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 B S T R A C T

tating algal biofilm reactors (RABRs) are innovative systems designed to cultivate microalgae biofilms efficiently. In this paper, we have developed 
novel mathematical model to accurately capture the growth dynamics of algae biofilms within RABR. By considering the spatial heterogeneity 
 the RABR, we introduce a PDE-based model that addresses the spatial variations across the substratum, enabling a more accurate simulation 
 biofilm growth in RABRs. The photosynthesis process is modeled through reactive kinetics, driving the growth of the algae biofilm. To analyze 
e system’s behavior, we employ finite difference numerical methods to solve the complex PDE model. We then conduct extensive numerical 
ulations to understand algae biofilm growth in the RABR environment under various operational factors and environmental conditions. One 
imary focus in these simulations is to investigate the impact of various harvesting strategies, harvesting frequencies, light intensity, and light 
posure on the overall biomass productivity of the algae biofilm. The numerical results provide valuable insights into optimizing algae biofilm 
owth and designing harvesting techniques in RABR systems. Our proposed novel mathematical model provides an effective platform for the 
eoretical investigation and design of RABRs for wastewater treatment.

 Introduction

The study and cultivation of microalgae have become a critical component in sustainably addressing the multifaceted environ-
ental obstacles of the 21st century, especially in wastewater treatment. Microalgae are highly effective at removing pollutants 
ch as nitrogen and phosphorous from wastewater while also producing valuable biomass that is utilized for biofuel production, 
imal feed, agricultural fertilizers, bioplastics, as well as pharmaceuticals and nutraceuticals [1–5]. Traditionally, microalgae have 
en cultivated in suspended cultures (remaining in a liquid medium), such as open ponds and photobioreactors. These suspended 
lture systems were favored due to their simplicity and low initial costs. However, these suspended systems also face challenges in 
hancing biomass production as they usually require continuous aeration and mixing to prevent sedimentation and ensure uniform 
ht exposure. Suspended systems also suffer from low light utilization efficiency and high water evaporation rates [6].
In response to these limitations, the exploration of microalgae biofilms, a mixture of microalgae and biofilm colonies, has emerged 

 a promising alternative. Instead of planktonic bacteria, biofilms are a collection of bacteria and glue-like extracellular polymeric 
bstances (EPS) that are usually attached to a substratum. The microalgae biofilm offers a structured medium that can overcome 
any of the limitations of suspended cultures. Among various microalgae biofilm cultivation technologies, the rotating algae biofilm 
actor (RABR) system has attracted noticeable attention in the past decade [7–9]. The RABR cultivates microalgae biofilms on a 
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. 1. A side view of the laboratory scale RABRs operating at the USTAR Bioinnovations Center in Logan, Utah. The algae biofilm is grown on a polyethylene 
bstratum sheet and rotated into a 40 L tank containing anaerobic digester effluent.

tating surface that periodically immerses the algae biofilm in nutrient-rich media and exposes it to air and light. This dynamic 
vironment optimizes the exposure of the biofilm to essential growth factors, significantly enhancing biomass productivity and 
erational efficiency compared to traditional suspended culture methods. Notable bioproducts from RABR systems include bio-
astic, phycocyanin, biofertilizer, biodiesel, biocrude, and dietary protein [10–15], highlighting their versatility and potential in 
oinnovation.

Despite these advantages, optimizing RABR systems for maximum biomass productivity and nutrient uptake requires an in-depth 
derstanding of various operational parameters, such as water pH, the reactor’s rotation speed, the duty cycle of immersion and 
posure, hydraulic retention time, and harvesting strategies (including harvesting frequency and harvesting percentage), in addition 
 the environmental conditions, such as the temperature and the photosynthetic photon flux density (PPFD) which measures the 
ount of light available for photosynthesis, with units of 𝜇mol of photons per square meter per second, i.e., 𝜇mol∕(𝑚2𝑠). The 
fluence of PPFD on biofilm growth varies across different light regimes and potentially leads to photosynthesis inhibition at high 
tensities. Traditional experimental approaches are limited in exploring these operational and environmental factors due to their 
actical challenges.
Mathematical modeling offers a powerful and cost-effective approach for exploring the interplay between operational and envi-
nmental factors that eventually provide insights into the design, optimization, and scale-up of RABR systems. Early models have 
imarily focused on homogeneous microalgae growth in response to homogeneous factors, such as light intensity and tempera-
re, 𝐶𝑂2, and nutrient concentrations, and therefore use dynamical systems without spatial variability [16]. Given the critical role 
 light for photosynthesis in determining microalgae biofilm growth, recent modeling advances have included PPFD/light and its 
tenuation within biofilms (light intensity decays during its penetration into the microalgae biofilm layers). Models that utilize 
FD as the key indicator for biofilm growth usually identify three distinct light conditions [17,18]: (1) a photosynthesis regime 
nstrained by insufficient PPFD, (2) a regime where photosynthesis reaches saturation due to sufficient PPFD, and (3) an inhibited 
gime where excessive PPFD leads to photoinhibition. The initial models taking the impact of PPFD into account usually assume 
at the photosynthetic activity across the entire culture is influenced by the interaction between incident light and the entire cul-
re. Such phenomenological models have evolved into various forms based on Monod-like relationships, Poisson distributions, and 
perbolic tangent functions [19–21]. More sophisticated models have considered the heterogeneity of light exposure by utilizing 
er-Lambert’s law [22] to better represent light attenuation and its effects on biofilm productivity [18].
Despite the many existing models for microalgae biofilm growth, there is a lack of models tailored specifically for RABRs, which 

ature unique operational and environmental interactions that are distinct from traditional microalgae cultivation systems. These 
clude the rotational movement influencing light exposure and nutrient distribution, the specific microalgae biofilm thickness 
ecting photosynthetic efficiency, the shear forces acting on the microalgae biofilm, and the spatial heterogeneity of the RABR, as 
ell as the harvesting microalgae biofilms off the substratum. Fig. 1 showcases a pair of laboratory-scale RABRs (40L) operating at the 
ah Science Technology and Research Initiative (USTAR) Bioinnovations Center in Logan, Utah, for nutrient removal and biomass 
edstock for biofuel, bioplastic, and biofertilizer production. It represents a physical model of a microalgae-based biofilm reactor 
r wastewater reclamation. Additionally, Fig. 2 presents a pilot scale RABR operating at the Central Valley Water Reclamation 
cility (CVWRF). Customized models for RABRs would enable a more precise understanding of the interplay between operational 
rameters and environmental conditions, ultimately providing insights to enhance nutrient uptake efficiency and algae biomass 
oductivity. Some seminal work on customized microalgae biofilm models for RABRs includes [17,18,23–25].
However, all the existing works oversimplify the RABR by neglecting its spatial heterogeneity. These models typically assume 
iform conditions across the RABR, overlooking variations in light intensity, nutrient availability, and biomass concentration across 
e RABR that would impact growth rates and productivity. This study, built upon these existing customized RABR models, aims to 
l this gap by developing a novel mathematical model that incorporates spatial heterogeneity within RABR systems and investigates 
488

e impact of spatial heterogeneity of the RABR system on biomass productivity and nutrient uptake under various operational 
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. 2. A side view of the pilot scale RABR operating at the Central Valley Water Reclamation Facility (CVWRF). The algae biofilm is grown on a square substratum 
eet and rotated into a 4,500 L tank containing anaerobic digester effluent. A plastic polycarbonate cover has been mounted to reduce heat loss in the winter months.

