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Abstract

We develop mixed finite element methods for nonlinear reaction-diffusion equa-
tions with interfaces which have Robin-type interface conditions. We introduce
the velocity of chemicals as new variables and reformulate the governing equa-
tions. The stability of semidiscrete solutions, existence and the a priori error
estimates of fully discrete solutions are proved by fixed point theorem and con-
tinuous/discrete Gronwall inequalities. Numerical results illustrating our the-
oretical analysis are included.
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1. Introduction

The reaction-diffusion equations are widely used to describe the diffusion of
chemical substances with their reactions. Therefore, methods to numerically
solve reaction-diffusion equations have also been studied for a very long time.
Recently, a reaction-diffusion model interacting with other physical/chemical
conditions has been actively studied, beyond the simple reaction-diffusion equa-
tions. An example of such extended reaction-diffusion equations is the reaction-
diffusion model with a thin membrane in the domain. This model can be used
to model the cases where a semi-permeable membrane is involved in reaction-
diffusion processes of chemicals. The governing equations are a set of reaction-
diffusion equations in which interface conditions on thin membranes are involved
(cf. [1L 2]). Reaction-diffusion equations with such interface conditions have
been studied in several previous studies. Well-posedness of several partial dif-
ferential equation models were studied (|7, [8, @} [0l 1T, 13, 14} 16}, [17]). Discon-
tinuous Galerkin finite element methods for some diffusion, advection-diffusion,
reaction-diffusion equations with possibly nonlinear interface conditions were
studied in [3, 4l Bl 6 15, 12).
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In this paper, we will study mixed finite element methods to solve nonlin-
ear reaction-diffusion equations with interface conditions, particularly, for the
models in [7]. In mixed finite element methods using the dual mixed form of
diffusion equations (see, e.g., [18]), the velocity of each chemical is chosen as
additional variable. Compared to the classical discontinuous Galerkin methods
in the previous studies (3} [, Bl 6 15, 12]), numerical solutions of the mixed
finite element methods satisfy local mass conservation without additional post-
processing of numerical solutions. Moreover, to the best of our knowledge,
fast solver algorithms of discontinuous Galerkin methods for interface problems
have not been explored. In contrast, scalable fast solver algorithms for the in-
terface problems that we consider in this paper, have been developed with a
solid theoretical basis (cf. [19]). Therefore, the mixed methods in this paper
are advantageous for numerical simulations of large scale problems.

The paper is organized as follows. In Section [2] we introduce definitions,
governing equations of the reaction-diffusion equations with membrane struc-
tures, and semidiscrete discretization with finite element methods. In Section
we define fully discrete scheme with the Crank—Nicolson method and prove
well-posedness of fully discrete solutions for sufficiently small time step sizes.
We prove the a priori error estimates of the fully discrete scheme in Section [
and present numerical experiment results in Section [f] Conclusions and future
research directions will be given in Section [6]

2. Preliminaries

Let 2 be a bounded domain in R? (d = 2, 3) with Lipschitz continuous poly-
gonal/polyhedral boundary. For finite element discretization we consider a fam-
ily of triangulations {7, }n~o of Q with shape-regular triangles/tetrahedra and
without hanging nodes. Here h > 0 is the maximum radius of triangles/tetrahedra
in 7y. The (d —1)-dimensional simplices in 7, will be called facets in the paper.

For 1 <r < o0, L™(R) is the Lebesgue space with the norm

ol = 4 Qoo de)" i1 <r <o,
) esssup,eqfjv(z)|}, ifr=co.

For a subdomain D < 2 with positive d-dimensional Lebesgue measure, let
L?(D) and L%(D;R?) be the sets of R- and R?-valued square integrable functions
with inner products (v,v’),, := §, v’ dz and (v,v'), = [, v - v dz. In the
paper H*(D), s > 0, denotes the Sobolev space based on the L?-norm with
s-differentiability on D. We refer to [20] for a rigorous definition of H*(D). The
norm on H?(D) is denoted by | - ||s,p and D is omitted if D = Q.

For T' > 0 and a separable Hilbert space X, let C°([0,T7]; X) denote the set
of functions f : [0,T] — A that are continuous in ¢ € [0,7]. For an integer
m = 1, we define

C™([0,T]:X) = {f0;f € C°([0, T]; X), 0 < i < m},



Figure 1: A model domain  with interface I"

where 0! f is the i-th time derivative in the sense of the Fréchet derivative in X
(cf. [21]). For a function f : [0,T] — X, the Bochner norm is defined by

1/r
(5 17 ()ds) 1< <,

[ flzr01x) =
esssupe(o,) |f(0)|x, =00

Wk (0,T; X) for a non-negative integer k and 1 < r < o0 is defined by the
closure of C*([0,T]; X) with the norm | f[ws.ror2) = Zf:o 10 fllr 0,732 -
The semi-norm Hf||W’v=7'(o,T;X) is defined by HfHWkw(o,T;X) = [10F fll - 0,7;2)-

For a normed space X with norm | - |+ and functions f1, fo € X, | f1, fo|lx
will denote | fi|x + || f2|x, and | f1, fo, fs]|x is defined similarly.

