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Multi-Timescale Actor-Critic Learning for
Computing Resource Management With
Semi-Markov Renewal Process Mobility
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Abstract— This paper studies artificial intelligence (AI) aided

communication and computing resource allocation in a vehicular
network that supports blockchain-enabled video streaming. Our
study aims to improve the operating efficiency and to maxi-
mize the transcoding rewards for blockchain based vehicular
networks. Our resource allocation policy considers the vehicular
mobility, which is modelled with a highly-realistic Semi-Markov
renewal process, as well as the real-time video service delay con-
straints. We propose a multi-timescale actor-critic-reinforcement
learning framework to tackle these grand challenges. We also
develop a prediction model for the vehicular mobility by using
analysis and classical machine learning, which alleviates the
heavy signaling and computation overheads due to the vehicular
movement. A mobility-aware reward estimation for the large
timescale model is then proposed to mitigate the complexity due
to the large action space. Finally, numerical results are presented
to illustrate the developed theoretical findings in this paper and
the significant performance gains due to our proposed multi-
timescale framework.

Index Terms— Deep reinforcement learning, edge computing,
user-mobility, vehicular network.

I. INTRODUCTION

VIDEO streaming has been found very useful in vehicu-
lar networks for safety and control purposes. Vehicular

networks must employ advanced communications technolo-
gies and data collecting/processing techniques to enhance
the capacity and QoS for video streaming applications [1].
Supporting video streaming among all types of local devices
requires effective transcoders. In particular, transcoding is
required whenever the users request video chunks with differ-
ent quality levels or characteristics (such as different bitrates,
resolutions, aspect ratios and encoder mechanisms) depending
on their current communication bandwidths and computational
capabilities.

Moreover, the information and communications technology
industries are under tremendous pressure to seek new archi-
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tectures and new deployment models for the next generation
wireless networks, which consist of massive sets of intelligent
devices and new applications [2], [3], [4], [5], [6]. Existing
cloud computing technology, despite its tremendous benefits,
still faces problems, such as latency, fronthaul/backhaul
bandwidth limitations, and centralized processing. Recently,
mobile edge computing has been proposed to efficiently
improve the QoS for applications with intensive computations
and hard deadlines [2], [3], [4], [5], [7]. In particular, edge
computing is an alternative to cloud computing, which moves
the storage and computation from the centralized cloud to the
edge of the network. Edge computing can alleviate the chal-
lenges and overcome the disadvantages of cloud computing
by locating edge servers in close proximity of the end users.
Furthermore, the emerging blockchain technologies provide
promising solutions to overcome the challenges of low latency,
heavy burden of centralized communication, computation, and
storage, as well as the corresponding resource allocations [8].
Based on advanced edge computing and blockchain
technologies, some providers on the internet have designed
decentralized video streaming systems, e.g., [9]. In this paper,
we exploit these advanced supporting technologies, including
blockchain mechanisms [8], [10], [11], [12] in vehicular
networks, to design an edge computing resource management
framework.

A. Contributions
This paper focuses on designing, analyzing, and optimizing

the communication and computing resource allocations in
a vehicular network that supports blockchain-enabled video
streaming by considering the constraints of vehicular mobility
and hard delay deadlines. Importantly, in contrast to preceding
studies, which considered simplistic mobility models that
poorly reflect the user mobility in practical vehicular net-
works, we consider the highly realistic Semi-Markov renewal
process mobility model. Specifically, in the context of the
Semi-Markov renewal process mobility model, the contribu-
tions of this paper can be summarized as follows.

1) We develop mobility-aware transcoder selection for
blockchain networks by modeling mobility with Semi-Markov
processes. We also propose classical artificial intelligent clas-
sifiers [13], [14], [15], namely a generative learning model,
to enhance the prediction performance of the users’ future
locations.

2) We formulate the joint optimal communication and
computational resource allocation problem to minimize the
transcoding cost under the constraints of limited and dynamic
computation resources at the vehicles, as well as the con-
straints of the vehicular mobility and the delay budget.
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Moreover, we incorporate the main parameters of blockchain
networks, such as the cumulative stakes and the reputation
values.

3) We develop a multi-timescale framework based on actor-
critic-learning (ACL) [16] to allocate the communication and
computation resources as well as to determine the set of
possible connecting vehicles for every Road Side Unit (RSU),
the set of video chunk (segment) transcoding tasks assigned
to each RSU, and the selected transcoders. In particular,
we propose a mobility-aware reward estimation for the large
timescale model to reduce the complexity due to the large
action space. Our framework predicts the set of possible
vehicles in the coverage range of each RSU and determines
the sets of transcoding tasks assigned for each RSU. In the
small timescale model, the system takes actions to determine
the transcoders, the set of transcoding tasks assigned to
each transcoder, as well as the resource allocation for both
communication and computation.

4) Numerical results are presented to illustrate the perfor-
mance of the proposed multi-timescale framework by using
the optimal parameter configuration for communication, com-
putation, vehicular mobility, and transcoder selection.

The paper is structured as follows. The following sub-
sections give the related literature and the applications.
Section II describes the system models. Section III formu-
lates the resource allocation optimization problem based on
the actor-critic reinforcement learning algorithm. The large
timescale actor-critic-learning is presented in Section IV,
while the small timescale actor-critic-learning is provided in
Section V. Section VI gives our performance results, followed
by the concluding remarks in Section VII.

B. Related Studies

Video streaming is gaining ever-increasing attention, rely-
ing on computing at both the central cloud servers and the
fog/edge nodes [6]. Lately, blockchain technologies and smart
contracts have become key entities in a variety of applications
due to their powerful capabilities in interoperability, privacy,
security, reliability, and scalability [11]. Although the existing
approaches can in principle be used for video streaming in
the vehicular networks, they do not handle the vehicular
mobility well, as mobility has not previously been explicitly
incorporated into video transcoding resource management.
We contribute to filling this gap in the literature by explicitly
incorporating mobility into our model.

Although user-mobility has been widely studied in wire-
less networks, especially in vehicular networks, the related
studies on resource management commonly employ simplis-
tic mobility models. For instance, Wang et al. [17] modeled
the node-mobility pattern in terms of the inter-contact time
between different users. Similarly, the studies [4], [5], [7]
considered a simplistic random jump process, which is a
relatively poor mobility model for vehicular network appli-
cations that tends to degrade the performance of vehicular
network applications. To address this significant shortcoming
of the mobility modeling, this study considers the practi-
cally relevant Semi-Markov renewal process to realistically
model the user-mobility. Furthermore, we propose a multi-
timescale actor-critic reinforcement learning that predicts the

realistic mobility more accurately than traditional reinforce-
ment learning.

