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Abstract

We develop mixed finite element methods for nonlinear reaction-diffusion equa-
tions with interfaces which have Robin-type interface conditions. We introduce
the velocity of chemicals as new variables and reformulate the governing equa-
tions. The stability of semidiscrete solutions, existence and the a priori error
estimates of fully discrete solutions are proved by fixed point theorem and con-
tinuous/discrete Grönwall inequalities. Numerical results illustrating our the-
oretical analysis are included.
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1. Introduction

The reaction-diffusion equations are widely used to describe the diffusion of
chemical substances with their reactions. Therefore, methods to numerically
solve reaction-diffusion equations have also been studied for a very long time.
Recently, a reaction-diffusion model interacting with other physical/chemical
conditions has been actively studied, beyond the simple reaction-diffusion equa-
tions. An example of such extended reaction-diffusion equations is the reaction-
diffusion model with a thin membrane in the domain. This model can be used
to model the cases where a semi-permeable membrane is involved in reaction-
diffusion processes of chemicals. The governing equations are a set of reaction-
diffusion equations in which interface conditions on thin membranes are involved
(cf. [1, 2]). Reaction-diffusion equations with such interface conditions have
been studied in several previous studies. Well-posedness of several partial dif-
ferential equation models were studied ([7, 8, 9, 10, 11, 13, 14, 16, 17]). Discon-
tinuous Galerkin finite element methods for some diffusion, advection-diffusion,
reaction-diffusion equations with possibly nonlinear interface conditions were
studied in [3, 4, 5, 6, 15, 12].
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In this paper, we will study mixed finite element methods to solve nonlin-
ear reaction-diffusion equations with interface conditions, particularly, for the
models in [7]. In mixed finite element methods using the dual mixed form of
diffusion equations (see, e.g., [18]), the velocity of each chemical is chosen as
additional variable. Compared to the classical discontinuous Galerkin methods
in the previous studies ([3, 4, 5, 6, 15, 12]), numerical solutions of the mixed
finite element methods satisfy local mass conservation without additional post-
processing of numerical solutions. Moreover, to the best of our knowledge,
fast solver algorithms of discontinuous Galerkin methods for interface problems
have not been explored. In contrast, scalable fast solver algorithms for the in-
terface problems that we consider in this paper, have been developed with a
solid theoretical basis (cf. [19]). Therefore, the mixed methods in this paper
are advantageous for numerical simulations of large scale problems.

The paper is organized as follows. In Section 2 we introduce definitions,
governing equations of the reaction-diffusion equations with membrane struc-
tures, and semidiscrete discretization with finite element methods. In Section 3
we define fully discrete scheme with the Crank–Nicolson method and prove
well-posedness of fully discrete solutions for sufficiently small time step sizes.
We prove the a priori error estimates of the fully discrete scheme in Section 4
and present numerical experiment results in Section 5. Conclusions and future
research directions will be given in Section 6.

2. Preliminaries

Let Ω be a bounded domain in Rd (d � 2, 3) with Lipschitz continuous poly-
gonal/polyhedral boundary. For finite element discretization we consider a fam-
ily of triangulations tThuh¡0 of Ω with shape-regular triangles/tetrahedra and
without hanging nodes. Here h ¡ 0 is the maximum radius of triangles/tetrahedra
in Th. The pd�1q-dimensional simplices in Th will be called facets in the paper.

For 1 ¤ r ¤ 8, LrpΩq is the Lebesgue space with the norm

}v}LrpΩq �
#�³

Ω
|vpxq|r dx�1{r , if 1 ¤ r   8,

esssupxPΩt|vpxq|u, if r � 8.

For a subdomain D � Ω with positive d-dimensional Lebesgue measure, let
L2pDq and L2pD;Rdq be the sets of R- and Rd-valued square integrable functions
with inner products pv, v1qD :� ³

D
vv1 dx and pv,v1qD :� ³

D
v � v1 dx. In the

paper HspDq, s ¥ 0, denotes the Sobolev space based on the L2-norm with
s-differentiability on D. We refer to [20] for a rigorous definition of HspDq. The
norm on HspDq is denoted by } � }s,D and D is omitted if D � Ω.

For T ¡ 0 and a separable Hilbert space X , let C0pr0, T s;X q denote the set
of functions f : r0, T s Ñ X that are continuous in t P r0, T s. For an integer
m ¥ 1, we define

Cmpr0, T s;X q � tf | Bitf P C0pr0, T s;X q, 0 ¤ i ¤ mu,
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Figure 1: A model domain Ω with interface Γ

where Bitf is the i-th time derivative in the sense of the Fréchet derivative in X
(cf. [21]). For a function f : r0, T s Ñ X , the Bochner norm is defined by

}f}Lrp0,T ;X q �
$&
%
�³T

0
}fpsq}rXds

	1{r
, 1 ¤ r   8,

esssuptPp0,T q }fptq}X , r � 8.

W k,rp0, T ;X q for a non-negative integer k and 1 ¤ r ¤ 8 is defined by the

closure of Ckpr0, T s;X q with the norm }f}Wk,rp0,T ;X q �
°k

i�0 }Bitf}Lrp0,T ;X q.

The semi-norm }f}
9Wk,rp0,T ;X q is defined by }f}

9Wk,rp0,T ;X q � }Bkt f}Lrp0,T ;X q.

For a normed space X with norm } � }X and functions f1, f2 P X , }f1, f2}X
will denote }f1}X � }f2}X , and }f1, f2, f3}X is defined similarly.

2.1. Governing equations

In this subsection we introduce governing equations, a reformulation of the
equations, and a variational formulation for finite element methods.

We assume that Ω�,Ω� � Ω are two disjoint subdomains with polygonal/polyhedral
boundaries such that Ω� Y Ω� � Ω, and let Γ � BΩ� X BΩ�. For a function
v P L2pΩq such that v|Ωj

P H1pΩjq for j � �,�, we use v|Γj
to denote the trace

of v on Γ from v|Ωj . Note that v|Γ� �� v|Γ� in general. Throughout this paper,
the unit normal vector field n on Γ is the normal vector outward from Ω� (see
Figure 1).