2.1. Governing equations

In this subsection we introduce governing equations, a reformulation of the
equations, and a variational formulation for finite element methods.

We assume that Q. ,Q_ < Q are two disjoint subdomains with polygonal/polyhedral

boundaries such that Q, U Q_ = Q, and let I' = 0Q, n dQ_. For a function
v € L?() such that v]g, € H'(Q;) for j = +, —, we use v|p, to denote the trace
of v on I' from v|q,. Note that v|r, =+ v|r_ in general. Throughout this paper,
the unit normal vector field n on I' is the normal vector outward from Q, (see
Figure .

Suppose that u;, 1 < i < N are real-valued functions on [0,7] x . We
use u;(t), 0 <t < T, to denote a real-valued function u,(t,-) defined on 2. For
given functions

fi:RY R, ¢;:[0,T] x 0Q - R (1)
we consider the system of equations to find

(u1,- ,un) : [0,T] x Q - RN



such that
Orui(t) — div(k; Vu,(t)) = fi(ur(t), -+ ,un(t)) in €, (2a)
with interface condition
—(kiVu;(t)) -n = K;(u|r, (t) —uilr_(t)) onI',K; >0, (3)
forall 0 <t <7T,1<i< N and with initial condition
(u1(0), -+, un(0)). (4)

To make a well-posed system of partial differential equations, appropriate
boundary conditions are necessary. A set of full Dirichlet boundary conditions

ui(t) =¢i(t) ondQ VI<i<N,0<t<T,

can be imposed to make well-posed. For simplicity, we assume that g; = 0
for 1 <7< N,0<t<T in the rest of this paper but the discussions below
can be extended to more general boundary conditions including ¢g; # 0 and
Neumann or mixed boundary conditions on 0€2 with appropriate modifications.
Throughout this paper we assume that the functions {f;}1_, satisfy a Lipschitz
continuity assumption that as follows: For v;, w; € L?(Q), 1 <i < N,

| fi(vi(2), -, on (@) = filwi(z),-- -, wn (2))]

N %
<L (2 joi() - m(w)ﬁ) (5)

i=1
for almost every z € ) with a constant L; > 0 where | - | means the Euclidean
norm in RY. We also assume that f;, 1 <1 < N satisfies f;(u1,--- ,uyn) < 0 if

uj =0 for all 1 < j <d, j % 4. This assumption is motivated from the physical
modeling such that f; is the increasing/decreasing rate of the i-th chemical by
chemical reaction of other chemicals {u;}; j+;. In particular,

fi(0,-+-0)=0for 1 <i< N. (6)

By introducing o; = —x;Vu;, we have a system equivalent to with unknowns
(o1(t), -+ ,on (1)), (ur(t), -+ ,un(t)) such that

Ky toi(t) = —Vu(t) in Q, (7a)

Oru;(t) + divoy(t) = fi(ui(t), -~ ,un(t)) in O (7b)

with interface conditions
oi(t) - n = K;(uilr, (t) — us|r_ (1)) onT (8)
forall 0 <t<7T,1<i< N. The boundary conditions

u;(t) =0 on 0, 1<i<NO<t<T (9)



are imposed as before. For initial conditions, in addition to (u1(0),---,un(0))

in (), we need (01(0),--- ,on/(0)) satisfying (7a)), for t = 0.

To derive a variational formulation of , let
S ={reH(div,Q):7-njre L*)}, V =L*9),

where H(div,() is the subset of L?(€2;R?) such that the divergence of 7 €
L2(;RY) is well-defined as an element in L?(Q2). Then, we define & and V by

YX=YiXxxXy, V=Vix--xVy

with ¥; =3, V; =V for 1 < i < N. Then, after the integration by parts of (7a))
for 1 < ¢ < N, we can derive a system of variational equations from and (8):
Find (o1, ,0n) € C%([0,T]; 2), (u1,--+ ,un) € C1([0,T]; V) such that
(I{i_lo'i(t),Ti)Q + <K;101(t) "N, T; - TL>F — (Ui(t),diVTi)Q = 0, (10&)
(Grui(t), vi)o + (divoy(t), vi)o — (filui(t), -, un(t)),vi)o = 0 (10b)

foral0<t<T,1<i< N andforall (1, ,7n) €, (v1, - ,on) EV.

2.2. Finite element discretization

In this subsection we present discretization of with finite element meth-
ods.