C. Potential Applications

The proposed blockchain-enabled video streaming can
be applied in a smart city, where transportation safety
and real-time navigation services are critical features [6],
[18], [19], [20]. In particular, the roads are usually equipped
with many monitoring devices, which collect environmental
conditions, such as wind, humidity, road surface, air quality
and traffic. Furthermore, these surveillance systems also record
the scenes of nearby accidents, heavy traffic jams, and/or
dangerous situations. All of these special events must be
provided to the drivers in an accurate and timely manner. Also,
to make autonomous vehicular driving operate properly, large
amounts of data (captured video) can be transmitted to pow-
erful cloud/edge servers for further processing and analysis.
Then, salient information is extracted and is forwarded to the
demanding vehicles [7]. Thereby, the servers must transcode
the video data to different versions that are used to serve
different target devices.

Another application is the on-board infotainment service,
which may, for instance, offer multiplayer games, multimedia
applications, video-conference, and video streams of sport
games for the vehicle passengers. Importantly, the video based
infotainment services are provided in a mobile vehicular
network. To provide these video based infotainment services,
the network infrastructure should facilitate fast mobile edge
computing so that the moving vehicles can conveniently
obtain their required videos in a timely manner. There are
many challenges in the implementation of achieving both the
video based infotainment services for mobile vehicles and the
transportation safety.

II. SYSTEM MODELS

A. Network Architecture

We consider a blockchain network that includes one base
station (BS), K Road Side Units (RSUs), and U vehicles
(users). Computational processing units are installed at both
the RSUs and the vehicles to reduce the workload at the BS.
Let K = {1, . . . , K } and U = {1, . . . ,U } be the sets of the
RSUs, or the Multi-access Edge Computing (MEC) servers,
and the vehicles, respectively. The original video is divided
into multiple time-sliced chunks (segments) of video, and these
original video segments are broadcasted ahead of time (offline)
via the RSUs to the users [10]. Usually, these original video
segments need to be transcoded to new video segments to
achieve a high streaming quality (e.g., by adapting the aspect
ratio and resolution to match the display device) [10], [21].

We note that the recently emerged marketplaces for com-
puting infrastructures as well as edge computing, which brings
the computing resources into close proximity to the user
devices, can readily support the mining and the transcoding.
For example, the Livepeer1 open marketplace can easily
absorb the low- to moderate-complexity blockchain mining for
determining the selected transcoders, making the energy cost

1https://livepeer.org/
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Fig. 1. Mobility-aware blockchain-enabled transcoding model: The top part
illustrates the operation of the blockchain network architecture, which includes
three steps: submitting transcoding task transactions to blockchain, hashing,
and transcoding. The bottom part illustrates one example case of vehicular
mobility, in which the tagged red car moves from one wireless coverage area
to another. Therefore, the communication link changes during its movement,
e.g., the red vehicle successively connects to RSU1, RSU2, and RSU3 as it
travels.

of mining negligible relative to the energy cost for the highly
demanding video transcoding. In particular, blockchain miners
(e.g., cryptocurrency miners) can rent out idle capacities on
their GPU mining infrastructures for the video transcoding.
The low- to moderate-complexity blockchain mining can
run side-by-side with the highly demanding video transcod-
ing because the chips in graphic cards for video encoding
(NVDEC+NVENC) are separate from the chips used for
general-purpose computing and cryptomining (CUDA cores).
Thus, the blockchain mining computing energy expenditures
are negligible compared to the energy expenditures for the
video transcoding, as also reflect by current monetary costs
which are commonly two orders of magnitude higher for video
transcoding compared to cryptocurrency hashing.

We closely consider the impact of vehicular mobility on
the system performance. Let us consider an example of the
mobility-aware blockchain-enabled transcoding model in the
bottom part of Fig. 1. The red vehicle first moves from RSU 1
to RSU 2. Therefore, the RSU must carefully assign the
amount of chunks to this vehicle to make sure that it can
complete its tasks before entering the coverage of RSU 2.

B. Communication Model

We now present the communication model for the transmis-
sion of the transcoded video chunks. We investigate the system
behavior for both communication and computation in every
epoch. We define the epoch as the duration of the processing
and communication reserved for one video chunk, i.e., the
delay-tolerance time. Each epoch can be divided into Tout time

slots. The time-varying channel parameters of the user-to-RSU
links are modeled as finite-state Markov chains (FSMCs) [5],
[7]. We denote γ k

u for the received SNR of the link between
user u and RSU k. We employ the Markov chain to model
the γ k

u , which is partitioned and quantized into L discrete
levels (each of which corresponds to a state of the Markov
chain). The realization of γ k

u at time slot t is denoted as 0k
u(t).

The channel state transition probability matrix for the link of
user u-RSU k, with hs and gs representing two states, can be
written as

9k
u (t) =

[
ψgs hs (t)

]
L×L , (1)

whereby ψgs hs (t) = Pr
(
0k

u(t + 1) = hs
∣∣0k

u(t) = gs
)
. We ass-

ign the OFDM based orthogonal bandwidth bk
u to the link

between user u and RSU k. Hence, there is no interference
from one link to another. Let νk

u (t) denote the spectral
efficiency of the link between user u and RSU k. The com-
munication rate of vehicle u can be expressed as

Rk
u(t) = bk

u(t)ν
k
u (t),∀u ∈ U . (2)

C. Blockchain-Enabled Transcoding Model
We now introduce the video chunk transcoding task and

the computation needed to process the video transcoding
and we present the transcoding evaluation mechanism based
on a blockchain [8], [10], [11], [12], [21]. A video chunk
transcoding task of length L O [bytes] consists of the pro-
gram code and the input parameters that govern (specify)
the transcoding processing for the video chunk. The other
important parameter for every video chunk transcoding task
is the required workload/intensity r for the computing node.
Hence, the computing node requires r L O CPU cycles to
accomplish the task processing. Let f k

u (CPU cycles per
second) be the computation capability allocated to user u.
The computational capability f k

u can be modeled as a random
variable. We divide f k

u into M levels, where M corresponds
to the number of available computation capability states. The
realization of f k

u is Fk
u (t) at time slot t and the transi-

tion probability matrix is 2k
u(t) =

[
θxs ys (t)

]
M×M , where

θxs ys (t) = Pr
(
Fk

u (t + 1) = ys
∣∣Fk

u (t) = xs
)
, while xs and ys

are the states. The computing rate (bits computed per second)
is expressed as Rw,ku (t) = f k

u (t)/r . The transcoded video with
the length of LT bytes is sent back to the RSU.

