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Implementations of domain-specific languages should offer both extensibility and performance optimizations.
With the new syntax-spec metalanguage in Racket, programmers can easily create DSL implementations
that are both automatically macro-extensible and subject to conventional compiler optimizations. This pearl
illustrates this approach through a new implementation of miniKanren, a widely used relational programming
DSL. The miniKanren community has explored, in separate implementations, optimization techniques and a
wide range of extensions. We demonstrate how our new miniKanren implementation with syntax-spec rec-
onciles these features in a single implementation that comes with both an optimizing compiler and an exten-
sion mechanism. Furthermore, programmers using the new implementation benefit from the same seamless
integration between Racket and miniKanren as in existing shallow embeddings.
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1 Reconciling the Benefits of Shallow and Deep Embeddings

When faced with a new problem domain, a functional programmer naturally thinks “this calls for
a new language!” An internal domain-specific language (DSL) is the result. Two implementation
strategies dominate the space of internal DSLs: shallow and deep embeddings [26]. These two
embedding approaches have opposing tradeoffs. Shallow embeddings allow their users to extend
the DSL and to fluidly interact with the host language. Deep embeddings come with a compiler
that may perform optimizations. But, why shouldn’t a DSL implementation come with all of these
benefits? That is, we want:

(1) extensibility by DSL users,

(2) easy interaction between the DSL and the host language, and

(3) an optimizing compiler.

This pearl illustrates an architecture for DSLs that realizes all three properties. In this architec-
ture, a macro expander transforms DSL programs written in an extensible surface language into a
core language that is convenient for compilation. To add expressive power, this DSL core language
is formulated as part of a multi-language [36] connecting the DSL to the host language. Boundary
forms in the core language separate the host and DSL parts of the multi-language and introduce
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Fig. 1. The architecture for realizing compiled, extensible, multi-language DSLs.

static semantic and runtime checks to ensure interactions cannot break the DSL’s invariants. A
DSL compiler optimizes core language programs and generates efficient host language code. Bal-
lantyne et al. [6] call DSLs implemented with this architecture macro-extensible hosted DSLs. Notice
that the architecture is similar to that employed in many serious functional programming language
implementations, including Clojure, Elixir, Haskell, Racket, and Scala. These languages all come
with an extensible elaborator, a foreign function interface, and an optimizing compiler. Thus, the
easy way to implement this architecture for DSLs is to extend such a host language’s elaborator
to work for DSL programs, too.

In Racket, the syntax-spec metalanguage [5] is the key ingredient to realize this architecture.
Given a declarative specification of a DSL’s syntax, syntax-spec extends Racket’s hygienic macro
system to the DSL. The DSL specification also describes the boundaries between the DSL and host
language, establishing the multi-language structure mentioned above. The author of the DSL can
then use conventional compiler technology to translate the DSL core language into Racket. Figure 1
outlines how the syntax-spec tool realizes the macro-extensible hosted DSL architecture. The
dashed arrow indicates that syntax-spec generates the DSL expander.

We put the approach through its paces by implementing miniKanren, a relational programming
DSL.! The miniKanren language is minimalist, limited to first-order relations, logical connectives,
and constraints (Section 2). Declaring the syntax of miniKanren in syntax-spec is straightfor-
ward, and it yields a hygienic macro expander and multi-language structure (Section 3). Combining
macros and host language interaction allows a user to extend miniKanren far beyond its core lan-
guage (Section 4), to include relations defined by pattern matching and a database query interface
connecting to SQLite. We connect the syntax-spec-based front-end to an optimizing back-end
that realizes substantial performance gains (Section 5).

Along the way, we find that the combination of extensibility, multi-language interaction, and
optimizing compilation yields more than the sum of its parts. The multi-language architecture
makes it possible to define DSL extensions that look like a native part of the DSL but rely on the
additional expressive power of the host (Section 4.3). And extensions benefit from optimizations,
relieving macro authors from worrying about every detail of the code they generate (Section 5.2).
Finally, the checks introduced by the multi-language boundary forms ensure the DSL compiler can
soundly perform optimizations even in the presence of host-language code (Section 5.3).

1See miniKanren.org, and our implementation at github.com/michaelballantyne/hosted-minikanren
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2 The miniKanren Language

The miniKanren DSL is a pure relational logic programming language, free of extra-logical effects.
Its uses range from programming pedagogy [25] and medical research [24] to program synthesis
research [9] and industrial applications [39]. The variant presented in The Reasoned Schemer, Second
Edition [25] inspires our surface syntax and core language forms.

A miniKanren program consists of a set of relations and queries against those relations. The
programmer poses a query about the possibility of some condition, in the context of the database
of relations. A goal is the basic unit of computation. It can fail or succeed, and a goal can succeed
multiple times. In miniKanren, as is usual with relational-logic programming languages, the basic
goals are equations and other simple constraints. The programmer uses goal combinators to build
up large goals from other goals—including calls to the defined relations.

The following example demonstrates how run* creates a query from a goal:

> (run* (destination) (direct 'SEA destination))
' (DEN BOS)

In this example a user asks to find all direct flights from Seattle and discovers there are exactly two:
one to Denver and one to Boston. A run* expression consists of parameters with respect to which
the programmer wants the answer printed and a goal the programmer wants to achieve. Here the
goal is an invocation of the direct relation with two parameters: the quoted constant 'SEA and
the logical variable destination. Through the runx query interface, miniKanren delivers a list
containing the values of destination for each of the two ways this query succeeds.

The conde form is the way that a goal can succeed in multiple alternative ways. The syntax of
conde consists of a number of clauses. Each clause consists of some number of goals. Each clause
represents the conjunction of its goals, and a conde form represents a disjunction of the clauses.
Here is a query that uses the conde form:

> (run 3 (origin)
(conde
[(direct origin 'B0OS)]
[(direct origin 'HOU)1))
' (SEA DEN)

The run 3 query asks for only the first three answers. We get two, because as it turns out the
direct relation defines only one direct flight to Boston and one direct flight to Houston.

The DSL comes with another frequently-used goal combinator, fresh. The fresh form intro-
duces auxiliary logic variables, scoped over its body; its body is some number of goals and repre-
sents their conjunction. Implementations of miniKanren usually track the accumulated constraints
by threading some state through sequences of goals. The query below uses fresh to find the first
layovers for all two-layover routes from Denver to San Francisco:

> (runx (lay1)
(fresh (lay2)
(direct 'DEN layl) (direct layl lay2) (direct lay2 'SF0)))
' (HOU)

The answer (HOU) indicates that in the single way this query succeeds, the value of the logic
variable lay1 must be the city Houston. The answer returned by runx* is always the list of values
associated with the query variable in different solutions; the values of local variables such as 1ay2
are not reported.
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(defrel (route origin end path) (defrel (direct a b)
(conde (conde

[(== origin end) (== path '())] [(==a 'BOS) (== b 'SEA)]

[(fresh (hop remainder) [(==a 'HOU) (== b 'SLC)]
(== path (cons (list origin hop) remainder)) [(== a 'SEA) (== b 'DEN)]
(absento origin remainder) [(== a 'SEA) (== b 'B0S)]
(direct origin hop) [(== a 'DEN) (== b 'HOU)]
(route hop end remainder))1)) [(==a 'SLC) (== b 'SFO)1))

Fig. 2. The route and direct relations describing direct flights and routes in an airline network.