For an integer [ > 0 and a set D < R?, P;(D) is the space of polynomials
defined on D of degree at most [. Similarly, P;(D;R?) is the space of R%-valued
polynomials of degree at most [. For given [ > 1 let us define

T
Su(T) =Pt (T;RY + | 2 | P (T). (11)
T4

Suppose that £, ; € X; is the Raviart-Thomas(—Nedelec) element ([22] 23] 18])
defined by

Shi={r€e%; : Tlr €e Lp(T), YT €Trn}
and V},; is defined by

Vhi={veV :vjpeP_1(T) VT €T} (12)
Then, it is well-known that the pair (3, ;, V}, ;) satisfies

i, div 7
divSn; = Vie  inf sup VTR oo (13)

vieVi riesy; [villlTillaiy

with a uniform C' > 0 independence of i and mesh sizes of T}, [I8] p. 406].



2.8. Semidiscrete scheme and stability

In this subsection we define a semidiscrete scheme of with 3, x V}, and
discuss the stability of semidiscrete solutions. For simplicity define o and u by

(01,09,++ ,on) and (uy,- -+ ,upn), and semidiscrete solutions o, : [0,T] = Xp,
up, : [0,T] = V4, are defined similarly.
For

T = (Tla"' aTN)7n: (7717"‘ ,nN)EE7
v= (v, - ,on),w=(wy, -, wny)€EV,

define three bilinear and one nonlinear forms

N N

a(T, ’I’]) = (/Q;lTZ"’]’h‘)Q + Z <K;17'7,' cN, 1 n>F s (14)
Z; 1=

b(r,v) = Z(vi,divn)g, (15)
N

c(v,w) = Z(Umwi)m (16)
N

d(v,w) := Z(fi(vu S UN), Wi)Q-

Then, the system can be rewritten as
a(o(t), ) —b(T,u(t)) =0 VreX, (17a)
b(o(t),v) + c(Gru(t),v) — d(u(t),v) =0 YveV. (17b)

A discrete-in-space and continuous-in-time semidiscrete scheme with finite ele-
ment space Xj X Vp, is to find (o, up) : [0,T] = Xj, x V}, such that

a(on(t), ) —b(T,un(t)) =
blon(t),v) + c(drun(t),v) — d(up(t),v) =

VT e Xy, (18a)
YveV, (18b)

for all ¢ € [0, T]. For stability analysis, let 7 = o,(t), v = ux(t) and add the
equations. Then,

%%C(um),uh(t)) + a(on(t), on(t)) = d(un(t), un(t)).



By the Lipschitz continuity assumption and @7 we can obtain

%%C(’Uh(t), up(t)) + alon(t), on(t))

= d(un(t), un(t))

Il
KMZ

-
Il
—

(filun1(t), - s unn(t)), uni(t))a

(filun(t), - sunn(t)) = fi(0,---,0),un:(t))o

Il
M=

N

e~
=3

>

O)72(0)

where L = maxi<i<n{L;}. Recalling that c(up(t),un(t)) = ||uh(t)H%2(Q), and
a(on(t),on(t)) = 0, by Gronwall inequality,

lwn (t) 220y < € lun(0)] L2 (0)-

If T > 0 is fixed, then

Jnax fun(®)lr2) < e un(0)] L2 (- (19)

To estimate ||, (t)[z2(q), we take T = o, (t) in the time derivative of (18a)),

v = dyup(t) in (L8b), and add the two equations. Then, we get
1d
5 alon (1), on (1) + [0aun (D)0 = dlun(t), dewn (1)

< Lljun(t) |2 [0:un ()] 2 ()
L2
< ZH“h(t)”%%Q) + | Ocun ()72 (q)-

By integrating in time,

2 rt
a(01(0).74(1)) < a(e(0).000) + G- [ (o) s

Combining this with gives

L2 64LT t

a(on(t),on(t)) < a(on(0),0,(0)) + 5 ||uh(0)||%2(ﬂ) Jo lds

< a(0(0),04(0)) + = [un (0) 72 (q)-

Therefore,

o<t<T

€2LT
max G(O'h(t), O'h(t))l/Q < G,(O'h(o), O'h(()))l/2 + W\T/§||uh(0)”L2(Q)



3. Fully discrete scheme and existence of solutions

In this section we present a fully discrete numerical scheme with the Crank—
Nicolson method.

For fully discrete scheme, suppose that (O'Z,’UJZ) € Xp X Vi, a numerical
solution of the previous time step is given. The Crank—Nicolson scheme is to
find (o, ul ™) e B), x V;, such that

1 1
3 a(of + okt 1) — 2b(‘r uf +ukth) =0, (20a)

1
2b(o'h +oithv) + e ) (20b)

aic
— 5 (d(uf, ) + d(uf ™ 0)) = 0.

Since ( is a nonlinear system, existence of (o Kl uf“) is not guaranteed.

We use a ﬁxed point theorem to prove existence of (oF Tt ufth).

