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Modélisation Mathématique et Analyse Numérique

A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE
COUPLED NAVIER-STOKES/BIOT PROBLEM

AvciL CESMELIOGLU!, JEONGHUN J. LEE? AND SANDER RHEBERGEN?®

Abstract. In this paper we present a hybridizable discontinuous Galerkin method for the time-
dependent Navier—Stokes equations coupled to the quasi-static poroelasticity equations via interface
conditions. We determine a bound on the data that guarantees stability and well-posedness of the fully
discrete problem and prove a priori error estimates. A numerical example confirms our analysis.
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1. INTRODUCTION

In this paper we consider a system of partial differential equations such that the governing equations of two
different physical models on two disjoint subdomains are coupled across an interface. The two models are the
time-dependent Navier—Stokes equations of incompressible fluids and the quasi-static poroelasticity (or Biot)
equations [6-8]. The interface conditions coupling the two governing equations are derived by fundamental
physical laws and experimental data. This fluid and poroelastic structure interaction problem, which we refer
to here as the coupled Navier—Stokes/Biot problem, has applications in engineering fields such as hydrogeology,
petroleum engineering, and biomechanics.

To the best of our knowledge, the coupled Stokes/Biot model with general interface conditions was first pro-
posed in [50]. Soon after, Badia et al. [3] studied conforming finite element methods for the spatial discretization
of the coupled Navier—Stokes/Biot problem and monolithic and domain decomposition (partitioned) algorithms
to solve the fully discrete problem. A mathematical proof of existence and uniqueness of weak solutions to the
fully dynamic coupled Navier—Stokes and Biot problem, under a small data assumption, was given in [17]. In
this paper we consider the time-dependent Navier—Stokes equations coupled to the quasi-static Biot equations.
Well-posedness of this model is still an open question.

Various finite element methods have been studied for the coupled Stokes/Biot and Navier-Stokes/Biot prob-
lems. A Lagrange multiplier method for the coupled stationary Stokes and quasi-static poroelasticity equations
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was studied in [2], which was extended to a nonlinear model with non-Newtonian fluids in [1]. A conform-
ing/mixed finite element method was studied for the coupled stationary Stokes and quasi-static poroelasti-
city equations in [9,45] using the total pressure formulation [34,38]. Other formulations of this system of
equations have also been studied. These include the velocity-pressure (for Stokes) and stress-displacement-
velocity-pressure (for poroelasticity) formulation [37] and the stress-velocity-pressure (for Stokes) and stress-
displacement-velocity-pressure (for poroelasticity) formulation [16]. A conforming finite element method using
Nitsche’s technique for the Stokes/Biot problem is studied in [29]. They consider the velocity-pressure for-
mulation of the Stokes equations and a formulation using displacement, total pressure, and fluid content as
primary variables for the poroelasticity equations. For the coupled stationary Navier—Stokes and quasi-static
poroelasticity equations, an augmented mixed method using a pseudo-stress formulation of the Navier—Stokes
equations and a stress-displacement-velocity-pressure formulation of the poroelasticity model is studied in [36].
They prove existence and uniqueness of a continuous weak and a semidiscrete continuous-in-time formulation
of these equations. A conforming finite element method with stabilization for the time-dependent Stokes equa-
tions coupled to the dynamic poroelasticity equations was studied in [18]. Furthermore, many partitioned time
discretization schemes for efficient time discretization of the (Navier—)Stokes/Biot model have been studied, see,
for example, [5,14,15,30,39].

In our previous work [21], we presented a locking-free hybridizable discontinuous Galerkin (HDG) [26] method
for the coupled stationary Stokes equations and quasi-static poroelasticity equations. This HDG method was
constructed such that: (i) the discrete velocities and displacement are divergence-conforming; (ii) the compress-
ibility equations are satisfied pointwise on the elements; and (iii) mass is conserved pointwise on the elements
for the semi-discrete problem in the absence of source/sink terms. In this paper we expand on our work in [21]
and propose and analyze an HDG method for the coupled time-dependent Navier—Stokes and quasi-static Biot
equations that inherits the three aforementioned properties of the HDG method for the coupled Stokes/Biot
problem. For this, we couple the exactly divergence-free HDG method for the time-dependent Navier—Stokes
equations of [41] to the locking-free HDG method for the Biot equations of [20].

We consider Backward Euler time-stepping for the time discretization, lagging the convective velocity in
the nonlinear term of the Navier—Stokes equations. To prove stability and well-posedness of our discretization,
the convective velocity across the interface must be small enough (this observation was also made in [28] for
the stationary Navier—Stokes/Darcy problem). We show this by assuming the data is small and extending
the stability and well-posedness analysis of [25] for a discontinuous Galerkin discretization of the Navier—
Stokes/Darcy problem to our HDG discretization of the Navier—Stokes/Biot problem. With well-posedness
established we proceed with an a priori error analysis. Here it is interesting to remark that all error bounds
are independent of the fluid pressure analogous to pressure-robust estimates found elsewhere in the literature
for divergence-conforming discretizations of incompressible flows (see, for example, [27,32,35,43,49,51] and the
review paper [31]).

The remainder of this paper is organized as follows. In section 2, we present the coupled Navier—Stokes/Biot
problem. Notation, definitions, useful preliminary results, and the HDG method are introduced in section 3.
The HDG method is shown to be stable and well-posed in section 4 and a priori error estimates are proven
in section 5. A numerical result is presented in section 6 and we end this paper with concluding remarks in
section 7.

2. THE COUPLED NAVIER—STOKES/BIOT PROBLEM

Let © be a bounded connected open subset of RY, d = 2,3, with polygonal/polyhedral boundaries, and
let Qf and Q° be two disjoint open connected subsets, both with polygonal/polyhedral boundaries, such that
Q = Qf UQb. Furthermore, let J = [0,7] denote the time interval of interest.

Let 07 := 2ule(w!) — p’I (j = £,b) and e(u) := (Vu + (Vu)T) /2. The Navier-Stokes equations in Q/ x J
are given by

ol +V - (! @ul) V.ol = fI, V-ul =0, (1)
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where uf is the velocity in Qf and pf is the pressure in Qf. Furthermore, uf > 0 is the fluid viscosity and ff
is a given body force term. Biot’s equations in Q% x .J are given by

7v,ub+>\*1(app7pb) :03 7V'o-b :fbv ,LtfﬂflerVpp :Oa

-1 D b b (2)
COatpp+Oé>\ (aatp _8tp)+VZ:g,

where u? is the displacement, p®, which is defined as
PP i=ap? — AV - b, (3)

is the total pressure, pP is the pore pressure, and z is the Darcy velocity. Furthermore, x® and A are the Lamé
constants, £ > 0 is the permeability constant, a € (0, 1) is the Biot—Willis constant, and ¢g > 0 is the specific
storage coefficient. The body force in Q° is denoted by f* while ¢® is a source/sink term.
. . . . YeY =50 . .
Various equations are prescribed on the interface I'y = 8Qf N 0 that couple the Navier—Stokes and Biot
equations. First, mass conservation across the interface is prescribed by

uwl n = (0’ +2)-nonlyxJ (4a)

Here we use the convention that n/, j = f,b is the unit outward normal to Q7 and that on T';, n = n/ = —nb.

Next, the balance of stresses is prescribed by
oln=o"n, —(o'n)-n=pP on Ty x J. (4b)
The Beavers—Joseph—Saffmann condition [4,46] prescribes slip with friction and is given by

—2uf (s(uf)n)t = ypf k72 (uf — 9,ub)t on Ty x J, (4c)

where v > 0 is an experimentally determined dimensionless constant and where (w)! := w — (w - n)n.

