mental Health (NIMH) Animal

Care and Use Committee, were followed for all experimental procedures.

Two female rhesus monkeys (Macaca mulatta, 4–5 years old, 4.5–5.5-kgs at start of experiment) participated in the study. Both

participants were socially housed, with a different female conspecific companion, in light (fixed 12hr light/dark cycle), humidity

and temperature-controlled rooms. They receivedmeals of nuts, fruits, and primate chow, and had access to water (ad libitum). Their

healthy was consistently monitored by veterinary staff.

METHOD DETAILS

MRI acquisitions
We acquired an existing dataset of two macaque monkeys that had unilateral injections of muscimol (agonist of GABAA receptors,

with 18mM–44mM, 1.8–2.46 mL) into either Ch4AM (centered on anterior-medial cluster of Ch4AM) or Ch4AL (targeted lateral regions of

the Ch4AL); with no manipulation as controlled trials. The two monkeys underwent resting-state functional MRI scanning across the

whole brain (we were provided with a sub-sample two monkeys, 21 scans of unilateral inactivation of Ch4AM (MonkeyF, left hemi-

sphere 11 scans) and 33 scans of unilateral inactivation of Ch4AL (MonkeyZ, left hemisphere 15 scans), further 20 scans of no injection

for control), obtaining cerebral blood volume as fMRI signal (4.7T/60cm vertical scanner, custom-built transmit-receiver RF coil, func-

tional MRI acquired with EPI, TR = 2.5s, TE = 14ms, voxel = 1.5mm isotropic, 42 sagittal slices, FOV = 96mm, each scan acquisition of

30mins; the primary results of this study were published in Turchi et al. 2018). All fMRI scans underwent standardized pre-processing
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from Turchi et al., 2018 methods; which included slice-timing correction, correction of magnetic field inhomogeneities, motion co-

registration, 2mm spatial smoothing, skull-stripping and removal of the first seven time frames of the time-series (AFNI/SUMA pack-

age https://afni.nimh.nih.gov/afni), regions of interest were defined through the anatomical parcellation D99 atlas.58

Brain-state attractor landscape analysis
In order to evaluate the changes of fMRI signal activity in relation to inhibition of the nbM, we utilised the approach introduced in Munn

et al., 2021 (code for this analysis available https://doi.org/10.5281/zenodo.11324156). Briefly, this approach estimates the likelihood

that a given brain state xt0 will changes into another distinct brain state xt0+t, within a given timewindow t.We inferred the attractor land-

scape by examining the likelihood of changes in the instantaneous fMRI signal (brain-state) for a given temporal delay (TR = repetition

time) for eachof 266 cortical ROIs at 30 random, equally-spaced starting time-points across the timeseries. Changes in fMRI signalwere

quantified using the fMRI signal mean-squared displacement (MSD) across varying time-lags t (30 randomly spaced start points). First,

we calculated the mean squared displacement (MSD), which measures the average <>r deviation of the signal activity for r nodes

MSDt;t0 = C
��xt0+t � xt0

��2Dr:
Then, we estimated the probability of a fMRI signal displacement at a time-lag t, P(MSDt). The probability distribution was calcu-

lated from MSDt;t0 samplings by a Gaussian kernel density estimation (K),

PðMSDtÞ =
1

4n

Xn

i = 1

K

�
MSDt;t0ðiÞ

4

�

and we calculated the probability distribution for t between 1 and 8 TR and MSD between 0 and 5. We parameterised the MSD

range by taking the maximal MSD value for the histogram of all MSD values across the timeseries. We determined the TR range

by taking the autocorrelation of the timeseries and taking the maximal time of the autocorrelation. We then calculated the energy,

E, of fMRI signal MSD attractor state at a given time-lag t, as the natural logarithm of the inverse probability:

E = ln

�
1

PðMSDtÞ
�

This approach indicates that a highly probable relative change in fMRI signal (calculated byMSD) corresponds to a low energy (i.e.,

small E), and an unlikely change in fMRI signal requires a higher energy (i.e., large E).13 The attractor landscapes are represented as

the energy for a given MSD at a given temporal displacement (TR).