Theorem 3.1 (Existence and uniqueness of fully discrete solutions). Suppose
that At is sufficiently small to satisfy

LAt <2 (21)

where L > 0 is the constant of Lipschitz continuity of d(-,-) in . Then, there
exists a unique (o ,’f“ k+1) € Xy x V, satisfying .

Proof. Recall the fully discrete scheme.

1 1
~a(of +oyth ) — 2b(7‘ uf +ubtt) =0,

2
1 E+1 ﬁﬂ_ui
2b(ah +o " v)+e <At’v

—;wmm>+d<“%m>=a

Assuming that O'Z, uZ are given, the system (20) is to find (o7, K+l ui“) such
that

At(a(oyth, ) +b(T,uptt) — (ot v) + 2c(up ™ v) — Atd(uytt, v)
= —At(a(ol, ) + b(T,uf —b(af,v)) + 2c(uf,v) + Atd(uf, v) (22)
:GF(T,v)

for all (1,v) € ), x V},. For simplicity, let ®a; : X, x Vj, = 3, x V}, be the
map defined by

<(I)At (Ufh uh)v (T, 'v)>2h x Vi, (23)
= At(a(on, 7) + b(T,up) — b(on, v)) + 2c(un,v), V(7,v) € Bp x Vj,
(o-h,uh) € Eh X Vh [ (I)At(o'h,uh) € Eh X Vh (24)



where (,-)5; .y, is the standard H(div) x L? inner product on 3, x V4. Then,
one can verify that ®a; is well-posed by the Lax—Milgram lemma. From the

definition of ®A; in , we can rewrite by
<(I)At(o'}l§+1a ui+1)7 (T7 v)>ZhXVh - Atd(uZJrlv U) = Gk(T7 ’U).

k+1 o k+1
Define (o, up, ) by

(Pailof i ufi) (rv) = GH(rv) Y(rw) ey <V,
h h

} k+1 , k+1\yoc
and also define {(o;", w,’ )b 1 by

(Parloltlub il ), (r0) = Atd(uft)v) = G r,v)
’ ’ XV ’

for all (7,v) € ) x V},, and for m > 0. By taking difference of the above
equations for m, m + 1,

k+1 k41 , k+1 k+1
<‘I’At(°'h,m+1 T O0hms Up i1 — uh,m)7 (T, '“)>

= At(d(uptl v) — d(uftl_ | v))

EhXVh

for all (7,v) € ¥}, x V}. By Lipschitz continuity of the nonlinearity of d,

k k k k
ld(up ) v) = dw) o) < Dlug s — w2 o)llv] v e)-

If At is small enough to satisfy AtL < 2, then

k+1 k1, k+1 E+1 E+1 k41 o Kkt E+1
<(I)At(a-hjn+1 - a'h,tmuh,tnﬂ - uh,tn)7 (UhjnJrl - ah,tn’“’hj;wrl - uh,tn))>2’ <V;
k+1 k+1 k+1 k+1
S AtL|uyty — w2l wg g — w22

k+1 k+1 k+1 k+1

< 2wy —wp @) lwg s — o |22

By the definition of ®a,,

k1 k41 . k+1 k1 k1 k4l k+1 k1
<(I)At(ah,m+1 — O W1 — U )y (O — O U — uh,m))>2} Vi

— k+1 k+1 k+1 k+1 k+1 k+1)2
= Ata“(a.h;n’b+l - o.h;rn7 hym+1 — o.h;m) + 2Hu’h,n@+1 - uh7mHL2(Q)'

The above inequality and equality imply that ®a; is a contraction on X %
V,, with the norm |(7,v)|s,xv, = (Ata(r,7) + 2Hv||2L2(Q))1/2 if AtL < 2.
Therefore, there is a unique fixed point (O'EJ;}, u,kﬁ/vl) € 3, x V;, such that

k+1 k+1 , k+1 k+1
H (ahym — O, Uy — uhm> H — 0 as m — oo.
EpxVh

By the Banach contraction principle, this fixed point is unique, so the proof is
completed. O



4. A priori error estimates

For T > 0 let At = T/M for a natural number M and define {t;}), by
tr, = kAt. For a variable g : [0,7] — X for a Hilbert space X, we will use g
and g* for the numerical solution of g at t; and g(t;), respectively. The variable
g can be o, u in the problem. For simplicity we will also use the definitions

1 1

1
At(ngrl _gk)7 gk+2 = 5(glc +gk+1)

k+3 ._

9t9

for any sequence {v¥}M o of functions with upper index k.