. 3. A schematic illustration of the rotating algal biofilm reactor (RABR) and the photosynthetic system. This figure illustrates the proposed computational model 
 the RABR. Here, we use 𝐴, 𝐵, and 𝐶 to represent the reactive, activated, and inhibited states, respectively.

d environmental conditions. Specifically, this work builds upon and significantly extends our previous work [25] by introducing a 
atial resolution of the RABR into algae biofilm modeling to highlight the spatial variations across the RABR substratum. This enables 
ore accurate modeling of biofilm growth in RABRs for situations that include various harvesting strategies and heterogeneous light 
posure and penetration. With the model, we conduct an intensive numerical study in non-uniform environments affecting the 
gae biofilm and investigate the effects of various RABR operating and environmental factors on the algae biofilm growth and 
oductivity.

 Mathematical model formulation

In this section, we present a comprehensive derivation of the mathematical model for microalgae biofilm in the RABR. The 
icroalgae biofilm growth could be effectively captured with a photosynthetic system due to the pivotal role of light in driving algae 
ofilm productivity. Drawing on the photosynthetic system model proposed by [17], we describe the reactive kinetics within algae 
ofilms through three cellular states: reactive, activated, and inhibited. In this model, cells in the reactive state are primed for photon 
sorption, transitioning to the activated state, where solar energy is converted into chemical energy for biofilm growth. Excessive 
lar radiation can shift cells from the activated state to the inhibited state, rendering them dormant. Fig. 3 visually summarizes this 
ocess and illustrates the cyclical exposure of the algae biofilm to aqueous and aerial environments within the RABR system.
In this paper, the algae biofilm is treated as a single species for simplicity and clarity in modeling the biomass productivity in 
489

BR across different environmental and operational conditions. However, for a model that more accurately reflects the complex 
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ological nature of algal biofilms, it is necessary to consider the distinct roles and interactions of bacteria, EPS, and algae [26]. While 
e current model adopts a simplified approach to focus on the fundamental growth dynamics, our future research will incorporate 
ese additional biological components and their interactions.

1. Photosynthetic kinetics with spatial heterogeneity

Consider a substratum with length 𝐿. We introduce the spatial variable 𝑥, 0 ≤ 𝑥 < 𝐿, to represent the spatial location of the 
bstratum. We use 𝐴(𝑥, 𝑧, 𝑡), 𝐵(𝑥, 𝑧, 𝑡) and 𝐶(𝑥, 𝑧, 𝑡) to represent the fractions of A, B, C states at location 𝑥 and height 𝑧, where 
∈ [0, ℎ(𝑥, 𝑡)] and ℎ(𝑥, 𝑡) represents the thickness of biomass at location 𝑥 and time 𝑡. The photosynthetic reactive-kinetic model 
7,18] can be extended as

𝜕𝑡𝐴(𝑥, 𝑧, 𝑡) = 𝐷𝑎𝐴𝑥𝑥 − 𝜎𝐼(𝑥, 𝑧, 𝑡)𝐴(𝑥, 𝑧, 𝑡) + 𝐵(𝑥, 𝑧, 𝑡)
𝜏

+ 𝑘𝑟𝐶(𝑥, 𝑧, 𝑡), (1a)

𝜕𝑡𝐵(𝑥, 𝑧, 𝑡) = 𝐷𝑏𝐵𝑥𝑥 + 𝜎𝐼(𝑥, 𝑧, 𝑡)𝐴(𝑥, 𝑧, 𝑡) − 𝐵(𝑥, 𝑧, 𝑡)
𝜏

− 𝑘𝑑𝜎𝐼(𝑥, 𝑧, 𝑡)𝐵(𝑥, 𝑧, 𝑡), (1b)

𝜕𝑡𝐶(𝑥, 𝑧, 𝑡) = 𝐷𝑐𝐶𝑥𝑥 − 𝑘𝑟𝐶(𝑥, 𝑧, 𝑡) + 𝑘𝑑𝜎𝐼(𝑥, 𝑧, 𝑡)𝐵(𝑥, 𝑧, 𝑡), (1c)

here 𝑥 ∈ [0, 𝐿), 𝑧 ∈ [0, ℎ(𝑥, 𝑡)], and 𝐷𝑎, 𝐷𝑏, and 𝐷𝑐 denote the passive transport among the states 𝐴, 𝐵 and 𝐶 , respectively. The 
nction 𝐼(𝑥, 𝑧, 𝑡) specifies the light intensity within the biofilm at any given point and time. The transition rates between these states 
e governed by 𝑘𝑟, the rate at which cells repair from the inhibited state 𝐶 back to the reactive state 𝐴; 𝑘𝑑 , the rate of damage 
nsition from the activated state 𝐵 to the inhibited state 𝐶 under high light intensity; 𝜏 , the turnover time of the electron transport 
ain, and 𝜎, the effective absorption cross-section per unit of photosynthetic units. Readers are encouraged to refer to [17,18] for a 
ore comprehensive understanding of the photosynthetic process and its modeling.
Due to the incompressibility, we have the constraint

𝐴(𝑥, 𝑧, 𝑡) +𝐵(𝑥, 𝑧, 𝑡) +𝐶(𝑥, 𝑧, 𝑡) = 1, ∀(𝑥, 𝑧, 𝑡) ∈ [0,𝐿] × [0, ℎ(𝑥, 𝑡)] × [0, 𝑇 ],

hich leads to the constraint

𝜕𝑡

[
𝐴(𝑥, 𝑧, 𝑡) +𝐵(𝑥, 𝑧, 𝑡) +𝐶(𝑥, 𝑧, 𝑡)

]
= 0.

ding the terms in eq. (1) leads to

𝐷𝑎𝐴(𝑥, 𝑧, 𝑡)𝑥𝑥 +𝐷𝑏𝐵(𝑥, 𝑧, 𝑡)𝑥𝑥 +𝐷𝑐𝐶(𝑥, 𝑧, 𝑡)𝑥𝑥 = 0,

hich are the constraints on choosing the model parameters. For simplicity, we assume that 𝐷𝑎 = 𝐷𝑏 = 𝐷𝑐 in this paper.

2. Light exposure within RABR

The substratum undergoes periodic exposure to sunlight and water as the RABR rotates, with a portion submerged in water and 
e rest exposed to sunlight. The substratum length, denoted as 𝐿, and the length exposed to the air, denoted by 𝑙∗, are pivotal to 
e dynamics of light exposure within the RABR. With the RABR rotating, the relation between the RABR’s peripheral velocity (𝑣), 
 circumference (𝐿), and the rotation period (𝑇 ) is given by 𝑇 = 𝐿

𝑣
.