The boundary of the domain is partitioned as follows. On each subdomain we define IV =900 ﬂ‘(?Qj 3 =10

We then partition both T/ and T'* into Dirichlet T}, and Neumann T%, parts such that TV = T, UT%.. Note

that T, N T4, = § and we will assume that [T'%|,[% | > 0. It will also be useful to define '} := T; UT%. A

second partitioning of T is defined as I'® = T'%, UTY. with T% NT% =0 and |I'%| > 0. See fig. 1 for an example
domain configuration depicting the notation. We now impose the following boundary conditions:

w =0 onFJbXJ, j=fb o'n=0 oan\,xJ, 1=10,

=0 onT% xJ z-n=0 onT% xJ

()

Initial conditions are given by
uf (z,0) = ug(sc) in Q7 PP (x,0) = ph(z) in Q°. (6)
Initial conditions for u®, z, and p’ are determined by ug and pf assuming that u{; € [H*(Q/ )]d, s > 3/2

and p € H'(QY). Indeed, first note that zo(z) = —(k/pf)Vph(x) by the third equation in eq. (2). A weak
formulation of —V - af = f%(x,0) in eq. (2), with of = 2ube(ul) + AV - ufl — aphl, gives

/ (2ule(ud) + AV - udl) : e(v®) da = / (aphV - 0P + fb(2,0) - v*) da +/ agn wbds Wb e [H%)(Qb)]d, (7)
Qb Qb Ty

where [H},(Qb)]d = {ob e [HY Q)" : v*|py, = 0} and the interface integral is by the first equality in eq. (4b)

and the second boundary condition in eq. (5), i.e., on = 0 on I'};. Decomposing U(J;n into its normal and
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FIGURE 1. An example domain configuration depicting the domain and boundary notation.
Note that Ty =Ty UT, I/ =5 U, and TP =T, U TS =% UTh.

tangential components, using the second equality in eq. (4b), and the orthogonality of normal and tangential
vectors, eq. (7) can be rewritten as

/ (2ube(ub) + AV - ull) : e(v®) dz
Qb

= /Qb(apgv ot + fO(x,0) - 0°) do +/ (—pho® - n+ 2ufe(u)n)t - (")) ds Wb e [H},(Qb)]d. (8)

Ty

The integral on I'; is well-defined so that, by Korn’s inequality and the Lax—Milgram lemma, eq. (8) has a
unique solution u} € [H})(Qb)}d. Finally, using eq. (3), pg(x) = aph(z) — AV - uf(z).

In what follows, we write u|g; = u?, plg; = p?, flai = f7, and plg; = p? for j = f,b so that u, p, f, and p
are defined on the whole domain ).

3. NoraTioN, THE HDG METHOD, AND PRELIMINARY RESULTS

3.1. Mesh and time partitioning

We discretize the domains €7, j = f,b, by shape-regular triangulations which we denote by 77. We will
assume that the triangulations consist of simplices, denoted by K, that match at the interface and that the
triangulations are free of hanging nodes. The set of all simplices is denoted by 7 := 77/ U T?. The boundary
of an element K is denoted by K and we define 977 := {0K : K € T?} and 9T := {0K : K € T}. We also

consider various sets of facets. The sets of all facets in @’ and €7 are denoted by F/ and F/

e Tespectively.
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The sets of facets on the Dirichlet 1"% and Neumann ng boundaries are denoted by, respectively, f%, and

F;, while on T'% and T% we denote the sets of facets by, respectively, F& and F%. The set of facets on the
interface is denoted by F; and the set of all facets is denoted by F. The union of facets in F7 is denoted by
I'). Furthermore, we denote by F(K) the set of all facets of K. The diameter of an element K is denoted by
hx and we define h := maxge7 hi. On the boundary of an element we denote by ng the unit outward normal
vector, however, we will drop the subscript K where no confusion can occur.

The time interval J is partitioned as follows: 0 = tg < t; < --- < ty = T. For simplicity, we assume a
fixed time step, i.e., At = T/N = t, —tp—1 for n = 1,...,N. A function f evaluated at time level n will
be denoted by f™ := f(t,). We further introduce the difference §f"*t := f*+t! — fn the first order time
derivative d; f"*! := ("1 — f7)/At for n = 0,--- , N — 1, and the second order time derivative dy f>"*! =
(fomtt —ofbm 4 o=y /(At)2 forn=1,--- ,N — 1.

3.2. Function spaces and norms

Various function spaces will be used throughout this paper. First, the usual Sobolev spaces are denoted by
WkP(D) for k > 0 and 1 < p < oo on a Lipschitz domain D C R%. The norm on W*P?(D) is denoted by
[, x.p- As usual, H*(D) = Wk2(D) with norm [lx.0 = Il 4, p and LP(D) = WOoP(D) with norm M.0.0-
If k=0 and p = 2 we define L*(D) = W%%(D) with norm |||, = [l2,0,p- The LP(S) norm on a surface
S c R4 is defined similarly.

Let X be a Banach space with norm ||| ., then W*?(J; X) denotes a Bochner space with norm Hf||€v,c,p(J_X) =
fOT Zf:o 0: £(t)||5 dt for 1 < p < oo. If k = 0, then LP(J; X) = W%P(J; X). The norm on L=(J; X), i.e.,
the Bochner space for k = 0 and p = oo, is defined as |[f|| < (;.x) = ess sup,e; ||f(t)||X Furthermore,
we denote by ¢7(J;X) the space equipped with the norm |[f|[je (s, x) = maxi<i<n [|f']|x for p = oo and

N i
||fH:ZP(];X) =AY S ||§( for 1 <p < oo.
Let us now define the following function spaces (for j = f, b):

Vi={ve [HX ()« vl =0}, Q7 =HY(Y), Q" :={qeHQ) : s =0},

and denote by V7 the trace space of V7 restricted to I%, Qj is the trace space of @7 restricted to I%, and Qbo
is the trace space of Q0 restricted to I'}. For a compact notation, we define VIi=vixV, Q =Q xQ,
and Q™ := Q" x Q™. Furthermore, we define

Z = {ve [H Q)¢ : v-nlpy = 0}.

To define the HDG method we require the following element and facet function space pairs on each domain
Qja ] = fa b:

Vi = {on € [LAQ)": vy € [P(K))?, ¥ K € T7},

V= {on € [L2@T)": o € [Pe(F)* ¥ F e FI, 5 =0 on T},
and

I = {qn € LX) : g € Py (K), VK € T7}, Ql={q, € L*(T)): q, € Po(F)Y F e F'},
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where P,.(D) denotes the set of polynomials of total degree at most r > 0 defined on D. We will furthermore
require:

Vi o= {vn € [L2(@Q)]": vy € [P(E)]Y, VK €T},  Qui={an € L*(Q): gn € P 1(K), VK €T},
Qn ={2,€Qp 3, =0onTh}.