Suppose that ui, 1 ¤ i ¤ N are real-valued functions on r0, T s � Ω. We
use uiptq, 0 ¤ t ¤ T , to denote a real-valued function uipt, �q defined on Ω. For
given functions

fi : RN Ñ R, gi : r0, T s � BΩÑ R (1)

we consider the system of equations to find

pu1, � � � , uN q : r0, T s � ΩÑ RN
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such that

Btuiptq � divpκi∇uiptqq � fipu1ptq, � � � , uN ptqq in Ω, (2a)

with interface condition

�pκi∇uiptqq � n � Kipui|Γ�ptq � ui|Γ�ptqq on Γ,Ki ¡ 0, (3)

for all 0   t ¤ T , 1 ¤ i ¤ N and with initial condition

pu1p0q, � � � , uN p0qq. (4)

To make (2) a well-posed system of partial differential equations, appropriate
boundary conditions are necessary. A set of full Dirichlet boundary conditions

uiptq � giptq on BΩ @1 ¤ i ¤ N, 0   t ¤ T,

can be imposed to make (2) well-posed. For simplicity, we assume that gi � 0
for 1 ¤ i ¤ N , 0   t ¤ T in the rest of this paper but the discussions below
can be extended to more general boundary conditions including gi �� 0 and
Neumann or mixed boundary conditions on BΩ with appropriate modifications.
Throughout this paper we assume that the functions tfiuNk�1 satisfy a Lipschitz
continuity assumption that as follows: For vi, wi P L2pΩq, 1 ¤ i ¤ N ,

}fipv1pxq, � � � , vN pxqq � fipw1pxq, � � � , wN pxqq}

¤ Li

�
Ņ

i�1

|vipxq � wipxq|2
� 1

2

(5)

for almost every x P Ω with a constant Li ¡ 0 where } � } means the Euclidean
norm in RN . We also assume that fi, 1 ¤ i ¤ N satisfies fipu1, � � � , uN q ¤ 0 if
uj � 0 for all 1 ¤ j ¤ d, j �� i. This assumption is motivated from the physical
modeling such that fi is the increasing/decreasing rate of the i-th chemical by
chemical reaction of other chemicals tujuj,j ��i. In particular,

fip0, � � � , 0q � 0 for 1 ¤ i ¤ N. (6)

By introducing σi � �κi∇ui, we have a system equivalent to (2) with unknowns
pσ1ptq, � � � , σN ptqq, pu1ptq, � � � , uN ptqq such that

κ�1
i σiptq � �∇uiptq in Ω, (7a)

Btuiptq � div σiptq � fipu1ptq, � � � , uN ptqq in Ω (7b)

with interface conditions

σiptq � n � Kipui|Γ�ptq � ui|Γ�ptqq on Γ (8)

for all 0 ¤ t ¤ T , 1 ¤ i ¤ N . The boundary conditions

uiptq � 0 on BΩ, 1 ¤ i ¤ N, 0   t ¤ T (9)
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are imposed as before. For initial conditions, in addition to pu1p0q, � � � , uN p0qq
in (4), we need pσ1p0q, � � � , σN p0qq satisfying (7a), (8) for t � 0.

To derive a variational formulation of (7), let

Σ � tτ P Hpdiv,Ωq : τ � n|Γ P L2pΓqu, V � L2pΩq,

where Hpdiv,Ωq is the subset of L2pΩ;Rdq such that the divergence of τ P
L2pΩ;Rdq is well-defined as an element in L2pΩq. Then, we define Σ and V by

Σ � Σ1 � � � � � ΣN , V � V1 � � � � � VN

with Σi � Σ, Vi � V for 1 ¤ i ¤ N . Then, after the integration by parts of (7a)
for 1 ¤ i ¤ N , we can derive a system of variational equations from (7) and (8):
Find pσ1, � � � , σN q P C0pr0, T s;Σq, pu1, � � � , uN q P C1pr0, T s;V q such that

pκ�1
i σiptq, τiqΩ �

⟨︁
K�1

i σiptq � n, τi � n
⟩︁
Γ
� puiptq,div τiqΩ � 0, (10a)

pBtuiptq, viqΩ � pdiv σiptq, viqΩ � pfipu1ptq, � � � , uN ptqq, viqΩ � 0 (10b)

for all 0 ¤ t ¤ T , 1 ¤ i ¤ N and for all pτ1, � � � , τN q P Σ, pv1, � � � , vN q P V .

2.2. Finite element discretization

In this subsection we present discretization of (10) with finite element meth-
ods.

For an integer l ¥ 0 and a set D � Rd, PlpDq is the space of polynomials
defined on D of degree at most l. Similarly, PlpD;Rdq is the space of Rd-valued
polynomials of degree at most l. For given l ¥ 1 let us define

ΣhpT q � Pl�1pT ;Rdq �

�
��
x1

...
xd

�
�
Pl�1pT q. (11)

Suppose that Σh,i � Σi is the Raviart–Thomas(–Nedelec) element ([22, 23, 18])
defined by

Σh,i � tτ P Σi : τ |T P ΣhpT q, @T P Thu

and Vh,i is defined by

Vh,i � tv P V : v|T P Pl�1pT q @T P Thu. (12)

Then, it is well-known that the pair pΣh,i, Vh,iq satisfies

div Σh,i � Vh,i, inf
viPVh

sup
τiPΣh,i

pvi,div τiqΩ
}vi}}τi}div ¥ C ¡ 0 (13)

with a uniform C ¡ 0 independence of i and mesh sizes of Th [18, p. 406].
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2.3. Semidiscrete scheme and stability

In this subsection we define a semidiscrete scheme of (10) with Σh�Vh and
discuss the stability of semidiscrete solutions. For simplicity define σ and u by
pσ1, σ2, � � � , σN q and pu1, � � � , uN q, and semidiscrete solutions σh : r0, T s Ñ Σh,
uh : r0, T s Ñ Vh are defined similarly.