We calculated an average attractor landscape for each condition (left hemisphere injection, right hemisphere injection and control)

for each monkey. Then, we calculated the difference between the attractor landscapes by taking the difference between the nbM

inhibition attractor landscape normalised by the control attractor landscape for each monkey. We ran paired t-tests to determine

the significantly different points between the nbM inhibition compared to the control. To further investigate the attractor landscape,

we also ran the above calculations by concatenating the time-series for all the same conditions (all runs for the left and right hemi-

sphere injection, and control) and running the attractor landscape across the concatenated time-series, which reproduced the re-

sults.We established no significant difference in the attractor landscapewhen comparing between left and right hemisphere injection

conditions (See Figure S2). In addition, we calculated the difference between ipsilateral and contralateral hemispheric attractor land-

scapes, by calculating the attractor landscape across ipsilateral (same hemisphere as inhibitory hemisphere injection) and contra-

lateral ROIs (opposite hemisphere to inhibitory hemisphere injection) for both left and right hemisphere injection conditions. We

ran a paired t test of the difference between hemispheric attractor landscape for either ipsilateral/contralateral ROIs and correspond-

ing hemisphere control attractor landscape (i.e., ipsilateral left ROIs with left hemisphere control condition ROIs) (see Figure S3). We

calculated whether there were differences between ipsilateral/contralateral left hemisphere inhibition versus ipsilateral/contralateral

right hemisphere inhibition attractor landscapes (paired t test); and corrected for multiple comparisons with equivalent hemisphere

control attractor landscapes (see Figure S3).

To determine the difference in the ‘flatness’ of the attractor landscape between nbM inhibition and control, we calculated the

topography gradient for both nbM inhibition and control for each monkey. We used an inbuilt MATLAB (Version 2022b) ‘gradient’

function, which calculates the slope of a given vector field for f(x1,..xn) and separately f(y1,..yn), which in this case were the points

of x,y on our attractor landscape plots:

VxfðxÞ =

�
df

dx1
;
df

dx2
;.:

df

dxn

�

We then determined the maximal difference in the slope for the inhibition of the nbM compared to control.

Information theoretic analysis
The information-theoretic measures we employed on this data are based upon a Shannon entropy model of information storage and

transfer of information.60 This ‘‘information dynamics’’ approach considers how information in a variable Xn+1 at a given time, n + 1,

can be modeling by considering samples of this and other processes at the previous time points. Past information from a process X
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that contributes to its own future state is considered information storage, and information that contributes from other sources Y is

considered information transfer between X and Y.

We were interested in how information transfer between different regions in the brain changed during cholinergic inhibition. More

specifically, transfer entropy models the information transferred from a source process Y (one region of interest) to the updates of a

target process X (another region of interest), by estimating the amount of information Y provides about the next state in the future X in

the context of the targets’ past.25 This is quantified as the expected mutual information from realizations of the previous value Yn of

the source process to realizations of the next value in the target process Xn+1 conditioned on the previous state

Xðk;tÞ
n = fXn�ðk� 1Þt;.;Xn� t;Xng of the target:

TY/Xðk; tÞ = I
�
Yn;Xn+1jXðk;tÞ

n

�

We used an auto-embedding function to set the ðk; tÞ parameters to maximize active information storage of the target with addi-

tional bias correction61,62 (with maximum allowed values of k = 10 and t = 2). We obtained a TE value for each region-to-region edge

across the runs for each condition (we computed a single TE using the time-series for all runs in the same condition) for eachmonkey.

We calculated the difference in region-to-region specific TE by grouping the regions based of Ch4AL and Ch4AM projection patterns

during inhibition and performed a paired t test between the region-to-region TE that had passed a statistical significance permutation

test with a 0.05 threshold (1000 iterations for each TE edge). We also performed paired t test between the region-to-region TE for

comparison between inhibition of acetylcholine and ‘sham’ injection (for which results are presented in Figure S2).

Excitatory-inhibitory neural mass model
To clarify the relationship between our hypothesised cholinergic mechanisms and the attractor landscape analysis we built a toy (bi-

stable) system consisting of twoWilson-Cowan excitatory masses with mutual inhibition. In order to reduce our system to the phase

planewe did not explicitly model inhibition. To capture the cholinergic effects on population level neuronal dynamicswe added a slow

adaptation variable to each mass leading to the following four dimensional system of equations.

