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Abstract

In this paper we propose a variant of enriched Galerkin methods for second order
elliptic equations with over-penalization of interior jump terms. The bilinear
form with interior over-penalization gives a non-standard norm which is different
from the discrete energy norm in the classical discontinuous Galerkin methods.
Nonetheless we prove that optimal a priori error estimates with the standard
discrete energy norm can be obtained by combining a priori and a posteriori
error analysis techniques. We also show that the interior over-penalization is
advantageous for constructing preconditioners robust to mesh refinement by
analyzing spectral equivalence of bilinear forms. Numerical results are included
to illustrate the convergence and preconditioning results.
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1. Introduction

It is well known that numerical fluxes of Galerkin methods with Lagrange
finite elements (CG) do not satisfy local mass conservation. Since local mass
conservation is an important physical principle in numerical simulations, numer-
ical methods providing locally mass conservative numerical flux with/without
postprocessing have been intensively studied. These include post-processing of
the CG methods [1, 2, 3], the mixed method [4, 5, 6, 7], and a class of discon-
tinuous Galerkin (DG) methods [8, 9, 1, 1, 1]), to name a few.

Enriched Galerkin (EG) methods [1] are proposed to achieve locally mass
conservative numerical methods with low computational costs. Compared to
classical DG methods for the primal formulation, EG methods have much fewer
degrees of freedom and provide a simple local post-processing for reconstruction
of locally mass conservative numerical fluxes. For efficient solvers, block diag-
onal preconditioners based on algebraic multigrid methods have been proposed
as efficient preconditioners for EG methods [1]. However, the preconditioning
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analysis in this work relies on the full elliptic regularity assumption which re-
quires restrictive conditions on the domain geometry and material coefficients.
In fact, numerical experiments show that the block preconditioners in [1] are
not scalable with mesh refinement when the boundary condition is not a pure
Neumann boundary condition.

The purpose of this paper is to develop new EG methods that retain the ad-
vantages of local mass conservation while also providing more robust fast solvers
that do not need restrictive assumptions on domain geometry and boundary
conditions. The key in the development of these new EG methods is to replace
the original bilinear form with a new bilinear form that has an over-penalized
interior jump term. As such, we call them interior over-penalized enriched Galer-
kin methods (IOP-EG). The over-penalization parameters depend on the mesh
sizes, so the over-penalized jump term and other terms in the new bilinear form
do not have the same scaling property. Because of these incompatible scaling
properties, the standard techniques for error analysis are not available for the
optimal error estimates of the new EG methods.

The first main result in this paper is an error analysis with optimal error
estimates. To overcome the difficulty caused by the bilinear forms with differ-
ent scalings, we use a medius analysis idea utilizing a posteriori error estimate
results for our a priori error estimates. Through this idea we can obtain optimal
error estimates for IOP-EG methods. The second main result is the construction
of scalable preconditioners for the IOP-EG methods. More precisely, we pro-
pose an abstract form of preconditioners based on appropriate mesh-dependent
norms and carry out spectral equivalence analysis for the abstract precondi-
tioners following the framework in [1]. It turns out that over-penalization is
crucial for construction of scalable preconditioners via an analysis of spectral
equivalence.

The paper is organized as follows. In Section 2 we introduce notation and
define the IOP-EG methods. In Section 3, we prove optimal error estimates
of the IOP-EG methods with a minimal regularity assumption using a medius
error analysis. Finally, numerical results illustrating our theoretical results and
concluding remarks will be given in Sections 5 and 6.

2. Preliminaries

2.1. Notations

For a set D ⊂ Rn we use L2(D) to denote the space of square integrable
functions on D. For a finite-dimensional vector space X, L2(D;X) is the space
of X-valued square-integrable functions on D whose inner product is naturally
defined with the inner product on X and the inner product on L2(D).

Let Ω be a bounded polygonal/polyhedral domain in Rn with n = 2 or 3.
For a nonnegative real number s, Hs(Ω) denotes the standard Sobolev spaces
based on the L2 norm (see [1] for details). We use Th to denote a shape-regular
triangulation of Ω where h is the maximum diameter of triangles or tetrahedra
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in Th. We also use Eh to denote the set of facets in Th, i.e., the set of (n − 1)-
dimensional simplices in the triangulation determined by Th. In particular, E0

h

and E∂
h are the sets of interior and boundary facets of Th, respectively.

For e ∈ Eh and functions f, g ∈ L2(e) we define ⟨f, g⟩e =
∫︁
e
f · g ds. For a

set Γ which is a union of facets in Eh, we define

⟨f, g⟩Γ =
∑︂
e⊂Γ

⟨f, g⟩e.

This notation is naturally extended to ⟨f , g⟩Γ for vector-valued functions f , g ∈
L2(e;Rn) with the natural inner product on Rn.

For an integer k ≥ 0 and for each T ∈ Th, Pk(T ) is the space of polynomials
of degree ≤ k on T , and Pk(Th) denotes the space

Pk(Th) =

{︄{︁
q ∈ H1(Ω) : q|T ∈ Pk(T ), T ∈ Th

}︁
if k ≥ 1{︁

q ∈ L2(Ω) : q|T ∈ Pk(T ), T ∈ Th
}︁

if k = 0
.

We use X ≲ Y to denote an inequality X ≤ CY with a constant C which
depends only on the shape regularity of Th and polynomial degree k, and X ∼ Y
stands for X ≲ Y and Y ≲ X.

2.2. Enriched Galerkin methods with interior over-penalization

In this subsection we introduce the interior over-penalized enriched Galerkin
methods.

For V c
h = Pk(Th) with k ≥ 1 and V 0

h = P0(Th), we define Vh as the linear
space

Vh = {vc + v0 : vc ∈ V c
h , v

0 ∈ V 0
h }.

A function v ∈ Vh with v = vc + v0 is determined by the standard degrees of
freedom of V c

h and V 0
h . However, the degrees of freedom of Vh is not the union

of the two sets of degrees of freedom, of V c
h and of V 0

h . In fact, a piecewise
polynomial function v ∈ Vh may have more than one expression as a sum of
elements in V c

h and V 0
h . If we use v = vc+v0 with vc ∈ V c

h , v
0 ∈ V 0

h to denote an
element in Vh, the zero function can have infinitely many expressions by choosing
vc = −v0 = C for any constant C. However, such non-unique expressions are
unique up to constant addition. To see it, assume that v = vc1 + v01 = vc2 + v02 .
Then vc1 − vc2 = v02 − v01 ∈ V c

h ∩ V 0
h , so vc1 and vc2 are the same up to constant

addition. So are v01 and v02 .
We use Vh to denote the space V c

h × V 0
h . Note that one element in ϕ ∈ Vh

uniquely determines ϕc ∈ V c
h and ϕ0 ∈ V 0

h . Let Vker
h be the one dimensional

subspace Vker
h := {ϕ ∈ Vh : ϕc = −ϕ0} in Vh. If we denote the quotient space

Vh/Vker
h by V⊥

h , there is a one-to-one correspondence between Vh and V⊥
h .

To introduce the bilinear form for the enriched Galerkin method, we define
the jump and average operators of functions which have well-defined traces on
edges/faces in the context of classical discontinuous Galerkin methods. For
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e ∈ E∂
h

[[q]]|e = q|en, {{q}} |e = q|e, [[q]]|e = q|e · n, {{q}} |e = q|e

where q and q are R- and Rn-valued functions such that their traces on e are
well-defined, and n is the outward unit normal vector field on e. For e ∈ E0

h,
let T+ and T− be the two elements sharing e as e = ∂T+ ∩ ∂T−. If q is a scalar
function on T+ ∪ T−, then we use q± and ∇q± to denote the restrictions of q
and ∇q on T+ and T−. We use n± to denote the unit outward normal vector
fields of T± and we again omit the restriction |e if it is clear in context. Then
the jumps and the averages of q and q on e ∈ E0

h are defined by

[[q]]|e = q+n+ + q−n−, {{q}} |e =
1

2
(q+ + q−),

[[q]]|e = q+ · n+ + q− · n−, {{q}} |e =
1

2
(q+ + q−).