For

τ � pτ1, � � � , τN q,η � pη1, � � � , ηN q P Σ,

v � pv1, � � � , vN q,w � pw1, � � � , wN q P V ,

define three bilinear and one nonlinear forms

apτ ,ηq :�
Ņ

i�1

pκ�1
i τi, ηiqΩ �

Ņ

i�1

⟨︁
K�1

i τi � n, ηi � n
⟩︁
Γ
, (14)

bpτ ,vq :�
Ņ

i�1

pvi,div τiqΩ, (15)

cpv,wq :�
Ņ

i�1

pvi, wiqΩ, (16)

dpv,wq :�
Ņ

i�1

pfipvi, � � � , vN q, wiqΩ.

Then, the system (10) can be rewritten as

apσptq, τ q � bpτ ,uptqq � 0 @τ P Σ, (17a)

bpσptq,vq � cpBtuptq,vq � dpuptq,vq � 0 @v P V . (17b)

A discrete-in-space and continuous-in-time semidiscrete scheme with finite ele-
ment space Σh � Vh, is to find pσh,uhq : r0, T s Ñ Σh � Vh such that

apσhptq, τ q � bpτ ,uhptqq � 0 @τ P Σh, (18a)

bpσhptq,vq � cpBtuhptq,vq � dpuhptq,vq � 0 @v P Vh (18b)

for all t P r0, T s. For stability analysis, let τ � σhptq, v � uhptq and add the
equations. Then,

1

2

d

dt
cpuhptq,uhptqq � apσhptq,σhptqq � dpuhptq,uhptqq.
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By the Lipschitz continuity assumption (5) and (6), we can obtain

1

2

d

dt
cpuhptq,uhptqq � apσhptq,σhptqq

� dpuhptq,uhptqq

�
Ņ

i�1

pfipuh,1ptq, � � � , uh,N ptqq, uh,iptqqΩ

�
Ņ

i�1

pfipuh,1ptq, � � � , uh,N ptqq � fip0, � � � , 0q, uh,iptqqΩ

¤ L}uhptq}2L2pΩq

where L � max1¤i¤NtLiu. Recalling that cpuhptq,uhptqq � }uhptq}2L2pΩq, and

apσhptq,σhptqq ¥ 0, by Grönwall inequality,

}uhptq}L2pΩq ¤ e2Lt}uhp0q}L2pΩq.

If T ¡ 0 is fixed, then

max
0¤t¤T

}uhptq}L2pΩq ¤ e2LT }uhp0q}L2pΩq. (19)

To estimate }σhptq}L2pΩq, we take τ � σhptq in the time derivative of (18a),
v � Btuhptq in (18b), and add the two equations. Then, we get

1

2

d

dt
apσhptq,σhptqq � }Btuhptq}2L2pΩq � dpuhptq, Btuhptqq

¤ L}uhptq}L2pΩq}Btuhptq}L2pΩq

¤ L2

4
}uhptq}2L2pΩq � }Btuhptq}2L2pΩq.

By integrating in time,

apσhptq,σhptqq ¤ apσhp0q,σhp0qq � L2

2

» t

0

}uhpsq}2L2pΩq ds.

Combining this with (19) gives

apσhptq,σhptqq ¤ apσhp0q,σhp0qq � L2e4LT

2
}uhp0q}2L2pΩq

» t

0

1 ds

¤ apσhp0q,σhp0qq � tL2e4LT

2
}uhp0q}2L2pΩq.

Therefore,

max
0¤t¤T

apσhptq,σhptqq1{2 ¤ apσhp0q,σhp0qq1{2 � L
?
Te2LT

?
2

}uhp0q}L2pΩq.
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3. Fully discrete scheme and existence of solutions

In this section we present a fully discrete numerical scheme with the Crank–
Nicolson method.

For fully discrete scheme, suppose that pσk
h,u

k
hq P Σh � Vh, a numerical

solution of the previous time step is given. The Crank–Nicolson scheme is to
find pσk�1

h ,uk�1
h q P Σh � Vh such that

1

2
apσk

h � σk�1
h , τ q � 1

2
bpτ ,uk

h � uk�1
h q � 0, (20a)

1

2
bpσk

h � σk�1
h ,vq � 1

∆t
c
�
uk�1
h � uk

h, v
�

(20b)

�1

2
pdpuk

h,vq � dpuk�1
h ,vqq � 0.

Since (20) is a nonlinear system, existence of pσk�1
h ,uk�1

h q is not guaranteed.

We use a fixed point theorem to prove existence of pσk�1
h ,uk�1

h q.
Theorem 3.1 (Existence and uniqueness of fully discrete solutions). Suppose
that ∆t is sufficiently small to satisfy

L∆t   2 (21)

where L ¡ 0 is the constant of Lipschitz continuity of dp�, �q in (5). Then, there
exists a unique pσk�1

h ,uk�1
h q P Σh � Vh satisfying (20).

Proof. Recall the fully discrete scheme.

1

2
apσk

h � σk�1
h , τ q � 1

2
bpτ ,uk

h � uk�1
h q � 0,

1

2
bpσk

h � σk�1
h ,vq � c

�
uk�1
h � uk

h

∆t
,v

�

� 1

2
pdpuk

h,vq � dpuk�1
h ,vqq � 0.

Assuming that σk
h, u

k
h are given, the system (20) is to find pσk�1

h ,uk�1
h q such

that

∆tpapσk�1
h , τ q � bpτ ,uk�1

h q � bpσk�1
h ,vqq � 2cpuk�1

h ,vq �∆tdpuk�1
h ,vq

� �∆tpapσk
h, τ q � bpτ ,uk

h � bpσk
h,vqq � 2cpuk

h,vq �∆tdpuk
h,vq (22)

�: Gkpτ ,vq
for all pτ ,vq P Σh � Vh. For simplicity, let Φ∆t : Σh � Vh Ñ Σh � Vh be the
map defined by

⟨Φ∆tpσh,uhq, pτ ,vq⟩Σh�Vh
(23)

� ∆tpapσh, τ q � bpτ ,uhq � bpσh,vqq � 2cpuh,vq, @pτ ,vq P Σh � Vh,

pσh,uhq P Σh � Vh ÞÑ Φ∆tpσh,uhq P Σh � Vh (24)
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where ⟨�, �⟩Σh�Vh
is the standard Hpdivq�L2 inner product on Σh�Vh. Then,

one can verify that Φ∆t is well-posed by the Lax–Milgram lemma. From the
definition of Φ∆t in (23), we can rewrite (22) by⟨︁

Φ∆tpσk�1
h ,uk�1

h q, pτ ,vq⟩︁
Σh�Vh

�∆tdpuk�1
h ,vq � Gkpτ ,vq.