Since the substratum forms a closed loop, the spatial variable could be defined in real space with a period of 𝐿. Define the flag 
nction

Γ(𝑥, 𝑡) = 𝑓

(
mod(𝑥+ 𝑣𝑡,𝐿)

)
, 𝑓 (𝑥) = 1

1 + 𝑒
− 𝑥−(1−𝑟0)𝐿

𝜀

, (2)

here 𝑓 (𝑥) is the logistic function with 𝜀 a parameter controlling the transition thickness of the 𝑆-shape curve, and 𝑟0 ∶=
𝑙∗

𝐿
is the 

tio of substratum exposure to the air. In this paper, we set 𝜀 = 0.1 fixed for simplicity. The function Γ(𝑥, 𝑡) performs as the flag 
nction to mark whether the location 𝑥 at time 𝑡 is exposed to the air (Γ(𝑥, 𝑡) = 1) or submerged (Γ(𝑥, 𝑡) = 0). Namely, we have 
sumed that the biomass is either in fully bright or dark condition. We note that, under natural conditions, the sunlight intensity 
aching the algae biofilm would be influenced by the sun’s angle. This feature could lead to varying light penetration, which will 
 considered in our later study.
Furthermore, we model the actual light intensity by a square wave defined as

𝐼(𝑥, 𝑡) = 𝐼0(𝑡)Γ(𝑥, 𝑡), (3)

ith 𝐼0(𝑡) the peak light intensity. To approximate 𝐼0(𝑡), we utilize existing light intensity data on April 25th, 2018, collected from 
e Sustainable Waste to Bioproducts Engineering Center (SWBEC) in Utah. The light intensity is measured as photosynthetically 
tive radiation (PAR) every 15 minutes for 24 hours. We then fit the PAR data with a smooth function 𝐼0(𝑡) as shown in Fig. 4 for a 
nge of one day. Moreover, we let 𝑡 = 0 within our simulations correspond to 8:00 AM, and we assume each day has the same light 
490

ttern when simulating for a more extended period in this paper.
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. 4. Light intensity 𝐼0(𝑡) over time. The figure illustrates 24-hour PAR data as red points, with a fitted continuous function represented by a blue curve. This 
ntinuous function will be employed for subsequent simulations, starting at 𝑡 = 8 hours for the interpolated function within the model for simulations.

Incorporating algae biofilm thickness necessitates establishing a connection between light attenuation and algae biofilm depth. 
tuitively, the accessible light for each cell’s photosystem diminishes as getting deeper into the algae biofilm. We model this 
lationship by adopting Beer-Lambert’s law [18]. The light intensity 𝐼(𝑥, 𝑧, 𝑡) at time 𝑡, location 𝑥 and depth 𝑧 can be expressed as

𝐼(𝑥, 𝑧, 𝑡) = 𝐼(𝑥, 𝑡)𝑒−𝑏(ℎ−𝑧), 𝑥 ∈ [0,𝐿) 𝑧 ∈ [0, ℎ(𝑥, 𝑡)], (4)

here 𝐼(𝑥, 𝑡) is defined in eq. (3), and 𝑏 is a constant denoting the light attenuation factor.

3. Nutrient uptake mechanism

For algae biofilm to accumulate biomass, it must regularly access adequate nutrients, absorbed through nutrient mass transport. 
trients could include phosphorous or ammonia. To simplify the model, we assume the nutrient concentration, 𝐸(𝑥, 𝑧, 𝑡), is uniform 
ross different algae biofilm depths, thus simplifying 𝐸 to depend only on substratum location 𝑥 and time 𝑡. Hence, 𝐸(𝑥, 𝑡) represents 
e average nutrient concentration at location 𝑥 and time 𝑡 in the RABR, disregarding the algae biofilm thickness, while 𝐸𝑇 (𝑡) denotes 
e average nutrient concentration in wastewater where the nutrient distribution, assumed to be spatially homogeneous.
Considering the finite availability of nutrients in the air, the uptake rate depends on the algae biofilm mass and the portion 
nverting to biomass in state 𝐵. Meanwhile, nutrient levels are replenished when the biofilm is submerged in water. The nutrient 
namics are governed by

𝜕𝑡𝐸(𝑥, 𝑡) = 𝐷𝐸𝐸𝑥𝑥 −
𝛾𝑎1𝐸(𝑥, 𝑡)

𝐾𝑎 +𝐸(𝑥, 𝑡)

ℎ(𝑥,𝑡)

∫
0

𝐵(𝑥, 𝑧, 𝑡)𝑑𝑧− 𝛾𝑎2

(
1 − Γ(𝑥, 𝑡)

)
(𝐸(𝑥, 𝑡) −𝐸𝑇 (𝑡)), (5)

here 𝐷𝐸 represents the nutrient diffusion coefficient in the algae biofilm along the 𝑥 direction, 𝐾𝑎 is the half-saturation constant, 
d 𝛾𝑎1, 𝛾𝑎2 are parameters controlling the nutrient uptake and inflow rates, respectively. Notice that the uptake rate constant 𝛾𝑎1
ight depend on the concentration of algal cells within the biofilm and their affinity for the nutrient [27]. Different operating 
nditions for light, rotation, and nutrients are expected to result in biofilms with different (dry) algal biomass and, thus, different 
take constants. Meanwhile, the intake constant 𝛾𝑎2 might depend on the bioreactor’s geometry, hydrodynamics, and reaction 
netics. Here we assume 𝛾𝑎1 and 𝛾𝑎2 as constants for simplicity.
The overall nutrient availability 𝐸𝑇 (𝑡) in the wastewater is described by

𝜕𝑡𝐸𝑇 (𝑡) =
𝑆

𝑉

𝐿

∫
0

𝛾𝑎2

(
1 − Γ(𝑥, 𝑡)

)(
𝐸(𝑥, 𝑡) −𝐸𝑇 (𝑡)

)
𝑑𝑥, (6)

ith 𝑆 the surface area of the substratum in the RABR, 𝑉 the wastewater tank volume, and 𝛾𝑎2 the nutrient intake rate from the 
ater to the RABR. We emphasize that when there is no nutrient consumption by the algae biofilm, i.e., when 𝛾𝑎1 = 0, the nutrient 
ass balance is respected by the model as

𝑑
(
𝐸𝑇 (𝑡)𝑉 +𝑆

𝐿

𝐸(𝑥, 𝑡)𝑑𝑥

)
= 0.
491

𝑑𝑡 ∫
0
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This study only considers the stratification in photosynthetic activity, which is the primary factor for algae biofilm growth. 
other important factor is the vertical stratification of nutrients as steep chemical gradients may develop even at small length scales 
d thin biofilms, depending on the flow regime, the nutrient diffusivity, the concentration and uptake rate of the algal cells [27]
d the coupled stratification in light intensity and nutrient concentrations may, in turn, induce algal mixotrophy [28,29]. And eq. 
) and eq. (6) are only valid for small spatial and slow temporal variations in the biofilm thickness. These aspects will be further 
vestigated in our later work.

4. Water evaporation mechanism

Next, we introduce the model for water evaporation from the algae biofilm. We use 𝑊 (𝑥, 𝑡) to represent the water saturation 
rcentage. The dynamic behavior 𝑊 (𝑥, 𝑡) is governed by the equation

𝜕𝑡𝑊 (𝑥, 𝑡) = 𝐷𝑊 𝑊𝑥𝑥 − 𝛾𝑤1Γ(𝑥, 𝑡) 𝑊 (𝑥, 𝑡)
𝐾𝑊 +𝑊 (𝑥, 𝑡)

+ 𝛾𝑤2

(
1 − Γ(𝑥, 𝑡)

)(
1 −𝑊 (𝑥, 𝑡)

)
, (7)

here 𝐷𝑊 is the diffusion coefficient of water saturation along the 𝑥 direction of the algae biofilm, 𝛾𝑤1 is the rate of water 
aporation and 𝛾𝑤2 represents the absorbing rate from the wastewater. We assume it as a constant for simplicity, but it could also 
pend on the temperature and moisture of the air in certain situations.
In our study, the primary focus is on the impacts of water evaporation on algae biofilm growth since the RABR is rotating slowly. 
wever, we note that the hydrodynamic conditions within the RABR system will have impacts on algae biofilm formation and 
bility. For instance, the shear stress would affect the architecture and cohesion of microalgae biofilms [30]. At low shear, the 
ofilms exhibited stratification in cohesion and were prone to detachment. By contrast, higher shear resulted in more stable and 
icker biofilms. Interested readers can refer to [27,31–34] for modeling biofilm mechanics and detachment. These factors could be 
rther considered to expand the current model.