If e ∈ Eh is clear in context, we will use [[q]] instead of [[q]]|e for the jump of q on
e ∈ Eh. The same simplification will apply to other quantities.

We consider a model second order elliptic equation

−∆u = f in Ω, (1)

u|ΓD
= uD on ΓD, ∇u · n|ΓN

= uN on ΓN (2)

where ΓD, ΓN are disjoint open subsets of ∂Ω, the boundary of Ω, such that
ΓD ∪ ΓN = ∂Ω.

Let γ > 0 be a sufficiently large positive constant. We use ED
h to denote the

set {e ∈ E∂
h : e ⊂ ΓD}. For V := H1(Ω), let a : V × Vh → R be

a(v, w) = (∇v,∇w) +
⟨︁
γh−1

e v, w
⟩︁
ED
h

(3)

where ⟨︁
γh−1

e v, w
⟩︁
ED
h

:=
∑︂
e∈ED

h

⟨︁
γh−1

e v, w
⟩︁
e

with he, the diameter of e ∈ Eh. We also define the bilinear form ah on Vh × Vh

as

ah(v, w) = (∇v,∇w)−
(︂
⟨{{∇v}} , [[w]]⟩E0

h∪ED
h
+ ⟨[[v]], {{∇w}}⟩E0

h∪ED
h

)︂
(4)

+
⟨︁
γh−1−α

e [[v]], [[w]]
⟩︁
E0
h

+
⟨︁
γh−1

e [[v]], [[w]]
⟩︁
ED
h

for α ≥ 0. Here ∇ for v ∈ Vh is the element-wise gradient operator. If α = 0,
this is the bilinear form of the symmetric interior penalty discontinuous Galerkin
method (SIPG), which is used in the enriched Galerkin (EG) method in [1]. In
this paper we are interested in the cases α ≥ 1 such that the interior penalization
terms are overly penalized. We will call these methods interior over-penalized
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enriched Galerkin methods (IOP-EG). For example, if α = 1, then ah is

ah(v, w) = (∇v,∇w)−
(︂
⟨{{∇v}} , [[w]]⟩E0

h∪ED
h
+ ⟨[[v]], {{∇w}}⟩E0

h∪ED
h

)︂
+
⟨︁
γh−2

e [[v]], [[w]]
⟩︁
E0
h

+
⟨︁
γh−1

e [[v]], [[w]]
⟩︁
ED
h

.

In IOP-EG methods we seek uh ∈ Vh such that

ah(uh, v) = F(v) ∀v ∈ Vh (5)

for ah in (4) with

F(v) := (f, v) + ⟨uN , v⟩ΓN
+ ⟨uD,n · ∇v⟩ΓD

+
⟨︁
γh−1

e uD, v
⟩︁
ΓD

. (6)

To show the stability of (5), let us define a norm on Vh associated with ah as

∥v∥2ah
:= (∇v,∇v) +

⟨︁
γh−1−α

e [[v]], [[v]]
⟩︁
E0
h

+
⟨︁
γh−1

e [[v]], [[v]]
⟩︁
ED
h

. (7)

For later use, we also define

∥v∥2ah,0
:= (∇v,∇v) +

⟨︁
γh−1−α

e [[v]], [[v]]
⟩︁
E0
h

, ∥v∥2ah,∂
:=
⟨︁
γh−1

e [[v]], [[v]]
⟩︁
ED
h

. (8)

By the inverse trace inequality and the standard argument in DG methods, it
is not difficult to show

|ah(v, w)| ≲ ∥v∥ah
∥w∥ah

for v, w ∈ Vh. We can obtain that

| ⟨{{∇v}} , [[v]]⟩E0
h∪ED

h
| ≤ 1

2
(∇v,∇v)

1
2
⟨︁
γh−1

e [[v]], [[v]]
⟩︁ 1

2

E0
h∪ED

h

(9)

for sufficiently large γ. Since h ≤ 1, if γ is sufficiently large, then we can use
(9) to derive a coercivity inequality

Cco ∥v∥2ah
≤ ah(v, v) (10)

with Cco > 0 independent of 0 < h ≤ 1. Therefore (5) is stable.

3. The a priori error estimates

In this section we prove the a priori error analysis of the IOP-EG methods.
For the analysis we adopt the idea of [1] utilizing estimates of the a posteriori
error analysis. As a consequence, we prove optimal a priori error estimates with
minimal regularity assumption of exact solutions.

We recall efficiency estimates of the a posteriori error analysis in Nitsche’s
method [1, 1]. We take into account only the data oscillation of f in the dis-
cussion below for simplicity. For detailed discussion with data oscillations of
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boundary conditions, we refer to [1]. For v ∈ V c
h the local efficiency estimates

h2
T ∥f +∆v∥20,T ≲ (∇(u− v),∇(u− v))20,T + (oscT (f))

2, (11)

he ∥[[∇v]]∥20,e ≲
∑︂

T∈Th,e⊂T

(︁
(∇(u− v),∇(u− v))20,T + (oscT (f))

2
)︁

(12)

are proved in [1] with

oscT (f) := hT ∥f − fh∥0,T , osc(f) :=

(︄∑︂
T∈Th

(oscT (f))
2

)︄ 1
2

where fh is the L2 projection of f into V c
h .

Here we give some definitions and results which are necessary in our a priori
error analysis. We will use V 00

h to denote the space of mean-value zero piecewise
constant functions, i.e.,

V 00
h := {v ∈ V 0

h :

∫︂
Ω

v dx = 0}.

Suppose that D is a union of (closed) simplices in Th and intD is the interior of
D. A discrete seminorm |v|H1

h(D) for element-wise H1 function v is defined as

|v|2H1
h(D) = ∥∇v∥2L2(D) +

∑︂
e∈E0

h,e⊂intD

h−1
e ∥[[v]]∥20,e. (13)

If D = Ω, we simply use H1
h instead of H1

h(Ω).
For a vertex z in the triangulation Th, T ∈ Th, e ∈ Eh, we define

Mz =
⋃︂
z∈T

{T ∈ Th : z ∈ T}, MT =
⋃︂
z∈T

Mz, Me =
⋃︂

T∈Th,e⊂∂T

MT . (14)

Geometrically, these are the union of simplices which become proper neighbor-
hoods whose interiors contain z, T , and e, respectively. For v ∈ V 0

h it is known
that there is a linear interpolation operator Ih : V 0

h → V c
h such that,

∥v − Ihv∥L2(T ) ≲ hT |v|H1
h(MT ) ∀T ∈ Th, (15)

∥v − Ihv∥L2(e) ≲ h
1
2
e |v|H1

h(Me) ∀e ∈ E0
h ∪ ED

h , (16)

∥∇Ihv∥L2(T ) ≲ |v|H1
h(MT ) ∀T ∈ Th (17)

hold, where the implicit constants in these estimates are independent of the
mesh sizes (see [2, Theorem 3.1]).
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We define T D
h and Eh(T D

h ) as

T D
h := {T ∈ Th : ∂T ∩ ∂Ω ⊂ ΓD}, (18)

Eh(T D
h ) := {e ∈ Eh : e ⊂ ∂T, for some T ∈ T D

h }. (19)

Lemma 1. For v0 ∈ V 00
h it holds that⃦⃦

v0
⃦⃦
ah,∂

≤ C max
e∈ED

h

{h− 1
2

e }max
e∈E0

h

{hα/2
e }

⃦⃦
v0
⃦⃦
ah,0

(20)

with C depending on the shape regularity, the constants of the trace theorem and
the discrete Poincaré inequality.