For (up,pn) € Vi X Qp, we will write up|qi = u?l € V,f and pplai = p{l € Q?L for j = f,b. We group element
and facet unknowns together as follows:

f —f _ b ; _ j i
v, = (0n, 01, 0%) € Vi 1= Vi, X ViV, vl = (v],v]) € V) =V x V7,
e _F b ) o : o
ay = (40,1, 35) € @ i= Qn x @y, x Q, a4, = (q,7) € Q}, = Q) x @,

_ bl = b0
4@ =(d.3) Q) :=Qh xQy,

where j = f,b, and (vp,q,wn,q}) € Xp := Vi x Q), X Vfi’ X QZO. We will also require the following two
subspaces of V9 and V', respectively:

Vi::{vheViL:@MFI:O}, ‘A/h::{vhth:@{L-nzﬁz-nonfj}. (9)
Extended function spaces are defined as (for j = f, b):
Vi(h) =V + V7, Vi(h) =V + V7, Z(h) ==V} + Z,
Q(h):=Ql+ @, Q"(h) = Qi +Q",

and
Vi (p) = {v e VI(h) N H(div; Q) : V-v=0forz € K, VK € T/}

We will work with the following norms:

o 2 _ S a2 ; ; .
o7lls,; = > Ule@)lk +hx! 07 = ll5) Vo’ € V7(h), i=1fb,
KeT
R R ) ) ) ]
oI5 5 = 7l + Y Wkl x Vo’ € V7 (h), ji=1fb,
KeTi
2 2 _in2 i .
llally,; == llallas + D Px 1@ ok Vg € Q’(h), j=fb,
KeTi
2 2 2 _ _ 2
llonlly == lvfll5 ; + W5, + 1@h = o8)" I Yoy, € Vi,
I
lonlly . = [l (v, §oa I, Von €V,
2 2 2
llanlly == llahlly ; + Nkl Vg, € Qy,
2 2 - 2
lanll1,n.00 = Z IVanllx + Z he! gl Van € Qh,
KeTb FeFb UFY
2 . 2 - — 2 b
llgnlll} no = (IVanlli +7x" lan — @nllx) Vg, € Q)
KeT?

. 4 ¢ is defined as {vn} =
(vn|g+ +vnlk-). On F € F U Fr we define {v,, } := v, and on F € F}, we define {v;} := 0. Furthermore,

where the average operator {-} across an interior facet F = K+ N 9K~ € ]:l-j
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the jump operator [-] is defined as [v]n := vp|g+ — vn|x- across an interior facet and as [v], = vp|k on a
boundary facet.

It is useful to remark that the discrete bilinear form of the diffusion term in the Navier—Stokes equation
is continuous on V7 (h) in the norm Il ; (see eq. (11b)). On V7 the norm |[-[[,, ; is equivalent to ||||||v]’
i.e., there exists a constant c. > 0 independent of h such that [||v[||, ; < [[v]ll,, ; < ce|||v||| for all v € V]
(see [52, eq. (5.5)]).

In appendix A we prove that there exist constants cp, ¢si» > 0, independent of h, such that

lonllqr < cpllvnlly par < cplllvall,, ¢ Vo, € Vi, (10a)
[onllqr < cpllonlly pov < cpllonlll, Vo, € Vi, (10b)
Wi lors. < esirllonllypar < csicllonll, Vo, € V1, (10¢)
lanllgr < cpp H%Hl,h,m < CPP|||qh|||1,h,b Va,, € QZO (10d)

where, in eq. (10c), ||v£||r0 ps is atrace norm with 1 <r <ocoifd=2and 1 <r <4ifd = 3.
UL TN

Consider two scalar functions w and z. We will denote by (w, z)p the integral of wz over a domain D C R¢
and by (w, z)p the integral of wz over a domain D C R?~!. We furthermore introduce the notation

(’LU,Z)Q]‘ = Z (va)K’ (’LU,Z)Q = Z (wvz)K’ <w7Z>FI = Z <w’Z>Fa

KeTJ KeT FeFr
(W, 2)ors =Y (w,2)ox, (w,2)or =Y _ (w,2)oK, (w,2)ps = > (w,2)p.
KeT/ KeT FeFUF]

If w and z are vector functions, then (w,z)p = Zgzl(wi,zi)p and (w,z)p = Ele(wi,zi>p. Similarly, if w

and z are matrix functions, then (w, z)p ijzl(wij, zij)p and (w, z)p = sz:1<wij, Zij) D-

3.3. Forms and their properties

For u’,v7 € V7 (h), we define

ay (w,v7) ==(2pe(u),(v))as + (267 hi (u — @), 0 = 7)o
— 2ule(u)n? v — ") o7 — 2ule(v)n? u — @) oy,
ap(u,v) ::a{(uf,vf) + al (u®, v?),

where 37 > 0 is a penalty parameter. It was shown in [24, Lemmas 2 and 3] and [40, Lemmas 4.2 and 4.3] that
there exist constants 8y > 0, ¢J, > 0, and ¢, >0, independent of h and At, such that

@, <vh’ vl) > o lof I3 Yol € Vi, B> Bo, (11a)
|a, (w07 < ot [l I, 107 Yau,v € V7 (h). (11b)

For v/ € V/(h) and ¢/ € Q’(h) we define

b;t(’l)j, qj) = _(qa V- U)Qj + <qj7 (U - T}J) . nj>37-ja bh('U, q) = bﬁ(’l}f, qf) + b?z('ub7 qb)



8 TITLE WILL BE SET BY THE PUBLISHER

The form b (-, -) is also defined on (Z(h) x {0}) x Q*°(h). We have the following inf-sup conditions (see [21, eqs
(17)-(19)] and [42)):

bj
inf  sup MZCM, Jj=f0, (12a)
orare@ o g Tl TTanll,
mf s orlomdn) (12b)
O;éqhthO#th‘?h |vh|||v|thH|q

" (w1, 0), a7)

e 2 Ch (12¢)
07£a; €Q}° 0w, eV [wnllge il a

where ¢y, Cyy, ¢b, and ¢y, are positive constants independent of . On (Q*(h) x Q°(h)) x Q(h), we define

en((pr),q) == (A" ap =), Q)ae,

while on the interface we define
aj (@, @), @, ) = (yul w2 @ — a0 =)y, bp((07,00),9) = (7. (0 — o) - n)r,,

W}1§re (E}I%) is deﬁflfél onigg\f/f + Vi) X (Vb + ‘72)) X ((Vf + V{L) X (Vb + VZ)) and b is defined on ((Vf + V{L) X
(VZ+Vy) x (@7 +Qy).

The forms ay(+,-), ai(-,-), ba(,-), bl (-, ), and ¢ (-, -) discussed above are identical to those considered for the
coupled Stokes and Biot problem in [21]. In addition to these forms, we now also require the following discrete
convection term for w € V4% (h) and u,v € VI (h):

th(wyu,v) == —(u@w, Vo)gs + 5 (w- nd (u+a),v —)grs

+ 3w nf | (u = @), 0 = )ors + ((w-n')a, o) .
We have the following properties for .

Proposition 3.1. For all wy,wy € VH9(h), and u,v € Vf(h), there exists a ¢y, > 0 such that
[t (w15 w, v) = th(we; w, V)| < cw lwr —wally o5 llwll, vl ;- (13)

Proof. Using that (w-n/ +|w-n/)u+3(w-n/ —|w-n'|)u =w-n'u+ S, (u—1u), where S,, = max(w-n/,0),
we can write ¢, after integration by parts as

th(w;w,v) = (Vu,v @ w)gr — (u — @) @ w)nd ,0) g1 + (Sw(u — ), v — 0)grs.
The remainder of the proof is given by [19, Proposition 3.4]. d
Proposition 3.2. For w € V5%(h) and v € V(h) it holds that

tn(w;0,0) = S(jw -] Jo —0P)ors + Sw-nd o)y (14)

Proof. Note that

th(w;v,0) = ~(v @ w, Vo)or + 3{w - n! (v+0),0 = 0)ors + 3{lw - n'|,[v =0} ors + (w-nl, [0]%) s

IN
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Note that (v + ) - (v — ) = |[v|> — |5]*>. Furthermore, —(v ® w, Vv)qs = —(3w - nf,|v|?)s7s since —v @ w :