5. Algae biofilm thickness and growth dynamics

Now, we are ready to introduce the algae biofilm thickness and growth dynamics under the effect of light attenuation, nutrient 
ailability, and water evaporation. Denote the algae biomass concentration as 𝜙(𝑥, 𝑡) measured in 𝑔∕𝑚2. Utilizing the photosynthetic 
tivity illustrated in Fig. 3, the growth rate of the algae biofilm is expressed as [18]:

𝜕𝑡𝜙(𝑥, 𝑡) =
[ 1
ℎ(𝑥, 𝑡)

ℎ(𝑥,𝑡)

∫
0

(
𝑘

𝐵(𝑥, 𝑧, 𝑡)
𝜏

−𝑅(𝑥, 𝑧, 𝑡)
)
𝑑𝑧

]
𝜙(𝑥, 𝑡), (8)

here ℎ(𝑥, 𝑡) is the thickness of the biomass, 𝑅(𝑥, 𝑧, 𝑡) represents the respiration rate, and 𝑘 is a growth rate constant that is de-
rmined with empirical studies of algae biofilm growth rates in laboratory settings. This paper assumes a constant respiration rate 
(𝑥, 𝑧, 𝑡) = 𝑅 for simplicity.
To simplify the model and given that the algae biofilm is usually thin, we assume the uniform density of the algae biofilm at 
rious heights, with 𝜌 representing the algae biofilm’s areal dry biomass density, leading to the relationship between concentration 
d biomass thickness as

𝜙(𝑥, 𝑡) = 𝜌ℎ(𝑥, 𝑡), (9)

here ℎ(𝑥, 𝑡) denote the algae biofilm height. This simplification yields the growth equation for biofilm thickness

𝜕𝑡ℎ(𝑥, 𝑡) =

ℎ(𝑥,𝑡)

∫
0

𝑘
𝐵(𝑥, 𝑧, 𝑡)

𝜏
𝑑𝑧−𝑅ℎ(𝑥, 𝑡). (10)

Adding the effects of spatial diffusion, nutrient limitation, and the constraints due to water evaporation, we finally obtain the 
mplete version equation for algae biofilm growth as

𝜕𝑡ℎ(𝑥, 𝑡) = 𝐷ℎℎ𝑥𝑥 +

ℎ(𝑥,𝑡)

∫
0

𝑘𝐵(𝑥, 𝑧, 𝑡)
𝜏

𝐸(𝑥, 𝑡)
𝐾𝑎 +𝐸(𝑥, 𝑡)

𝑊 (𝑥, 𝑡)
𝐾𝑊 +𝑊 (𝑥, 𝑡)

𝑑𝑧−
(
𝑅+

𝑅𝑊 𝐾𝑊

𝑊 (𝑥, 𝑡) +𝐾𝑊

)
ℎ(𝑥, 𝑡),

here 𝐷ℎ is the diffusion coefficient of algae biofilm height along the 𝑥 direction, 𝐾𝑊 denotes the critical threshold for water 
ess affecting algae biofilm growth, and 𝑅𝑊 is the additional mortality rate under water stress. The term 𝑊 (𝑥,𝑡)

𝐾𝑊 +𝑊 (𝑥,𝑡) quantifies the 

pact of water stress on algal biofilm growth at location 𝑥, and 𝐾𝑊

𝑊 (𝑥,𝑡)+𝐾𝑊
accounts for the influence of water stress on algal biofilm 
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Table 1

Parameter table with fixed parameter values.
Symbol Value Units Description

𝜎 1.9 × 10−3 𝑚2 μmol−1 effective absorption rate

𝑡0 0 𝑠 start of time period of simulated algae biofilm growth

𝜏 6.849 𝑠 turnover time of the electron transport chain

𝑘𝑑 2.99 × 10−4 𝑠−1 damage rate

𝑘𝑟 4.8 × 10−4 𝑠−1 repair rate

𝑅 0.12 𝑑−1 respiration rate

𝑏 1400 𝑚−1 light attenuation factor

𝜌 140000 𝑔𝑚−3 dry algae biomass density

𝑝 6 - number of simulated layers of algal biofilms

𝐶0 0.2 - initial value for C state

𝐾𝑊 0.5 - critical threshold for water stress

𝛾𝑤1 2.5 × 10−3 𝑠−1 rate of evaporation

𝛾𝑤2 1 𝑠−1 rate of water absorption

𝛾𝑎2 1 𝑠−1 rate of nutrient absorption

𝑅𝑊 0.12 𝑑−1 water stress on algal biofilm death

𝐷𝐴, 𝐷𝐵 , 𝐷𝐶 , 𝐷ℎ 10−6 𝑚2𝑠−1 diffusion constant for algae biofilms

𝐷𝐸 10−9 𝑚2𝑠−1 diffusion constant of 𝐸 amongst spatial element 𝑥

𝐷𝑊 10−4 𝑚2𝑠−1 diffusion constant of 𝑊 amongst spatial element 𝑥

6. Governing equations and parameters

Overall, we summarize the proposed model as below

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡ℎ(𝑥, 𝑡) = 𝐷ℎℎ𝑥𝑥 +

ℎ(𝑥,𝑡)

∫
0

𝑘
𝐵(𝑥, 𝑧, 𝑡)

𝜏

𝐸(𝑥, 𝑡)
𝐾𝑎 +𝐸(𝑥, 𝑡)

𝑊 (𝑥, 𝑡)
𝐾𝑊 +𝑊 (𝑥, 𝑡)

𝑑𝑧−
(
𝑅+

𝑅𝑊 𝐾𝑊

𝑊 (𝑥, 𝑡) +𝐾𝑊

)
ℎ(𝑥, 𝑡),

𝜕𝑡𝐵(𝑥, 𝑧, 𝑡) = 𝐷𝐵𝐵𝑥𝑥 + 𝜎𝐼(𝑥, 𝑧, 𝑡) − 𝜎𝐼(𝑥, 𝑧, 𝑡)𝐶(𝑥, 𝑧, 𝑡) −
(
𝜎𝐼(𝑥, 𝑧, 𝑡) + 𝑘𝑑𝜎𝐼(𝑥, 𝑧, 𝑡) + 1

𝜏

)
𝐵(𝑥, 𝑧, 𝑡),

𝜕𝑡𝐶(𝑥, 𝑧, 𝑡) = 𝐷𝐶𝐶𝑥𝑥 − 𝑘𝑟𝐶(𝑥, 𝑧, 𝑡) + 𝑘𝑑𝜎𝐼(𝑥, 𝑧, 𝑡)𝐵(𝑥, 𝑧, 𝑡),

𝜕𝑡𝐸(𝑥, 𝑡) = 𝐷𝐸𝐸𝑥𝑥 − 𝛾𝑎1
𝐸(𝑥, 𝑡)