tE _E1 = � E1 + ð1 � E1ÞfðaE1 � E2 � H1Þ

tH _H1 = � H1 +bE1

tE _E2 = � E2 + ð1 � E2ÞfðaE2 � E1 � H2Þ

tH _H2 = � H2 +bE2

Where fðxÞ = ð1+e�aðd�x� qÞÞ� 1 is a sigmoidal activation function. The structure of this model is similar to a number of previous

models of bistable neuronal phenomena and shares many of their dynamical properties.34,35,40,63 The parameters of the model

are given in table . Following standard separation of timescales arguments64 we leveraged the fact that tE � tH allowing us partition

the dynamics of the system into two phases. In the first phase we treat adaptation as constant and allow the firing rates to (rapidly)

converge to their equilibrium values given by the intersection of the nullclines _E1 = _E2 = 0. The nullclines had three intersections

(see Figure S7) defining the fixed points (E1
�;E2

�Þ of the system. In the second slow phase, adaptation converged to its equilibrium

value H1 = bE1
�, H2 = bE2

�. For all parameter settings included in the simulations the system had two stable fixed points separated

by a saddle node (i.e., the value of the Jacobian at the two stable fixed points had a positive determinant and negative trace, sepa-

rated by a fixed point with a negative determinant.65 Adaptation modulated the basin of attraction of each fixed point but did not

change their stability. To study the dynamics of the system under noise converted the above system of ordinary differential equations

into a system of stochastic differential equations with additive Gaussian noise dW = s
ffiffiffiffiffi
dt

p
Nð0;1Þ. Because the fixed points did not

change their stability, large jumps in state space were noise driven. To study the hypothesised role of acetylcholine of the attractor

landscape of our model we swept the a (excitability) and b (adaptation) parameter between a range of 0.5–1.5 with low values for b

parameter and high values a parameter mimicking a highly cholinergic state. All simulations were run in the Brain Dynamics Toolbox

(Version 2022b., MATLAB, Version 2022b)59 using the Euler-Maruyama solver with a timestep of dt = 0:001. For computational

efficiency we then down sampled the simulated time-series by an order of 1000 (into �10ms time-bins) and ran the down sampled

time-series for both neural populations (together) through the above-mentioned attractor landscape analysis (running standardised

optimisation of the TRs bins and range of MSD for the following timeseries).
Table of parameters and corresponding values for the simple toy model of

acetylcholine modulation of neural masses

Parameter Values

tE 1

(Continued on next page)
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Continued

Parameter Values

tH 1000

a 0.9–1.1

d 0.05–0.25

s 0.1

a 1.5

d 6
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Wecalculated an average attractor landscape for each condition (left hemisphere injection, right hemisphere injection and control) for

each monkey. Then, we calculated the difference between the attractor landscapes by taking the difference between the nbM inhi-

bition attractor landscape normalised by the control attractor landscape for each monkey. We ran paired t-tests to determine the

significantly different points between the nbM inhibition compared to the control. To further investigate the attractor landscape,

we also ran the above calculations by concatenating the time-series for all the same conditions (all runs for the left and right hemi-

sphere injection, and control) and running the attractor landscape across the concatenated time-series, which reproduced the re-

sults.We established no significant difference in the attractor landscapewhen comparing between left and right hemisphere injection

conditions (See Figure S2). In addition, we calculated the difference between ipsilateral and contralateral hemispheric attractor land-

scapes, by calculating the attractor landscape across ipsilateral (same hemisphere as inhibitory hemisphere injection) and contra-

lateral ROIs (opposite hemisphere to inhibitory hemisphere injection) for both left and right hemisphere injection conditions. We

ran a paired t test of the difference between hemispheric attractor landscape for either ipsilateral/contralateral ROIs and correspond-

ing hemisphere control attractor landscape (i.e., ipsilateral left ROIs with left hemisphere control condition ROIs) (see Figure S3). We

calculated whether there were differences between ipsilateral/contralateral left hemisphere inhibition versus ipsilateral/contralateral

right hemisphere inhibition attractor landscapes (paired t test); and corrected for multiple comparisons with equivalent hemisphere

control attractor landscapes (see Figure S3). We obtained a TE value for each region-to-region edge across the runs for each con-

dition (we computed a single TE using the time-series for all runs in the same condition) for each monkey. We calculated the differ-

ence in region-to-region specific TE by grouping the regions based of Ch4AL and Ch4AM projection patterns during inhibition and

performed a paired t test between the region-to-region TE that had passed a statistical significance permutation test with a 0.05

threshold (1000 iterations for each TE edge). We also performed paired t test between the region-to-region TE for comparison be-

tween inhibition of acetylcholine and ‘sham’ injection (for which results are presented in Figure S2).
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