We proceed to describe the detailed blockchain-enabled
video transcoding model as illustrated in Fig. 1, top. The BS
plays the role of the broadcaster, while the RSUs assist to relay
information between the users and the BS. Furthermore, the
RSUs and the BS cooperatively determine the resource allo-
cation, transcoder selection, and chunk assignment. We now
present the operation step-by-step. Firstly, the broadcaster
publishes the specifications of the video segments of the
original video stream needed for transcoding and submits the
corresponding transcoding task transactions to the blockchain
network. All the vehicles with available computing resources
attend the hashing (as indicated by the red lines in the top
part of Fig. 1), i.e., they mine these transactions on the
blockchain and we refer to this step as the mining/hashing step.
The system determines the set of blockchain users, that will
accomplish the transcoding tasks with a blockchain-enabled
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transcoder evaluation mechanism that relies on two factors,
namely the cumulative stake and the reputation value, which
are updated periodically. The cumulative stake is defined as the
trustful factor of the candidate’s transcoding capability [12].
The higher a candidate’s cumulative stake, the more important
is the candidate in the transcoding ecosystem. The cumulative
stake includes the candidate’s own stake and the amount that
is delegated from others. The reputation value is important
for the transcoding selection; in particular, the reputation
value represents the characteristics of seniority, successful
transcoding history, and trustworthiness. After the hashing
step, the system finds the set of selected transcoders (which
are highlighted by the green lines in the top part of Fig. 1)
to complete the requested jobs/tasks. Finally, the selected
users perform the transcoding, and send the results back to
the RSUs.

D. Mobility Model

The vehicular network has a set of RSUs K = {1, . . . , K },
where K is the number of RSUs. We employ the Semi-Markov
renewal process, (Xn, Tn) : n ≥ 0, to model the vehicular
mobility. Let C = 1, 2, . . . , K denote the discrete state space,
Tn denote the time of n-th transition, and Xn for t ∈ [Tn; Tn+1)

denote the system state after the n-th transition for the
Semi-Markov renewal process. The state of the Semi-Markov
renewal process represents the coverage of each RSU. Hence,
the state transition is the handover from the current coverage
of one RSU to the coverage of its neighbor RSU. We define the
probability of transition from RSU coverage i to the coverage
of its neighbor j as pi, j . It is assumed that there are a finite
number of time homogenous distinct values in the process.
Consider user u that has stayed at the i-th RSU coverage
for a duration of t . The probability of transition from RSU
coverage i to the coverage of its neighbor j is

8(u)i, j (t) = Pr
(
Xu

n+1 = j, T u
n+1 − T u

n ≤ t
∣∣Xu

n = i
)

= pu
i, j Su

i, j (t), (3)

where pu
i, j is the probability of handover from the coverage

of RSU i to that of RSU j for user u. Moreover, Su
i, j (t) is the

sojourn time distribution of user u, where its current coverage
and its next coverage are RSU i and RSU j , respectively.
These quantities pu

i, j and Su
i, j (t) can be calculated as

pu
i, j = lim

t→∞
8(u)i, j (t)

= Pr
(
Xu

n+1 = j
∣∣Xu

n = i
)
, pu

i, j ∈ Pu, (4)

Su
i, j (t) = Pr

(
T u

n+1 − T u
n ≤ t

∣∣Xu
n+1 = j, Xu

n = i
)
. (5)

III. BLOCKCHAIN-ACL EMPOWERED VIDEO STREAMING

In this section, we introduce the ACL based multi-timescale
framework for solving the joint communication and com-
putation resource allocation problem. In the multi-timescale
ACL framework, the large timescale model estimates the
user-mobility and then performs the transcoder selection
and resource allocation for both communication and data
processing; thus reducing the burden on the small timescale
model by reducing the spaces of actions and states.

A. System Operations
The ACL is used to formulate the resource allocation

optimization problem, where the parameters of computing
and communication are optimized jointly. Recall that the
network has K RSUs, U vehicles, and N video chunks. The
downlink channel conditions, the computation capabilities, and
vehicular mobility intensity all change dynamically. One needs
to determine the subsets of transcoding tasks assigned to the
RSUs and their nearby vehicles, as well as to allocate their
resources to serve the requested transcoding based on the
current states. Due to the dynamic changes as well as the large
space of the system states and actions, it is very hard to solve
this optimization problem by employing traditional methods.
Instead, we exploit ACL, which can effectively and efficiently
determine the optimal action with a large amount of input
data. The system states that consist of the vehicular mobility,
communication channel information, and the computational
resources at the vehicles are firstly constricted. The actor-
critic-network (or agent) determines the optimal action A∗

based on the current system states. This action includes the
sets of transcoding tasks assigned to the RSUs and the vehi-
cles, as well as the communication and computing resources
allocated for every selected vehicle.

B. Multi-Timescale ACL Framework
There are many recent studies, e.g., [22] and [23], which

propose methods to deal with large-scale networks and big
data with dynamic variations. A promising candidate is using
multi-timescale models, which can improve the system perfor-
mance as well as make the implementation closely approach
the practical application. Based on [22], [23], and [24],
we propose a multi-timescale system framework, whereby
the large timescale actor-critic-learning model is operated at
the epoch level (corresponding to Tout time slots) and the
small timescale actor-critic-learning model is operated at the
time slot level. The large-timescale model is used to range
the values of network parameters, while the small-timescale
model determines the optimal solution. This implies that the
large-timescale model roughly determines the solutions, i.e.,
these solutions may not be optimal; and the small-timescale
model needs to correct and refine the rough solutions.

The proposed algorithms in [5], [7], [22], and [23]
work efficiently for the small-size networks. However, they
generally do not scale well for large networks with massive
numbers of RSUs and vehicles. The resource allocation can
be complicated in a mobility scenario. In this study, the
action space is very large and causes a high complexity in
the implementation. To realize a low-complexity algorithm,
we propose a mobility-aware reward estimation for the
large-timescale model. In order to obtain the optimal policy,
we use the ACL model for learning in both the large-timescale
and small-timescale models. The reward is estimated when
we take the large-timescale model based action, while the
actual reward is realized, when we take the small-timescale
model based action.

IV. LARGE TIMESCALE ACL MODEL

This section presents the details of the large-timescale
transcoder selection framework, which jointly selects the
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transcoders and allocates the resources based on the ACL
process. There are two phases in this framework: 1) The offline
Deep Neural Network (DNN) construction phase, which
approximates the action-value function with the corresponding
states and actions; and 2) the online dynamic actor-critic-
learning phase, which selects the action, controls the system,
and updates the dynamic network.

A. Actor-Critic-Based Learning Process

The BS is the agent that identifies the state space, action
space, and reward function of the actor-critic-learning-based
framework as follows.

1) System State: For RSU k, the system states include the
workload of the transcoding job (the total number of video
chunk transcoding tasks N ), the QoS requirement (timeout
Tout ), the characteristics of the users u ∈ U (the cumulative
stake C Sk

u , reputation value RV k
u , available computational

resource Fk
u ), the number of available sub-channels Bk , and

the user candidate set �k
c .