𝐾𝑎 +𝐸(𝑥, 𝑡)

ℎ(𝑥,𝑡)

∫
0

𝐵(𝑥, 𝑧, 𝑡)𝑑𝑧− 𝛾𝑎2

(
1 − Γ(𝑥, 𝑡)

)
(𝐸(𝑥, 𝑡) −𝐸𝑇 (𝑡)),

𝑑𝐸𝑇 (𝑡)
𝑑𝑡

= 𝑆

𝑉

𝐿

∫
0

𝛾𝑎2

(
1 − Γ(𝑥, 𝑡))(𝐸(𝑥, 𝑡) −𝐸𝑇 (𝑡)

)
𝑑𝑥,

𝜕𝑡𝑊 (𝑥, 𝑡) = 𝐷𝑊 𝑊𝑥𝑥 − 𝛾𝑤1Γ(𝑥, 𝑡) 𝑊 (𝑥, 𝑡)
𝐾𝑊 +𝑊 (𝑥, 𝑡)

+ 𝛾𝑤2

(
1 − Γ(𝑥, 𝑡)

)(
1 −𝑊 (𝑥, 𝑡)

)
,

(11)

here 𝑥 ∈ [0, 𝐿) and 𝑧 ∈ [0, ℎ(𝑥, 𝑡)]. The periodic boundary condition is used for the 𝑥-direction.
To better present the parameter choices, we summarize all our model parameters in three tables, representing three types of model 
rameters. First, some model parameters can be fixed based on existing literature [18,25,35–37]. These parameters are summarized 
 Table 1.
Secondly, some parameters are based on realistic design parameters. These are summarized in Table 2. We elaborate on the 
cisions for some parameters in Table 2. The volume 𝑉 has been selected such that the volume-to-surface area ratio between 
e RABR media and substratum is 50:1. 𝑘 has been chosen as 0.00015 such that the resultant productivity values reflect those in 
isting literature [7]. 𝛾𝑎 has been selected such that the algae biofilm will experience inhibition in growth if not replenished within 
proximately 8 hours. 𝛾𝑇 has been chosen such that in laboratory conditions, the nutrient concentration of the media within the 
stem will be below 𝐾𝑎 after 72 hours [25].
In addition, parameters with undetermined values are summarized in Table 3. These are operation parameters for RABR. One of 
e goals of this paper is to investigate these operation parameters, discover their correlations, and understand how these operational 
nditions would affect biomass productivity. Their values will be specified in the corresponding numerical examples.

7. Harvesting strategies

As the algae biofilm grows in height, the depth of the algae biofilm will prevent algae on the bottom layers from receiving 
fficient light, eventually leading to a stagnation of growth. To mitigate this stagnation and to maximize productivity, regular 
rvesting of the algae biofilm occurs in both laboratory and industrial settings to reduce the algae biofilm height. Ultimately, the 
493
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Table 2

Parameter table with experimental parameter values.
Symbol Value Units Description

𝑆 1 𝑚2 surface area of the substratum in the RABR

ℎ0 0.0005 𝑚 initial height of algae biofilm

𝐿 7 𝑚 circumference of the substratum in the RABR

𝑙∗ 3 𝑚 arc length of the RABR exposed to air

𝑣 0.1555 𝑚𝑠−1 peripheral velocity of the RABR

𝑇 45 𝑠 period of the RABR’s rotation

𝑉 50 𝐿 volume of the tank of the RABR

𝑘 0.00015 - growth rate

𝛾𝑎1 1575 𝑔𝑚−2𝑑−1 rate of the algae biofilm nutrient consumption

𝐾𝑎 1 𝑚𝑔𝐿−1 half-saturation constant for nutrient

Table 3

Parameter table with undetermined parameter values.
Symbol Units Description

𝐼(𝑡) μmol𝑚−2𝑠−1 light intensity

𝑣 𝑚𝑠−1 peripheral velocity of the RABR

ℎ𝑎 𝑚 residual height of algae biofilm after each harvest

𝑡ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑠 time lags between consecutive algae biofilm harvests

Within the context of algae biofilm harvesting, there are two primary parameters to study. The first is the harvesting frequency, 
beled as 𝜈; the second is the residual height of harvesting, marked as ℎ𝑎(𝑥). When performing a harvest, no harvest will occur if 
e algae biofilm height is less than ℎ𝑎(𝑥); otherwise, the algae biofilm is harvested with a thickness of ℎ𝑎(𝑥) left. Intuitively, algae 
ofilm harvested too infrequently will experience light-limited stagnation, and algae biofilm harvested too often will limit biomass 
owth and cost more energy. Additionally, when harvesting the algae biofilm, consideration must be made of how much algae 
ofilm to remove. When ℎ𝑎(𝑥) is large, much of the algae biofilm will remain after a harvest, implying harvesting will often occur 
 maintain a certain height. When ℎ𝑎(𝑥) is small, a harvest will remove most of the algae biofilm and imply fewer, more extreme 
rvests.

To explore the spatial heterogeneity of our proposed model in eq. (11), we will test several heterogeneous harvesting strategies 
ong the spatial variable 𝑥. Specifically, we will examine four strategies: (a) uniform harvest strategy, (b) checker harvest strategy, 
) linear harvest strategy, and (d) quadratic harvest strategy. To detail each strategy, we divide the substratum of length 𝐿 into 
equal meshes, marking the mesh points as 𝑥𝑗 where 𝑗 = 0, 1, … , 𝑁 − 1. For the uniform harvest strategy, the post-harvest algae 
ofilm thickness is defined as

ℎ(𝑥) = min(ℎ(𝑥), ℎ𝑎(𝑥));

r the checker harvest strategy, it is updated according to

ℎ(𝑥𝑗 ) =

{
min(ℎ(𝑥𝑗 ), ℎ𝑎(𝑥𝑗 )), if 𝑗 (mod 2) = 0,
ℎ(𝑥𝑗 ), if 𝑗 (mod 2) = 1,

ter each harvest; for the linear harvest strategy, the post-harvest algae biofilm height is modified as

ℎ(𝑥) = (1 − 𝑥

𝐿
)min(ℎ𝑎(𝑥), ℎ(𝑥)) +

𝑥

𝐿
ℎ(𝑥);

d for the quadratic harvest strategy, it is updated as

ℎ(𝑥) = 4
(
1 − 𝑥

𝐿

)
𝑥

𝐿
ℎ(𝑥) +

(
1 − 4

(
1 − 𝑥

𝐿

)
𝑥

𝐿

)
min

(
ℎ𝑎(𝑥), ℎ(𝑥)

)
.

e four harvesting strategies are depicted in Fig. 5.

8. Numerical methods

The mathematical model proposed in eq. (11) is a free surface problem. The periodic boundary condition is used for the x-
rection as the substratum rope forms a closed loop. It is a coupled system with integral differential equations. To solve eq. (11)
merically, we discretize the spatial domain 𝑥 ∈ [0, 𝐿) into uniform meshes

0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 < 𝐿,

here
494

𝑥𝑗 = (𝑗 − 0.5)𝛿𝑥, 𝛿𝑥 =
𝐿

𝑁
, 𝑗 = 1,⋯ ,𝑁.
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. 5. A schematic illustration of various harvesting strategies. The areas shaded in red represent the mass that will be removed following the corresponding harvest 
ategy. The residual algae biofilm height, i.e., the minimum height that will be considered for removal during a harvest, is set with ℎ𝑎(𝑥).