Vv = =3V - (Jv]*w). Therefore, also using that (3w - n/,|v]?)ao7s = (Fw - n,[0*)r, + (Fw - n’,[0[*) s, the
N

result follows. |

Proposition 3.3. Let w € V>4 (h) and ||w-n|s < spfel (2, +c2 )7 . Then, for 3> fo,
IN ’
th(w;vn, v1) + af (vn, o) > Sl W2, Von € V. (15)
Proof. By eq. (14), we find that
th(w; vn,vn) > —5(|w-n’], |T}h|2>p§N-

By a scaling identity there exists a constant c¢,q > 0 independent of h such that [[0]|4 o 5 < cpgh =D/ |10]| 55
for v € {q € L*>(0K) : q|r € P,(F), VF € F(K)}. By the identical steps as used in the proof of [23, Lemma 6]
(see also [28, Lemma 2]) it then follows that

2
tn(wion,vn) > ~(c, + ) w-nllpy[lonll? .

where cg; 4 is the constant from eq. (10c) with » = 4. We find, using eq. (11a),

2
th(w; v, vp) + af (v, on) = (chen” = (g + ia) llw - nlles ) IlAIIE 5

The result follows by the assumption on ||w - nf/r . O
IN

Remark 3.4. In Proposition 3.3, we assume a smallness condition on ||w - n| s . If 'Y, represents an outflow
IN
boundary (on which w-n > 0), then the smallness condition only needs to hold on [lw - n| . Numerically,

however, it cannot be guaranteed that w-n > 0 on I‘]f\,.

3.4. The HDG method

The semi-discrete HDG method for the coupled Navier-Stokes/Biot problem egs. (1), (2), (4) and (5) is given
by: For t € J, find (us(t),py,(t), zn(t), ph(t)) € X, such that for all (vy, gy, ws,qh) € Xy,

(Deun, vn)ar + tn(ul;wl, v]) + an(wn, vp) + by (v, py) + ab (@l 8ial), (0], 0%)) + bk (0], 0%),57)  (16a)

= (f,vn)as
bn(un, qy,) + en((Ph, 07, 1) = 0, (16b)
(codeph, 45w + cn((Deph, Oup}), aghy) — B3 (20, 0), @) — bh (], D41y ), @) = (9", af ) (16c)
(1! 5™ 2, wn) v + b ((wn, 0), p) = 0. (16d)

Using Backward Euler time-stepping, with lagging of the convective velocity, the fully-discrete HDG method is
given by: For n =0,1,--- ,N — 1, find (u} ", pi*?, z,’f“,pf{”“) € X, such that for all (vy,qy,, wn, q}) € X,
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(deu ™t on) s + tr (ul ™l ™ ol) 4 an (Wl o) + by (vn, pITY) + ol (@] deal™ ), 0F,58))  (17a)

+ bh((“h?”h) p‘fz,n+1) = (fn+17vh)97

b ay) + en (@) pp" ), 4h) = 0, (17b)

(codspi™ ™ ) + en((dephy ™ depy ™), aq) = B ((27,0), @) — b (@™ duy ™), @) (17¢)
= (¢""". ah)avs

(w22 wn) e 4 0 ((wn, 0), 2" T = 0. (17d)

Note that despite the coupled Navier—Stokes/Biot problem being nonlinear, the fully-discrete HDG method
eq. (17) is linear at each time step due to lagging of the convective velocity.

Remark 3.5. The HDG method eq. (17) is an extension of the HDG method previously presented in [21]
for the coupled Stokes/Biot model. For this HDG method, it was proven in [21, Lemma 1] that the discrete
velocities and displacement are divergence-conforming. Furthermore, it was shown that the compressibility
equations are satisfied pointwise on the elements and that, for the semi-discrete problem eq. (16) and in the
absence of source/sink terms, that mass is conserved pointwise on the elements. These properties are inherited
by eq. (17). The proof is identical to that of [21, Lemma 1] and therefore not included here.

4. STABILITY AND WELL-POSEDNESS

Before showing well-posedness of the discretization we introduce some definitions and inequalities. First, we
define the discrete function spaces

de = {vn € Vf bl »(vn,q,) =0Vg, € Qh}
plel, chent
2¢si2(c2, + CEM) " Aey,

B = {v, € Vi : ||v]],, ; < min

)}

where we note that if u£ € Bi, then by eq. (10c),

plel,

H“h "Hrf < 6812H|uh”| g S m (18)
For 0 < j < N — 1, we define
X9 i= ™ gy + S (s ) 0 o = dp o + o A ey (19)
Furthermore,
OB+ e I e+ 2 A g (20a)
i ffc;f ACS 1A + 2 A S b (20b)
ae =1 k=1

m
+ QCi(CZcub)_l(lgix lde " Hlge + def*2 g + At lldeef* H|ge)?,  1<m <N -1,
k=2
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where Y7, (i fOF Yo in eq. (20b) is zero if m = 1. It will also be useful to define
G':=F" and G™:=LBF'4+F"for1<m<N-1. (21)
Finally, let us define
1= 2 o rary + €uai? /1) 1" )+ 2ep(chet®) ™72 18
+ 2¢,(chou’) ”fbHEOC(J;Qb) - (22)
In this section we will prove well-posedness of the HDG method eq. (17) assuming the data satisfies

- 2 - - -
max (H” Hf Heoo(] Q) H+ 3 Cth R ||gb||Z°°(J;Qb) + Cp(cgeﬂb) 1z ||fbHZ°°(J;Qb) (QGN 1)1/2 +H(2GY 1)1/2)

2
/’[’fcge /’[’fcge )] . (23)
2Csi,2 (ng + C§i74) ’ 4cy,

< 2ef p? [min (

In our proofs we will use the following result from [22, Lemma 4.2]: if p}"" and z}' are part of the solution to
eq. (17) for n > 1, then there exists a constant c,q, independent of h, such that

1k ™ o < o 195" 1y cp < conllDh " 1 e < cran’ 5™t 2R g (24)

where ¢;q = ¢ppcpa. We remark that the final inequality in eq. (24) follows by using modified local BDM
degrees-of-freedom that incorporate HDG facet unknowns and eq. (17d).

The main goal of this section is to prove well-posedness under the assumptions that f*9 = 0, ¢*% = 0,
u{L’O =0 and ph’O = 0. These assumptions are necessary to prove well-posedness for the first time-step.

Theorem 4.1 (Well-posedness). Assume that eq. (23) holds, and that f*° = 0 and g*° = 0. Then, starting

with u{’o =0 and pZ’O = 0, a unique solution to eq. (17) exists. We furthermore have the following uniform
bounds (in n and h) for1 <n < N:

: ~f —bnyty -
s Nl ™12+ 672 @] = deay™) e, + S0l 2R e (25a)
fef fef 2
<lcf f min B Cae 7/’6 ae ,
— 92 ae:u [ (2051’,2(0]29114’051’74) 4Cw )]
b b b,n2 -1 2 1.f ,.f . /’Lfcge Mfcge ?
b X 0 = 91 o o I < el min (5 — (55 e s
St, Dq si, w
The pressures are bounded as:
IR 12, 3o (ehe) 2 min (— s, ), (262)
o Csi,z(Cpq-FCsiA) 2Cw
esllen ™ Mg <ep I e g2y + 00 1 e (22000 + e (GT Y2 (26b)
1 1

+l foC min — 5 vy
2,[,L ae-w (Csi2( ]2)q+cgi4) 20“})

+ (cfopt? + (el /B (! )P+ (Bl oy 2T ) %
plel, cfop?