Let II;, : H'(Q;R?) — ¥, be the canonical interpolation operator of the
Raviart-Thomas—Nedelec elements (see, e.g., [18]). If P, is the L? projection
to Vj, then (Ilj, Py) satisfies the commuting diagram property

divIl,r = P,divr, 7€ H'Y(Q,RY). (25)

On every facet F' in T, and a normal vector ng on F,
,[ (1 —=IIp7) -npqds =0 Vqe P_1(F). (26)
F

By extending ITj, and P, to the N-copies of H'(Q;R?) and L?(€), we define

I, : HY(Q;RY) x --- x H{(Q;RY) - %, P, :V -V,

v

~
N tuples

Let

k ._ _k k_ k k k

€ =0" —0p = (0] =07, 0N —Oxnp), (27)

ek kE_ k Kk

€y = —up, = (uy — Uy ps S UN = UN ) (28)

and define ¥ elF el oLk by
eg’k = Hho'k — o’ﬁ, eZ’k = Phuk — u’f,,,

elk .~ 10" — ok, el¥ = Pouf —u”.

By a standard approximation theory of interpolation operators, assuming that
of e H"(Q;RY) and uf € H*(Q) with r > 1/2, s > 0,

1
|t — HthHL?(Q) < Chm”UfHHT(Q) 5 <m < max{l,r}, (29)
luf = Pouf |20y < CR° |uf| oo 0 <m < max{l, s}. (30)
As immediate extensions,
1
ok — Hha'fHLz(Q) < Chm”a”“HHr(Q) 5 <m < max{l,r}, (31)
|[u* — Pyu®| 200y < CRE|[uF|| e (q) 0 < m < max{l, s}. (32)

10



By the commuting diagram property and the property div ¥, = Vj,
bel* v) =0 Yve V, (33a)
b(r,elF)y=0 Vrex,. (33b)

Here we recall a discrete Gronwall inequality before we begin our proof of error
estimates (cf. [24] 25]).

Lemma 4.1. Let At > 0, B,C > 0 and {ar}k, {bx}r, {ck}r be sequences of
non-negative numbers satisfying

k k k
ak+Athi<B+0AtZai+ZCi (34)

=0 =0 =0

for all k = 0. Then, if CAt <1,

k

ak +At2b < O+ ( Z ) (35)
=0 =0

Remark 4.2. We remark that and are slightly different in [Z)]. In

particular, the summation Zf:o ci is Aty i in [2]] but we can show that

implies with the same proof.

Theorem 4.1. Suppose that a pair o = (61, -+ ,0n), u = (u1, -+ ,un) s a
solution of . Suppose also that the assumption of Theorem holds, and
the sequence {(af,ul)}x is a solution of for given mumerical initial data
(o), u)) e Xy, x Vh satisfying a(o,T) + b(T,u)) = 0. Recall the deﬁnitions of
elk and el in , . If 0 < At < 1/L for the L in Theorem then

Z hm + e};,m+17eg,m + eg,m-&-l)

h,k
lew

+aleh™, el 2Athem“ ™30

< Jer? 1720 + ale w0, en)

+C (h27'||07U||iw(o,tk;H'r~(Q)) + (At)4HaguH%n(O,tk;Lz(Q)))
+ Ch2T”ato-H%D(O,tk;HT(Q)) + Ch2r2 ”uH%"(O,tk;HT(Q))
for % <r<l.
Proof. Note that solutions of satisfy
1
—a(e® + okt ) — ib(T’ ub +uftl) =0,

1 1 1
ib(oj~C + ot v) + ic(&’tul’C + dutt v) — g(d(uk, v) +d(uf v)) =0

11



for all (7,v) € 3}, x V},, k = 0. The difference of the above equations and
gives

1
—a(e® + it ) — 2b(7’ ek 4 ety =,
1 1
2b(e + et v) + ¢ <2(6tuk + Oputth) —

_ Lt o) — d(ut ) + d(ut, v) — d(uk, v)) = 0

2
for all (1,v) € ), x Vj,. Recalling that ek = elF —elF ek = chk _ oLk
1 hok+1 1 hok o hkt1
3@ a(elk 4 ehhtl 7y §b(T, en  +er )
_ ; (el* 4 eLh+ 7y _ %b( by oLk+l)
%b( By ekl )_i_éc(hlﬁ-l ek p)
=c <1t(uk+1 - uk) - %(atuk + atuk+1) ) + b( + eI k+l v)

(d(u)™,v) — d(u", v) + d(uf, v) — d(u*,v)).

7a( +ehk+1 T)—%b( ILk+ehk+1):; ( +elk+1 7)7

—b (e’;”k + eZ’kH, v) + éc (eZ’k'Irl — efjk, 'U)

Take T = elF+l 4 ek g = ehk+1 4 ek and add the equations and get

1 1
*CL( h,k+1 + e ZL_J@+1 + e};jk) + — (”eh k+1”L2(Q) _ ||eZ7kH%2(Q)>
2 At
1
= L 1 e gt 4 i
1 1
+c <At(uk+1 - uk) - i(at’uk + at’u,k+1) k4 eh k+1>
1
~3 (d( Z+1, oy eh k:+1) d(uk+1 ko eh k+1) + d(ul,i, el kg eh k+1))
1
+ id(uk ky eh k+1)

12



By multiplying At and by a simple algebraic computation,
k41 At bkt Pk ghk+l | chik
lew™ iago) + 5 a (eg™ ! + e +eg")

6
= [elFFey + D, ¥ (36)
j=1
where

c .= T2 ( +€I k+1 +€h k+1)

2
At
Ié“ =c (ukH —uf - - (6tuk + 8tuk+1) ,eZ’kH + eﬁ’k>,

i GG ) —d (Bt ), ()
I!f % (d (u;ia h,k+1 + eh k) —d (Phu ’eh k41 + eiz‘,k)), (38)
I o= L (0 (P, 4 i) — d (e 4 ),

1 = S (@ (P el ) - (el ).