Next, we partition the algae biofilm depth domain [0, ℎ(𝑥𝑗 , 𝑡)] into 𝑝 intervals:

0 ≤ 𝑧1(𝑥𝑗 , 𝑡) < 𝑧2(𝑥𝑗 , 𝑡) < ⋯ < 𝑧𝑝(𝑥𝑗 , 𝑡) < ℎ(𝑥𝑗 , 𝑡), 𝑧𝑖(𝑥𝑗 , 𝑡) =
𝑖− 1

𝑝
ℎ(𝑥𝑗 , 𝑡).

 approximating the dynamics with 𝑝 layers and 𝑁 segments, we obtain the following system of differential equations to represent 
e dynamics in each layer and each section:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑

𝑑𝑡
ℎ𝑗 = 𝐷ℎ

ℎ𝑗+1 − 2ℎ𝑗 + ℎ𝑗−1

𝛿2
𝑥

+
𝑝∑

𝑖=1

ℎ𝑗

𝑝
𝑘

𝐵𝑖𝑗

𝜏

𝐸𝑗

𝐾𝑎 +𝐸𝑗

3
2𝑊𝑗

𝐾𝑊 +𝑊𝑗

−
(
𝑅+𝑅𝑊

𝐾𝑊

𝑊𝑗 +𝐾𝑊

)
ℎ𝑗,

𝑑

𝑑𝑡
𝐵𝑖𝑗 = 𝐷𝐵

𝐵𝑖,𝑗+1 − 2𝐵𝑖𝑗 +𝐵𝑖,𝑗−1

𝛿2
𝑥

+ 𝜎𝐼𝑖𝑗 (𝑡) − 𝜎𝐼𝑖𝑗 (𝑡)𝐶𝑖𝑗 −
(
𝜎𝐼𝑖𝑗 (𝑡) + 𝑘𝑑𝜎𝐼𝑖𝑗 (𝑡) +

1
𝜏

)
𝐵𝑖𝑗 ,

𝑑

𝑑𝑡
𝐶𝑖𝑗 = 𝐷𝐶

𝐶𝑖,𝑗+1 − 2𝐶𝑖𝑗 +𝐶𝑖,𝑗−1

𝛿2
𝑥

− 𝑘𝑟𝐶𝑖𝑗 + 𝑘𝑑𝜎𝐼𝑖𝑗 (𝑡)𝐵𝑖𝑗 ,

𝑑

𝑑𝑡
𝐸𝑗 = 𝐷𝐸

𝐸𝑗+1 − 2𝐸𝑗 +𝐸𝑗−1

𝛿2
𝑥

− 𝛾𝑎1
𝐸𝑗

𝐾𝑎 +𝐸𝑗

ℎ𝑗

𝑝

𝑝∑
𝑖=1

𝐵𝑖𝑗 − 𝛾𝑎2

(
1 − Γ𝑗

)
(𝐸𝑗 −𝐸𝑇 ),

𝑑

𝑑𝑡
𝐸𝑇 = 𝑆

𝑉 𝑁

𝑁−1∑
𝑗=0

𝛾𝑎2ℎ𝑗 (1 − Γ𝑗 )(𝐸𝑗 −𝐸𝑇 ),

𝑑

𝑑𝑡
𝑊𝑗 = 𝐷𝑊

𝑊𝑗+1 − 2𝑊𝑗 +𝑊𝑗−1

𝛿2
𝑥

− 𝛾𝑤1Γ𝑗

𝑊𝑗

𝐾𝑊 +𝑊𝑗

− 𝛾𝑤2

(
1 − Γ𝑗

)(
𝑊𝑗 − 1

)
,

(12)

here 𝑖 = 1, 2, ⋯ , 𝑝 and 𝑗 = 1, 2, ⋯ , 𝑁 . In eq. (12), 𝐵𝑖𝑗 (𝑡) and 𝐶𝑖𝑗 (𝑡) represent the value at (𝑧𝑖, 𝑥𝑗 ), and the light intensity at the 𝑖th 
yer and 𝑗th section is approximated by

𝐼𝑖𝑗 (𝑡) =
𝑝

ℎ(𝑥𝑗 , 𝑡)

𝑧𝑖+1

∫
𝑧𝑖

𝐼(𝑥𝑗 , 𝑡)𝑒−𝑏(ℎ(𝑥𝑗 ,𝑡)−𝑧)𝑑𝑧, 𝑖 = 1,2,⋯𝑝, 𝑗 = 1,2,⋯𝑁.

ven the periodic boundary condition is used for the x-direction, we have the following

𝐵𝑖𝑁+1 = 𝐵𝑖1,𝐶𝑖𝑁 = 𝐶𝑖1,𝐵𝑖0 = 𝐵𝑖𝑁 ,𝐶𝑖0 = 𝐶𝑖𝑁 .

e semi-discrete model in equation (12) is a coupled ODE system. To simplify the notations, we denote the ODE system in eq. (12)

⎧⎪⎨⎪⎩
𝑑

𝑑𝑡
Φ(𝑡) = 𝐹 (Φ(𝑡)),

Φ(0) = Φ0,
(13)

ith 𝐹 the reactive kinetics and Φ is a vector notation for the unknowns. The problem in eq. (13) is solved by an implicit method 
sed on the variable order backward-differentiation formula [38], as implemented in the python SciPy package, and a time step 
495

 = 0.1 second is used.
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. 6. Algae biofilm thickness over time. This figure displays the algae biofilm height along the spatial variable 𝑥 over a seven-day simulation within a nutrient-limited 
vironment. On Day 3, the nutrient in the wastewater depletes and stalls algae biofilm growth.

We initialize our values of A, B, and C by (𝐴0, 𝐵0, 𝐶0) =
(

1−𝐶0
1+𝜏𝜎𝐼

, 𝜏𝜎𝐼(1−𝐶0)
1+𝜏𝜎𝐼

, 𝐶0

)
, making it compatible with the steady-state solution 

 the model in [18]. Here, 𝐶0 is a hyper-parameter indicating the proportion of cells in an inhibited state. Since the initial state is 
known, we assume 𝐶0 = 0.2 for all our numerical simulations. A detailed investigation of the effect of 𝐶0 will not be elaborated. 
so, 𝑁 = 15 is picked in the numerical simulations unless otherwise specified.

 Results

Several simulations were conducted to explore the inclusion of empirical PPFD values and the spatial variable 𝑥 for our model. 
herwise specified, the parameters used to produce these figures are taken from the parameter tables in the previous section. For 
l simulations utilizing the real PPFD values in Fig. 4, we use 𝑡 = 8 hours for the data at the beginning of the simulation to mimic a 
rt at 8:00 AM for the PPFD.