Searching this way for multi-hop routes is inelegant. Figure 2 shows the definition of direct
together with a new relation route that relates origins, destinations, and paths between them.
A relation definition consists of a name, the parameters, and a body goal. The goal states the
condition under which the relationship holds. This body may refer to other relations; the set of
relation definitions may be mutually recursive. The direct relation is a simple disjunction using
the conde goal combinator. We write term equations with the == goal constructor.

The route relation is recursively defined. A route exists if the origin and end are the same
and the path between them is empty. A route also exists when the path starts with a direct flight
from origin to hop, and the rest of the path describes a route from hop to end. The absento
form introduces a negated membership constraint, here used to forbid cyclic paths. The expression
(absento origin remainder) means the term origin must be neither equal to, nor a subterm
of, remainder.

Using route, we can query for all routes from Boston to Denver:
> (runx (path) (route 'BOS 'DEN path))

"(((BOS SEA) (SEA DEN)))

It turns out the only route has a layover in Seattle.

2.1 A Better Way

With the flights example in hand, we can illustrate what we really want to achieve. First, conde is
too primitive for functional programmers’ taste; we’d rather use pattern matching. Second, there
are many more flights in the USA than we can enumerate in direct. Consulting a database instead
would allow us work with real airline data. Finally, we want all of this to run as fast as it can, thanks
to an optimizing compiler.

(defrel (route-m origin end path) (define-facts-table flights [from to]
(matche (origin end path) #:initial-data (download-flights-csv))
[(@a O]
[(a b (cons (list a layover) remainder)) (defrel (direct-db a b)
(absento a remainder) (query-facts flights a b))

(direct-db a layover)
(route-m layover b remainder)]))

Fig. 3. Revisions of the direct and route relations using database and pattern-matching extensions.

By applying our DSL architecture to miniKanren, we can achieve all these goals. In particular,
pattern matching and database connectivity become user-definable extensions. Figure 3 displays a
revision of the flights program using such extensions. The revision of route, called route-m, uses
the matche pattern matching form in place of the more verbose combination of conde, fresh, and
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== used in the original program. On the right side of the figure, the define-facts-table form
creates a new SQLite database and initializes it with data from a CSV file, downloaded from the
internet. Consulting this database requires one more form, query-facts. It represents a miniKan-
ren goal that succeeds with different assignments of the variables a and b for each row resulting
from an SQLite query. Both define-facts-table and query-facts are once again user-defined
extensions, but must interact with the host language in order to access the external world.

The essential step to safely mixing these extensions with optimizing compilation is to define
an appropriate target language for expansion. This core language should integrate host-language
code without breaking miniKanren’s invariants and should be sufficiently high level to support
domain-specific optimizations. Let’s proceed to define such a core language with syntax-spec.

3 Defining miniKanren with syntax-spec

Implementing miniKanren via syntax-spec requires three steps. First, write out a conventional
grammar for the DSL, annotated with a specification of miniKanren’s binding structure. Second,
define the boundaries with the host language, which also serve as the entry points to the DSL
compiler. Finally, we throw some syntactic sugar into the mix.

3.1 The Core Language

Following the informal presentation in the preceding section, Figure 4 shows the grammar of
the core miniKanren language in both EBNF style and in syntax-spec. These grammars have
an unstated closure condition: language forms not mentioned—specifically host-language Racket
forms—are statically disallowed in miniKanren term and goal positions.

(binding-class term-variable)
(binding-class rel-name)

<quoted> := (nonterminal quoted
| <number> n:number
| <id> s:id
IO (D)
<term> = (nonterminal term
| <id> x:term-variable
| (quote <quoted>) (quote t:quoted)
| (cons <term> <term>) (cons tl:term t2:term))
<goal> = (nonterminal goal
| succeed succeed
| fail fail
| (== <term> <term>) (== tl:term t2:term)
| (absento <term> <term>) (absento t1:term t2:term)
| (disj <goal> ...+) (disj g:goal ...+)
| (conj <goal> ...+) (conj g:goal ...+)
| (fresh1l (<id> ...) <goal>) (freshl (x:term-variable ...) b:goal)
#:binding (scope (bind x) b)
| (<id> <term> ...+) (r:rel-name t:term ...+))

Fig. 4. An EBNF-style grammar for miniKanren (left) and the corresponding syntax-spec version (right).
The syntax-spec definition also includes binding structure information (underlined).
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The core language is more minimalist than the surface syntax used in Section 2. It provides
a simple disjunction form disj instead of conde. The fresh1 form is like fresh, but with only
one body goal. Core language programs make conjunction explicit with conj instead of relying
on the implicit conjunction provided by the surface-syntax conde and fresh. The language also
includes the primitive goals succeed and fail, which do what their names suggest. Like function
applications in any Lisp, relation applications simply begin with the relation name.

The language of terms consists of term variable references, quoted data, and cons pairs. The
syntax of quoted data is a subset of that found in Racket. It includes numbers, identifiers acting as
symbolic data, and the empty list written as ().

Besides the grammar, a syntax-spec definition requires a little bit of the static semantic speci-
fication. The DSL implementer uses the #:binding keyword to describe the binding structure. In
fresh1, the binding rule indicates that the name x is bound in a new scope and is visible in the
body goal b. Unlike in the EBNF version, the syntax-spec grammar requires a user to name each
form’s sub-forms (for instance, x in x: term-variable). These names are required precisely so that
sub-forms can be uniquely identified in binding specifications.

Above the grammars are the binding-class definitions. These forms define the set of term
variables and the set of relation names. We use these classes to make the syntax specification
precise: a reference to a name is only valid if it has the same class as the binding to which it
resolves. We underline those portions of the miniKanren syntax specification that relate to binding
structure in order to highlight them.

3.2 The Boundary with Racket

The critical points of any multi-language design are the boundaries between the host language
and the DSL. The defrel and run forms are the main entries into miniKanren from the Racket
language grammar. Both are extensions to the Racket language; as such, they are special because
they permit miniKanren sub-expressions. To make this mixing of syntax semantically safe, our
multi-language implementation must, at runtime, check and protect the values that flow from
miniKanren to Racket and vice versa. We draw inspiration from the work of Matthews and Findler
[36] on multi-language formalization. Specifically, we borrow the idea of explicit syntactic bound-
aries with corresponding value translations or contracts [21].