If we take the summation of over k, then we can obtain

At k—1
lent 2 + =5 D, aleg™ ! +eg™ g™t +eg™)
m=0
k—1 6
= lex 2y + D, D I (39)
m=0j =1

By the Lipschitz continuity assumption and the triangle inequality,

|15 < 2LA ey ™ | 2 (0) (lew™ 20 + lew™ ez (@)) » (40)
115 < 2LAteg™ [ 120 (lew™ |2(0) + lew™ 2@)) - (41)

SO
15" + 1] < 4AtL (Heﬁ’m”%’z(n) + He?lm“”%zm)) : (42)

By , , the triangle inequality, and Young’s inequality,

I+ 11 < ARTC ([ vy + ™ gy (™ + €™ paqe)
S CAth | ulf i, 0 iremm () (43)
At m m
+ 5 (el B + k™ ey ) -

13



Note that

N
Z <Ki_16{7’ik ST, T n> =0 VreX,
i=1

by . Then, , the Cauchy—Schwarz and Young’s inequalities give

At
171 = a4 et e 4 m
At
2
2 2
S CAR o[ Le 4, b srs (@)

leg™ +eg™ iz lles™ +eg™ 2

YA\

At
h,m h,m+1 _h,m h,m+1
+ Ia(ea +e, cer ™ el ™).

Lastly, we can estimate I3 by Cauchy—Schwarz and Young’s inequalities,

|15 < COA |0l v 1, 01220 ™ + €™ L2
< CAD 07wl e h,, 02 () (45)
At m m
+ 5 (leh™ B + €™ ey ) -
Applying [12), (3), (4), [#5) to (B9). we get
h,k|2 At o h,m hom+1 _hm h,m+1
Heu HLZ(Q) + T Z a(ecr7 tes R )
m=0
k—1
1
<1l + At (4274 5 ) 3 (Ieb™ oy + Ieb™ ) (40)
m=0
k—1
+ CAt 2 <h2r‘|0'a u“%ﬁ(tm,tm_,_l;HT(Q)) + (At)4”aguni‘ﬁ(tm,tmﬂ;LQ(Q))) :
m=0

Recall that a(ol, ) + b(T,u)) = 0 as a condition of numerical initial data.

Combining this with the fully discrete scheme, we can get
aleb, ) —b(r,ek) =0, Vk=o0.

o)

The difference of k and (k + 1) time step of the above error equations is

1 1
fa(eff,Jr1 — e’;, T) — 5()(7’7 eZH — eﬁ) =0,

14



so we get another set of error equations

la(eg,k+1 ZkJ_) _ %b(T, eZ,kJrl _ eﬁ,k)
= ;a(e;k+1 elk )+ b( eLiH1 LKy
%b(eﬁvk + eg’kﬂ,v) n Ktc (eZ,kH _ SZ’k, 'v)
=c (Alt(ukﬂ — ) — (atu + okt v> _ %b( el )
_ % (d(ul+!, v) — d(uF ) + d(ul, v) — d(uF,v)) .

Again by , we get reduced error equations

1 1 1
(L o R A = 5@(6{,”““ —elk

2 - 7T)7

okl _ ohik 'u)

1
ib( +ehk+1 v)+Ec(u Cu s

=c i(u’“rl —uP) — %(@guk + 0tuk+1),v>
(d(uf™,v) — d(u"™, v) + d(uf, v) — d(u*,v)).

By taking T = 2(efF+l 4 elk) v = 2(elk+l — ehF) and adding these two
equations,
hk+1 R k+1 hk hk 2
a(ecr ) €or ) (60. ) €or )+ EC( u
— (o Lk+l _ Lk _hk+l | _hk
a’(ea —€s ;6o +es )

k+1 hk _hk+1 h.k
€ — €y 6y — €y )

1 1
+2¢ (At(uk+1 - ’uk) - 5(9tuk + 0tuk+1), eZ’k'H — eZ’k)

(d(ui“, ZkJrl 6Z,k) _ d( k+1 h,k+1 _ 6Z,k))

(d(ug eh k+1 h,k) _ d(uk eh k+1 eh,k))

u
= JF+Jy+ T8+ Ik
Taking the summation of the above equation over k, we can get

k—1

2
alel™ i) + 57 D) el — el el — ™)
=0
= a(el?, Z (J7 + T+ T8+ I, (47)

15



By an argument similar to , we estimate J{" with Young’s inequality by
h,m+1 + eh m”L2

eh m+1 +6h m”L2 (48)

||€¢17’m+1 - eg’mHm(Q leg

|1 <
< CAthrHato'“L‘”(tm,th;Hr

At
< CAthQT||atO'H%7)(tm’tm+l;HT(Q)) + — (a(@g’m+1, 62’.’m+1) + CI,( h,m eh m)) .