Proof. Suppose that T ∈ T D
h and e ∈ ED

h with e ⊂ ∂T , are fixed. If we set

z ∈ V 00
h as z = h

−1/2
e v0, then, by (16),⟨︁

h−1
e v0, v0

⟩︁
e
= ∥z∥2L2(e) ≤ 2 ∥Ihz∥2L2(e) + Che|z|2H1

h(Me)

≤ 2h−1
e

⃦⃦
Ihv

0
⃦⃦2
L2(e)

+ C|v0|2H1
h(Me)

.

Applying a similar argument for every such pair (T, e), T ∈ T D
h ,⃦⃦

v0
⃦⃦2
ah,∂

≤ 2 max
e∈ED

h

{h−1
e }γ

⃦⃦
Ihv

0
⃦⃦2
L2(ΓD)

+ Cγ|v0|2H1
h
. (21)

By the trace theorem and the triangle inequality, we have⃦⃦
Ihv

0
⃦⃦
L2(ΓD)

≲
⃦⃦
Ihv

0
⃦⃦
L2(Ω)

+
⃦⃦
∇Ihv

0
⃦⃦
L2(Ω)

≤
⃦⃦
Ihv

0 − v0
⃦⃦
L2(Ω)

+
⃦⃦
v0
⃦⃦
L2(Ω)

+
⃦⃦
∇Ihv

0
⃦⃦
L2(Ω)

.

By a discrete Poincaré inequality (cf. [2, Remark 1.1]),
⃦⃦
v0
⃦⃦
L2(Ω)

≲ |v0|H1
h

because v0 ∈ V 00
h . Applying this discrete Poincaré inequality, (15), and (17), to

the above inequality, we get⃦⃦
Ihv

0
⃦⃦
L2(ΓD)

≲ |v0|H1
h
.

From this, (21), and |v0|H1
h
≤ maxe∈E0

h
γ−1/2h

α/2
e

⃦⃦
v0
⃦⃦
ah,0

, we can obtain

⃦⃦
v0
⃦⃦
ah,∂

≤ C max
e∈ED

h

{h− 1
2

e }max
e∈E0

h

{hα/2
e }

⃦⃦
v0
⃦⃦
ah,0

.

In the theorem below, we assume that maxe∈ED
h
{h− 1

2
e }maxe∈E0

h
{hα/2

e } is

bounded by Ch(α−1)/2 with C > 0 independent of the mesh sizes. This condi-
tion is fulfilled, for example, if Th is quasi-uniform. Under this assumption, we
prove the a priori error estimates for solutions u ∈ Hs(Ω), s ≥ 1, of (1)–(2).
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Theorem 1. Suppose that u and uh are the solutions of (1)–(2) and (5). As-
sume that α ≥ 1 and

max
e∈ED

h

{h− 1
2

e }max
e∈E0

h

{hα/2
e } ≤ Ch(α−1)/2

with C > 0 independent of the mesh sizes. Then,

∥u− uh∥ah
≤ C( inf

v∈V c
h

∥u− v∥1 + osc(f)) (22)

with C > 0 independent of the mesh sizes. In addition, the interior jump terms
satisfy

|u0
h|H1

h
≲ hα

(︃
inf

v∈V c
h

∥u− v∥1 + osc(f)

)︃
. (23)

We remark that (22) can be replaced by ∥u− uh∥ah
≤ Chs ∥u∥s+1, a more

common form of error estimate, if 1 ≤ s ≤ k + 1 because ∥f∥s−1 ≤ C ∥u∥s+1.

Proof. We define Πc
h : H1(Ω) → V c

h by the linear map seeking wc
h ∈ V c

h such
that

a(wc
h, v) = F(v) ∀v ∈ V c

h . (24)

Further, we define Π0
h : (V 00

h )∗ → V 00
h by the linear map seeking the solution

w0
h ∈ V 00

h of

ah(w
0
h, v) = ah(Π

c
hu, v)−F(v) ∀v ∈ V 00

h . (25)

We first claim that for v0 ∈ V 00
h

|ah(Π0
hu, v

0)| ≲
(︃

inf
w∈V c

h

∥u− w∥1 + osc(f)

)︃
|v0|H1

h
. (26)

To prove it, we use (25), the Galerkin orthogonality, and the integration by
parts to get

ah(Π
0
hu, v

0) = ah(Π
c
hu, v

0 − Ihv
0)−F(v0 − Ihv

0)

= −
∑︂
T∈Th

(f +∇ · (∇Πc
hu), v

0 − Ihv
0)

−
∑︂

e∈E0
h∪ED

h

⟨︁
[[∇Πc

hu]], v
0 − Ihv

0
⟩︁
e
.
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By (15) and (16), we have(︁
f +∆Πc

hu, v
0 − Ihv

0
)︁
T
= ∥f +∆Πc

hu∥0,T
⃦⃦
v0 − Ihv

0
⃦⃦
0,T

≲ hT ∥f +∆Πc
hu∥0,T |v0|H1

h(MT ),⟨︁
[[∇Πc

hu]], v
0 − Ihv

0
⟩︁
e
≤ ∥[[∇Πc

hu]]∥0,e
⃦⃦
v0 − Ihv

0
⃦⃦
0,e

≲ h
1
2
e ∥[[∇Πc

hu]]∥0,e |v
0|H1

h(Me).

The elements in {MT } and {Me} overlap only finitely many times with a uni-
form finite number, so the Cauchy–Schwarz inequality and the a posteriori error
estimates (11)–(12) yield (26).

Note that

|v0|2H1
h
≲ hα

⃦⃦
v0
⃦⃦2
ah,0

≲ hα
⃦⃦
v0
⃦⃦2
ah

. (27)

By this and by taking v0 = Π0
hu in (26),

h−α|Π0
hu|2H1

h
≲
⃦⃦
Π0

hu
⃦⃦2
ah,0

≤
⃦⃦
Π0

hu
⃦⃦2
ah

≲ |Π0
hu|H1

h

(︃
inf

w∈V c
h

∥u− w∥1 + osc(f)

)︃
,

so we have

|Π0
hu|H1

h
≲ hα

(︃
inf

w∈V c
h

∥u− w∥1 + osc(f)

)︃
, (28)

⃦⃦
Π0

hu
⃦⃦
ah

≲ hα/2

(︃
inf

w∈V c
h

∥u− w∥1 + osc(f)

)︃
. (29)

We now define Πh : H1(Ω) → Vh as Πh = Πc
h +Π0

h. Then

ah(uh −Πhu, uh −Πhu)

= F(uh −Πhu)− ah(Πhu, uh −Πhu)

= F(uc
h −Πc

hu) + F(u0
h −Π0

hu)− ah(Π
c
hu, u

c
h −Πc

hu)

− ah(Π
0
hu, u

c
h −Πc

hu)− ah(Π
c
hu, u

0
h −Π0

hu)− ah(Π
0
hu, u

0
h −Π0

hu).

Since

F(uc
h −Πc

hu)− ah(Π
c
hu, u

c
h −Πc

hu) = 0,

F(u0
h −Π0

hu)− ah(Π
c
hu, u

0
h −Π0

hu) = −ah(Π
0
hu, u

0
h −Π0

hu),
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by (24) and (25), we have

|ah(uh −Πhu, uh −Πhu)|
= |ah(Π0

hu, (Π
c
hu− uc

h)) + 2ah(Π
0
hu, (Π

0
hu− u0

h))|
= |ah(Π0

hu,Πu− uh) + ah(Π
0
hu,Π

0
hu− u0

h)| (30)

≲
⃦⃦
Π0

hu
⃦⃦
ah

∥Πhu− uh∥ah
+
⃦⃦
Π0

hu
⃦⃦
ah

⃦⃦
Π0

hu− u0
h

⃦⃦
ah

.