2) System Action: When the transcoding tasks (jobs) are
broadcasted, the system agent determines the number of
transcoding tasks assigned to every RSU k. This action is
denoted by A(Cv,k)(t) =

{
a(Cv,k)

}
, where a(Cv,k) = N k

∈

[1, N ]; whereby, we employ the notation convention that
superscripts in parentheses specify the parameters of an action,
whereas the indices of other parameters, e.g., N are written
as superscripts without parentheses. For RSU k, the action
A(U,k)(t) =

{
a(U,k)u

}
is to select the transcoders, where

a(U,k)u = 1 if the user u is selected as the transcoder; otherwise,
a(U,k)u = 0. So RSU k determines the transcoder set �k

s , which
is formulated from the users in the candidate set �k

c , i.e.,
�k

s =

{
u
∣∣∣a(U,k)u = 1, u ∈ �k

c

}
. Moreover, action A(B,k)(t) ={

a(B,k)u

}
allocates bandwidth for every transcoder, where

a(B,k)u ∈
[
1, Bk]. Finally, action A(Cp,k)(t) =

{
a(Cp,k)

u

}
allocates computing resources for every selected transcoder,
where a(Cp,k)

u ∈
[
1, Fk].

3) Reward Function: We aim for maximizing the transcod-
ing reward under the consideration of the deadline constraints
of the video chunks by designing effective mechanisms for
the transcoder selection and the resource allocation. In the
following, we derive an immediate reward that is obtained by
the blockchain users when the transcoding tasks are completed
successfully. In particular, the reward function consists of
the reward due to the completion of tasks and the energy
consumption costs. The reward due to the completion of tasks
can include two parts, namely the reward from the stakeholder
(or equivalently the block reward), which is proportional to the
cumulative stake, and the reward from the earning, which is
proportional to the reputation value. The cost is caused by the
energy usage for both the computation and the communication.

Specifically, the indicator Ik represents the compliance with
the time budget constraint at the RSU k. Note that the large
timescale model is the coarse allocation, while the small
timescale model gives the fine allocation. Hence, we assume
that an equal chunk allocation is implemented, i.e., every
selected transcoder is assigned the same number of video

chunks a(Cv,k)/
∣∣�k

s
∣∣, where

∣∣�k
s
∣∣ is the cardinality of the

set �k
s and a(Cv,k) = N k . The computational time for each

chunk is L Or/a(Cp,k)
u , where L O is the length of the program

code and input parameters for the video chunk, r (cycles
per bit) is the workload/intensity for every video chunk, and
a(Cp,k)

u = f k
u is the computational frequency, i.e., the CPU

processing rate. The communication time is the time duration
for transferring the transcoded video chunk back to the RSU,
which is defined as LT /Rk

u , where LT is the length of the
transcoded video chunk and Rk

u = a(B,k)u log(1 + γ k
u ) is the

communication rate. We neglect the communication time for
transferring the program code and input parameters of the
small size L O ≪ LT to the users (and the original video
segments are transferred to the users offline); also, the upload
delays from the RSUs to the BS are neglected due to the
typically high-speed RSU-BS communication. Thus, the total
time taken is Dk

u =

(
L Or/a(Cp,k)

u + LT /Rk
u

)
a(Cv,k)/

∣∣�k
s
∣∣.

If Dk
u ≤ Tout , ∀u ∈ �k

s , Ik = 1; otherwise, Ik = 0.
The reward for RSU k is thus

Rk(t) =
∑

u∈�k
c

a(U,k)u

(
C Sk

uθC S +
a(Cv,k)u∣∣�k

s
∣∣ RV

k
uθRV

−
a(Cv,k)u∣∣�k

s
∣∣ Ck

uθE N

)
. (6)

The first term in parentheses is the reward from the stakeholder
(or equivalently the block reward), whereby θC S is the weight
of the cumulative stake. The second term in parentheses
is the reward of the reputation value, which is the benefit
of the transcoding task, whereby θRV is the weight of the
reputation value, i.e., the transcoding revenue. The third term
in parentheses is the energy consumption cost expended for
the computation and communication, where θE N is the weight
of the energy consumption. RV

k
u = RV k

u /RVmax is the
normalized reputation value. Ck

u can be derived as Ck
u =

µ
(

a(Cp,k)
u

)2
L Or + Pk

u LT /Rk
u , whereby the first term (with

the squared a(Cp,k)
u and the energy efficiency coefficient µ) is

the computational power consumption, the second term is the
communication energy. Thus, the total system reward can be
expressed as R(t) =

∑
k∈KRk(t)Ik . Next, we determine the

candidate set �k
c .

4) Calculation of �k
c With Mobility Prediction Model: We

now determine the future location of a specific user in the
next epoch. Consider the network with the set of RSUs K =

{1, . . . , K }, where K is the number of RSUs. The probability
that user u in the coverage area of RSU i is handed over before
or at time t can be evaluated as

3u
i (t) = Pr

(
T u

n+1 − T u
n ≤ t

∣∣Xu
n = i

)
=

∑
j∈K

8(u)i, j (t). (7)

Recall that 8(u)i, j (t) is defined in Eqn. (3) as the probability
of transition from the coverage of RSU i to the coverage of
its neighbor RSU j if user u has already stayed in the current
coverage for time t .

The time-homogeneous Semi-Markov process of user u
is defined as X = (X t , t ∈ R+

0 ). Its state transients are
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9u
i, j (t) = Pr

(
Xu

t = j
∣∣Xu

0 = i
)
. The continuous-time process

is now transformed into the discrete-time process 9u
i, j (l):

9u
i, j (l) = hu

i, j (l)+
∑
m∈K

k∑
τ=1

9u
m, j (k − τ)σ u

i,m(τ ), (8)

where hu
i, j (l) =

[
1 −3u

i (t)
]
θi, j ; σ u

i,m(l) = 8u
i,m(1) if l = 1,

σ u
i,m(l) = 8u

i,m(l)−8
u
i,m(l−1). 9u

i, j (l) is the probability of the
event that the user u is in coverage of RSU j after l amount of
time from the time instant when it switches from somewhere
else to the coverage of RSU i .