X 2 2 ’
2051’2(cpq + csi,4) 4ey

1/2

)]

[min (
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The proof of Theorem 4.1 is by induction and follows at the end of this section after first proving some
intermediate results. The following lemma shows uniqueness of the discrete solution at ¢,,; assuming that
u}?" € B£ for some 1 <n < N —1.

Lemma 4.2 (Uniqueness). Let uh’o =0 and pfl’o = 0. Assume that (u}}l,p}, 2, pi") € Xy, is the solution to
eq. (17) for some 1 <n < N —1. Ifuy" € Bf:, then a unique solution (uy™', pitt 2t p " e Xy, to
eq. (17) exists.

Proof. See appendix B.1. O

In the following lemma, which extends [22, Lemma 4.5] for Navier—Stokes/Darcy to Navier—Stokes/Biot, and
the following corollary, we obtain bounds on X™ (see eq. (19) for the definition of X™). These bounds will be
used to prove the pressure bound eq. (26b) and to show that if uﬁk S B{L forall0<k<nwith0<n<N-1,

then uh’”Jrl € B£ (see Lemma 4.5 and Remark 4.6).
Lemma 4.3. Assume f»° =0, ¢*° = 0, u£’0 =0, and p];l’o =0. If (uﬁ,pﬁ,zﬁ,pﬁ’k) € X, is a solution to
eq. (17) for 1 <k <n, then

X0 < FO (27a)

clon! Atlldvad P < L. (27b)

‘u s 12
Furthermore, if uﬁ’k € Bi forall0 <k <mn, withl<n<N -1, then
X" < 6X0+ Sef pf Atllldyuf 2, + P (28)
Proof. See appendix B.2. O
An immediate consequence of egs. (27) and (28) is the following result.
Corollary 4.4. Under the assumptions of Lemma 4.3,
X" <G" VO<n <N -1, (29)

where G™ is defined in eq. (21).
In the following lemma we obtain results that are used to prove egs. (25a), (25b) and (26a).
Lemma 4.5. For 1 <i< N, let

B bt 2 i
+ ld%(uzl7uh ) + )‘ ! ||aph Z||Qb + %CO Hp:ZZHQb ) (303)

_ _ _bivt 2 —1 .2
=10t Nl 12 + Aty 52 (0] = dyup ), + 5 At T |2 g - (30b)

A? = =3 Hu

Assume f*9 =0, ¢*° =0, u;’i’o =0, and ph’O =0. Let 1 <n < N —1 and assume that (ufl,pﬁ, z,’j,pi’k) e Xy,
is a solution to eq. (17) for all 0 < k < n such that ufl’k S Bﬁ. Then

n+1 1/2
A+ Z BY) <M, (31)

and

I 2t - dgy

2 _
sclop (|, or s Iz, + 50wt |27 +1IIQb

<P s H 4+ Sk 67 16" g + ep(chen®) T2 | 24 g (2G™)1V2 4 H(2G™) V2. (32)
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Proof. See appendix B.3. O

Remark 4.6. A consequence of eq. (32) and eq. (23) is that u{L’"H € Bi. This result will be used in the proof
of Theorem 4.1 to prove uniqueness.

We end this section with proving Theorem 4.1.

Proof of Theorem 4.1. Equation (25a) follows directly from eq. (32) and eq. (23). Furthermore, eq. (25a) implies

"e B£ for 1 < n < N so that existence and uniqueness follow from Lemma 4.2. The bound eq. (25b) follows
from eq. (31), eq. (11a), and eq. (23). The bound eq. (26a) is a direct consequence of eq. (24) and eq. (25a).
Finally, we consider the pressure bound eq. (26b). From eq. (12b) and eq. (17) we obtain:

+1
allpptll, < sup OB B (33)
o T ol S 0, Tl

where

B =[(f"" vn)al + [(deu ™ on)ar | + [t ()™ ul "t v£)|+|ah( n o)l
,n _b,n _ _ _p,n
+ laf (@™ dyy ™), (0f, )| + (bR (0], 05), B ).

First, note that bh((vh, %), ;BZ’”H) = 0 by the definition of V. Using the Cauchy—Schwarz inequality, eq. (10a),
a. (10b), eq. (13), eq. (11b):

(™ o)l < 6 175" s M0l + e 1w Wl o

(deup ™ on)ar] < cplldeu ™ g WAL s

M, n+1 +1
[t (uf, ™5 u], ™ )] < el llud” ||| ol g
;n+1 b,n+1 b
lan(up )| < ot "L gl + el Iy ™ L lob

n+1 7b+1 ~f ~b - 7,+1 7b+1
la ((af,™ " dyay ™), (0f, oh)| < ypd 6712 [ (a], ™ = g™ | lonlll,-

Combined now with eq. (33), Corollary 4.4, eq. (25a), and eq. (25b) we obtain the result eq. (26b). O

5. ERROR ANALYSIS

For the error analysis we first define interpolation operators to decompose the errors. For scalar functions, we
denote by HJ HQ7 and HQO the L2-projection operators onto Q7 Qy, and Qh , respectively. For vector valued
functions, we define H{,  H(div, Q) N [L7(Q)]? — V}f, for r > 2 and j = f,b, to be the interpolation operator
to the Brezzi-Douglas—Marini (BDM) finite element spaces [12, Section III.3] and 1:1{/ D [LA(F)HE — V?L to be
the L2-projection onto V7. It is known that

(gn, VI g = (qn, V-ud ) g Van € Poor(K), K € T?, (@, n-I,u!)p = (qy,nu!)p VG, € Pp(F),F € FI,
and

if wl|c € [HMHE) o = Tl||,, o < CR™ W]l g, m=0,1,2, max{l,m}<I<k+1,

il € WL s o — | e ey < Chiclulw -
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For time stepping index n, we introduce the following notation for the errors:

u?" = (" = THu?™) — (ul™ — T, u?™) = ZJ” — ez;n,
W )" = (@ ) - ()" - T = e — e
BN iy
P =" ) = (" — Hépj’”) = ;" —ent",
P = (7 T — ("~ T = ek el
P =R = (T = Tl — (A Tgp™ ) =3 il — e,
pr — = (p*" HQOPP ) — (f);f - ﬁQOﬁ e é;I;’ éﬁp",
and define eg"™ and ey such that e |q; = e and ey "[q; = €", for w = I, h.

p’
The following lemma now determines the error equatlons

(34a)
(34b)
(34c)
(34d)
(34e)
(34f)
(34g)

Lemma 5.1 (Error equations). Suppose that {(u},py, 2, pp)")}, are the solutions to eq. (17). Furthermore,
assume that (u,p, z,pP) is the solution to egs. (1), (2) and (4) to (6) on the time interval J = (0,T] with

f

and for all (vy,qy,, wn,qh) € X, we have:

(d,geh’n+1 vh)Qf + th(ug, fin ,eZ}"H v£)+a (eq hntl vp) +bh(vh,e;§’”+1)
+ag (€l del™h), (@], 10)) + bl((vhaUZ)’éZé"H)
= (&suf’”“ — (AT I ul T =T, o )ar + an(ey ™ vn)
+ag (0,0 — dyub" ), (0], 05)) + [t (T w]) — g (uf a0
+tn(ul" et of) o+ [ty (uh T T ud vi) = tn(uf, " T ul " v )]
bh(ely ™ ah) + Uy (diei ™ q) + en(diep™ ! duey™ ). qp) = 0,
(codrens™™ al)an + cn((deeps™*d ehan) aqp) — bZ((e’;’”H,U)’qh) — b (e diel ), )
= (co(Dep”" T — dep” ™), g0 ) + ch((OpP ™ — depP T, OppP T — dip” ), agl)
— b} ((0,9,a>" 1t — dya® "), gh),