1. Algae biofilm growth in a nutrient-limited environment

For the first numerical study, we perform a seven-day simulation in a nutrient-limited setting using the light data presented 
 Fig. 4. The simulation results are summarized in Fig. 6. The algae biofilm height oscillates following the diurnal cycle of the 
otosynthetic photon flux density (PPFD) light data shown in Fig. 4. During daylight hours, as indicated in Fig. 4, the PPFD is high, 
omoting biomass growth. Conversely, with PPFD at 0 μmol𝑚−2𝑠−1 overnight, there is no biomass growth, and the dynamics of the 
gae biofilm are primarily governed by cellular respiration. As shown in Fig. 6, the biofilm undergoes net growth from 0 < 𝑡 < 3
ys. However, by approximately 𝑡 = 3 days, the nutrient in the wastewater, 𝐸𝑇 , depletes to 0 𝑚𝑔∕𝐿, limiting further growth of the 
gae biofilm. The lack of nutrients in the wastewater from 𝑡 = 3 days onwards leads to a net reduction in biomass for all substratum 
cations. The numerical results indicate that our proposed model can capture the dynamics effectively.
Fig. 7 depicts the nutrient concentration of Fig. 6 over time. In the short time period, as shown in Fig. 7(a), one can notice the 
trient concentration in the algae biofilms, 𝐸, fluctuates periodically, accurately mirroring the RABR’s rotation in and out of the 
astewater. Concurrently, the nutrient concentration in the wastewater, 𝐸𝑇 , gradually decreases, indicative of nutrient consumption 
 the algae biofilm. Over an extended one-day period, as illustrated in Fig. 7(b), the nutrient concentrations in both the algae 
ofilm and wastewater are consistent, with the concentration in the algae biofilm being marginally lower. For every day, as Fig. 7(c) 
monstrates, nutrient consumption occurs rapidly during daylight hours and stalls at night due to the absence of sunlight. This 
ure further validates that our proposed model can accurately capture the dynamics of nutrient depletion over time.

2. Algae biofilm growth with a RABR deactivation

In the next study, we conduct a seven-day simulation to emulate a malfunction or maintenance scenario in the RABR. Initially, 
e algae biofilm is in a nutrient-rich environment. From Day 0 to Day 3, the algae biofilm’s state is similar to that depicted in Fig. 6, 
hibiting homogeneity across the spatial variable 𝑥. On Day 3, a mechanical malfunction occurs, halting the RABR’s rotation (𝑣 = 0
𝑠) for 24 hours. During this period, part of the algae biofilm remains in the air regime (Γ(𝑥, 𝑡) = 1), while the rest is in the water 
gime (Γ(𝑥, 𝑡) = 0). Recall our parameter selection in Table 2, 3 meters of the substratum are exposed to the air and 4 meters to the 
astewater.

At 𝑡 = 3 days, Γ(𝑥, 𝑡) = 0 for 0 < 𝑥 < 4. In this stalled phase, the differences in biofilm growth and decay mechanisms between the 
ater and air regimes become more pronounced. The biofilm in the water regime (0 < 𝑥 < 4) for 𝑡 = 3 days experiences no growth 
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e to the absence of photosynthetic photon flux density (PPFD) and gradually diminishes, influenced by cellular respiration and 
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. 7. Nutrient depletion over time. This figure illustrates (a) the nutrient concentration over a short period, (b) the nutrient concentration over a one-day period, 
d (c) the nutrient concentration over a long period. In the figure, both the nutrient in the algae biofilm 𝐸(𝑡) ∶= 𝐸(0, 𝑡) and the averaged nutrient in the wastewater 
(𝑡) are visualized.

etabolism. Conversely, the biofilm in the air regime for 𝑡 = 3 days (4 < 𝑥 < 7), although exposed to PPFD, suffers from accelerated 
trient depletion and water evaporation. The stress is more severe in the air regime, leading to a heterogeneous biofilm distribution 
ong 𝑥. On Day 4, the RABR is repaired and resumes normal rotation. During the remaining simulation days, the algae biofilm 
adually recovers and is approximately homogeneous again by 𝑡 = 7 days.
The biofilm heights on Day 3 and Day 4 are visualized in Fig. 9. As we can tell from Fig. 9(a), the algae biofilm is roughly 
mogeneous on Day 3. This is due to the continuous rotation of the RABR in and out of the wastewater on a faster time scale. 
e algae biofilm at different locations of the substratum has equal access to the nutrients from the wastewater. However, due 
 the RABR’s halted rotation, the algae biofilms in the air and wastewater experience different stress, leading to a heterogeneous 
stribution on Day 4, as illustrated in Fig. 9(b).
In the remainder of this paper, we simulate the algae biofilm growth in a nutrient-rich environment. This is achieved by replacing 
e wastewater in the container every two days during long-time simulations. This approach is designed to mimic the scenario in 
hich the wastewater retention time is two days.

3. Impact of the harvesting patterns on biomass productivity

Next, we investigate the impact of non-homogeneous harvesting strategies on the height and productivity of algae biofilm. The 
gae biofilm yield is defined as the net growth in the RABR with the unit 𝑔∕𝑚2, which includes the biomass harvested and the 
rtion remaining in the RABR. The productivity 𝑃 of the algae biofilm for the upcoming simulations is calculated by dividing the 
eld of the algae biofilm by the elapsed time and the total surface area of the substratum, i.e.,

𝑃 ∶=
yield of algae biofilm

elapsed time
,

ith the unit 𝑔∕(𝑚2𝑑). We will explore five strategies: no harvesting, uniform harvesting, checker harvesting, linear harvesting, and 
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adratic harvesting. The details for the harvesting strategies are presented in the previous section, with a summary shown in Fig. 5. 
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. 8. Alage biofilm thickness over time. This figure displays the algae biofilm height along the spatial variable 𝑥 over a seven-day simulation in which 𝑣 = 0 between 
ys 3 and 4. The lack of spinning creates a heterogeneous algae biofilm and recovers into a more homogeneous structure after day 4. We have used 𝑁 = 14 for this 
ulation.

Table 4

Productivity of selected harvest strategies.
Strategy Productivity 𝑔∕𝑚2𝑑

No Harvest 2.2277

Uniform Harvest 2.1713

Checker Harvest 2.1981

Linear Harvest 2.2000

Quadratic Harvest 2.2066

 better compare different harvesting patterns, we present a control simulation with no harvesting on the algae biofilm, given in 
g. 10.

Fig. 11 summarizes the numerical results with various harvesting strategies, with a harvest executed at 𝑡 = 2 days and a residual 
pth ℎ𝑎 = 0.0005𝑚. Before harvesting, for 0 < 𝑡 < 2 days, the algae biofilm heights within all subfigures of Fig. 11 align with that in 
g. 10. Following the harvest at 𝑡 = 2 days, the algae biofilm becomes heterogeneous along the spatial variable 𝑥 for the checker, 
ear, and quadratic harvesting strategies. However, within 48 hours of the post-harvest period, the algae biofilms in each harvesting 
ategy become homogeneous again along 𝑥. Among these strategies, the checker harvest leads to the quickest homogenization of 
e algae biofilm, followed by the quadratic and linear harvests, as indicated in Fig. 11. This uniform recovery of the algae biofilm 
st-harvest is attributed to the RABR’s consistent rotation, which ensures equal and adequate nutrient distribution.
The productivity results at 𝑡 = 4 days are presented in Table 4 for a comprehensive comparison of the harvesting strategies. An 
alysis of these results suggests that, given the parameters used in Fig. 11, 𝜈 = 2 days is too frequent to benefit algae biofilm growth. 
tably, the strategy yielding the highest algae biofilm productivity was to avoid harvesting altogether, resulting in productivity of 
2277𝑔∕(𝑚2𝑑) when considering the total biomass yield over the 4-day period. Among the strategies that involved harvesting, the one 
moving the least amount of algae biofilm, the quadratic harvesting strategy, achieved productivity of 2.2066𝑔∕(𝑚2𝑑). Conversely, 
e strategy that harvested the most algae biofilm at 𝑡 = 2 days, the uniform harvesting strategy, resulted in a lower productivity of 
1713𝑔∕(𝑚2𝑑). In other words, the more biomass removed at 𝑡 = 2 days, the lower the resulting productivity from the simulations 
picted in Fig. 11. This indicates that harvesting frequency would impact biomass productivity, which we will explore later in this 
per.