The location of a user at every l ′ time steps needs to be pre-
dicted. This event is that the user u is in the current coverage of
RSU i and stays for the sojourn time tsoj = s and then is in the
coverage of RSU j after l ′ amount of time. The probability of
the event 9̂u

i, j (l
′, s) = Pr

(
Xu

s+l ′ = j
∣∣Xu

0 = i, tsoj = s
)

can

be expressed as [25] and [26]:

9̂u
i, j (l

′, s) =
Pr
(

Xu
s+l ′ = j, tsoj = s

∣∣Xu
0 = i

)
Pr
(
tsoj = s

∣∣Xu
0 = i,

)

=

hu
i, j (l

′
+s)+

∑
m∈K

l ′+s∑
τ=s+1

9u
m, j (l

′
+s−τ)σ u

i,m(τ )

1 −3u
i (s)

. (9)

The RSU with the highest probability 9̂u
i, j (l

′, s)∗ =

max
j∈Ki

9̂u
i, j (l

′, s) is chosen as the predicted future destination,

where Ki is the set of neighboring RSUs of RSU i . We per-
form the similar steps for all the users to obtain the predicted
set �k

c of users in the coverage area of RSU k, k ∈ K.

B. Improvement of Mobility Prediction

We improve the mobility predicting by developing a novel
form of the Naive Bayes classifier: We incorporate convolu-
tional neural network encoder (CNN), variational auto-encoder
(VAE), and semi-supervised learning into the conventional
existing Naive Bayes classifier, so as to exploit both the
spatial and temporal information for improving the predic-
tion accuracy. Due to the space constraints, we only briefly
summarize our original development of the novel form of the
Naive Bayes classifier; see [27] for details. Firstly, we use
results from the Semi-Markov renewal process model, where
the a most probable RSUs are selected to associate user u
in the next epoch. Then, mobility patterns are generated
depending on 1) the mobility history data, 2) the set of well-
visited landmarks, and 3) the distances between the current
location and these possible future locations (i.e., the well-
visited landmarks).

The patterns are first formulated according to the historical
data and each of them is identified by a class label and time
stamp. According to the given location and time stamp, the
proposed model determines the posterior probability of each
class. The class with the highest probability is selected as
the recognized pattern, based on which the future location
is determined. According to the historical data, the mobility
pattern (including the location of the user for every epoch Tout
within NT epochs) is created. These data are accumulated

to form the time-series data, which cause the arising prob-
lem of big data management, when considering large-scale
networks.

For training in large-scale networks, the traditional super-
vised learning is not suitable because it requires a manually
labelled sample for every class. This requirement is too
costly and impractical in our considered scenario. In practical
applications, there can exist a class with an unknown label,
e.g., due to insufficient data or the arrival of a novel class.
Furthermore, some of the values of observed labels may be
missing and some of the labels of the training data may
be completely unobserved. Therefore, the employed training
and testing mechanism would be a semi-supervised learning
instead of supervised learning to perform the data augmen-
tation. From the perspective of the data augmentation, our
proposed semi-supervised learning artificially increases the
training set by creating modified copies of a dataset using
existing labelled data. Furthermore, our data augmentation
updates the set of labelled data after training for the unla-
belled data, i.e., making minor changes to the dataset and/or
generating new data using deep learning mechanisms.

Specifically, our proposed semi-supervised learning intro-
duces criteria to train the novel unlabelled classes. These
criteria help to determine whether the unlabelled classes
belong to the already labelled classes or not, as well
as to spawn novel classes. In particular, we develop a
semi-supervised training algorithm for the Naive Bayes clas-
sifier, which can perform training from both labeled and
unlabeled data. This proposed method is different from the
original Naive Bayes classifier, which only trains from labelled
data.

Next, the VAE [6], [15], [28] is used to extract the salient
characteristics of the time-series data and to reliably provide
additional useful criteria for the reconstruction objective. Dif-
ferent from the classifier based on a dataset with labeled data,
the model must perform training to learn the hidden parameters
(or the latent codes). The Bayesian support vector machine
is used for leveraging the available class labels. Based on
that, the model can formulate the precise decision boundaries
for future classification. The next step is to construct the
necessary latent codes by obtaining the discriminative features
of the data. There are many ways to do so, among these, the
CNN is a highly efficient method as it not only extracts the
discriminative features, but also produces the latent codes in
lower dimensions, i.e., the CNN functions as a fast encoder
for the distribution [15], [18]. For the data reconstruction,
the deep generative deconvolutional network is used in the
decoder, whereby the latent code is the input. The training of
the classifier terminates when the reconstruction loss reaches
a small threshold.

V. SMALL TIMESCALE ACL MODEL

Given the actions A(Cv,k),A(U,k),A(B,k), and A(Cp,k)

decided by the large timescale actor-critic-learning model, the
small timescale actions Ã(Cv,k), Ã(U,k), Ã(B,k), and Ã(Cp,k) are
furthermore decided in every time slot. The user-mobility has
an impact on the actions Ã(Cv,k), Ã(U,k), Ã(B,k), and Ã(Cp,k),
as well as on the small timescale reward.
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A. System States

Recall that there are Tout time slots, each having the
duration of 1T , in each epoch. At the beginning of every
time slot t , t ∈ [1, Tout ], the state of the remaining number
of chunks at every RSU k is updated, i.e., N k

t = N k
t−1 −

1N k
t−1, where 1N k

t−1 is the number of video chunks that are
completely transcoded in time slot t − 1. The system states at
time slot t include the cumulative stake C Sk

u , the reputation
value RV k

u , the computational resource Fk
u , the bandwidth Bk ,

and the user candidate set �k
c .

B. System Actions

Within the time slot t , the agent needs to decide what users
are selected as the transcoders. This action is denoted by
Ã(U,k) =

{
ã(U,k)u

}
, where ã(U,k)u = 1 if the user u is selected

as the transcoder, otherwise, ã(U,k)u = 0. Furthermore, the
communication action is Ã(B,k) =

{
ã(B,k)u

}
, ã(B,k)u ∈

[
1, Bk],

where ã(B,k)u determines the number of subchannels assigned
to user u for communications. The computational action is
Ã(Cp,k)

=

{
ã(Cp,k)

u

}
, ã(Cp,k)

u ∈
[
1, Fk], where ã(Cp,k)

u deter-
mines the amount of computational resource allocated to user
u. Finally, the job assignment action is Ã(Cv,k) =

{
ã(Cv,k)u

}
,

ã(Cv,k)u ∈
[
1, N k

t
]
, where ã(Cv,k)u determines the number of

video chunks assigned to the user u for transcoding.
Note that we perform the actions every time slot t and

require that each assigned user must complete its transcoding
job within the current time slot, i.e., within the time dura-
tion 1T . This is different from the large timescale model,
where the deadline for the video is Tout . This distinct operation
on the small timescale vs. the large timescale can be explained
as follows. In the mobility prediction model, we predict the
location of a user by selecting the location with the highest
probability. Therefore, the user may not stay within one RSU’s
coverage for the entire epoch Tout . It means that the user may
join or leave an RSU’s coverage in the middle of an epoch.
Under this observation, if we assign the task to the user with
the deadline of Tout , the user may leave the coverage before
completing the task and we would lose the transcoded results
from this user. Also, the best candidate can be missed if a user
with powerful processing capabilities arrives too late and all
the chunks have already been assigned to other users.