As shown in Figure 5, the DSL designer using syntax-spec writes host-interface forms to
add DSL entry points. Since the run form is an extension to the class of expressions in the Racket
language, we use host-interface/expression to introduce this new syntax. The pieces of the
definition are a specification of the new syntax, a binding rule, and an invocation of the DSL
compiler. A DSL designer writes the syntax specification and binding rule syntaxes the same way
as in the grammar in Figure 4. The racket-expr annotation means that a Racket expression is
expected for the quantity argument n. A run compiles to a Racket expression via compile-run.

(host-interface/expression (run n:racket-expr (qg:term-variable) g:goal)
#:binding (scope (bind q) g)
(compile-run #'n #'q #'g))

(host-interface/definition (defrel (r:rel-name x:term-variable ...+) g:goal)
#:binding [(export r) (scope (bind x) g)]
#:1hs [#'r]

#:rhs [(compile-relation #'(x ...) #'g)])

Fig. 5. Host interface forms creating the boundary between Racket and miniKanren.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 238. Publication date: August 2024.



Compiled, Extensible, Multi-language DSLs (Functional Pearl) 238:7

This expression performs the search for n results and returns them as a list. To make this safe and
report reasonable errors, the generated code inserts a contract check to enforce that the expression
n evaluates to a natural number.

Unlike with run, a defrel form is only permitted in Racket definition contexts. Thus the defi-
nition of defrel uses host-interface/definition. A defrel exports the relation’s name into
the surrounding definition context, and it also scopes all the relation’s parameters over the body.
That is, the #:binding keyword can introduce not only locally scoped identifiers, but also identi-
fiers scoped in the surrounding context, using export. Each defrel compiles to a Racket function
definition of the shape (define lhs rhs). For the underlying Racket definition we want to use a
name derived from the relation name. The compiler code introduced by #: 1hs produces that name,
and the code introduced by #: rhs produces said Racket function.

3.3 Elaboration

DSL creators want both a small core language to compile and a larger, convenient-to-use surface
language. This dual goal is traditionally achieved with an elaboration pass at the front end of the
compiler. The Racket language itself performs elaboration by defining the surface language with
macros that are expanded by the Racket macro expander into the Racket kernel language.

The syntax-spec system makes this part easy. It generates a bespoke hygienic expander from
the declarative language specification with just a few hints from the DSL designer. Concretely, the
DSL designer defines classes of extensions and indicates in the grammar where each may be used.
Then, the designer writes desugarings as conventional macros.

For miniKanren, we define two extension classes called term-macro and goal-macro:

(extension-class term-macro)
(extension-class goal-macro)

The different extension classes enable the DSL-specific expander to offer users precise error mes-
sages. The DSL designer uses the #:allow-extension keyword in nonterminal definitions to
indicate the positions in the grammar that permit syntax sugar. For miniKanren we allow term
macros in the term nonterminal and goal macros in the goal nonterminal by modifying the dec-
larations of Figure 4:

(nonterminal term #:allow-extension term-macro
#| elided |#)

(nonterminal goal #:allow-extension goal-macro
#| elided |#)

The define-dsl-syntax form installs a desugaring. Here we desugar the multi-body fresh:

(define-dsl-syntax fresh goal-macro
(syntax-parser
[(fresh (x:id ...+) g ...+)
#'(freshl (x ...) (conj g ...))1))

An extension definition requires a name for the macro (fresh), the extension class to which it
belongs (goal macros), and the rewriting rule. We define the rewriting using Racket’s standard
syntax/parse library [15, 16]. The syntax-parser form defines a function that pattern matches
on the syntax it receives. The syntax template introduced by the #' characters constructs the
expansion, filling in the values of pattern variables from the pattern match.
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The term language of Figure 4 permits quoted literal constants and cons-based lists, but it does
not directly include a Racket-like 1ist function. Without intervention, this would demand the
programmer quote each individual constant symbol and use binary cons to construct all complex
terms. Our miniKanren implementation provides list as a term macro. We omit the implementa-
tion of 1list, but provide an example of the desugaring, which is straightforward:

(== (list (list 'a)) (list x))
;; desugars to

(== (cons (cons 'a "()) ") (cons x "()))

Racket’s module system supports controlling the visibility of not just function and value defini-
tions, but also syntax definitions [22]. We now have the surface forms and the core forms, but we
want to present only the nice surface language to the DSL user. Because we are in Racket, we can
use the module system to expose only those forms intended to be part of the surface. For instance,
the miniKanren implementation module exports fresh but not fresh1:

(provide (all-except-out freshl conj disj))

3.4 Runtime Semantics

Our miniKanren implementation matches the semantics of the popular faster-miniKanren im-
plementation [4], aiming to serve as a drop-in replacement. The faster-miniKanren system is a
shallow embedding, so it acts as a useful point of comparison for our alternative implementation
strategy. Our compiler also re-uses the faster-minikKanren run-time system’s implementation of
components such as unification and miniKanren’s signature interleaving search [32]. Thus the dif-
ferences between the two systems are in the syntax-spec-based front-end and the optimizations
introduced by our back-end compiler. We discuss those optimizations in detail in Section 5.

3.5 The Big Picture

Having seen the syntax-spec language specification for miniKanren, we can fill in some of the
details from the architecture diagram of Figure 1. The grammar, binding specifications, and ex-
tensions described in Sections 3.1-3 fully characterize how parsing and desugaring should behave.
The syntax-spec system uses this information to generate the compiler’s front end. The expander
eliminates all DSL surface-syntax sugar. The DSL implementer can therefore write a compiler back
end that handles just the core language.

The DSL-host boundary forms (such as run) call functions that act as entry points to the back
end of the DSL compiler (such as compile-run). The back end is written as Racket code that runs
at compile time and can consist of as many passes as needed. The compiler writer can use the
entire Racket language to structure the compiler including metalanguages such as syntax-parse.
The back-end passes implement the right half of Figure 1: optimizations and code generation. The
emitted code relies on the runtime system from faster-miniKanren.

4 Extension and Mixing Like a Shallow Embedding

Using syntax-spec imbues our miniKanren implementation with the same powers of extension
and intermixing of DSL and host-language code one gets with a shallow embedding. Specifically,
miniKanren programmers can extend the syntax of the DSL with macros, and they can commingle
host and DSL code in a disciplined manner with boundary forms.

Programmers working in shallow embeddings of miniKanren have dreamed up many language
extensions and developed applications that take advantage of the ability to intermix miniKanren
and Racket. Together these programs make the miniKanren ecosystem a kind of natural experi-
mental environment.
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(define-dsl-syntax matche goal-macro
(syntax-parser
[(matche (arg ...+) [pats g ...] ...%)
#:with ([pats® xs] ...) (map compile-pats (attribute pats))
#'(fresh (1s)
(== 1s (list arg ...))
(conde [(fresh xs (== pats* 1s) g ...0)]1 ...))1)

;3 (Listof Pattern) -> (Pair Term (Listof TermVar))
(define (compile-pats pats) #| elided |# )

Fig. 6. The implementation of the matche pattern matching extension.