Define pσk�1
h,0 ,uk�1

h,0 q by⟨︂
Φ∆tpσk�1

h,0 ,uk�1
h,0 q, pτ ,vq

⟩︂
Σh�Vh

� Gkpτ ,vq @pτ ,vq P Σh � Vh

and also define tpσk�1
h,m ,uk�1

h,mqu8m�1 by⟨︂
Φ∆tpσk�1

h,m�1,u
k�1
h,m�1q, pτ ,vq

⟩︂
Σh�Vh

�∆tdpuk�1
h,m ,vq � Gkpτ ,vq

for all pτ ,vq P Σh � Vh and for m ¥ 0. By taking difference of the above
equations for m, m� 1,⟨︂

Φ∆tpσk�1
h,m�1 � σk�1

h,m ,uk�1
h,m�1 � uk�1

h,mq, pτ ,vq
⟩︂
Σh�Vh

� ∆tpdpuk�1
h,m ,vq � dpuk�1

h,m�1,vqq
for all pτ ,vq P Σh � Vh. By Lipschitz continuity of the nonlinearity (5) of d,

|dpuk�1
h,m ,vq � dpuk�1

h,m�1,vq| ¤ L}uk�1
h,m � uk�1

h,m�1}L2pΩq}v}L2pΩq.

If ∆t is small enough to satisfy ∆tL   2, then⟨︂
Φ∆tpσk�1

h,m�1 � σk�1
h,m ,uk�1

h,m�1 � uk�1
h,mq, pσk�1

h,m�1 � σk�1
h,m ,uk�1

h,m�1 � uk�1
h,mqq

⟩︂
Σh�Vh

¤ ∆tL}uk�1
h,m � uk�1

h,m�1}L2pΩq}uk�1
h,m�1 � uk�1

h,m}L2pΩq

  2}uk�1
h,m � uk�1

h,m�1}L2pΩq}uk�1
h,m�1 � uk�1

h,m}L2pΩq.

By the definition of Φ∆t,⟨︂
Φ∆tpσk�1

h,m�1 � σk�1
h,m ,uk�1

h,m�1 � uk�1
h,mq, pσk�1

h,m�1 � σk�1
h,m ,uk�1

h,m�1 � uk�1
h,mqq

⟩︂
Σh�Vh

� ∆tapσk�1
h,m�1 � σk�1

h,m ,σk�1
h,m�1 � σk�1

h,m q � 2}uk�1
h,m�1 � uk�1

h,m}2L2pΩq.

The above inequality and equality imply that Φ∆t is a contraction on Σh �
Vh with the norm }pτ ,vq}Σh�Vh

:� p∆tapτ , τ q � 2}v}2L2pΩqq1{2 if ∆tL   2.

Therefore, there is a unique fixed point pσk�1
h,8 ,uk�1

h,8q P Σh � Vh such that����σk�1
h,m � σk�1

h,8 ,uk�1
h,m � uk�1

h,8

	���
Σh�Vh

Ñ 0 as mÑ8.

By the Banach contraction principle, this fixed point is unique, so the proof is
completed.
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4. A priori error estimates

For T ¡ 0 let ∆t � T {M for a natural number M and define ttkuMn�0 by
tk � k∆t. For a variable g : r0, T s Ñ X for a Hilbert space X, we will use gkh
and gk for the numerical solution of g at tk and gptkq, respectively. The variable
g can be σ, u in the problem. For simplicity we will also use the definitions

B̄tgk� 1
2 :� 1

∆t
pgk�1 � gkq, gk�

1
2 :� 1

2
pgk � gk�1q

for any sequence tvkuMk�0 of functions with upper index k.
Let Πh : H1pΩ;Rdq Ñ Σh be the canonical interpolation operator of the

Raviart–Thomas–Nedelec elements (see, e.g., [18]). If Ph is the L2 projection
to Vh, then pΠh, Phq satisfies the commuting diagram property

divΠhτ � Ph div τ, τ P H1pΩ,Rdq. (25)

On every facet F in Th and a normal vector nF on F ,»
F

pτ �Πhτq � nF q ds � 0 @q P Pl�1pF q. (26)

By extending Πh and Ph to the N -copies of H1pΩ;Rdq and L2pΩq, we define

Πh : H1pΩ;Rdq � � � � �H1pΩ;Rdqloooooooooooooooooomoooooooooooooooooon
N tuples

Ñ Σh, Ph : V Ñ Vh.

Let

ekσ :� σk � σk
h � pσk

1 � σk
1,h, � � � , σk

N � σk
N,hq, (27)

eu :� uk � uk
h � puk

1 � uk
1,h, � � � , uk

N � uk
N,hq, (28)

and define eh,kσ , eI,kσ , eh,ku , eI,ku by

eh,kσ :� Πhσ
k � σk

h, eh,ku :� Phu
k � uk

h,

eI,kσ :� Πhσ
k � σk, eI,ku :� Phu

k � uk.

By a standard approximation theory of interpolation operators, assuming that
σk
i P HrpΩ;Rdq and uk

i P HspΩq with r ¡ 1{2, s ¥ 0,

}σk
i �Πhσ

k
i }L2pΩq ¤ Chm}σk

i }HrpΩq
1

2
  m ¤ maxtl, ru, (29)

}uk
i � Phu

k
i }L2pΩq ¤ Chs}uk

i }HspΩq 0 ¤ m ¤ maxtl, su. (30)

As immediate extensions,

}σk
i �Πhσ

k
i }L2pΩq ¤ Chm}σk}HrpΩq

1

2
  m ¤ maxtl, ru, (31)

}uk � Phu
k}L2pΩq ¤ Chs}uk}HspΩq 0 ¤ m ¤ maxtl, su. (32)

10



By the commuting diagram property (25) and the property div Σh � Vh,

bpeI,kσ ,vq � 0 @v P Vh, (33a)

bpτ , eI,ku q � 0 @τ P Σh. (33b)

Here we recall a discrete Grönwall inequality before we begin our proof of error
estimates (cf. [24, 25]).