By Lemma 1,
⃦⃦
Π0

hu− u0
h

⃦⃦
ah,∂

≲ h(α−1)/2
⃦⃦
Π0

hu− u0
h

⃦⃦
ah,0

. Since⃦⃦
Π0

hu− u0
h

⃦⃦
ah,0

≤ ∥Πhu− uh∥ah,0
≤ ∥Πhu− uh∥ah

,

we have⃦⃦
Π0

hu− u0
h

⃦⃦
ah

≤
⃦⃦
Π0

hu− u0
h

⃦⃦
ah,0

+
⃦⃦
Π0

hu− u0
h

⃦⃦
ah,∂

≲ ∥Πhu− uh∥ah
,

therefore we can obtain

∥uh −Πhu∥ah
≲
⃦⃦
Π0

hu
⃦⃦
ah

from (30). If we use (29), then one can obtain with the coercivity of ah that

∥uh −Πhu∥ah
≲ hα/2

(︃
inf

v∈V c
h

∥u− v∥1 + osc(f)

)︃
.

In particular, by |u0
h − Π0

hu|H1
h
≲ hα/2

⃦⃦
u0
h −Π0

hu
⃦⃦
ah,0

≲ hα/2 ∥uh −Πhu∥ah,0
,

we obtain

|u0
h −Π0

hu|H1
h
≲ hα

(︃
inf

v∈V c
h

∥u− v∥1 + osc(f)

)︃
,

therefore (23) follows from this, (28), and the triangle inequality.
To complete the proof we estimate ∥u−Πhu∥ah

. By the triangle inequality
and (29),

∥u−Πhu∥ah
≤ ∥u−Πc

hu∥ah
+
⃦⃦
Π0

hu
⃦⃦
ah

≲ inf
w∈V c

h

∥u− w∥1 + osc(f)

where we used the estimate ∥u−Πc
hu∥ah

≲ infw∈V c
h
∥u− w∥1 + osc(f) which

holds because Πc
hu is the solution of Nitsche’s method of the problem (24).

Recall that the flux is z := −∇u by Darcy’s law. We now discuss recovery of
locally mass conservative numerical flux zh via local post-processing and prove
an estimate of z − zh. The key result is that the estimate is robust for the
over-penalization.

We use H(div; Ω) to denote the subspace of L2(Ω;Rn) such that the function
and its divergence are square-integrable.
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Definition 1. We say zh ∈ H(div; Ω) is locally mass conservative if

(div zh, 1T ) = (f, 1T )

for any T ∈ Th where 1T is the indicator function on T .

For construction of locally mass conservative numerical flux we use the
Raviart–Thomas–Nédélec element of order k, Nh, which has local shape func-
tions

Pk−1(T ;Rn) + xPk−1(T )

where x is the vector-valued polynomial x = (x y)T if n = 2 and x = (x y z)T

if n = 3.

Theorem 2. If we define zh ∈ Nh as

(zh, q)T = (−∇uh, q)T , q ∈ Pk−2(T ),

⟨zh · n, q⟩e =
⟨︁
−{{∇uh}} · n+ γh−1−α

e [[uh]] · n, q
⟩︁
e
, q ∈ Pk−1(e), e ∈ E0

h,

⟨zh · n, q⟩e = ⟨uN , q⟩e , q ∈ Pk−1(e), e ̸∈ E0
h ∪ ED

h ,

⟨zh · n, q⟩e =
⟨︁
−∇uh · n+ γh−1

e (uh − uD), q
⟩︁
e
, q ∈ Pk−1(e), e ∈ ED

h ,

then

∥zh +∇uh∥0 ≲ inf
w∈V c

h

∥u− w∥1 + osc(f)

with an implicit constant independent of h.

Proof. By definition zh is in H(div; Ω) and

(div zh, 1T ) =
∑︂

e⊂∂T,e∈ED
h

⟨︁
−∇uh · n+ γh−1

e (uh − uD), 1T
⟩︁
e

+
∑︂

e⊂∂T,e∈E0
h

⟨︁
−{{∇uh}}+ γh−1−α

e [[uh]] · n, 1T
⟩︁
e

+
∑︂

e⊂∂T,e̸∈E0
h∪ED

h

⟨uN , 1T ⟩e .

If we take v ∈ Vh in (5) as the indicator function 1T and use the definition of
ah in (4), then

(div zh, 1T ) = (f, 1T ),

so zh is locally mass conservative.

11



From the definition of zh, zh +∇uh satisfies

(zh +∇uh, q)T = 0, q ∈ Pk−2(T ),

and

⟨(zh +∇uh) · n, q⟩e =

⎧⎪⎨⎪⎩
⟨︁
− 1

2 [[∇uh]] + γh−1−α
e [[uh]] · n, q

⟩︁
e
, e ∈ E0

h

0, e ̸∈ E0
h ∪ ED

h⟨︁
γh−1

e (uh − uD), q
⟩︁
e
, e ∈ ED

h

(31)

for q ∈ Pk−1(e). For e ∈ E0
h, the standard scaling argument gives

∥zh +∇uh∥0,T ≲
∑︂
e⊂∂T

h
1
2
e ∥(zh +∇uh) · n∥0,e .

We now estimate the above term for three cases of e ∈ Eh. If e ̸∈ E0
h ∪ ED

h , then
there is nothing to estimate by (31). If e ∈ E0

h, then

∥zh +∇uh∥0,T ≲
∑︂
e⊂∂T

h
1
2
e

⃦⃦⃦⃦
−1

2
[[∇uh]] + γh−1−α

e [[uh]] · n
⃦⃦⃦⃦
0,e

≲
∑︂
e⊂∂T

h
1
2
e

(︂
∥[[∇uh]]∥0,e + γh−1−α

e ∥[[uh]]∥0,e
)︂
,

so we need to show⎛⎝∑︂
e∈E0

h

he∥[[∇uh]]∥20,e

⎞⎠ 1
2

+

⎛⎝∑︂
e∈E0

h

h−1−2α
e ∥[[uh]]∥20,e

⎞⎠ 1
2

≲ inf
v∈V c

h

∥u− v∥1 + osc(f). (32)

The first term in this inequality is easily obtained by (12). For the second term
note that the quasiuniformity assumption implies

∑︂
e∈E0

h

h−1−2α
e ∥[[uh]]∥20,e ≲ h−2α|u0

h|2H1
h
≲

(︃
inf

v∈V c
h

∥u− v∥1 + osc(f)

)︃2

by (23). For e ∈ ED
h , the scaling argument gives

∥zh +∇uh∥0,T ≲
∑︂
e⊂∂T

h
1
2
e

⃦⃦
γh−1

e (uh − uD)
⃦⃦
0,e

≲ ∥u− uh∥ah
.

Therefore, the conclusion follows.
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4. Preconditioning

In this section we propose an abstract form of block diagonal precondition-
ers. Through the operator preconditioning approach, we show that the precon-
ditioners are spectrally equivalent to the matrix given by (5) independent of
mesh sizes.