In this section, we reproduce some of these examples. By doing so, we show how syntax-spec
endows an optimizing implementation with the same freedom of language extension and inter-
mixing as a shallow embedding—with little effort.

4.1 Extensibility

Many of those programmer-designed extensions to shallow miniKanren embeddings are simple
host-language macros. Hence it is perhaps unsurprising that we can similarly implement them
as DSL macros. We already explained how to do it: the DSL programmer uses the same exten-
sion mechanism as the DSL designer does for syntax sugar. The only difference between an end-
programmer language extension and built-in syntactic sugar is who designs it. Since DSL exten-
sions are macros that expand to DSL core-language code, the compiler’s expectations about the
source code continue to hold.

Concretely, some shallow miniKanren implementations include a matche [29] pattern-matching
form, like that used in route-m of Figure 3. The first form in each matche clause is a pattern. The
process of pattern matching introduces the necessary logic variables and unifies a term correspond-
ing to the pattern against the relation parameters.

The matche implementation is a fairly pedestrian goal-macro, which we show in Figure 6. The
implementation compiles each pattern group to a term expression pats* and a list of pattern vari-
ables xs. This process relies on the compile time helper function compile-pats, whose definition
we omit. The macro then constructs a goal that introduces a name for the arguments list followed
by a conde. Each conde clause introduces the pattern variables with fresh, unifies the term expres-
sion pats* with the arguments list, and executes the sequence of goals g ... as a conjunction.

Since the host and DSL use the same extension system, we can even write macros that generate
mixed-language code. For instance, a programmer might want to express a relation definition like
route-m even more concisely. In route-m, we list the parameters in the header, and then match
against that same parameter list. We can abstract over that duplicated syntax with defrel/matche,

(define-syntax defrel/matche (defrel/matche (route-m origin end path)
(syntax-parser [(aa "O))]
[(defrel/matche (name:id arg:id ...+) [(a b (cons (list a layover) remainder))
clause ...+) (absento a remainder)
#'(defrel (name arg ...) (direct a layover)
(matche (arg ...) clause ...))1)) (route-m layover b remainder)])

Fig. 7. The defrel/matche macro and an even more concise re-definition of the route relation.
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an ordinary Racket macro that generates a defrel with a matche as its body. The left-hand side of
Figure 7 shows the definition, and the right-hand side contains a re-implementation of route-m
using this new abstraction.

4.2 Mixing DSL and Host-Language Code

Sometimes miniKanren programmers want just a touch of Racket inside their miniKanren pro-
grams. The miniKanren language is a distillation of purely relational constraint logic programming
that deliberately eschews features such as side effects and higher-order control flow. However,
sometimes you just need to do a little printf debugging.

> (define (succeed/print str)
(printf str)
(expression-from-goal succeed))
> (run 1 (q)
(fresh (x)
(== g (list x 'cat))
(goal-from-expression
(let ([str (format "value of ~a: ~a\n
(succeed/print str)))))
value of q: (#<mk-lvar> cat)
"((_.0 cat))

"o

g (expression-from-term q))1)

Fig. 8. Using Racket to construct and print a string through the host FFI.

Figure 8 demonstrates how a programmer can write ordinary Racket code within a miniKan-
ren program. This interaction requires extending miniKanren with some additional language-
boundary forms. The query contains a use of the goal-from-expression boundary form, which
allows a miniKanren programmer to include some Racket code inside a goal. In this example, the
Racket code constructs a string containing information about the variable q and its value. This
string construction relies on yet another cross-language boundary to access a miniKanren term
variable from the Racket context. The expression-from-term form admits a miniKanren term in
a Racket context; the cross-language translation of the value is trivial except for fresh miniKan-
ren logic variables, which are opaque to the Racket context. The final line in the goal-from-
expression form contains an ordinary Racket function call to succeed/print, which consumes
and prints a string.

Beyond allowing Racket code to access term variables and perform side effects in the context of a
goal, goal-from-expression also allows Racket code to define the behavior of the goal—whether
it succeeds or fails, and whether it constrains any variables. The succeed/print body returns a
goal value created by the expression-from-goal boundary form to represent this behavior. In
this example the goal is simply succeed—Section 4.3 shows a more sophisticated use. An additional
boundary form term-from-expression form allows Racket code to compute a term; it is not used
in this example.

Adding these features requires just four additions to the grammar of Figure 4 and the syntax-
spec definition of miniKanren. Figure 9 shows these additions, again with an EBNF on the left
and the actual syntax-spec notation on the right. The boundaries that allow Racket code in
miniKanren contexts are defined as productions in the term and goal nonterminals that have
racket-expr subexpression positions. The expression-from-goal and expression-from-term
boundary forms extend the class of Racket expressions. Thus, we implement them with host-
interface/expression just like the run form.
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<term> := (nonterminal term

| (term-from-expression <racket-expr>) (term-from-expression e:racket-expr))
<goal> := (nonterminal goal

| (goal-from-expression <racket-expr>) (goal-from-expression e:racket-expr))
<racket-expr> := (host-interface/expression

e (expression-from-term t:term)

| (expression-from-term <term>) (compile-expression-from-term #'t))
<racket-expr> := (host-interface/expression

e (expression-from-goal g:goal)

| (expression-from-goal <goal>) (compile-expression-from-goal #'g))

Fig. 9. Extension to the grammar of Figure 4 with additional multi-language boundary forms.

As mentioned in Section 3.2, connecting the parts of a multi-language safely involves inserting
value translations or contracts at the boundaries. Matthews and Findler [36] describe two ways
of relating the kinds of values found in the connected languages. For goals, we choose a lump
embedding: the boundary forms seal miniKanren goals as opaque lumps. The only action Racket
code can perform with these values is to return them to miniKanren. For terms, we choose the
natural embedding: miniKanren terms such as lists and numbers translate to the equivalent data
structures in Racket, while logic variables remain opaque. Many Racket values such as vectors and
structures have no translation to miniKanren term values, so passing such values from Racket to
miniKanren results in a contract error.

To show how these translations are inserted, Figure 10 illustrates the compilation of the example
in Figure 8. The compilation of each cross-language boundary inserts a call to a value translation
function. Together, seal-goal and unseal-goal implement the lump embedding for goal val-
ues. The translate-term operation is responsible for implementing the natural embedding of
term values, translating term data to Racket values while sealing logic variables. This Racket-safe
version of a miniKanren term can find its way back to a miniKanren context through term-from-
expression, which unseals the logic variables.