(ufﬁfleg’"ﬂ,wh)m + bi((wh,O), eZ;,"H) = (/,Lf/iflei’”“,wh)gb.

hn+1

uj(z) = 0 and p(z) = 0. Define u := (u,u|F£,u|F3), pi= (p,p|F£,p|F8), and p? := (pP, pP|Fb). Then, forn >0

(35a)

(35b)
(35¢)

(35d)

Proof. Tt can easily be shown, by standard arguments, that the semi-discrete HDG method eq. (16) is consistent.
Therefore, substituting the exact solution at time level ¢ = ¢,,41 into eq. (16) and subtracting eq. (17) from the

result, we obtain:

@l ™+ — dud ™ ol )gr + t (W w0 ol — g (] ul Y w])
+ap(uw" T = uf T vy) + by (v, p" T — pp )
+af (@ — e o — ™, (o], 9) + oL (0, 0h) P = PR = 0,

bh(un-i-l _ unJrl?qh) + ch((pp,n—i-l _ p1;7L7n+17pb,n+1 _ pl;;nJrl)’ qZ) _ O7
(CO(atpp,n+1 d p;l? n+1) qﬁ)m + ch((atpp,n+1 —d p27n+1 8pb,n+1 d pb n+1) aqi)
_bl;L((ZnJrl _Zh—&-l’o),qi)_blll((ﬂf,nJrl —fn+1 8 —b,n+1 d b, n+1) qz) :0,

pf T = 2 ) g + B ((wh, 0), pP T — pZ’”“) 0.

(36a)

(36b)
(36¢)

(36d)
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Noting that dyu/"+! — dyul "™ = —dteZ’f"H + [Bpuf Y — (AT uf 1 — 11 /™)), and similar for the
other time derivative terms, and using the error decomposition eq. (34), we can write eq. (36) as
(dee o] )ar — tr(uf ™ af oy o (w0 (37a)
+an(el™ vp) + b (on, ep ™) +aj (e die ), (@], 90)) + b (0], 0), e )
= (Bpuf " — (AT Wl — T u ™), o] )or + an (el vg) + by (vn, el
(@ Bt — (A0 I T, o, 2) + B, ), e,

(e, q) + en((eli™, e ), ab) = ba(elm T, q) + eal(el T, e, @), (37h)
(codreni™™, ql)aw + en((dyepi™ ™, dieli™ ), agh) — by ((e27*,0), qb) (37c)
_ bI(( h,n+1 dtean+1) (ji)

= (co [Bp" ™t — (A1)~ (TIgpP "™ = TIgyp™™)] L 47
+ Ch((atppm-‘rl _ (At)_l(Hb pp,n+1 _ Hb p,n))’ atpb,n-i-l _ (At)_l(Hb bn+1l _ H%pb’n)), ozqﬁ)
n n n 1/ —bn _bon _
= Bh((eL™1,0),qp) — bl (L7 dat T — (A TN [yt — Tyat), ),

(1 R o 4 B (wn, 0), €57 Fh) = (uf kel wy ) + B (wn, 0), efi™+). (37d)

By properties of Il, and I1},, j = f,b, we have that by, (1" +1, ) =0forall g, € Q) and b} ((eL""1,0),¢7) =0

for all ¢} € Q . Similarly, cp((e I "H,e; "H) q¢) = 0 for all ¢% € Q% because ng;, is the L2-projection onto
Q% and by, (vy, eé nty = 0 for all v, € Vi, b2 ((wh, 0), e{,,,"“) = 0 for all wy, € V), and bl (7], %), é;pnﬂ) =0
for all (@i,@%) € V£ X VZ because Hg, f[é, j=f,b, and 1:1220 are L?-projections. Furthermore, since l:I{,, 117,

Jj=1rb, 1:1220 are L2-projections,

af ((eys ™, (A0~ ([Iyatmt — Tyab™) — 9", (0],9h)) = af (0, d@®™ ! — 9a"" 1), (v, 7)),
bl(( In+1 (At)” ( i bl ﬁl‘v/ab,n) _at,ub,n+1> 47) 1((0 d, a1 — 9, n+1),q ),
(co((At) ™ (TGpP ™+t — TP ™) — BipP™ 1), qf Jaw = (co(dip? ™ = 0p” ™), g} )
cn(((A8)~HITpP ™+t = TIgpP™) — SppP ™+, (A1)~ (Tgyp™™+ = TIgyp™™) — 8yp” "), agf)
= cp((dep”" T = BppP " dyp” ™t — 0p" "), agh).

Therefore, we can write eq. (37) as

(deel o) ar — tr(uh T ol 4t (ul " u T o)) (38a)
+an(el™ v) + b (vn, el ) +af (€ deel ), (8], 38) + br (0], T5), e )

(o — (80 (I~ T o+ el )
+ah (0.0 — i), (e], 7)),

bh(ez,n-l-l )+Ch(( hn+17ez,n+l)7qh) _ 07 (38b)
(codeeni™™, af)ar + en((diepi™ ™ dreli™™ ), agh) — ) (2 *,0),q0) — b (€L dieli ™), @) (38c)

= (Co(atpp’mrl - dtpp’nﬂ)»(JZ)Qb + Ch((atpp’nH - dtpp’m_l, 3tpb’n+1 - dtpb’n+1)»aqh)
— by, (0, 0,u"" T — ), qh),

(i K ) By (w0, 0), €l 1) = (5 el g g (38)
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To simplify this further, note that

—tp, (uF T v{:) + th(ui’”; U{L’”“, "i) = — tp(uf U{L) + t (uh s uh ”{z)
—tn(u " e w]) — ta(ul Il 0]y (39)

+ th(uﬁ’"; l'IfV'u,f’”Jrl7 vi) + th(qu i eZ}"H, 'ufl)

Furthermore, splitting eq. (38b) into its terms on QF and QP and applying the discrete time derivative on QY,
we can write eq. (38b) as

bhely ™ af) + b (diely ™ qh) + en((duep™ ' dieli™ ), gh) = 0. (40)

Combining egs. (38a), (38¢), (38d), (39) and (40) we find eq. (35). O

The following auxiliary result will be useful to prove the error estimate in Theorem 5.3.

Lemma 5.2. Let p}", z}!, pP, and 2™ be as defined in Lemma 5.1. There exists a C > 0, independent of h,
At, and n, such that for n > 0:

h,n+1

leps™ lge < Crf 57 (e ™ Hlge + lle2™ i), (41a)

h,n+1 — n n
e, < Cul w712 o + lles™ Hlgn)- (41b)

Proof. In [21, eq. (42)] we proved that [ "+1H1 b
eq. (10d) and a triangle inequality. The proof of eq. (41b) is given by [21, Lemma 4]. O

< Cplk71|z — zn|lqs- Equation (41a) now follows by

The main result of this section is the following theorem.