We define a norm |||·||| on Vh as⃓⃓⃓⃓ ⃓⃓
(vc, v0)

⃓⃓⃓⃓ ⃓⃓2
:= ah(v

c, vc) + ah(v
0, v0)

= (∇vc,∇vc) +
⟨︁
γh−1

e vc, vc
⟩︁
ED
h

(33)

+
⟨︁
γh−1−α

e [[v0]], [[v0]]
⟩︁
E0
h

+
⟨︁
γh−1

e v0, v0
⟩︁
ED
h

for vc ∈ V c
h , v

0 ∈ V 0
h . Note that this is a norm on Vh, not only on Vh. For

an element v ∈ Vh the decomposition v = vc + v0 is not unique, so |||v||| is not
uniquely defined. However, we will use |||vc||| and

⃓⃓⃓⃓ ⃓⃓
v0
⃓⃓⃓⃓ ⃓⃓

for vc ∈ V c
h and v0 ∈ V 0

h

instead of |||(vc, 0)||| and
⃓⃓⃓⃓ ⃓⃓
(0, v0)

⃓⃓⃓⃓ ⃓⃓
for convenience even though these quantities

are not norms.
Recall that V⊥

h and Vh have a one-to-one correspondence, so we will use v to
denote an element in Vh and its corresponding element in V⊥

h . Let Ah : V⊥
h →

(V⊥
h )

∗ be the linear operator defined by ⟨Ahv, w⟩⟨Vh,V∗
h⟩ = ah(v, w). Following

the operator preconditioning approach [1], we first show that Ah is a bounded
isomorphism from V⊥

h to (V⊥
h )

∗ with the norm |||·|||.
For preconditioning we consider the linear operator Ãh : Vh → V∗

h defined
by the bilinear form

ah(v
c, vc) + ah(v

0, v0),

and show that Ãh is spectrally equivalent to Ah on V⊥
h with |||·|||. As a con-

sequence, we can expect that Bh = Ãh
−1

is a good preconditioner of Ah.
It is obvious that Ah gives a bounded bilinear form on V⊥

h × V⊥
h with |||·|||

norm. To show that Ãh is spectrally equivalent to Ah on V⊥
h , we prove

inf
v=vc+v0∈Vh

sup
w=wc+w0∈Vh

ah(v, w)

|||(vc, v0)||||||(wc, w0)|||
≥ C > 0.

We remark that the coercivity of ah(·, ·) for ∥·∥ah
does not imply this condition

because ∥v∥ah
≲
⃓⃓⃓⃓ ⃓⃓
(vc, v0)

⃓⃓⃓⃓ ⃓⃓
for v = vc + v0 but the inequality of the other

direction is not true in general.

Definition 2. For T ∈ Th, we define N(T ) as the number of elements adjacent
to T , i.e., N(T ) = |{T ′ ∈ Th : ∂T ′ ∩ ∂T ̸= ∅, T ′ ̸= T}|. For v0 ∈ V 0

h , T0 ∈ Th,
and the elements {Ti}i=1,...,N(T0) adjacent to T0, let pi be the value of v0|Ti ,
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i = 0, ..., N(T0). We define ϕv0,T0
∈ V 0

h as

ϕv0,T0
|T =

{︄
1

N(T0)+1

∑︁N(T0)
i=0 (pi − p0) if T = T0

0 otherwise
. (34)

Lemma 2. Suppose that α ≥ 1. Given v0 ∈ V 00
h , define v̄0 as v̄0 :=

∑︁
T∈T D

h
ϕv0,T .

Then ⃦⃦
v̄0
⃦⃦
ah,∂

≤
⃓⃓⃓⃓ ⃓⃓
v̄0
⃓⃓⃓⃓ ⃓⃓

≤ C0

⃦⃦
v0
⃦⃦
ah,0

. (35)

with C0 > 0 independent of h. As a corollary, ṽ0 := v0 + v̄0 satisfies⃦⃦
ṽ0
⃦⃦
ah,0

≤ (1 + C0)
⃦⃦
v0
⃦⃦
ah,0

, (36)⃦⃦
ṽ0
⃦⃦
ah,∂

≲
⃦⃦
v0
⃦⃦
ah,0

(37)

with an implicit constant depending on the shape regularity of Th, the constants
of the trace theorem and discrete Poincaré inequality.

Proof. Let T0 be an element in T D
h . For simplicity of presentation we assume

that T0 has only one facet in ∂T0 ∩ΓD but extension of the arguments below to
more general cases is straightforward.

Assume that e0 = ∂T0 ∩ ΓD, and {Ti}N(T0)
i=1 are the elements adjacent to T0

such that ei = ∂Ti ∩ ∂T0. Denoting the value of v0 on Ti by pi, i = 0, ..., N(T0),
|[[v0]]| on each ei is |pi − p0|. By the definition of ϕv0,T0

|[[ϕv0,T0
]]|ej | =

⃓⃓⃓⃓
⃓⃓ 1

N(T0) + 1

N(T0)∑︂
i=1

(pi − p0)

⃓⃓⃓⃓
⃓⃓ ≤ 1

N(T0) + 1

N(T0)∑︂
i=1

|pi − p0|

for 0 ≤ j ≤ N(T0), so the Cauchy–Schwarz inequality and the definition of |||·|||
give ⃓⃓⃓⃓ ⃓⃓

ϕv0,T0

⃓⃓⃓⃓ ⃓⃓2
=

∑︂
e⊂∂T0,e∈E0

h

γh−1−α
e

⃦⃦
[[ϕv0,T0

]]
⃦⃦2
0,e

+ γh−1
e0

⃦⃦
ϕ(v0, T0)

⃦⃦2
0,e0

≲ γ

N(T0)∑︂
i=1

h−1−α
ei

⃦⃦
[[v0]]

⃦⃦2
ei
,

⃦⃦
ϕv0,T0

⃦⃦2
ah,∂

= γh−1
e0

⃦⃦
ϕ(v0, T0)

⃦⃦2
0,e0

≲ hα

N(T0)∑︂
i=1

γh−1−α
ei

⃦⃦
[[v0]]

⃦⃦2
0,ei

.

By the definition of v̄0, v̄0|T = ϕ(v0, T ) for all T ∈ T D
h and v̄0|T = 0 for T ̸∈ T D

h .
Since each facet is shared at most by two elements, the triangle inequality with
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the above argument gives ⃓⃓⃓⃓ ⃓⃓
v̄0
⃓⃓⃓⃓ ⃓⃓2

≲
⃦⃦
v0
⃦⃦2
ah,0

, (38)

which also implies
⃦⃦
v̄0
⃦⃦2
ah,∂

≲
⃦⃦
v0
⃦⃦2
ah,0

. Then, (36) follows by the triangle

inequality
⃦⃦
ṽ0
⃦⃦
ah,0

≤
⃦⃦
v0
⃦⃦
ah,0

+
⃦⃦
v̄0
⃦⃦
ah,0

and the inequality
⃦⃦
v̄0
⃦⃦
ah,0

≤
⃓⃓⃓⃓ ⃓⃓
v̄0
⃓⃓⃓⃓ ⃓⃓
.

(37) follows by
⃦⃦
ṽ0
⃦⃦
ah,∂

≤
⃦⃦
v0
⃦⃦
ah,∂

+
⃦⃦
v̄0
⃦⃦
ah,∂

, (20) and (38).