C. Reward Function

In this section, we determine the reward achieved by users
at every time slot. Ĩ k

u indicates whether user u completes
its assigned task before the deadline (i.e., within the time
slot duration 1T ) or not. This indicator is different from
that defined in the large timescale model, where the task
completion is defined for the entire video. In the small
timescale model, RSU k adjusts its resource allocation to
complete its assigned tasks. That is, RSU k takes immediate
action to allocate the new transcoding candidate for the
uncompleted video chunks that have not been successfully
transcoded by the selected user in the previous time slot.
Note that the time taken at user u for computation and

communication is D̃k
u = ã(Cv,k)u

(
L Or

ã(Cp,k)
u

+
LT
R̃k

u

)
. The first term

L Or
ã(Cp,k)

u
is the computational delay, while the second term LT

R̃k
u

is the communication delay. Recall that L O [bytes] is the
length of the program code and parameters for transcoding,
LT [bytes] is the length of the transcoded video chunk,
ã(Cv,k)u is the number of chunks assigned to user u, ã(Cp,k)

u
is the computational resource allocated to user u, and r
is the required workload/intensity of every video chunk for
the computing node. Moreover, R̃k

u is the communication rate,
which is calculated by R̃k

u = ã(B,k)u log(1 + γ k
u ), where ã(B,k)u

is the communication resource allocated to user u. We have
Ĩ k
u = 1 if D̃k

u ≤ 1T ; Ĩ k
u = 0 otherwise.

If user u fails to complete the transcoding of the assigned
chunks, then it does not get the reward for neither the
cumulative stake nor the reputation value. However, it still
pays for its energy consumption. In this case, there are some
possible options. The user may give up the transcoding in the
middle of a time slot in order to save the energy or it always
uses up the entire time slot even though transcoding cannot
complete. Hence, it is quite complicated to capture the exact
loss at the user. For simplicity, we assign the penalty 1P per
assigned chunk to a failed user. Then, the reward at RSU k is

R̃k(t) =
∑

u∈�k
c

ã(U,k)u

[(
C Sk

uθC S + ã(Cv,k)u RV
k
uθRV

−ã(Cv,k)u Ck
uθE N

)
Ĩ k
u − (1 − Ĩ k

u )ã
(Cv,k)
u 1P

]
. (10)

The first part of the reward is the block reward or the
stakeholder reward, where θC S is the weight of the cumulative
stake. The second part is the reward of the reputation value
from transcoding tasks, whereby RV

k
u = RV k

u /RVmax is the
normalized reputation value and θRV is the weight of the
reputation value or the transcoding revenue. The third part
is the cost of the energy consumption spent for computation
and communication, whereby θE N is the weight of the energy

consumption; and Ck
u = µ

(
ã(Cp,k)

u

)2
L Or+Pk

u LT /Rk
u , where

the first term is the computational power consumption with
µ denoting the energy efficiency coefficient, and the second
term is the communication energy. The total system reward is
R̃(t) =

∑
k∈K R̃k(t).

VI. NUMERICAL RESULTS

A. Simulation Set-up
The key parameters are chosen as follows, unless stated

otherwise: K = 5 RSUs; U = 50 users (70% stationary, 30%
moving as per Levy Walk model [29]); N = 13000 chunks;
Tout = 15 time slots; L O = 0.5 KB (following [10]);
LT = 100 KB; r = 1.8 Kcycles/bit; µ = 10−26; θRV =

1 token/chunk; θC S = 0.05; θRV = 0.1.
{
C Sk

u
}

is randomly
selected in the range of [100, 300] tokens. The normalized
reputation value

{
RV k

u /RVmax
}

is randomly chosen in the
range of [0, 1]. The number of available sub-channels

{
Bk}

is randomly selected in the range of [5, 30]. The available
computational resources

{
Fk} is in the range of [2, 10] GHz.

We set the time slot duration to 1T = 2 s in accordance with
the Group of Picture (GOP) length in practical video streaming
systems.
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TABLE I
ACCURACY PERFORMANCE OF MOBILITY PREDICTION INDICATED BY 95% CONFIDENCE INTERVAL (LoB,U pB), WHERE LoB AND U pB ARE

THE LOWER BOUND AND UPPER BOUND OF THE PREDICTED RANGE AS A FUNCTION OF THE LENGTH OF THE PREDICTION INTERVAL Tout

The wireless channels, i.e., vehicle-to-RSU links, all follow
the Markov model. During the contact time of vehicle i to
RSU k, νi,k has two states, i.e., the link spectral efficiency
νi,k = {1, 4}, with 1 corresponding to the bad channel and 4
to the good channel. The probabilities of remaining in the
same state and the transition from one state to the other state
are, respectively, set to 0.7 and 0.3. The computation states
of the users follow the Markov model, where the transition
probabilities 2i, j are in the range of [0, 1] and

∑
i, j 2i, j = 1.

To implement reinforcement learning, we employ the
open-source software library TensorFlow 0.12.1.

B. Mobility Prediction Accuracy
We consider the Levy Walk model [29] as the mobility trace

generation model, with a six-day training data set. We compare
the real location and the predicted location of the users
for every time interval Tout . The accuracy performance is
calculated for the whole observation of all the time intervals.
Table I presents the 95% confidence intervals (LoB,U pB) of
the prediction results.

We compare: 1) the most probable method (widely
used, e.g., in [25] and [30]), 2) the Naive Bayes classi-
fier based method (which generally improves on the most
probable method), and 3) our proposal. In our proposal,
we include the Naive Bayes classifier for classification, the
CNN based VAE for extracting the salient characteristics, and
the semi-supervised learning for triage training and testing
(see Section IV-B). We observe that our improved mecha-
nism achieves higher accuracy performance than the others,
whereby the accuracy performance values (i.e., the maximum
prediction accuracy values or the upper bounds) are higher
than 80% for all considered prediction intervals. This per-
formance enhancement is due to the utilization of advanced
and classical machine learning techniques, such as the CNN
based VAE, the generative model of Naive Bayes classifier,
and semi-supervised learning. We use the prediction results of
our proposed method for the subsequent evaluations.