Theorem 5.3. Suppose that {(u},p}, 2l pv" ) }n are the solutions to eq. (17), that the assumptions of The-
orem 4.1 hold and that (u,p, z,pP) is the solution to egs. (1), (2) and (4) to (6) on the time interval J = (0,7
with f°(x,0) = 0, ¢*(z,0) = 0, ug( ) = 0, and ph(z) = 0. Furthermore, let u = (u,u|rg,u|pg), p =
(P, plpssplry), and p? = (pP, pP|ry). 1

ul € H'(J, [HM QD)) n H2(J, [L2(Q))4) n e (g, W3 (QF) n B (QF))9),
u’ € H?(J,[HY Q")) n W>H(J, [HFH(Q")]Y), (42)
2 € LX(JHN(QY),  pPp" € HP(J,LX(Q")),

then,

m hm”

2 _
e |2, + ab (el ehmy + A7 ek — emm” e flelsm 2,

h,iy 2 — K —h,i o
+ ALY [ X + v V2 okl — diel ||FI+M K el lgp] < Ca [h* + (A2, (43)

b

with Cg a constant resulting from a discrete Gronwall inequality that depends on T and the norms of uf, u®,

2, pP, and p® in eq. (42). Moreover,

o gy < C)2af (€™, €™ 4 Cll k¥ [|u®™ [ 4y g - (44)

Hle q,b = wb 0 Cub
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h,n+1 hotl o f _  ghondtl hyn+41 = ehrtl gf = hontl in eq. (35),

Proof. Setvh—e ,vlflzde; Gy = —€; ql;L: e, wh s q) = €y
sum the equations, use the algebraic inequality a(a — b) > (a? — b2) /2 for the time-derivative terms, and use
q. (15), to obtain:

hyn+1 h,np2 hon+1 hyn+1l _hn+l h, h,
axz(lles” HQf el o) + sebent el I ; + sk (ah(eli™™ eli™™) — aj(eli”, eli)
_ _hyn+l _h,n+1 hon+1 hon+1)2 h, hon 2
L (o —de’1>um+QNUMe” S L W R
h,n+1 - ;
+ 527 (leps” HQb—IIe IIQb)+u P s P
SI{L+IQ +I3 +I4,
where e, = ul" — ul™ and where
I{l = IILa+I{Lb+I{L('+I?d+I{le+I{lf
= (@ — (AT (I = Tl ), € s
+ [th(uf’"+1; wl ez}n+1) _ th(uf’";uf’"“ an+1)]
n. In+l _hn+l n. : h,n41 . ; hyn+1
+th( fn’eufn 7eufn )+ [th( b ]'_‘[f uf n+17eufn )_th(uin’n“c’u’f n+17eufn )}
+CL£( In+1’ez,fn+1)+a2(el n+1 dt hn+l)’

Iy = ah (0, abm ! — dyabm ), (el deely ),
I3 =I5, + Iy, + I,
(o0 — P,
+en((OpP ™ = dypP T 0P — dypt ) aep )
—bE((0,8,ab" 1t — d ab,nﬂ)’éz;fwﬂ)7

IE (ufﬁfl I,n+1 hn+1)Qb'

? Z

By definition of I7%, the Cauchy—Schwarz inequality, eq. (10a), the triangle inequality, approximation properties
of the BDM interpolation operator (H{,), Taylor’s theorem, and Young’s inequality,

1] < Cll=deey ™ + deu? ™ = 0l o el

46)
hyn+1 _ 2 (
< 2,l/}||| n+ |HU7f + %hzk(At) ' Hatu ||L2(tnatn+1§Hk(Qf)) + %At HatthHLZ(tnvtn+1;L2(Qf)) ’
where ¢ > 0 will be chosen later. Next, by eq. (13) and Young’s inequality,
hyn+1
[ITy] < Cfluf "t — Ufn”1 h,Qf ||Uf’n+1||1 Qf lle,s S Il f
hyn+1
< OO 10 a4z 1 g Ml )

C 2
hon+1
<glless " |||v,f + EAt ||8tuf||L2(tn,tn+1;H1(Qf)) [u " o -
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By eq. (13), approximation properties of the BDM interpolation operator (H{,) and facet L2-projection (H{/),
and Young’s inequality,

In+1 hyn+1
(1] < Clu” ot plllens ™, g
hyn+1
T A R T (48)
C 2
hyn+1
< Yllle,s I ,f+ah2k|\uf’"||1,m " 1 s -
For I7', we have for ¢ > 0 (see [22, Appendix C]):
C 2 2 c 2 2
h,n+1 h, ,
al < 2¢llle,; 7t H|v,f + Eh% ||uf’n+1||k+1,ﬂf ||Uf’n||k+1,ﬂf + E HeuanQf Huf n+1||W31(Qf)- (49)

For I, using eq. (11b), Young’s inequalities, and interpolation properties, we find
T < Cul B2 ul ™5y o + el el I - (50)

We postpone estimating I7'; until later and proceed with estimating I3. By the Cauchy—Schwarz inequality,
Young’s inequality, and the trace inequality,

131 < ed w2 i+ — 0y, el el

ub

< Syl wTV2 by — del L+ Al 2 dgt - Gt (51)
_ h h,

< Iyl w2 R = a4 Ol A0 e, e

< 7,)/” K -1/2 ||€h ,mn+1 dtéZ;)TH-l“ _|_C',u K 1/2AtH8ttu ||L2 (fn trgr s HL(QP)) -

By the Cauchy—Schwarz inequality, Lemma 5.2, Young’s inequality, and an argument similar to the estimate in
eq. (46),

[13] < eo lldep? ™ = 07" Ml lleni™™ g

< cop! KO || dipP " = 9P g (€2 g + el ) (52)
_ 2 _ 2
< g kT g + Cpd kTR |2 e ey + O KT A 00?2 r, 102205 -
Likewise, and using that 0 < oo <1, we find for I3},

[155] < A7 ladp? ™ = 0P ) = (dep” = 0" ) g e g

_ 2 _ 2
< %,ufn ! Hehvnﬂum + Ol KR 2 g o (53)
_ 2
+ 0N 1At(||attpp||[,2 (tnstni1;L2(Q20)) + ||6ttpbHLz(tnytn+l;L2(Qb))).
For I}, by eq. (41b) and an argument similar to the estimate eq. (51),
. 2 o 2 . _ 2
3| < %Mf"f ! ||€Z’n+l||gb +Cpl ™R ||Zn+1HHk(Qb) +Oul kAL Hattub||L2(t",t,L+1;H1(Qb)) : (54)

For I}, using the Cauchy-Schwarz inequality, Young’s inequality, and the approximation properties of the BDM
interpolant, we find
_ 2 _ 2
1121 < g 67t 2 lgn + Cpd 67 B8 12 g gy (55)
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Combining the estimates in eqs. (46) to (55) with eq. (45), choosing v = cf u/ /24, summing for n = 0 to
n = m — 1, multiplying both sides of the inequality by At, and taking into account the vanishing initial data,
we find:

m m
. ; ; 2
5 Il Srclent leleﬁ’f’llli,f + gap (e e + Sl kT2 e - dieny)

2 f HQf

h,m

2 h, 2 _ ;2
M e+ g e g + Sl s 1ZH@Q’ZHW

_ 2 _ 2
< C(uh)~th?* ||atufHL2(0,tm;Hk(Qf)) +C(u!)~H(At)? HattufHLQ(O,tm;L2(Qf))

_ - 2 in2
+C(ﬂf) 1(At)22 ||5t“f||L2(ti,1,t,-;Hl(Qf)) ||Uf’ ||1,Qf
i=1

m m
_ i 1n2 i 1n2 in2 i
+C(u) IAth%Z((uf)QJr 1M+ 1 g 00) 6! g 0 + A8 T3

=1
hyi—1 i 112 _ 2
1Atz He ||Qf ||uf7z||W31(Qf) +Cu'r 1/2(At)2 Hattub||L2(o,tm;H1(Qb))
_ in2 _
+ Cpl kT ALh? Z B HHk(Qb) + chﬂf’i (At ”attpp||2L2(0,tm;L2(Qb))
i=1
_ — 2 2
+ N2 kT AD2 (110601 1200, 2 20y + 10660”20000 000 )
_ 2
+ Ol 5 A (100t | 20,4, 1 () -