Theorem 3. Assume that the assumptions in Lemma 2 hold. If α ≥ 1, then
there exists C > 0 such that

inf
v=vc+v0∈Vh

sup
w=wc+w0∈Vh

ah(v, w)

|||(vc, v0)||||||(wc, w0)|||
≥ C > 0. (39)

Proof. For v ∈ Vh let v = vc + v0 for vc ∈ V c
h and v0 ∈ V 00

h . Suppose that v̄0

and ṽ0 are defined as in Lemma 2. By (35), (36), (37), and (20) there exists C1

independent of h satisfying⃦⃦
v̄0
⃦⃦
ah,∂

,
⃦⃦
ṽ0
⃦⃦
ah,0

,
⃦⃦
ṽ0
⃦⃦
ah,∂

,
⃦⃦
v0
⃦⃦
ah,∂

≤ C1

⃦⃦
v0
⃦⃦
ah,0

. (40)

We take

w := wc + w0, wc := vc, w0 := δṽ0 = v0 + δ(v0 + v̄0)

with δ > 0 which will be determined later. From the definition (33) and (35),
it holds that⃓⃓⃓⃓ ⃓⃓

(wc, w0)
⃓⃓⃓⃓ ⃓⃓2

=
⃓⃓⃓⃓ ⃓⃓
(vc, v0 + δṽ0)

⃓⃓⃓⃓ ⃓⃓2
= |||vc|||2 +

⃓⃓⃓⃓ ⃓⃓
v + δṽ0

⃓⃓⃓⃓ ⃓⃓2 ≤ C
⃓⃓⃓⃓ ⃓⃓
(vc, v0)

⃓⃓⃓⃓ ⃓⃓2
(41)

with C which is uniformly bounded for δ ≤ 1.
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From the definition of w and the coercivity of ah

ah(v, w) = ah(v, v) + δah(v, ṽ
0)

≥ Cco

(︂
∥vc∥2ah,0

+
⃦⃦
v0
⃦⃦2
ah,0

+
⃦⃦
v0 + vc

⃦⃦2
ah,∂

)︂
− δ

⟨︁
{{∇vc}} , [[ṽ0]]

⟩︁
E0
h∪ED

h

+ δ
⟨︁
γh−1−α

e [[v0]], [[ṽ0]]
⟩︁
E0
h

+ δ
⟨︁
γh−1

e (v0 + vc), ṽ0
⟩︁
ED
h

= Cco

⃓⃓⃓⃓ ⃓⃓
(vc, v0)

⃓⃓⃓⃓ ⃓⃓2
+ 2Cco

⟨︁
γh−1

e vc, v0
⟩︁
ED
h

− δ
⟨︁
{{∇vc}} , [[ṽ0]]

⟩︁
E0
h∪ED

h

+ δ
⟨︁
γh−1−α

e [[v0]], [[ṽ0]]
⟩︁
E0
h

+ δ
⟨︁
γh−1

e v0, ṽ0
⟩︁
ED
h

+ δ
⟨︁
γh−1

e vc, v0 + v̄0
⟩︁
ED
h

(because ṽ0 = v0 + v̄0)

= Cco

⃓⃓⃓⃓ ⃓⃓
(vc, v0)

⃓⃓⃓⃓ ⃓⃓2
+ (2Cco + δ)

⟨︁
γh−1

e vc, v0
⟩︁
ED
h

+ δ
⟨︁
γh−1

e vc, v̄0
⟩︁
ED
h

− δ
⟨︁
{{∇vc}} , [[ṽ0]]

⟩︁
E0
h∪ED

h

+ δ
⟨︁
γh−1−α

e [[v0]], [[ṽ0]]
⟩︁
E0
h

+ δ
⟨︁
γh−1

e v0, ṽ0
⟩︁
ED
h

=: Cco

⃓⃓⃓⃓ ⃓⃓
(vc, v0)

⃓⃓⃓⃓ ⃓⃓2
+ (2Cco + δ)I1 + δ(I2 + I3 + I4 + I5)

with

I1 :=
⟨︁
γh−1

e vc, v0
⟩︁
ED
h

I2 :=
⟨︁
γh−1

e vc, v̄0
⟩︁
ED
h

I3 :=
⟨︁
{{∇vc}} , [[ṽ0]]

⟩︁
E0
h∪ED

h

,

I4 :=
⟨︁
γh−1−α

e [[v0]], [[ṽ0]]
⟩︁
E0
h

I5 :=
⟨︁
γh−1

e v0, ṽ0
⟩︁
ED
h

.

For simplicity we introduce additional notations

Xc,∂ = ∥vc∥ah,∂
, Xc,0 = ∥vc∥ah,0

, X0,∂ =
⃦⃦
v0
⃦⃦
ah,∂

, X0,0 =
⃦⃦
v0
⃦⃦
ah,0

.

By the Cauchy–Schwarz inequality

|I1| ≤ Xc,∂X0,∂ ≤ C1Xc,∂X0,0, (by (40))

|I2| ≤ Xc,∂

⃦⃦
v̄0
⃦⃦
ah,∂

≤ C1Xc,∂X0,0, (by (40))

|I3| ≤ C2Xc,∂(X0,∂ +X0,0) ≤ C2(1 + C1)Xc,∂X0,0, (by (9) and (40))

|I4| ≤ C2X
2
0,0. (by (40))

Moreover,

I5 = X2
0,∂ +

⟨︁
γh−1

e v0, v̄0
⟩︁
ED
h

≥ X2
0,∂ − C1X0,∂X0,0. (by (40))

If we use these inequalities to the previous form of ah(v, w), then

ah(v, w) ≥ Cco(X
2
c,∂ +X2

c,0 +X2
0,∂ +X2

0,0 − 2Xc,∂X0,∂)

− δ
(︁
(3C1 + C1C2)Xc,∂X0,0 + C2X

2
0,0

)︁
+ δX2

0,0
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By Young’s inequality we can have

ah(v, w) ≥ Cco(X
2
c,∂ +X2

c,0 +X2
0,∂ +X2

0,0 − 2Xc,∂X0,∂)

− δ2C3X
2
c,∂ − Cco

4
X2

0,0 − δC2X
2
0,0 + δX2

0,∂

with C3 > 0 depending on C1, C2, and Cco. If we use

2Xc,∂X0,∂ ≤ 1

1 + δ
2

X2
c,∂ +

(︃
1 +

δ

2

)︃
X2

0,∂ ,

we can obtain

ah(v, w) ≥
(︃
Cco

δ

2 + δ
− 9δ2C2

1

)︃
X2

c,∂ + CcoX
2
c,0 +

Ccoδ

2
X2

0,∂ +
3Cco

4
X2

0,0.

If we choose δ sufficiently small, then

ah(v, w) ≥ C
⃓⃓⃓⃓ ⃓⃓
(vc, v0)

⃓⃓⃓⃓ ⃓⃓2
.

The conclusion follows by combining it with (41).

To construct preconditioners recall that Ãh is given by the bilinear form

ah(v
c, wc) + ah(v

0, w0), v, w ∈ Vh, (42)

and its matrix form is (︃
Mc 0
0 M0

)︃
(43)

where Mc and M0 are matrices obtained from ah(v
c, wc) and ah(v

0, w0), re-
spectively.

To construct preconditioners in practice, we use algebraic multigrid methods
to obtain an approximate inverse of this block diagonal matrix. It is known that
algebraic multigrid methods give good preconditioners for Mc. Since M0 is a
weakly diagonally dominant matrix [1], standard algebraic multigrid methods
give an efficient preconditioner for this as well. Therefore it is feasible to use a
preconditioner of the form(︃

AMG(Mc) 0
0 AMG(M0)

)︃
, (44)

where AMG(M) is a preconditioner of M constructed by algebraic multigrid
methods. We will see in the next section that this form of preconditioner gives
robust numerical results.
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5. Numerical results

In this section we present results of numerical experiments. In all numerical
experiments, Ω = [0, 1] × [0, 1] ⊂ R2 and meshes consist of triangles that are
bisections of N × N subsquares of Ω (N = 4, 8, 16, 32, 64, 128). All numerical
experiments are implemented with Firedrake [2].