C. Video Transcoding Resource Management
Fig. 2 shows the probability of success versus video chunk

size L O , whereby success means that the whole video is
completely transcoded by the selected users within the hard
deadline Tout . The proposed scheme is compared with: 1) the
single timescale model, which is the same as our proposed
scheme except that the pre-selection of the set of possible
users and the set of chunks assigned to the RSU is omit-
ted; and 2) the equal scheme, which equally allocates the
communication and computational resources to all the users
as well as assigns the same number of video chunks to
the RSUs. We observe from Fig. 2 that the probability of
success decreases when the video chunk length increases for

Fig. 2. Probability of success vs. size of video chunk transcoding
task L O : For mid-range task sizes (program code, input parameters) L O , the
proposed multi-timescale framework achieves significantly higher (verified
with 95% confidence intervals) transcoding success probabilities than the
single-timescale framework.

all the schemes. This is because it is easier to perform the
computation and then transmit the transcoded version back to
the RSU within the contact duration when the video chunk
size L O is smaller. Furthermore, the success probability of
the equal scheme decreases dramatically, when the original
chunk size L O exceeds 0.2 KB, while the proposed scheme
achieves a much higher success probability than the other two.
This validates the beneficial contribution of the large timescale
model design, where we carefully select the sets of essential
users as the candidates and assign the right amount of video
chunks to every RSU. The proposed scheme fully exploits the
computational and communication resource diversity, as well
as accounts for the mobility diversity amongst the users.

Fig. 3 illustrates the energy consumption as a function of
the video bitrate. In particular, we transcode the video to the
new version with the bitrate between 200 Kbps and 32 Mbps.
For simplicity, we set the video chunk size proportional to the
bitrate. We compare the proposed scheme with 1) only single
timescale model; 2) equal scheme; and 3) random scheme.
In the random scheme, the communication and computational
resources are randomly allocated to the users, while the same
number of video chunks are assigned to the RSUs and users.
We observe from Fig. 3 that the increase of the bitrate of the
required transcoded video version increases the cost due to the
energy consumption at the selected transcoders. An increased
bitrate of the transcoded video increases the amount of output
data and hence increases the power consumption for sending
data back to the RSUs. The proposed multi-timescale frame-
work consistently achieves significantly (at 95% confidence
level) lower energy consumption, and thus significantly higher
energy efficiency, than the single-timescale framework.
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Fig. 3. Energy consumption vs. bitrate for size of video chunk transcoding
task L O = 500 B.

Fig. 4. Energy consumption vs. number of video chunk transcoding tasks
N for L O = 500 B and LT = 100 KB.

We furthermore investigate the impact of the number of
video chunks on the system cost in Fig. 4. We observe
from Fig. 4 that when the number of chunks increases,
more computational and communication resources are needed
for the selected transcoders. The video chunks are carefully
assigned to RSUs and their transcoders to guarantee the QoS
requirements (i.e., the hard deadline constraints). The energy
consumption increases, when the number of video chunks
increases due to the heavy workload. However, our proposed
multi-timescale framework is consistently the most energy-
efficient method, as verified at the 95% confidence level,
compared to the other schemes (including the single-timescale
framework).

Finally, we study the transcoding revenue vs the varying
bitrate of transcoded video version in Fig. 5. The pro-
posed scheme using actor-critic reinforcement learning and
multi-timescale framework achieves a higher revenue gain than
the other schemes. In the proposed multi-timescale framework,
we only determine the transcoder selection for a pre-selected
subset of users for every RSU, i.e., the state and action spaces
are smaller, and hence the cost is reduced. Specifically, the
action space becomes much smaller in the small timescale
model after the pre-selection of the users and chunks for each
RSU is performed in the large timescale model. In contrast,

Fig. 5. Revenue vs bitrate.

the single-timescale framework needs to perform resource
allocation to all the RSUs and users, leading to a much
higher cost. Thus, the single-timescale framework incurs a
significantly (at 95% confidence level) higher complexity than
the proposed multi-timescale framework.

Furthermore, there is a flexible regulation in the proposed
scheme and single-timescale scheme for the case that a user
arrives to or leaves the RSU’s coverage in the middle of epoch.
In particular, the deadline constraint is added in the small
timescale model for each time slot so that the unexpected
user-mobility can be addressed in subsequent time slots.
Therefore, this flexible regulation mechanism avoids the loss
of revenue due to users’ leaving movement. Also, performing
chunk assignment in each time slot helps us to reserve more
chunks for the better candidates that arrive in the subsequent
time slots. Thus, the proposed multi-timescale framework
exploits the dynamic user-mobility and the transcoding coop-
eration amongst the users to achieve a high reward gain.

VII. CONCLUSION

We developed a transcoder selection mechanism for a
blockchain-enabled machine learning aided vehicular network
under consideration of the realistic Semi-Markov renewal pro-
cess mobility. In particular, a multi-timescale framework was
proposed based on (instantiated with) actor-critic reinforce-
ment learning (ACL) for solving the joint communication and
computation resource allocation problem. To achieve the oper-
ational excellence and the cost efficiency, the user-mobility
was exploited to enhance the computing policies, while the
CNN based VAE and classic semi-supervised learning with
naive Bayes classifier were used for predicting the vehicular
mobility. To address the complexity caused by the large
state and action spaces, we proposed a mobility-aware reward
estimation for the large timescale model to effectively reduce
these spaces. Numerical results obtained with ACL demon-
strated the significant resource allocation improvements and
energy consumption reductions achieved by the proposed
multi-timescale framework. Adaptations of the multi-timescale
framework to other reinforcement learning instantiations, such
as policy search or separate value functions, are an interesting
direction for future engineering work.

Building on the present study, one future research direction
is to develop a twin-timescale mobility-aware AI aided frame-
work for 5G vehicular network slicing, which includes a mon-
itoring system of the slice SLA and slice adaption based on
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the traffic dynamics as well as effective admission control that
balances 1) infrastructure utilization, 2) service provisioning,
and 3) provider revenue. Furthermore, future research should
develop an effective scheduling mechanism for isolating and
protecting 5G network slicing. Moreover, future research
should pursue AI-based resource allocation for integrated
network slicing, communication, caching, and computing.

REFERENCES

[1] X. Jiang, F. R. Yu, T. Song, and V. C. M. Leung, “Resource allocation
of video streaming over vehicular networks: A survey, some research
issues and challenges,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7,
pp. 5955–5975, Jul. 2022.

[2] P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder, and A. Mouzakitis,
“A taxonomy and survey of edge cloud computing for intelligent
transportation systems and connected vehicles,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 7, pp. 6206–6221, Jul. 2022.

[3] Q. Wang, L. T. Tan, R. Q. Hu, and Y. Qian, “Hierarchical energy-
efficient mobile-edge computing in IoT networks,” IEEE Internet Things
J., vol. 7, no. 12, pp. 11626–11639, Dec. 2020.

[4] L. T. Tan, R. Q. Hu, and L. Hanzo, “Heterogeneous networks relying
on full-duplex relays and mobility-aware probabilistic caching,” IEEE
Trans. Commun., vol. 67, no. 7, pp. 5037–5052, Jul. 2019.

[5] L. T. Tan, R. Q. Hu, and L. Hanzo, “Twin-timescale artificial intelli-
gence aided mobility-aware edge caching and computing in vehicular
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3086–3099,
Apr. 2019.