Some of the boundary forms need to access information from the miniKanren state. In our
runtime, the current value of a logic variable depends on the received state, which contains in-
formation on the history of unifications during the program’s execution. We implement goals as
functions from a state to a stream of states representing the nondeterministic result of the goal.
In Figure 10, the goal-from-expression form compiles to such a function, making the state
variable accessible to the generated code within. The compilation of expression-from-term uses
this state with substitute to fill in known logic variable values before passing the term to Racket.
The compilation of goal-from-expression uses the state via apply-goal to continue execution
with the goal produced by the Racket code.
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(goal-from-expression
(let ([str (format "~a: ~a\n" 'q (expression-from-term q))])
(printf str)
(expression-from-goal succeed)))

;; —Compiles to—>

(lambda (state)
(let ([goal-val
(let ([str (format "~a: ~a\n" 'q (translate-term (substitute g-rt state)))1)
(printf str)
(seal-goal succeed-rt))]1)
(apply-goal (unseal-goal goal-val) state)))

Fig. 10. The above goal-from-expression sub-form from the example in Figure 8 compiles to the below
Racket implementation code. We have in-lined here the body of succeed/print in both examples for clarity.

Convenience. Forcing the programmer to wrap every reference to a miniKanren variable within
Racket with expression-from-term would be ergonomically awkward. Our implementation co-
operates with the Racket expander to automatically wrap expression-from-term around every
term variable reference within a Racket context. This convenience feature means the miniKanren
programmer pays no additional price for precisely delineated and checked language boundaries.

The implementation of this convenience feature relies on tools provided by syntax-spec. The
various compiler entry points eventually invoke the compile-goal function shown in Figure 11,
which is responsible for running the optimizer and generating Racket code for the goal.

(define (compile-goal g)
(define g* (optimize-goal g))
#* (with-reference-compilers ([term-variable compile-expression-from-term])
#, (generate-goal g*)))

Fig. 11. The compile-time function compile-goal.

In order to implement the automatic wrapping of term variables, part of the code compile-goal
generates is actually an annotation for the Racket expander as extended by syntax-spec. The
with-reference-compilers form specifies how to transform DSL-language variable references
within its body. The reference to the term-variable binding class from the syntax-spec defini-
tion of miniKanren indicates that all term variable references should be transformed. We provide
the function compile-expression-from-term as the reference compiler. This is the same func-
tion used as the entry point to compile expression-from-term boundary forms. All references
that appear in the Racket code produced by generate-goal are transformed accordingly.

4.3 Host Code in DSL Extensions

The synthesis of extensibility and host language interoperation produces some surprisingly pow-
erful behaviors. For instance, the PL enthusiast will quickly tire of writing and rewriting that same
kind of printf logic from Section 4.2. Instead, the informed enthusiast will instinctively reach for
the means to abstract over syntactic boilerplate: macros.
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(define-syntax trace-defrel
(syntax-parser
[(_ (name:id a*:id ...) b:goal/c)
#'(defrel (name a*x ...)
(goal-from-expression
(begin (printf "~s\n" (list 'name a* ...))
(expression-from-goal b))))1))

Fig. 12. The trace-defrel form combining extension with host FFl interaction

For example, the trace-defrel macro in Figure 12 provides a quick way for the programmer
to see the values of a relation’s arguments at every entry to that relation. Users of trace-defrel
need not even be aware that it uses cross-language code, because it is all is hidden behind the
abstraction. This particular macro is defined with Racket’s standard define-syntax rather than
syntax-spec’s define-dsl-syntax because relation definitions sit at the boundary with Racket.

As previewed in Section 2.1, database access provides a more substantial application of the com-
bination of syntactic extension and host interoperation. Recall that Figure 3 re-implements the
direct flights relation using an extension that connects miniKanren to an SQLite database. We
now have all the pieces we need to define this extension. The define-facts-table form is a stan-
dard Racket macro. It expands to code that uses the Racket database library to create and populate
an SQLite database table; we elide its implementation. More interesting is the query-facts goal
macro defined in Figure 13, which straddles the boundary between Racket and miniKanren.

(define-dsl-syntax query-facts goal-macro
(syntax-parser
[(_ table term ...)
#' (goal-from-expression
(query-facts-rt table (list (expression-from-term term) ...)))1))

Fig. 13. The query-facts goal macro combining extension with host FFl interaction.

The query-facts macro consumes a reference to a facts table and a sequence of miniKanren
term expressions that should evaluate to either atomic miniKanren values or logic variables. The
macro expands to a goal formed from a Racket expression that will, at runtime, actually execute
a database query. The expansion leverages the expression-from-term multi-language boundary
form to check that the argument syntax term is valid term syntax and to convert the term value
to a Racket value for use in the runtime helper.

The implementation of the runtime support for the extension is presented in Figure 14. The entry
point query-facts-rt relies on three helper functions. First, it uses the wildcardify function to
transform sealed logic variables into a “select all” wildcard that the database understands. Then, it
executes the query with do-query to produce a list of matching table rows. Finally, it uses unify-
query-results to non-deterministically unify the original term arguments with each possible
option returned from the database. The wildcardify and do-query implementations are straight-
forward Racket functions using parts of the miniKanren runtime and Racket database library. The
unify-query-results function has the most interesting multi-language interaction.

The unify-query-results function takes an arbitrarily long list of matching rows from the
database lookup and produces a goal that non-deterministically unifies args with each of these
values in turn. These unifications can fail because of delayed constraints (like absento from Fig-
ure 2) that cannot map directly to restrictions in the query. When the list of results is non-empty,
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;; Table (Listof TermVal) -> GoalVal

(define (query-facts-rt table terms)
(define matching-rows (do-query table (map wildcardify terms)))
(unify-query-results matching-rows terms))

;3 TermVal -> (Or Atom Wildcard)
;; THROWS when term is instantiated to a non-atom
(define (wildcardify term) #| elided |# )

;; Table (Listof (Or Atom Wildcard)) -> (Listof (Listof Atom))
(define (do-query table args) #| elided |# )

;3 (Listof (Listof Atom)) (Listof TermVal) -> GoalVal
(define (unify-query-results query-res args)
(match query-res
['() (expression-from-goal fail)]
[(cons fst rst)
(expression-from-goal
(conde
[(== fst args)]
[(goal-from-expression (unify-query-results rst args))1))1))

Fig. 14. The runtime portion of the query-facts extension.

the function returns a conde goal to implement that nondeterministic choice. In the second disjunct
we make the recursive call to unify-query-results. This mixing of recursive Racket computation
with goal construction relies on nested language boundaries.

To the miniKanren programmer using it in Figure 3, the query-facts extension looks like any
other miniKanren form. Creating a DSL extension lets us hide the implementation details of com-
plex cross-language operations behind simple, familiar looking syntax.

5 Optimizing Like a Deep Embedding

Like in a deep embedding, our miniKanren compiler has access to a syntactic representation of DSL
program fragments, and it can thus realize all kinds of optimizations. It uses a traditional multi-pass
compiler architecture with a number of standard optimizations. The overall architecture provided
by syntax-spec ensures that code generated by extensions benefits from optimizations, too. Most
notably, our compiler works carefully around host-language code contained in miniKanren goals
to optimize where possible while accounting for the host language code’s unknown behavior. In
some sense, the details of the optimizations and the performance they yield are not very exciting,
but they demonstrate that a syntax-spec DSL can be equipped with a standard compiler back-end.
To underline how effective the compiler is, we show at the end of this section that our compiler
produces substantial and sometimes asymptotic performance improvements.