Lemma 4.1. Let ∆t ¡ 0, B,C ¡ 0 and takuk, tbkuk, tckuk be sequences of
non-negative numbers satisfying

ak �∆t
ķ

i�0

bi ¤ B � C∆t
ķ

i�0

ai �
ķ

i�0

ci (34)

for all k ¥ 0. Then, if C∆t   1,

ak �∆t
ķ

i�0

bi ¤ eCpk�1q∆t

�
B �

ķ

i�0

ci

�
. (35)

Remark 4.2. We remark that (34) and (35) are slightly different in [24]. In

particular, the summation
°k

i�0 ci is ∆t
°k

i�0 ci in [24] but we can show that
(34) implies (35) with the same proof.

Theorem 4.1. Suppose that a pair σ � pσ1, � � � , σN q, u � pu1, � � � , uN q is a
solution of (10). Suppose also that the assumption of Theorem 3.1 holds, and
the sequence tpσk

h,u
k
hquk is a solution of (20) for given numerical initial data

pσ0
h,u

0
hq P Σh � Vh satisfying apσ0

h, τ q � bpτ ,u0
hq � 0. Recall the definitions of

eh,kσ and eh,ku in (27), (28). If 0   ∆t   1{L for the L in Theorem 3.1, then

}eh,ku }2L2pΩq �
∆t

4

k�1̧

m�0

apeh,mσ � eh,m�1
σ , eh,mσ � eh,m�1

σ q

� apeh,kσ , eh,kσ q � 1

2∆t

k�1̧

m�0

}em�1
u � eh,mu }2L2pΩq

¤ }eh,0u }2L2pΩq � apeh,0σ , eh,0σ q
� C

�
h2r}σ,u}2L8p0,tk;HrpΩqq � p∆tq4}B3tu}2L8p0,tk;L2pΩqq

	
� Ch2r}Btσ}2L8p0,tk;HrpΩqq � Ch2r

¸
}u}2L8p0,tk;HrpΩqq

for 1
2   r ¤ l.

Proof. Note that solutions of (10) satisfy

1

2
apσk � σk�1, τ q � 1

2
bpτ ,uk � uk�1q � 0,

1

2
bpσk � σk�1,vq � 1

2
cpBtuk � Btuk�1,vq � 1

2
pdpuk,vq � dpuk�1,vqq � 0

11



for all pτ ,vq P Σh � Vh, k ¥ 0. The difference of the above equations and (20)
gives

1

2
apekσ � ek�1

σ , τ q � 1

2
bpτ , eku � ek�1

u q � 0,

1

2
bpekσ � ek�1

σ ,vq � c

�
1

2
pBtuk � Btuk�1q � 1

∆t
puk�1

h � uk
hq,v




� 1

2
pdpuk�1,vq � dpuk�1

h ,vq � dpuk,vq � dpuk
h,vqq � 0

for all pτ ,vq P Σh � Vh. Recalling that ekσ � eh,kσ � eI,kσ , eku � eh,ku � eI,ku ,

1

2
apeh,kσ � eh,k�1

σ , τ q � 1

2
bpτ , eh,ku � eh,k�1

u q

� 1

2
apeI,kσ � eI,k�1

σ , τ q � 1

2
bpτ , eI,ku � eI,k�1

u q,
1

2
bpeh,kσ � eh,k�1

σ ,vq � 1

∆t
c
�
eh,k�1
u � eh,ku ,v

�
� c

�
1

∆t
puk�1 � ukq � 1

2
pBtuk � Btuk�1q,v



� 1

2
b
�
eI,kσ � eI,k�1

σ ,v
�

� 1

2

�
dpuk�1

h ,vq � dpuk�1,vq � dpuk
h,vq � dpuk,vq� .

By (33), we can get reduced error equations

1

2
a
�
eh,kσ � eh,k�1

σ , τ
�� 1

2
b
�
τ , eh,ku � eh,k�1

u

� � 1

2
a
�
eI,kσ � eI,k�1

σ , τ
�
,

1

2
b
�
eh,kσ � eh,k�1

σ ,v
�� 1

∆t
c
�
eh,k�1
u � eh,ku ,v

�
� c

�
1

∆t
puk�1 � ukq � 1

2
pBtuk � Btuk�1q,v




� 1

2

�
dpuk�1

h ,vq � dpuk�1,vq � dpuk
h,vq � dpuk,vq� .

Take τ � eh,k�1
σ � eh,kσ , v � eh,k�1

u � eh,ku and add the equations and get

1

2
a
�
eh,k�1
σ � eh,kσ , eh,k�1

σ � eh,kσ

�� 1

∆t

�
}eh,k�1

u }2L2pΩq � }eh,ku }2L2pΩq

	
� 1

2
a
�
eI,kσ � eI,k�1

σ , eh,kσ � eh,k�1
σ

�
� c

�
1

∆t
puk�1 � ukq � 1

2
pBtuk � Btuk�1q, eh,ku � eh,k�1

u




� 1

2

�
dpuk�1

h , eh,ku � eh,k�1
u q � dpuk�1, eh,ku � eh,k�1

u q � dpuk
h, e

h,k
u � eh,k�1

u q�
� 1

2
dpuk, eh,ku � eh,k�1

u q.

12



By multiplying ∆t and by a simple algebraic computation,

}eh,k�1
u }2L2pΩq �

∆t

2
a
�
eh,k�1
σ � eh,kσ , eh,k�1

σ � eh,kσ

�
� }eh,ku }2L2pΩq �

6̧

j�1

Ikj (36)

where

Ik1 :� ∆t

2
apeI,kσ � eI,k�1

σ , eh,kσ � eh,k�1
σ q,

Ik2 :� c

�
uk�1 � uk � ∆t

2

�Btuk � Btuk�1
�
, eh,k�1

u � eh,ku



,

Ik3 :� ∆t

2

�
d
�
uk�1
h , eh,k�1

u � eh,ku

�� d
�
Phu

k�1, eh,k�1
u � eh,ku

��
, (37)

Ik4 :� ∆t

2

�
d
�
uk
h, e

h,k�1
u � eh,ku

�� d
�
Phu

k, eh,k�1
u � eh,ku

��
, (38)

Ik5 :� ∆t

2

�
d
�
Phu

k�1, eh,k�1
u � eh,ku

�� d
�
uk�1, eh,k�1

u � eh,ku

��
,

Ik6 :� ∆t

2

�
d
�
Phu

k, eh,k�1
u � eh,ku

�� d
�
uk, eh,k�1

u � eh,ku

��
.