κ0 k hmax
∥u − uh∥0 ∥u − uh∥ah

∥z − zh∥
κ−1 ∥P0(f − div zh)∥0

error rate error rate error rate error rate

1

1

1/4 1.7308e-02 – 2.3161e-01 – 1.8076e-01 – 6.7771e-06 –
1/8 5.1275e-03 1.76 1.1741e-01 0.98 8.2400e-02 1.13 2.5351e-07 4.74
1/16 1.3562e-03 1.92 5.8387e-02 1.01 3.7214e-02 1.15 9.4939e-10 8.06
1/32 3.4623e-04 1.97 2.9030e-02 1.01 1.7672e-02 1.07 1.7626e-11 5.75
1/64 8.7325e-05 1.99 1.4464e-02 1.01 8.6656e-03 1.03 7.8165e-13 4.50
1/128 2.1919e-05 1.99 7.2184e-03 1.00 4.3051e-03 1.01 2.6110e-12 -1.74

2

1/4 9.4928e-04 – 3.2761e-02 – 2.2220e-02 – 3.4991e-06 –
1/8 1.2497e-04 2.93 8.3853e-03 1.97 5.7538e-03 1.95 7.1763e-08 5.61
1/16 1.6095e-05 2.96 2.1117e-03 1.99 1.4424e-03 2.00 7.7163e-09 3.22
1/32 2.0441e-06 2.98 5.2921e-04 2.00 3.5990e-04 2.00 7.6639e-09 0.01
1/64 2.5760e-07 2.99 1.3242e-04 2.00 8.9842e-05 2.00 2.1702e-12 11.79
1/128 3.2332e-08 2.99 3.3119e-05 2.00 2.2443e-05 2.00 5.6520e-12 -1.38

10

1

1/4 1.7137e-02 – 2.4350e-01 – 1.4273e+00 – 9.5339e-06 –
1/8 5.0961e-03 1.75 1.1878e-01 1.04 7.1024e-01 1.01 2.1197e-06 2.17
1/16 1.3477e-03 1.92 5.8490e-02 1.02 3.4157e-01 1.06 2.6746e-09 9.63
1/32 3.4400e-04 1.97 2.9036e-02 1.01 1.6712e-01 1.03 6.7721e-11 5.30
1/64 8.6762e-05 1.99 1.4465e-02 1.01 8.2866e-02 1.01 3.5851e-12 4.24
1/128 2.1779e-05 1.99 7.2184e-03 1.00 4.1319e-02 1.00 1.7368e-11 -2.28

2

1/4 9.2460e-04 – 3.4138e-02 – 1.8100e-01 – 1.3883e-04 –
1/8 1.2355e-04 2.90 8.5794e-03 1.99 4.6441e-02 1.96 1.8428e-07 9.56
1/16 1.6029e-05 2.95 2.1321e-03 2.01 1.1725e-02 1.99 4.1800e-09 5.46
1/32 2.0410e-06 2.97 5.3134e-04 2.00 2.9323e-03 2.00 3.8990e-11 6.74
1/64 2.5744e-07 2.99 1.3266e-04 2.00 7.3234e-04 2.00 1.4930e-10 -1.94
1/128 3.2324e-08 2.99 3.3146e-05 2.00 1.8294e-04 2.00 4.1893e-11 1.83

Table 1: Convergence with IOP-EG (α = 1)

κ0 k hmax
∥u − uh∥0 ∥u − uh∥ah

∥z − zh∥
κ−1 ∥P0(f − div zh)∥0

error rate error rate error rate error rate

1

1

1/4 1.7401e-02 – 2.3188e-01 – 1.8320e-01 – 6.8532e-06 –
1/8 5.1355e-03 1.76 1.1747e-01 0.98 8.2788e-02 1.15 1.8947e-07 5.18
1/16 1.3566e-03 1.92 5.8393e-02 1.01 3.7252e-02 1.15 7.5461e-10 7.97
1/32 3.4625e-04 1.97 2.9030e-02 1.01 1.7675e-02 1.08 1.6568e-10 2.19
1/64 8.7325e-05 1.99 1.4464e-02 1.01 8.6658e-03 1.03 8.2004e-13 7.66
1/128 2.1919e-05 1.99 7.2184e-03 1.00 4.3051e-03 1.01 3.2178e-12 -1.97

2

1/4 9.5448e-04 – 3.2725e-02 – 2.2288e-02 – 8.6195e-06 –
1/8 1.2558e-04 2.93 8.3760e-03 1.97 5.7739e-03 1.95 2.4908e-07 5.11
1/16 1.6143e-05 2.96 2.1101e-03 1.99 1.4448e-03 2.00 7.6211e-09 5.03
1/32 2.0474e-06 2.98 5.2900e-04 2.00 3.6016e-04 2.00 4.2024e-11 7.50
1/64 2.5781e-07 2.99 1.3240e-04 2.00 8.9872e-05 2.00 1.7440e-12 4.59
1/128 3.2346e-08 2.99 3.3115e-05 2.00 2.2446e-05 2.00 6.0409e-12 -1.79

10

1

1/4 1.7247e-02 – 2.4384e-01 – 1.4472e+00 – 1.0088e-05 –
1/8 5.1065e-03 1.76 1.1880e-01 1.04 7.1414e-01 1.02 4.3373e-07 4.54
1/16 1.3482e-03 1.92 5.8491e-02 1.02 3.4198e-01 1.06 2.0379e-08 4.41
1/32 3.4403e-04 1.97 2.9036e-02 1.01 1.6715e-01 1.03 1.7823e-10 6.84
1/64 8.6763e-05 1.99 1.4465e-02 1.01 8.2869e-02 1.01 1.4241e-11 3.65
1/128 2.1779e-05 1.99 7.2184e-03 1.00 4.1319e-02 1.00 1.2476e-11 0.19

2

1/4 9.3036e-04 – 3.4126e-02 – 1.8096e-01 – 4.6005e-05 –
1/8 1.2421e-04 2.90 8.5715e-03 1.99 4.6526e-02 1.96 4.2893e-07 6.74
1/16 1.6080e-05 2.95 2.1306e-03 2.01 1.1734e-02 1.99 6.3984e-09 6.07
1/32 2.0444e-06 2.98 5.3112e-04 2.00 2.9330e-03 2.00 1.2150e-10 5.72
1/64 2.5766e-07 2.99 1.3263e-04 2.00 7.3240e-04 2.00 4.0834e-11 1.57
1/128 3.2338e-08 2.99 3.3142e-05 2.00 1.8295e-04 2.00 4.3021e-11 -0.08

Table 2: Convergence with IOP-EG (α = 2)

In numerical experiments of this section, we consider

−∇ · (κ∇u) = f in Ω, u = 0 on ∂Ω (45)
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N
k κ0 8 16 32 64 128

1

1 27 36 48 64 86
2 29 37 50 67 91
4 29 40 54 73 99
8 30 43 59 81 110
10 30 43 59 83 115

2

1 38 45 56 73 95
2 40 47 59 76 101
4 42 51 63 83 110
8 45 55 70 93 124
10 46 57 72 97 129

Table 3: Number of iterations for α = 0

N
k κ0 8 16 32 64 128

1

1 17 18 19 19 18
2 18 19 19 19 19
4 19 20 20 19 19
8 20 21 21 21 20
10 20 21 21 21 21

2

1 31 32 31 30 28
2 32 33 33 32 30
4 33 34 34 32 32
8 34 35 35 34 33
10 35 36 35 34 33

Table 4: Number of iterations for α = 1

with a tensor

κ =

(︃
κ0 0
0 1

)︃
(46)

where κ0 > 0 is a constant. Let κn := κn · n on edge/face e with a unit normal
vector n on e. Then, a modification of (4) for (45) is

ah(v, w) = (κ∇v,∇w)−
(︂
⟨{{κ∇v}} , [[w]]⟩E0

h∪ED
h
+ ⟨[[v]], {{κ∇w}}⟩E0

h∪ED
h

)︂
(47)

+
⟨︁
γκnh

−1−α
e [[v]], [[w]]

⟩︁
E0
h

+
⟨︁
γκnh

−1
e [[v]], [[w]]

⟩︁
ED
h

,

and flux reconstruction formula is

(zh, q)T = (−κ∇uh, q)T , q ∈ Pk−2(T ),

⟨zh · n, q⟩e =
⟨︁
−{{κ∇uh}} · n+ γκnh

−1−α
e [[uh]] · n, q

⟩︁
e
, q ∈ Pk−1(e), e ∈ E0

h,

⟨zh · n, q⟩e = ⟨uN , q⟩e , q ∈ Pk−1(e), e ̸∈ E0
h ∪ ED

h ,

⟨zh · n, q⟩e =
⟨︁
−κ∇uh · n+ γκnh

−1
e (uh − uD), q

⟩︁
e
, q ∈ Pk−1(e), e ∈ ED

h .