5.1 Optimizations for miniKanren
Following the nanopass approach [30, 45], our compiler back-end consists of many small passes.
We group them into four major steps to discuss their effects.

Constant Folding. The first major pass implements constant folding. It tracks statically-known
equational information with a compile-time substitution data structure. The compiler uses infor-
mation gained from earlier conjuncts to simplify subsequent ones. When unifications are statically
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guaranteed to succeed trivially or fail, the compiler simplifies them to just succeed or fail respec-
tively. This pass also decomposes complex equations into conjunctions of simple “variable on the
left” ones.

Dead Code Elimination. Dead code elimination requires several small passes. The first one re-
moves any code dominated in control flow by a fail (usually introduced by constant folding). The
second pass finds equations that are statically known to succeed and whose execution does not fur-
ther constrain the domains of external variables, and it replaces all such equations with succeed.
The remaining passes simplify conjunctions with trivial succeeds and remove from freshes the
bindings of unused logic variables.

Unification Analysis. Two further passes annotate unifications with information that allows the
code generator to produce more specialized code [55]. The first of these two employs abstract inter-
pretation to mark unifications for which it is safe to skip an occurs check [49]. An occurs check is
generally required to forbid cyclic terms and ensure soundness of deductions [35], but it is expen-
sive: the cost is linear in the size of the run-time terms being unified. Unification in miniKanren
always includes the occurs check, but it is unnecessary when the compiler can statically determine
that the equation does not introduce a cycle. The analysis correspondingly uses an abstract domain
that records whether each variable is fresh, is known to refer to a limited set of other variables,
or has a wholly unknown value. The second unification analysis pass marks the first reference
to a newly introduced logic variable. This reference can be compiled more efficiently because the
specializer knows the variable is fresh.

Specialization. Normally, miniKanren performs unification via a runtime operation that recur-
sively inspects the structure of two terms. Our code generator specializes unification to any syn-
tactically evident structure. For example, in

(== x (cons first (cons second rest)))

the term on the right-hand-side always has at least two pairs. The unification procedure’s dispatch
can thus be unfolded and simplified for this portion of the match. The code generator also employs
the annotations from unification analysis to generate calls to a version of unification without the
occurs check when possible.

5.2 Extensions Get Optimized Too

DSL programmers who extend the language syntactically also benefit from this compiler pipeline,
following Dybvig’s “macro writer’s bill of rights” [18]. Dybvig proposes that compilers should
guarantee to perform certain optimizations such as constant folding and dead-code elimination,
allowing macro authors to write simple transformations that may sometimes introduce unneces-
sary indirections or add dead code—without sacrificing performance. Through syntax-spec, our
DSL’s architecture allows us to offer DSL programmers these rights.

To show how extensions automatically benefit from our compiler pipeline, we step through an
example. Below is leo, an inequality relation on Peano numerals adapted from Rozplokhas and
Boulytchev [44]:

(defrel/matche (leo x y)

L'z y)1
[((cons 'S x1) (cons 'S y1)) (leo x1 y1)1)

Our leo definition uses defrel/matche, which in turn uses matche. The simplistic implementation
of matche from Section 4.1 introduces inefficiencies. Figure 15 shows leo program after each of
three major steps, using plain source code for readability.
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(defrel (leo x y) (defrel (leo x y) (defrel (leo x y)
(fresh (1s) (fresh (1s) (fresh ()
(conj (conj (disj
(== 1s (cons x (cons y "()))) (== 1s (cons x (cons y 'O))) (fresh ()
(dis] (disj (== x ")
(fresh (y") (fresh (y*) (fresh (x1 y1)
(== (cons 'Z (cons y* 'O)) (conj (== x 'Z) succeed)) (conj
1s)) fresh (x1 y1 (conj
(fresh (x1 y1) ( Eicsmj(x yD (== x (cons 'S x1))
(conj (conj (==y (cons 'S y1)))
(== (== x (cons 'S x1)) (leo x1 y1))))))
7(cons (cons 'S x1) (conj
(cons (cons 'S y1) (==y (cons 'S y1))
'O) succeed))
Ls) (leo x1 y1)))))))
(leo x1 y1)))))))

Fig. 15. The leo program after each of: expansion (left); constant folding (middle); and dead-code elimination
(right). Underlines indicate the parts of the program that are changed in the next frame. In the first frame,
they highlight the unifications that are simplified by constant folding. In the second, they show which por-
tions of the program are removed by dead code elimination.

The macro expander desugars the Racket defrel/matche macro into a defrel with amatche in
the body. The expander further desugars matche and all the miniKanren surface syntax forms to-
gether into our core language. These expansions result in a program with a number of unnecessary
indirections, shown in the left-hand frame of Figure 15. The expansion introduces the intermediate
variable 1s, a list of all the relation’s arguments. Each disjunct unifies 1s with the term compiled
from the pattern. Through this indirection, the generated code naively unifies lists of all arguments
against entire patterns; this is wasteful when the terms are statically known to share structure.

Constant folding and dead code elimination address these inefficiencies. The middle frame of
Figure 15 shows the result of constant folding. The pass eliminates two references to 1s and also
simplifies the remaining equations. Dead code elimination cleans up after the constant folding pass
by removing trivial pieces. By the end of dead code elimination, shown in the right-hand frame, the
compiler optimizes away all uses of the unnecessary variable 1s. It retains (fresh () ...) nodes
in the final frame of Figure 15 even after dead code elimination because the faster-minikanren
run-time system establishes interleaving points for its search at fresh. We therefore keep these
nodes to achieve answer order equivalence with the existing implementation.

Keep et al., who first introduced matche, write that one of their primary aims is “to generate
code that will perform at least as well as if the generated code had been written by a human” [29].
Our simplistic implementation of matche from Section 4.1 initially seems to fall short of that aim,
but macro-expanding to the input language of an optimizing compiler solves the problem with
no extra effort on the behalf of the macro author. Our compiler removes matche’s unnecessary
indirections whether the matche comes from the source program or through the expansion of
another macro like defrel/matche. Without these optimization guarantees, the DSL extension
programmer would have to inspect the entire macro stack to ensure that a new macro will generate
performant code. An optimizing compiler for the core language relieves the extension programmer
of this burden. In short, the benefits stack up as the layers of languages and extensions do.

5.3 Optimizing at the Boundary with Racket

Compiler correctness and performance also entail preserving certain properties of mixed miniKan-
ren and Racket language programs. As mentioned in Section 4.2, we can understand the DSL-host
language combination as a Matthews-Findler multi-language. When adding extensibility and a
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host-language interface, the key is to hit a “sweet spot” of adding the desired expressive power [20]
without losing the ability to reason about the DSL program as something more than mere host lan-
guage code.