If we take the summation of (36) over k, then we can obtain

}eh,ku }2L2pΩq �
∆t

2

k�1̧

m�0

a
�
eh,m�1
σ � eh,mσ , eh,m�1

σ � eh,mσ

�

� }eh,0u }2L2pΩq �
k�1̧

m�0

6̧

j�1

Imj . (39)

By the Lipschitz continuity assumption (5) and the triangle inequality,

|Im3 | ¤ 2L∆t}eh,m�1
u }L2pΩq

�}eh,mu }L2pΩq � }eh,m�1
u }L2pΩq

�
, (40)

|Im4 | ¤ 2L∆t}eh,mu }L2pΩq

�}eh,mu }L2pΩq � }eh,m�1
u }L2pΩq

�
, (41)

so

|Im3 � Im4 | ¤ 4∆tL
�
}eh,mu }2L2pΩq � }eh,m�1

u }2L2pΩq

	
. (42)

By (5), (32), the triangle inequality, and Young’s inequality,

|Im5 � Im6 | ¤ ∆thrC
�}um}HrpΩq � }um�1}HrpΩq

� �}eh,mu � eh,m�1
u }L2pΩq

�
¤ C∆th2r}u}2L8ptm,tm�1;HrpΩqq (43)

� ∆t

4

�
}eh,mu }2L2pΩq � }eh,m�1

u }2L2pΩq

	
.

13



Note that

Ņ

i�1

⟨︁
K�1

i eI,kσi
� n, τi � n

⟩︁ � 0 @τ P Σh

by (26). Then, (31), the Cauchy–Schwarz and Young’s inequalities give

|Im1 | �
∆t

2
|apeI,mσ � eI,m�1

σ , eh,mσ � eh,m�1
σ q| (44)

¤ ∆t

2
}eI,mσ � eI,m�1

σ }L2pΩq}eh,mσ � eh,m�1
σ }L2pΩq

¤ C∆th2r}σ}2L8ptm,tm�1;HrpΩqq

� ∆t

4
apeh,mσ � eh,m�1

σ , eh,mσ � eh,m�1
σ q.

Lastly, we can estimate Im2 by Cauchy–Schwarz and Young’s inequalities,

|Im2 | ¤ Cp∆tq3}B3tu}L8ptm,tm�1;L2pΩqq}eh,mu � eh,m�1
u }L2pΩq

¤ Cp∆tq5}B3tu}2L8ptm,tm�1;L2pΩqq (45)

� ∆t

4

�
}eh,mu }2L2pΩq � }eh,m�1

u }2L2pΩq

	
.

Applying (42), (43), (44), (45) to (39), we get

}eh,ku }2L2pΩq �
∆t

4

k�1̧

m�0

apeh,mσ � eh,m�1
σ , eh,mσ � eh,m�1

σ q

¤ }eh,0u }2L2pΩq �∆t

�
4L2 � 1

2


 k�1̧

m�0

�
}eh,mu }2L2pΩq � }eh,m�1

u }2L2pΩq

	
(46)

� C∆t
k�1̧

m�0

�
h2r}σ,u}2L8ptm,tm�1;HrpΩqq � p∆tq4}B3tu}2L8ptm,tm�1;L2pΩqq

	
.

Recall that apσ0
h, τ q � bpτ ,u0

hq � 0 as a condition of numerical initial data.
Combining this with the fully discrete scheme, we can get

apekσ, τ q � bpτ , ekuq � 0, @k ¥ 0.

The difference of k and pk � 1q time step of the above error equations is

1

2
apek�1

σ � ekσ, τ q �
1

2
bpτ , ek�1

u � ekuq � 0,

14



so we get another set of error equations

1

2
apeh,k�1

σ � eh,kσ , τ q � 1

2
bpτ , eh,k�1

u � eh,ku q

� 1

2
apeI,k�1

σ � eI,kσ , τ q � 1

2
bpτ , eI,k�1

u � eI,ku q,
1

2
bpeh,kσ � eh,k�1

σ ,vq � 1

∆t
c
�
eh,k�1
u � eh,ku ,v

�
� c

�
1

∆t
puk�1 � ukq � 1

2
pBtuk � Btuk�1q,v



� 1

2
b
�
eI,kσ � eI,k�1

σ ,v
�

� 1

2

�
dpuk�1

h ,vq � dpuk�1,vq � dpuk
h,vq � dpuk,vq� .

Again by (33), we get reduced error equations

1

2
apeh,k�1

σ � eh,kσ , τ q � 1

2
bpτ , eh,k�1

u � eh,ku q � 1

2
apeI,k�1

σ � eI,kσ , τ q,
1

2
bpeh,kσ � eh,k�1

σ ,vq � 1

∆t
c
�
eh,k�1
u � eh,ku ,v

�
� c

�
1

∆t
puk�1 � ukq � 1

2
pBtuk � Btuk�1q,v




� 1

2

�
dpuk�1

h ,vq � dpuk�1,vq � dpuk
h,vq � dpuk,vq� .

By taking τ � 2peh,k�1
σ � eh,kσ q, v � 2peh,k�1

u � eh,ku q, and adding these two
equations,

apeh,k�1
σ , eh,k�1

σ q � apeh,kσ , eh,kσ q � 2

∆t
cpek�1

u � eh,ku , eh,k�1
u � eh,ku q

� apeI,k�1
σ � eI,kσ , eh,k�1

σ � eh,kσ q

� 2c

�
1

∆t
puk�1 � ukq � 1

2
pBtuk � Btuk�1q, eh,k�1

u � eh,ku



� pdpuk�1

h , eh,k�1
u � eh,ku q � dpuk�1, eh,k�1

u � eh,ku qq
� pdpuk

h, e
h,k�1
u � eh,ku q � dpuk, eh,k�1

u � eh,ku qq
�: Jk

1 � Jk
2 � Jk

3 � Jk
4 .