4 e
For J3",
m 1 m+1 m 1 m m+1 hm+1 _ h m
12" < 2] (w0 —u™) = S (Gru™ + 0u™ ) lew e PR
L2(Q)
1 1 2
< 2At HAt(uerl —u™) — 5(6tum + dyu™ )
L2(Q)
1 m m
+ EHBZ’ el ™30
At 2
<2(A8) M| (w™ — ™) — = (0™ + O™t
2 12(2)
1 m m
+ E”efl el ™22

1
5 3 h,m+1 h,m| 2
C At ”a uHLf s tm+1;L2(Q)) + 2AL Heu - €a HLQ(Q)' (49)

By , the Cauchy—Schwarz inequality, Young’s inequality, and ,

hm+1 _

Ll —um™ ey leh ™ — ™12

L||eﬁ’m+1 I m+1”L2(Q) ||€h m+1 eh’mHLz(Q

15" <
<

hm+1 _ h,m 2
lex 22

N

h,m Im
AL (el oy + Il agey) + 5l

1 ” hm+1 _
2At

+ CAR? |l oqy, 10 sim () (50)

< AL e ™ M 220y + 57 e 720

A completely same argument gives

||€h ym+1

m m 1 m
] < ALl oy + 51 ™22 0y

t
+ OAtW? | ul T s, o0 vrim () (51)

16



By combining the estimates of Ji", J3*, J§*, Ji* in , , , , we have
hk h, k
(ea ) € 4At Z ||em+1 - 6 ||L2(Q)
<a(el? el”) + CAtR* Z 1000175 (11 117 (2))

m=0
k=LAt
+ 4

m=0

k—1

(a(elg,m+1,eg,m+1) +a( h,m eg,m))
0

iﬁml

+C(AL)° HaB

m=0
—1

uHLw(tm,th;L?(Q)) (52)

k
+AtL? Y (Ileh K IIGZ’"’H%Z(Q))

m=0
k—1

+ CAth*>” Z Hu”%ﬁ(tm,tm_H;HT(Q))'
m=0

The sum of and gives

At '«
||BZ’kH%2(Q) T Z alely™ + el el™ 4 el

+a(el®, el 2At Z e ™t — h’m”%z(g)

< Il + aleh®, ) + At (527 + 3 3 (et ey + el )
k—1 B
+CAL Y. (hzr”o'vu”%‘ﬁ(tm,tm_,.l;HT(Q)) + (At)4||6fu||2m(tm,tmﬂ;Lz(Q)))
"L:Ok—l
+ CAth?" ZO 10:0 (1201, 1B (2))

Lk
vy Z (eh™+, €™ 1) + alel™, el™)

k—1
+ CAth" Z ”u”2L“f-‘(tm,tm+1;HT(Q))'

m=0

We remark that At Zm 0 19I5 e tms150) < KA G] Lo (0,4,5x) for g € L7(0,T; &)
with a normed space X, and kAt = T at the final time step £ = M. Thus,
this At in At Zi;lo HQHL‘I(tm,th;X) does not give an additional order of con-
vergence. Finally, the conclusion follows if we apply the discrete Gronwall in-
equality in Lemma [£.1] to the above inequality. O
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As an immediate consequence, we can prove the a priori error estimates.

Theorem 4.2. Suppose that all assumptions in Theorem hold, and the
numerical initial data (o), u?) satisfy

1/2

W ([w(0)[ - (0) + llo(0)] 1+ ()

[1(0) = u|L2(0) + a(e(0) — o, 0(0) — o)
<C
for % <r <. Then,

lu(ty) = uplz0) + lo(tr) = oFl72@
< CR"([w(0)] e 0) + [o(0)] #r(2))
+ C (1270wl e 040,y + (A 10l 0,113 )
+ CI" 000 |7 (0 40 (c2)) + OB D Nl (0 40 (2))
for%<r<l and 1 < k< M.

Proof. The proof follows immediately by Theorem , , and the tri-
angle inequality. O

5. Numerical experiments

In this section we present numerical experiment results to illustrate that our
theoretical error estimates are valid. All numerical experiments are carried out
with FEniCS 2019.1.0 (see [20]).