4. Influence of light exposure and light intensity on biomass productivity

Next, we investigate the impact of light on biomass productivity, considering two scenarios: altering maximum light intensity and 
anging the ratio of substratum exposure to air in the RABR.
In the first scenario, we introduce the parameter 𝛾 to modify the maximum light intensity, namely replacing 𝐼0(𝑡) in eq. (3) by 

̂0(𝑡). The numerical predictions for biomass productivity over a 4-day period are summarized in Fig. 12(a). The results reveal that 
cessively strong and weak light conditions decrease biomass productivity. This finding underscores the necessity of optimal light 
anagement, potentially involving light filters for overly intense light or artificial lighting in low-light conditions. Note that the 
ergy efficiency of artificial lighting should also be considered in such cases.
In the second scenario, we investigate the impact of varying 𝑟0, the ratio of substratum exposed to air, while other factors remain 
ed. The numerical outcomes are illustrated in Fig. 12(b). This figure indicates that a higher percentage of substratum exposed 
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 the air benefits the algae biofilm productivity. However, there is a threshold for productivity to decrease afterward. Prolonged 
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Fig. 9. Algae biofilm height at Day 3 and Day 4 for the study in Fig. 8.

posure of the substratum to air would ensure the algae biofilm has sufficient exposure to the sunlight for photosynthesis, thus 
creasing biomass productivity. However, if an excessive percentage of substratum is exposed to the air, it would lead to insufficient 
ntact time for the substratum in the wastewater, which is essential for absorbing nutrients necessary for biomass production. 
erefore, finding an optimal balance in substratum exposure to sunlight and wastewater is critical.

5. Influence of harvesting frequency on biomass productivity

To explore the impact of different harvesting frequencies on biomass productivity, we conducted four 56-day simulations with 
rying harvest intervals (𝜈): 1 day, 2 days, 3.5 days, 7 days, 14 days, and 28 days. We employed the checker harvesting strategy 
r these simulations and chose a residual algae biofilm thickness of ℎ𝑎 = 0.0005𝑚. The results of 𝜈 = 1, 2, 3.5 and 7 are illustrated in 
g. 13. The outcomes indicate that excessive harvesting may prevent the algae biofilm from attaining greater thickness.
To quantitatively compare the results of different 𝜈 values shown in Fig. 13, we summarize the productivity results at 𝑡 = 56
ys in Table 5. In line with our findings from Table 4, the parameters selected for the simulations in Fig. 13 favor a less frequent 
rvesting approach than 𝜈 = 2 days. Among the frequencies examined, a frequency of 𝜈 = 3.5 days yielded the highest productivity 
 11.4757𝑔𝑚−2𝑑−1, while the least frequent harvest (𝜈 = 28 days) resulted in the lowest productivity of 3.1737𝑔𝑚−2𝑑−1. However, 
g. 13 also shows that less frequent harvesting allows for more robust biomass growth. However, it does not necessarily lead to the 
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ghest biomass yield over an extended period. This is mainly because a thicker algae biofilm can block sunlight from penetrating the 
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. 10. Algae biofilm height along the spatial variable 𝑥 over a four-day simulation. In this figure, the vertical axis represents the spatial location, and the horizontal 
is represents the time. The algae biofilm resides in a nutrient-rich system, and no harvesting occurs. This is shown as a control compared to the results in later 
cussions.

. 11. A comparison of different harvesting strategies for the RABR over four-day simulations. At 𝑡 = 2 days, a harvest is performed in each simulation. A different 
rvesting strategy is used in each subfigure in which ℎ𝑎(𝑥) = 0.0005 meters. See Methods for details on each harvesting strategy.

omass near the substratum, thereby limiting biofilm growth. In summary, Table 5 suggests that a balance in harvesting frequency, 
., neither too frequent nor too infrequent, is crucial for maximizing biomass productivity.
To better understand the effects of harvesting frequency on biomass yield and productivity, we further illustrate the results in 
g. 14. As shown in Fig. 14(a), more biomass is produced with 𝜈 = 3.5 days, compared to the results for 1, 2, or 7 days over a 
ng time. Additionally, productivity with 𝜈 = 7 days is higher than other frequencies in the early stages but decreases over time. 
is indicates that an adaptive harvesting strategy could be beneficial; that is, the harvesting frequency should be adjusted based 
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 other operating factors when sufficient laboratory data is available. Moreover, this numerical study further demonstrates the 
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. 12. Effects of light exposure and intensity on biomass productivity. This figure shows (a) the biomass productivity under various light intensities and (b) the 
mass productivity with various ratios of substratum exposed to the air in the RABR.

. 13. This figure compares four harvesting frequencies in the RABR over a series of 56-day simulations. The checker harvest strategy is employed in each subfigure, 
th ℎ𝑎 = 0.0005𝑚.

Table 5

Productivity of selected harvest frequencies.
Harvest Interval (𝜈) Productivity (𝑔𝑚−2𝑑−1)

1 day 8.9858

2 days 10.4820

3.5 days 11.4757

7 days 8.1733

14 days 5.0884

28 days 3.1737
501
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. 14. Effect of harvesting frequency on biomass productivity. This figure shows (a) the total biomass produced at different harvesting frequencies and (b) the 
oductivity across various harvesting frequencies over time.

proximation power of our proposed model and its ability to investigate optimal control and design of RABR to enhance biomass 
oductivity and nutrient removal.

 Conclusion

In this work, we have developed and presented a predictive mathematical model to investigate the complex growth dynamics of 
gae biofilms and the impacts of various environmental and operational factors on the algae biofilm productivity in the rotating algae 
ofilm reactors (RABRs). Our model considers both the photosynthetic mechanism and the spatial location across the substratum 
rface in the RABR, enabling a more accurate simulation of biofilm growth in RABRs. Our numerical study demonstrated its 
pabilities in studying the effects of the RABR’s spatial heterogeneity on algae biofilm growth, offering valuable insights into the 
terplay between various environmental and operational factors and their influence on biomass productivity.
Our findings reveal that while biomass productivity does not vary significantly with different harvesting types, it is sensitive to 
e residual thickness of the algae biofilm left post-harvest. Both excessively thick and thin residual algae biofilm after harvesting 
n diminish productivity. Meanwhile, harvesting frequency also plays a crucial role. Overly frequent harvesting hurts biomass 
owth, while infrequent harvesting allows the development of a thick algae biofilm, which may reduce productivity due to limited 
nlight penetration into the biomass closer to the substratum. Therefore, a balanced harvesting frequency is essential for optimal 
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oductivity. Moreover, our results indicate the importance of light management, as extreme sunlight conditions—either too strong 
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 too weak—can limit biomass production. Implementing a light shed or filter for intense light conditions and providing artificial 
hting for low-light environments may increase biomass productivity. Additionally, the proportion of substratum exposure to air 
 the RABR significantly influences biomass production. The proposed mathematical model provides a theoretical framework for 
ploring and identifying the optimal environmental and operational parameters to enhance algae biofilm growth and increase 
omass productivity in the RABR system for wastewater treatment.
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