Our multi-language hits such a sweet spot. It increases the expressive power of extensions with-
out exposing internal implementation details that would prevent semantics-preserving optimiza-
tion. Consider programs of the following shape:

(conj
(fresh (x y)
(== xy)
(goal-from-expression
#| ... unknown racket code ... |#))

Our optimizer’s constant propagation and dead code elimination transform the first conjunct into:
(fresh () succeed)

After all, no matter what Racket code is in the following goal, it cannot observe the fact that the
optimizer has removed the allocation of those logic variables. Alternative host-interface designs
could render such optimizations impossible. For example, if the Racket code were able to access the
data structure storing the current values of all logic variables and enumerate them all, its behavior
could change when our compiler removes otherwise-dead variables.

At the same time, the explicit boundaries between the two languages enable the optimization
passes to rein in their transformations to account for the unknown behavior of the Racket code.
For example, the occurs check elimination pass is partially limited in this program:

(fresh (x y a b)

(== x (cons '5 '6))

(goal-from-expression

#| unknown racket code [#)

(== a b)

==y x))
The miniKanren compiler needs to run before Racket code in boundary forms is expanded and
available for analysis. Therefore, the compiler must treat the body of each such form as having
potentially arbitrary behavior. The unknown Racket could access and, via expression-from-goal,
further constrain any of the variables in scope. For example, it could assign the value (cons '1 a)
to the variable b. Thus the unification (== a b) still needs an occurs check to prevent a cyclic term.
However, the optimizer does not lose all information following a goal-from-expression. Code
via the host interface can only modify the state by executing goals constructed via expression-
from-goal and only in ways that accord with the usual miniKanren semantics. In particular the
optimizer can be sure that the state is only extended in a monotonic way, that the assignment to
the variable x is unchanged, and hence an occurs check for the final unification is unnecessary.

The syntax-spec framework facilitates hitting the aforementioned expressive power sweet spot
by structuring the DSL definition as a multi-language where the DSL and host interact only at
the specified boundary. The DSL has a separate grammar only connecting to the host at speci-
fied host-interface and racket-expr positions. Name bindings work similarly. DSL names like
term-variables belong to separate binding classes. They may be used in Racket code only if a
value translation is defined using with-reference-compilers. These choices ensure we can have
the interactions that we want and prevent unexpected interaction. The multi-language structure
could also provide the basis for formal reasoning about the correctness of our miniKanren com-
piler, along the lines of Perconti and Ahmed [40].

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 238. Publication date: August 2024.



238:18 Michael Ballantyne, Mitch Gamburg, and Jason Hemann

Table 1. Our compiler’s performance results on a selection of miniKanren tests. The faster-mK benchmark
column reports time in milliseconds; subsequent columns report speedup ratios over that column. Larger
numbers report better speedups. Tests were run on a M1 Max Macbook Pro with 64GB RAM.

Benchmark faster-mK noopts proponly deadcode occurscheck specialization and overall

Occurs check
leo 8000 209 1 1 1 52.25 69.67
appendo w/2 lists 327 0.99 1 1.01 81.75 109

Relational arithmetic

logo 437 0.99 1 0.98 1.08 1.44
four fours of 256 77 0.95 0.97 0.94 1.01 1.26
fact x =720 122 1.04 1.03 1.01 1.18 1.56

Relational interpreters

one quine 962 0.99 0.96 0.97 1.01 1.01
9,900 (I love you)s 1378 0.96 0.95 0.98 1.01 1.04
append synthesis 252 1 1 0.98 1.33 1.81
dynamic and lexical 18 1 1.06 1 1.2 1.5
four thrines 683 0.98 1 1 1.03 1.06
countdown from 2 in A-calc 64 0.97 1 1 6.4 7.11

5.4 Benchmarks and Results

To evaluate our optimizations’ effectiveness, we assembled a benchmark suite and measured the
speedup produced by each important category of compiler optimization. The point though is not to
prove the effectiveness of our particular optimizations, but to show that the architecture enabled
by syntax-spec accommodates an aggressive compiler.

5.4.1 Benchmark Suite. We assembled a benchmark suite from examples in several papers on pure
relational programming in miniKanren.

Occurs Check. Rozplokhas and Boulytchev [44] analyzed the asymptotic complexity of a variety
of miniKanren programs. They note that the occurs check sometimes contributes substantially to
the asymptotic cost. Because we expect that our optimizer can remove some of these checks, we
adopt two of these programs as benchmarks. One uses the leo program introduced in Section 5.1
and searches for a Peano numeral greater than 8000. The second program uses a two-place append
relation that connects a pair of lists with the result of appending the first to the second. This test
runs the relation with a pair of two large ground lists.

Relational Arithmetic. The second set of benchmark programs exercise the miniKanren relational
arithmetic suite introduced by Kiselyov et al. [31]. The first of these solves a difficult logarithm.
The second program solves the four-fours puzzle [3] for 256, and the third searches for a number
with a factorial of 720.

Relational Interpreters. The third and largest suite of programs use relational interpreters to syn-
thesize programs with specified behaviors. The first example replicates the inaugural application of
relational interpreters from Byrd et al. [10]: generating a Scheme quine. The next several are from
Byrd et al. [9]. They include deriving 9900 expressions that evaluate to (I love you), example-
based synthesis of part of the standard append function, and synthesizing programs that evaluate
differently under different semantics. One more program from Byrd et al. [9] computes a thrine,
a 3-cycle of different programs that evaluate to one another. The last program in this suite uses a
relational interpreter to evaluate a large known program.
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5.4.2 Results. Table 1 shows the performance improvements on our benchmark suite. To bring
across what benefits each optimization realizes, we show the time to compute each program with
the baseline faster-miniKanren implementation, and the speedup from our compiler with dif-
ferent configurations of optimization passes enabled. The header of each column indicates the ad-
ditional optimization added in that configuration; each configuration includes the optimizations
enabled in the columns to its left. Thus, the final “specialization” column also reports the overall
speedup achieved by the compiler.

The occur-check removal is far and away the most helpful optimization. In addition to the ex-
amples where we expected to see improvement, we found it was also important for the relational
interpreter benchmark with a large ground program (“countdown from 2 in A-calc”). Unification
specialization is usually helpful or harmless, but occasionally produces slowdowns by increasing
the size of generated code. Constant propagation and dead-code elimination do not confer much
benefit. Their performance is artificially limited by our desire to maintain answer order equiva-
lence with faster-miniKanren, which prevents us from removing dead code that impacts search
order. We validate the correctness of our compiler against a larger test suite, and on these tests we
do achieve answer-order equivalence with faster-miniKanren.