For numerical experiments we set Q = [0,1] x [0,1], T" = {1/2} x [0,1],
Q- =1[0,1/2] x [0,1], 24+ =[1/2,1] x [0,1]. We use an unstructured mesh such
that T" is in the union of the edges of the mesh. In numerical experiments for
convergence rates of errors, we refine meshes by subdividing each triangle to
four congruent subtriangles (see Figure .

Figure 2: Initial unstructured mesh and its two nested refinements

In our experiments, we used the lowest and the second lowest Raviart—
Thomas elements, denoted by RT; and RT; for Vj,. The finite element spaces

18



with piecewise constant and discontinuous piecewise linear polynomials are de-
noted by DGy and DG4, and these spaces are used for Vj. The stable mixed
finite element pairs are (RTy, DGy) and (RTy, DGY).

In our error analysis, the expected convergence rates of all errors are the
first and second orders, respectively. We impose Dirichlet boundary conditions
on the top and bottom boundary components of € for ¢ = 1,2, and impose
Neumann boundary conditions on the left and right boundary components of 2
fori=1,2.

For manufactured solutions we define

{ui,Jrv in Q4,
U = .
u;—, inQ_,
for i = 1,2 with appropriate functions u; + which will be given below. First, let
1\2
¢(z,t) =1+ (cost) (x - 2) ,
and define

2
1
o) =sin 5+ (2= 3 ) 1)

1\ 2
U1,4(x,y) = sin % +1+ <J: - 2) sin(my),

1 2
o —(.9) = con "L 42 (x - 2) y(1 - ),

2
1
Uo 4+ (z,y) = cos 7;737 —1+4+2 (:v — 2) sin(my).
Then, u; +, ¢ = 1,2 are defined by

wi— = ¢z, t)u; -, ui v = (T, t)u; 4.
3,3

For nonlinearities we take fi(u1,u2) = ufuj and fo(u1,us) = uju3. Then, o; 4,
fi,t, 1 =1,2 are also defined by

0i+ = —Vuii,
_ d 2 3
frg =divors +ug pus 4,
: 3 3
Jox =divos s +uy yus 4.

We remark that these nonlinearities are not Lipschitz continuous with uni-
form Lipschitz constants in general. However, if u; and us are functions in
L*(0,T; L*(Q)), then the Lipschitz continuity assumption is satisfied for
0 <t < T. Since we use manufactured solutions which are in L*(0,T; L™ (2))
in our numerical experiments, our theoretical error estimates are still valid in
our numerical experiments.

In Table [1] and Table [2| we present convergence of errors for At = h and
for (RTy, DGy), (RTy, DG1) pairs. The results show that optimal convergence
rates, which we expected in theoretical analysis, are obtained in all cases.
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hmax et =y nlip2 ) lug =g plp2q) lor = o1 nlp2q) loz = o2 nlp2q)
error rate error rate error rate error rate

0.3082 | 5.4351e-02 = 5.52670-02 - 5.6489¢-02 = 3.68490-02 =

0.1875 | 2.7398e-02  0.99 | 2.7816e-02  0.99 | 2.8086e-02  1.01 | 1.8283e-02  1.01

0.0938 1.3721e-02 1.00 1.3926e-02 1.00 1.4041e-02 1.00 9.1296e-03 1.00
0.0469 6.8628e-03 1.00 6.9657e-03 1.00 7.0187e-03 1.00 4.5619e-03 1.00
0.0234 3.4315e-03 1.00 3.4831e-03 1.00 3.5084e-03 1.00 2.2802e-03 1.00

Table 1: Convergence results with At = h, the Crank—Nicolson method, and
(RTo, DGo).
hmax luyr —wi nlp2qy [ T2 —wanlp2(qy | lor —onlip2q) | o2 —o2,nlp2(q)
error rate error rate error rate error rate
0.3082 1.7406e-03 - 1.6257e-03 — 1.5422e-03 — 1.5721e-03 —

0.1875 4.3491e-04 2.00 4.0582e-04 2.00 3.8080e-04 2.02 3.8980e-04 2.01
0.0938 1.0904e-04 2.00 1.0181e-04 2.00 9.5514e-05 2.00 9.7276e-05 2.00
0.0469 2.7314e-05 2.00 2.5486e-05 2.00 2.3894e-05 2.00 2.4287e-05 2.00
0.0234 6.8363e-06 2.00 6.3889e-06 2.00 5.9716e-06 2.00 6.0672e-06 2.00

Table 2: Convergence results with At = h, the Crank-Nicolson method, and
(RT1, DGH).

6. Conclusion

In this paper we develop mixed finite element methods for nonlinear reaction-
diffusion equations with Robin-type interface conditions on membrane struc-
tures in the domain. We proved well-posedness of fully discrete scheme with
the Crank—Nicolson method and the a priori error estimates of solutions with
a sufficiently small time-step size assumption. In some numerical results, we
observed that the errors of solutions converge as expected by our theoretical
analysis. In our future research, we will study positivity-preserving numerical
methods for the problems.
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