Taking the summation of the above equation over k, we can get

apeh,kσ , eh,kσ q � 2

∆t

k�1̧

m�0

cpem�1
u � eh,mu , eh,m�1

u � eh,mu q

� apeh,0σ , eh,0σ q �
k�1̧

m�0

pJm
1 � Jm

2 � Jm
3 � Jm

4 q . (47)
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By an argument similar to (44), we estimate Jm
1 with Young’s inequality by

|Jm
1 | ¤ }eI,m�1

σ � eI,mσ }L2pΩq}eh,m�1
σ � eh,mσ }L2pΩq,

¤ C∆thr}Btσ}L8ptm,tm�1;HrpΩqq}eh,m�1
σ � eh,mσ }L2pΩq (48)

¤ C∆th2r}Btσ}2L8ptm,tm�1;HrpΩqq �
∆t

4

�
apeh,m�1

σ , eh,m�1
σ q � apeh,mσ , eh,mσ q� .

For Jm
2 ,

|Jm
2 | ¤ 2

���� 1

∆t
pum�1 � umq � 1

2
pBtum � Btum�1q

����
L2pΩq

}eh,m�1
u � eh,mu }L2pΩq,

¤ 2∆t

���� 1

∆t
pum�1 � umq � 1

2
pBtum � Btum�1q

����
2

L2pΩq

� 1

2∆t
}eh,m�1

u � eh,mu }2L2pΩq

¤ 2p∆tq�1

����pum�1 � umq � ∆t

2
pBtum � Btum�1q

����
2

L2pΩq

� 1

2∆t
}eh,m�1

u � eh,mu }2L2pΩq

¤ Cp∆tq5 ��B3tu��2L8ptm,tm�1;L2pΩqq
� 1

2∆t
}eh,m�1

u � eh,mu }2L2pΩq. (49)

By (5), the Cauchy–Schwarz inequality, Young’s inequality, and (30),

|Jm
3 | ¤ L}um�1

h � um�1}L2pΩq}eh,m�1
u � eh,mu }L2pΩq

¤ L}eh,m�1
u � eI,m�1

u }L2pΩq}eh,m�1
u � eh,mu }L2pΩq

¤ ∆tL2
�
}eh,m�1

u }2L2pΩq � }eI,m�1
u }2L2pΩq

	
� 1

2∆t
}eh,m�1

u � eh,mu }2L2pΩq

¤ ∆tL2}eh,m�1
u }2L2pΩq �

1

2∆t
}eh,m�1

u � eh,mu }2L2pΩq

� C∆th2r}u}2L8ptm,tm�1;HrpΩqq. (50)

A completely same argument gives

|Jm
4 | ¤ ∆tL2}eh,mu }2L2pΩq �

1

2∆t
}eh,m�1

u � eh,mu }2L2pΩq

� C∆th2r}u}2L8ptm,tm�1;HrpΩqq. (51)
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By combining the estimates of Jm
1 , Jm

2 , Jm
3 , Jm

4 in (48), (49), (50), (51), we have

apeh,kσ , eh,kσ q � 1

4∆t

k�1̧

m�0

}em�1
u � eh,mu }2L2pΩq

¤ apeh,0σ , eh,0σ q � C∆th2r
k�1̧

m�0

}Btσ}2L8ptm,tm�1;HrpΩqq

�
k�1̧

m�0

∆t

4

k�1̧

m�0

�
apeh,m�1

σ , eh,m�1
σ q � apeh,mσ , eh,mσ q�

� Cp∆tq5
k�1̧

m�0

��B3tu��2L8ptm,tm�1;L2pΩqq
(52)

�∆tL2
k�1̧

m�0

�
}eh,m�1

u }2L2pΩq � }eh,mu }2L2pΩq

	

� C∆th2r
k�1̧

m�0

}u}2L8ptm,tm�1;HrpΩqq.

The sum of (46) and (52) gives

}eh,ku }2L2pΩq �
∆t

4

k�1̧

m�0

apeh,mσ � eh,m�1
σ , eh,mσ � eh,m�1

σ q

� apeh,kσ , eh,kσ q � 1

2∆t

k�1̧

m�0

}em�1
u � eh,mu }2L2pΩq

¤ }eh,0u }2L2pΩq � apeh,0σ , eh,0σ q �∆t

�
5L2 � 1

2


 k�1̧

m�0

�
}eh,mu }2L2pΩq � }eh,m�1

u }2L2pΩq

	

� C∆t
k�1̧

m�0

�
h2r}σ,u}2L8ptm,tm�1;HrpΩqq � p∆tq4}B3tu}2L8ptm,tm�1;L2pΩqq

	

� C∆th2r
k�1̧

m�0

}Btσ}2L8ptm,tm�1;HrpΩqq

� ∆t

4

k�1̧

m�0

�
apeh,m�1

σ , eh,m�1
σ q � apeh,mσ , eh,mσ q�

� C∆th2r
k�1̧

m�0

}u}2L8ptm,tm�1;HrpΩqq.

We remark that ∆t
°k�1

m�0 }g}L8ptm,tm�1;X q ¤ k∆t}g}L8p0,tk;X q for g P L8p0, T ;X q
with a normed space X , and k∆t � T at the final time step k � M . Thus,
this ∆t in ∆t

°k�1
m�0 }g}L8ptm,tm�1;X q does not give an additional order of con-

vergence. Finally, the conclusion follows if we apply the discrete Grönwall in-
equality in Lemma 4.1 to the above inequality.
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As an immediate consequence, we can prove the a priori error estimates.