6 DSLs As Host Language Extensions, Not Embeddings

This effort extends the investigation of macro-extensible DSLs, an approach with a long tradition
in the Scheme and Racket communities [48, 51]. Work by Ballantyne et al. [5, 6] puts the approach
on a systematic foundation, and their syntax-spec DSL makes constructing such DSLs easy. This
pearl extends that line of thinking with an investigation of the synthesis of DSL compiler optimiza-
tions, multi-language boundaries with the host language, and DSL extensibility. Optimizations im-
prove extensibility by freeing extension authors from worrying about low-level details of the code
they generate. A rich interface with the host language improves extensibility by increasing the
expressive power of the DSL. And combining these features requires ensuring that optimizations
account for the interaction of host and DSL code in a multi-language setting. Our chosen example,
miniKanren, epitomizes a class of DSLs (e.g. PEG [6], Qi [28]) that benefit from this confluence of
techniques.

The task of DSL embedding suggests re-using some facets of the host in the DSL that is being
built, and there is a widely explored space of trade-offs [37] surrounding such linguistic re-use.
This design space is anchored at two ends by the deep and shallow embeddings. Both re-use host-
language syntax, but they differ to what degree they re-use host language semantics. Shallow
embeddings make it trivial for the implementer, or an ordinary DSL user, to extend the DSL and
to integrate host-language code, because DSL code is itself simply host language code. In shallow
embeddings of miniKanren, each syntactic form is realized in the host language as either a call to a
function or via an individual host-language macro that expands to runtime functions and to host-
language binding forms such as lambda. The most popular implementations of miniKanren are
shallow embeddings [4, 25, 33], and take advantage of host-language code and extensibility. How-
ever, there is no DSL compiler that gets an overall view of the program, so optimizing compilation
is impossible.

By contrast, deep embeddings can offer whole-program compilation, and miniKanren re-
searchers have developed optimizations using a variety of deep embeddings [34, 56, 57]. In deep
embeddings, host language code constructs a datatype representing miniKanren abstract syntax.
A DSL compiler executing at the host language’s runtime takes the abstract syntax as input and
produces host language code as output. No existing implementation of miniKanren, however, rec-
onciles the benefits of both implementation techniques.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 238. Publication date: August 2024.



238:20 Michael Ballantyne, Mitch Gamburg, and Jason Hemann

Let us turn to the question of how the approach we describe relates to other attempts at rec-
onciling extensibility and optimizing DSL compilers. One fruitful approach is to layer a shallow
embedding on top of a deep embedding [19, 26, 50]. The shallow embedding provides integration
with the host language syntax and static semantics. It also achieves extensibility: extensions are
host language function definitions, whose applications run in the host language. The semantic
domain of the shallow embedding is the datatype of the deep embedding. A DSL optimizing com-
piler processes the data representation of the deep embedding. Our approach has parallels to this
layering. DSL extensions via macros are analogous to functions defining extensions in a shallow
embedding, but the process that generates DSL core language code is macro expansion rather than
host-language evaluation.

Another approach relies on reflection to extract code from a shallow embedding for compila-
tion [1, 38, 43, 46, 47, 58]. DSL programs are written as host language code calling functions that
represent DSL forms, just as in a shallow embedding. These functions may be defined as normally
in a shallow embedding, or they may instead be mere stubs. This design works because the host
language code is not actually executed in the normal way. Instead, a quotation or compile-time re-
flection mechanism is used to extract a representation of the host language code. A DSL compiler
provides an alternate interpretation of the code, recognizing applications of the stub functions as
DSL constructs to compile. This DSL compiler thus has control over the complete DSL program, so
it may perform analyses and optimizations. Extensibility may be achieved by employing a normal-
izer for the host language, either built-in to the reflection mechanism or separately defined. The
normalizer is configured to avoid reducing calls to the stub functions representing the DSL core
language, but it reduces other calls. Just as function calls representing uses of extensions evaluate
in the host language in a shallow embedding, they reduce during normalization and leave behind
only calls that belong to the DSL core language.

Both of these approaches rely on encoding the DSL in the host language syntax and static se-
mantics. Indeed, re-use of these components is a key, separate motive for embedding-based imple-
mentation techniques, beyond extensibility. This is particularly true when the motive is to reuse
the host language type system, as in the case of re-using Haskell’s type system to create a typed
logic programming language [14, 27], or embedding a DSL in a theorem prover in order to support
verification [58]. However, reuse of the host syntax and static semantics can come at a serious
cost when the DSL has significant differences with the host. If the DSL’s type system cannot be ex-
pressed in the host type system, there is no benefit to re-use. If a DSL’s re-interpretation of the host
language only supports a small subset of its syntax, DSL users may have trouble understanding
what constructs they can use in DSL code. Finally, DSL compiler authors must contend with the
complexity of the host language and its representation in the reflection system, including portions
irrelevant to their DSL.

Our approach to DSLs and extension makes particular sense in cases where the DSL and host
differ in important ways. DSLs may come with their own new syntax, including binding structure,
and new static semantics. Macros, too, define new syntax and binding structure rather than reuse
that of the host. This approach avoids any impedance when either using or implementing the DSL.

7 Bringing Macro-extensible Hosted DSLs to a Language Near You

Bringing our approach to extensibility to other hosts means addressing three further challenges:
non-S-expression syntax, static checking, and IDE services.

Related efforts in these directions show early promise. A variety of designs [2, 17, 23, 41, 42,
53] have explored the integration of macros with Algol-style language syntax. A syntax-spec-
like metalanguage in a host with such traditional syntax would need to integrate these ideas into
its means for specifying grammar. In a typed host language, creating a DSL means defining a
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typed multi-language. A type-system specification language like Turnstile [11, 12] or Statix [54]
could serve for specifying the type system for the DSL facet of that multi-language. Reflection
mechanisms as found in Scala 2 macros [8], elaborator reflection [13], and Klister’s [ 7] stuck macros
would connect the host and DSL type systems. Specifically, the DSL type system could use these
reflection mechanisms to access the host typing environment and the type expected by the host
context at boundaries. Separate but interacting DSL and host-language type checkers would enable
DSL type systems that are not expressible via embedding in the host type system; e.g. a DSL with
affine types in a conventional host [52]. Contracts at the multi-language boundary would remain
useful to enforce invariants of the DSL that cannot be statically guaranteed by host-language types.

A language is more than syntax and semantics; to a modern programmer, it includes an IDE
or language server. The implementation of syntax-spec cooperates with Racket’s macro system
to convey information about binding structure to Racket IDEs such as DrRacket. In a typed host,
such information should extend to the types associated with bindings derived from the DSL’s
type system specification. Racket IDEs can rely on their understanding of the S-expression syntax
shared by Racket and all syntax-spec DSLs to provide other services. In a language where a
DSL specification is allowed more flexibility to define new lexical syntax, the IDE would need
information from that grammar to provide syntactic services such as highlighting and balanced
brace matching. Thus the channel of communication between a DSL definition metalanguage and
an IDE in such languages needs to be wider, possibly using mechanisms such as those provided in
the Lean 4 macro system [53].

Demonstrating the combination of all these ideas in a syntax-spec-like metalanguage remains
as future work. However, these lines of inquiry point towards bringing the synthesis of easy ex-
tension, interoperation with the host language, and optimizing compilation to a wider variety of
languages.
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