For simplicity of presentation we only showed a priori error analysis in Section 3
for κ0 = 1. The error analysis can be extended to (45) with κ weighted flux and
penalization terms. In contrast, for the preconditioning discussed in Section 4,
a constant which is related to the anisotropy of κ, is involved in the operator
preconditioning analysis. Thus, it does not seem to be straightforward to get
an analytic proof that abstract preconditioners of the form (42) are spectrally
equivalent to the operator given by (47) with equivalence constants independent
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N
k κ0 8 16 32 64 128

1

1 15 15 14 14 13
2 15 15 14 14 14
4 16 15 15 14 14
8 16 15 15 15 14
10 16 16 15 15 14

2

1 28 29 29 27 25
2 29 30 29 29 28
4 31 31 30 29 29
8 31 31 31 30 29
10 32 31 31 30 29

Table 5: Number of iterations for α = 2

N
k κ0 8 16 32 64 128

1

1 15 17 19 22 25
2 16 17 20 23 26
4 16 18 20 23 28
8 17 19 21 25 31
10 17 19 22 26 32

2

1 29 31 31 32 35
2 30 32 33 34 37
4 31 33 34 35 38
8 32 34 35 37 41
10 32 34 35 37 41

Table 6: Number of iterations for large γ (= 200) on E0
h

of the anisotropy constant. Nonetheless, we present numerical results of conver-
gence and preconditioners for anisotropic coefficients in this section because the
numerical test results below show that IOP-EG methods with preconditioner
(42) are robust for the anisotropy of κ (see Tables 4-5). As seen in Table 3,
preconditioned EG methods show worse performances if κ is more anisotropic
(i.e., κ0 is larger), so this anisotropy robustness is another advantage of IOP-EG
methods.

In the first set of numerical experiments we present convergence rates of
errors of various versions of IOP-EG methods with α = 1, 2, κ0 = 1, 10 in
(47) and the manufactured solution u = x(1−x) sin(πy). Recall that a larger α
implies a stronger interior over-penalization. From the results in Tables 1–2, one
can see that convergence rates are optimal for the L2 error ∥u − uh∥0, the ah-
norm ∥u−uh∥ah

endowed by (7) with the bilinear form in (47), the κ−1-weighted
L2 flux error ∥z−zh∥κ−1 := (κ−1(z−zh), z−zh)

1/2. The errors of local mass
reach the level of machine precision zero quickly as mesh is refined. As shown in
the proof of Theorem 2, exact local mass conservation theoretically holds for all
meshes. However, the error ∥P0(f − div zh)∥0 is not machine precision zero for
coarse meshes in our experiments because the errors of numerical quadrature of
manufactured solution u = x(1− x) sin(πy) are involved in flux reconstruction.

In the second set of experiments we present performance of preconditioners
of the form (44) as a function of mesh refinement and anisotropy of the permeab-
ility tensor. We set κ0 = 1, 2, 4, 8, 10 to test the proposed numerical methods
with preconditioners for anisotropic tensors. In the results of experiments, k is
the polynomial degree of V c

h , κ0 is the coefficient in (46) and γ = 10.
Numerical results for iterative solvers with α = 1, 2 are presented in Tables 4–

5. More specifically, we present the number of iterations of a preconditioned
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N
k κ0 8 16 32 64 128

1

1 21 23 26 29 32
2 22 25 27 31 34
4 23 27 30 33 37
8 24 29 32 36 41
10 24 29 34 38 42

2

1 34 35 37 39 41
2 35 37 39 40 42
4 36 39 40 42 45
8 38 41 44 46 48
10 39 42 45 47 51

Table 7: Number of iterations for α = 0.5

MinRes method with the block diagonal preconditioner of the form (44), and
iteration stops when relative error becomes smaller than 10−12 of the initial
error or when the number of iterations is more than 104.

We use the MinRes method instead of the conjugate gradient method for
guaranteed convergence because the matrix is not symmetric positive definite
in either EG or IOP-EG methods. We use the hypre library (cf. [2]) as an
algebraic multigrid preconditioner for the blocks in (44). The corresponding
preconditioner is constructed as in (42) with ah in (47).

We also tested performance of preconditioners for the original EG method
(α = 0) and two IOP-EG methods with α = 1, 2. The results are given in Tables
3–5. In Table 3, the number of iterations for the EG method clearly increases
for mesh refinement in all cases. Moreover, the number of iterations increases
if κ is more anisotropic, and the increment is not negligible for the two cases
κ0 = 1 and κ0 = 10 in the finest mesh (N = 128). In contrast, the IOP-EG
methods with α = 1, 2 perform much better than the ones of the original EG
method in all cases. As can be seen in Tables 4–5, the number of iterations
is very robust for mesh refinement. For κ anisotropy, the number of iterations
increases as κ becomes more anisotropic. Nevertheless, the IOP-EG methods
perform much better than the original EG methods in all cases.

Finally, we present two additional preconditioning experiment results. The
purpose of the first additional experiment is to verify that the mesh-dependent
over-penalization is necessary for robust preconditioning for mesh refinement.
For this we set α = 0 and use 10 times stronger interior penalization parameter
γ on the interior edges/faces than the penalization parameter on the boundary
edges/faces. Specifically, we set γ on the interior edges/faces as γint = 100
and set γ on the boundary edges/faces as γ∂ = 10. In Table 6 one can see
that the number of iterations is smaller than the ones in Table 3, so the in-
terior over-penalization with a constant factor clearly improves preconditioning
performances. However, the results in Table 6 also show that the number of
iterations still considerably increases for mesh refinement. The purpose of the
second additional experiment is to obtain numerical evidence of how large α > 0
need to be for robust preconditioning while our analysis showed that α ≥ 1 is
sufficient if κ0 = 1. For this, we ran preconditioning experiments with different
α values and the results are given in Figure 1. The results show that the num-
ber of iterations increases if α < 0.9 while for mesh refinement and anisotropy
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Figure 1: Comparison of iteration numbers for different α and κ0 values

of κ, the iteration numbers seem to be nearly stable for mesh refinement and
anisotropy if α ≥ 0.9. The numerical results show that while α = 1 may not
be a sharp threshold value for preconditioning robustness we can observe that
α should be sufficiently close to 1.
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6. Conclusion

In this paper we propose interior over-penalized enriched Galerkin (IOP-
EG) methods for second order elliptic equations. From theoretical point of
view, a new medius error analysis and a new spectral equivalence analysis,
are developed for optimal convergence of errors and for construction of robust
iterative solvers. In numerical experiment results comparing preconditioned
IOP-EG and EG methods, we observe that preconditioned IOP-EG methods
show very robust iterative solver performances for mesh refinement and for the
anisotropy of permeability coefficients. In conclusion, the IOP-EG methods can
be a good replacement of the original EG methods providing parameter-robust
scalable iterative solvers.
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