Theorem 4.2. Suppose that all assumptions in Theorem 4.1 hold, and the
numerical initial data pσ0

h,u
0
hq satisfy

}up0q � u0
h}L2pΩq � apσp0q � σ0

h,σp0q � σ0
hq1{2

¤ Chrp}up0q}HrpΩq � }σp0q}HrpΩqq

for 1
2   r ¤ l. Then,

}uptkq � uk
h}2L2pΩq � }σptkq � σk

h}2L2pΩq

¤ Chrp}up0q}HrpΩq � }σp0q}HrpΩqq
� C

�
h2r}σ,u}2L8p0,tk;HrpΩqq � p∆tq4}B3tu}2L8p0,tk;L2pΩqq

	
� Ch2r}Btσ}2L8p0,tk;HrpΩqq � Ch2r

¸
}u}2L8p0,tk;HrpΩqq

for 1
2   r ¤ l and 1 ¤ k ¤M .

Proof. The proof follows immediately by Theorem 4.1, (31), (32), and the tri-
angle inequality.

5. Numerical experiments

In this section we present numerical experiment results to illustrate that our
theoretical error estimates are valid. All numerical experiments are carried out
with FEniCS 2019.1.0 (see [26]).

For numerical experiments we set Ω � r0, 1s � r0, 1s, Γ � t1{2u � r0, 1s,
Ω� � r0, 1{2s� r0, 1s, Ω� � r1{2, 1s� r0, 1s. We use an unstructured mesh such
that Γ is in the union of the edges of the mesh. In numerical experiments for
convergence rates of errors, we refine meshes by subdividing each triangle to
four congruent subtriangles (see Figure 2).
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Figure 2: Initial unstructured mesh and its two nested refinements

In our experiments, we used the lowest and the second lowest Raviart–
Thomas elements, denoted by RT0 and RT1 for Vh. The finite element spaces
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with piecewise constant and discontinuous piecewise linear polynomials are de-
noted by DG0 and DG1, and these spaces are used for Vh. The stable mixed
finite element pairs are pRT0, DG0q and pRT1, DG1q.

In our error analysis, the expected convergence rates of all errors are the
first and second orders, respectively. We impose Dirichlet boundary conditions
on the top and bottom boundary components of Ω for i � 1, 2, and impose
Neumann boundary conditions on the left and right boundary components of Ω
for i � 1, 2.

For manufactured solutions we define

ui �
#
ui,�, in Ω�,

ui,�, in Ω�,

for i � 1, 2 with appropriate functions ui,� which will be given below. First, let

ϕpx, tq � 1� pcos tq
�
x� 1

2


2

,

and define

ũ1,�px, yq � sin
πx

3
�
�
x� 1

2


2

yp1� yq,

ũ1,�px, yq � sin
πx

3
� 1�

�
x� 1

2


2

sinpπyq,

ũ2,�px, yq � cos
πx

3
� 2

�
x� 1

2


2

yp1� yq,

ũ2,�px, yq � cos
πx

3
� 1� 2

�
x� 1

2


2

sinpπyq.

Then, ui,�, i � 1, 2 are defined by

ui,� � ϕpx, tqui,�, ui,� � ϕpx, tqui,�.

For nonlinearities we take f1pu1, u2q � u2
1u

3
2 and f2pu1, u2q � u3

1u
3
2. Then, σi,�,

fı,�, i � 1, 2 are also defined by

σi,� � �∇ui,�,

f1,� � div σ1,� � u2
1,�u

3
2,�,

f2,� � div σ2,� � u3
1,�u

3
2,�.

We remark that these nonlinearities are not Lipschitz continuous with uni-
form Lipschitz constants in general. However, if u1 and u2 are functions in
L8p0, T ;L8pΩqq, then the Lipschitz continuity assumption (5) is satisfied for
0 ¤ t ¤ T . Since we use manufactured solutions which are in L8p0, T ;L8pΩqq
in our numerical experiments, our theoretical error estimates are still valid in
our numerical experiments.

In Table 1 and Table 2 we present convergence of errors for ∆t � h and
for pRT0, DG0q, pRT1, DG1q pairs. The results show that optimal convergence
rates, which we expected in theoretical analysis, are obtained in all cases.
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hmax
}u1 � u1,h}L2pΩq

}u2 � u2,h}L2pΩq
}σ1 � σ1,h}L2pΩq

}σ2 � σ2,h}L2pΩq
error rate error rate error rate error rate

0.3082 5.4351e-02 – 5.5267e-02 – 5.6489e-02 – 3.6849e-02 –
0.1875 2.7398e-02 0.99 2.7816e-02 0.99 2.8086e-02 1.01 1.8283e-02 1.01
0.0938 1.3721e-02 1.00 1.3926e-02 1.00 1.4041e-02 1.00 9.1296e-03 1.00
0.0469 6.8628e-03 1.00 6.9657e-03 1.00 7.0187e-03 1.00 4.5619e-03 1.00
0.0234 3.4315e-03 1.00 3.4831e-03 1.00 3.5084e-03 1.00 2.2802e-03 1.00

Table 1: Convergence results with ∆t � h, the Crank–Nicolson method, and
pRT0, DG0q.

hmax
}u1 � u1,h}L2pΩq

}u2 � u2,h}L2pΩq
}σ1 � σ1,h}L2pΩq

}σ2 � σ2,h}L2pΩq
error rate error rate error rate error rate

0.3082 1.7406e-03 – 1.6257e-03 – 1.5422e-03 – 1.5721e-03 –
0.1875 4.3491e-04 2.00 4.0582e-04 2.00 3.8080e-04 2.02 3.8980e-04 2.01
0.0938 1.0904e-04 2.00 1.0181e-04 2.00 9.5514e-05 2.00 9.7276e-05 2.00
0.0469 2.7314e-05 2.00 2.5486e-05 2.00 2.3894e-05 2.00 2.4287e-05 2.00
0.0234 6.8363e-06 2.00 6.3889e-06 2.00 5.9716e-06 2.00 6.0672e-06 2.00

Table 2: Convergence results with ∆t � h, the Crank–Nicolson method, and
pRT1, DG1q.

6. Conclusion

In this paper we develop mixed finite element methods for nonlinear reaction-
diffusion equations with Robin-type interface conditions on membrane struc-
tures in the domain. We proved well-posedness of fully discrete scheme with
the Crank–Nicolson method and the a priori error estimates of solutions with
a sufficiently small time-step size assumption. In some numerical results, we
observed that the errors of solutions converge as expected by our theoretical
analysis. In our future research, we will study positivity-preserving numerical
methods for the problems.
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