[6] K. Muhammad, A. Ullah, J. Lloret, J. D. Ser, and
V. H. C. de Albuquerque, “Deep learning for safe autonomous
driving: Current challenges and future directions,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 7, pp. 4316–4336, Jul. 2021.

[7] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and computing
in vehicle networks: A deep reinforcement learning,” IEEE Trans. Veh.
Technol., vol. 67, no. 11, pp. 10190–10203, Nov. 2018.

[8] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and
M. H. Rehmani, “Applications of blockchains in the Internet of Things:
A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1676–1717, 2nd Quart., 2019.

[9] Transcodium: A Decentralized Peer-to-Peer Media Editing, Transcoding
& Distribution Platform. Accessed: Aug. 12, 2023. [Online]. Available:
https://www.allcryptowhitepapers.com/transcodium-whitepaper

[10] M. Liu, Y. Teng, F. R. Yu, V. C. M. Leung, and M. Song,
“A deep reinforcement learning-based transcoder selection framework
for blockchain-enabled wireless D2D transcoding,” IEEE Trans. Com-
mun., vol. 68, no. 6, pp. 3426–3439, Jun. 2020.

[11] M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung, and M. Song, “Distributed
resource allocation in blockchain-based video streaming systems with
mobile edge computing,” IEEE Trans. Wireless Commun., vol. 18, no. 1,
pp. 695–708, Jan. 2019.

[12] D. Liu, A. Alahmadi, J. Ni, X. Lin, and X. Shen, “Anonymous reputation
system for IIoT-enabled retail marketing atop PoS blockchain,” IEEE
Trans. Ind. Informat., vol. 15, no. 6, pp. 3527–3537, Jun. 2019.

[13] A. Haydari and Y. Yilmaz, “Deep reinforcement learning for intelligent
transportation systems: A survey,” IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 1, pp. 11–32, Jan. 2022.

[14] Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, “Naïve Bayesian
classifier for rapid assignment of rRNA sequences into the new bacterial
taxonomy,” Appl. Environ. Microbiol., vol. 73, no. 16, pp. 5261–5267,
Aug. 2007.

[15] T. Le and S. Shetty, “Artificial intelligence-aided privacy preserving
trustworthy computation and communication in 5G-based IoT networks,”
Ad Hoc Netw., vol. 126, Mar. 2022, Art. no. 102752.

[16] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural
actor–critic algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482,
2009.

[17] R. Wang, J. Zhang, S. H. Song, and K. B. Letaief, “Mobility-aware
caching in D2D networks,” IEEE Trans. Wireless Commun., vol. 16,
no. 8, pp. 5001–5015, Aug. 2017.

[18] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and
A. Mouzakitis, “Deep learning-based vehicle behavior prediction for
autonomous driving applications: A review,” IEEE Trans. Intell. Transp.
Syst., vol. 23, no. 1, pp. 33–47, Jan. 2022.

[19] S. Aradi, “Survey of deep reinforcement learning for motion planning of
autonomous vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2,
pp. 740–759, Feb. 2022.

[20] B. R. Kiran et al., “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 6,
pp. 4909–4926, Jun. 2022.

[21] X. Jiang, F. R. Yu, T. Song, and V. C. M. Leung, “A survey on
multi-access edge computing applied to video streaming: Some research
issues and challenges,” IEEE Commun. Surveys Tuts., vol. 23, no. 2,
pp. 871–903, 2nd Quart., 2021.

[22] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,” Artif.
Intell., vol. 112, nos. 1–2, pp. 181–211, Aug. 1999.

[23] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hierar-
chical deep reinforcement learning: Integrating temporal abstraction and
intrinsic motivation,” in Proc. NIPS, vol. 29, 2016, pp. 1–9.

[24] H. Soo Chang, P. J. Fard, S. I. Marcus, and M. Shayman, “Multitime
scale Markov decision processes,” IEEE Trans. Autom. Control, vol. 48,
no. 6, pp. 976–987, Jun. 2003.

[25] H. Farooq, A. Asghar, and A. Imran, “Mobility prediction-based
autonomous proactive energy saving (AURORA) framework for emerg-
ing ultra-dense networks,” IEEE Trans. Green Commun. Netw., vol. 2,
no. 4, pp. 958–971, Dec. 2018.

[26] J.-K. Lee and J. C. Hou, “Modeling steady-state and transient behaviors
of user mobility: Formulation, analysis, and application,” in Proc. ACM
MobiHoc, 2006, pp. 85–96.

[27] T. Le, M. Reisslein, and S. Shetty. Multi-Timescale Actor-Critic
Learning for Computing Resource Management With Semi-Markov
Renewal Process Mobility (Extended Version). Accessed: Aug. 12, 2023.
[Online]. Available: https://www.dropbox.com/s/k4m8d4rs1oyqjtn/
ABTCVNTechnicalreport.pdf?dl=0

[28] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction
with big data: A deep learning approach,” IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 2, pp. 865–873, Apr. 2015.

[29] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the
Levy-walk nature of human mobility,” IEEE/ACM Trans. Netw., vol. 19,
no. 3, pp. 630–643, Jun. 2011.

[30] Q. Yuan, I. Cardei, and J. Wu, “An efficient prediction-based routing
in disruption-tolerant networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 23, no. 1, pp. 19–31, Jan. 2012.

Tan Le (Member, IEEE) received the Ph.D.
degree from the University of Quebec in Montreal,
Montreal, QC, Canada, in 2015. He was a Research
Assistant Professor with the Virginia Modeling,
Analysis and Simulation Center (VMASC), Old
Dominion University, Suffolk, VA, USA, and he
is currently an Assistant Professor with Hampton
University, Hampton, VA, USA.

Martin Reisslein (Fellow, IEEE) received the Ph.D.
degree in systems engineering from the University
of Pennsylvania, Philadelphia, PA, USA, in 1998.
He is currently a Professor with the School of
Electrical, Computer and Energy Engineering, Ari-
zona State University (ASU), Tempe, AZ, USA, and
the Program Chair of Computer Engineering (CEN)
at ASU.

Sachin Shetty (Senior Member, IEEE) received
the Ph.D. degree from Old Dominion University,
Suffolk, VA, USA, in 2007. He is currently an
Executive Director with the Center for Secure and
Intelligent Critical Systems (CSICS), Virginia Mod-
eling, Analysis and Simulation Center (VMASC),
and a Professor with the Department of Computa-
tional Modeling and Simulation Engineering, Old
Dominion University.

Authorized licensed use limited to: Old Dominion University. Downloaded on August 31,2024 at 21:09:45 UTC from IEEE Xplore.  Restrictions apply. 