Let us now consider the term I; 7. Using summation-by-parts and that the initial data vanishes,
h, Ii—1 Ii _hi—1
At Z I ub 5 eubm) + Z az(eu: - eu:’ eubl )

Note also that, by the Cauchy—Schwarz and Young’s inequalities, eq. (11b), and approximation properties of
the BDM interpolant,

ah (el —eli el <ab(eli T el el - 6“)1/2612( it el 2
< (A b(elbz 1—ei’bi,ei}f 1 )_|_g b(ehl L sz—l)
< (At olllens ™ — el + galzi(ehl Leln ™)
< (A1) 1c;ﬁh2’f A R (A
< Cph?* || 9 ||L2(t, Lt HRL Qb)) T t Z(ehl 17623};1),

and, similarly,

al;z(eibma en) < Cﬂbh% Hub m||k+1 Qv T ah(eng, eZ’bm)-
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The above inequalities together with eq. (56) result in:

m
h hyi2 h, h, _ 2
slen N, + 4 LufZIHequIIv,f+iai(eub’",euzf”)+%w K 1/QZII — dgeli)! Ir,
A1t h,m h,m 2 co || homy 2 At f, . —1 - h,i 2
+ 25 lael™ — eI+ e g, + At kS [l g

< Ol ) 2 00 | oo, sy + O ) THAD? (0?20, 120y
+ CT () (A 10 (20,101 09 118 e 0.0, 21
+ OT (1) B2 ()2 4 116 g 01,11 029y 188 o 0.1+ 0209)) 10 e 0041 2
+ Cﬂbh% Hatub||2LZ(o,tm;Hk+1(Qb)) + Cﬂbh% Hub”jw(O,t,,l;Hk+1(52"))

_ m hyi—1 2 22 _ 2
R i M S L o

m

h,i—1 _h,i—1 - 2
%Za ey outs 1Th2kHZHeOO(Oim%H’“(Q"))

wb
=2

— 2
+ Ccgp! k(AL || 0yep” ||L2 Ot L2(Q0)) T Cul k=1 (AL)? ||attub||L2(0,tm;H1(Qb))

my

_ 2
+ O kTN (AY? (HattppHLz(o,tm;Lz(Qb))‘|‘||3ttpb||L2(o,tm;L2(Qb)))-

Equation (43) follows by a discrete Gronwall inequality (see, e.g., [33, Lemma 28]).

We next prove eq. (44). For this, let us first note that by eq. (12a) there exists a f)z € VZ, with f/z defined
in eq. (9), such that b;’b(izh,ehbnﬂ) h ”+1|||q , and |||vh\Hv p < C’|Hehbn+1||| Take v] = 0 and v = @}, in
Bt b

eq. (35a) which then reduces to aj (e.;"", ;) + [||e k "+1|H aZ(eI 1 ~b) By eq. (11b) we obtain:

hont12 ) 11~b h,n+1 In+1 h,n+1
lley:™ il < lah(en™ ™ op) + lap (e ™, o3 < Cu® (llegs™ il + el p) llep™ ™l b

P u uh ub ub
so that eq. (44) follows by using eq. (11a) and approximation properties of the interpolant. O

An immediate consequence of Theorem 5.3, the triangle inequality, and approximation properties of the
different interpolants is the following corollary.

Corollary 5.4. Suppose that all the assumptions in Theorem 5.3 hold. Then:

b , ,m b,
™ = ™ g + b W+ AT P = ™) = (0P - 2™ e
+co llp"™ = oy g + "™ = ™12,

m

. ) _ Yy i .

+ A [t =l I+ 2 (@ = af) = d @, el 2 )
i=1

< Cg [h*F + (A1),

with Cf; depending on Cq (see Theorem 5.3), the norms of the exact solutions, the constants of the approzimation
properties of the interpolation operators II5,, l:Ii/, H]Q, II7,, and the different model parameters.
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6. NUMERICAL EXAMPLE

In this final section, we present a numerical example to confirm our analysis. For this, we consider the
time-dependent manufactured solution of [21, Section 6.2]. We consider the domain © := (0,1)? with Q/ :=
(0,1) x (0.5,1) and Q° := (0,1) x (0,0.5). The boundaries of the domain are defined as:

FfD::{xEFf:xlz()oer:l}, F{V::{er‘f:xlzl},
% =T% :={z eI’ : 29=0o0r zy =0}, S =18 :={zecl® : z; =1}.

We consider the Navier—Stokes/Biot problem egs. (1) and (2) with boundary conditions

o =U/ oanDxJ, ub =Ub oanDxJ, pP = PP onFll’;xJ,

ofn =257 onF{\',xJ, obn = S° onFl}VxJ7 z-n=2% onF%xJ,

and interface conditions

ul = (8l +2)-n+ M on 'y x J,
ofn=on+ M* on 'y x J,
(ofn)-n=pP + MP on 'y x J,
—2ut (s(uf)n) = ypf k72 (!l — 9ub)t + M on 'y x J.

The functions M, M?®, MP, and M€ in the aforementioned modified interface conditions, as well as the boundary
data, U, Ub, PP, S, S and Z<¢, body forces f/ and f?, source/sink term g°, and the initial conditions are
chosen such that the exact solution is given by

G| ™ cos(m(zymg —t)) + 1 o sin(107t) cos(4(x1 — t)) cos(3z2)
—mxgcos(m(x1ze — ) + 221 |’ sin(107¢) sin(5z1) cos(2(xo — t))
pf = sin(3z1) cos(4(xy — 1)), PP = sin(S(xlzg —t)).

The model parameters are chosen as follows: puf = 1072, u® = 1072, a = 0.2, A = 102, k = 1072, ¢y = 1072,
and v = 0.3, while the HDG penalty parameters are chosen as 3/ = ° = 8k?, where k is the polynomial
degree. We consider the time interval J = [0,0.01] and implement the HDG method in the Netgen/NGSolve
finite element library [47,48].

We first consider the spatial rates of convergence. For this, we compute the solution using £k = 1 and k = 2
and list the errors measured in the L2-norm and rates of convergence of the unknowns in 2/ in table 1 and in
Q" in table 1. We use a time step of At = -=h¥+2. From both tables we observe that [uf — u/ ||, [u — u®l o,
and |25 — 2lgp are O(F+Y) while [[p] — p/ s, [} — e and [}, — pPgs are O(hF).

We next consider the temporal rates of convergence. The errors, measured in the L?-norm, and temporal
rates of convergence for the unknowns in Q/ are given in table 3 and in QP are given in table 4. To compute
these results we choose k = 4 and compute on the solution on a mesh consisting of 37548 cells. We observe that
the error for all unknowns is O(At).

7. CONCLUSIONS

In this paper we introduced and analyzed an HDG discretization for the time-dependent Navier—Stokes
equations coupled to the Biot equations. Appealing properties of the discretization include that the velocities
and displacement are divergence-conforming, that the compressibility equations are satisfied pointwise on the
elements, and that mass is conserved pointwise for the semi-discrete problem when source and sink terms are
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Cells |l —wlgr r Iph—pllgr 7 IV -ullos
k=1
8 2.4e-01 - 6.0e-01 - 6.3e-16
28 5.8e-02 2.0 1.2e-01 2.4 5.3e-16
152 1.5e-02 2.0 4.7e-02 1.3 9.6e-16
576 3.2e-03 2.2 2.2e-02 1.1 8.5e-16
2348 6.8e-04 2.2 1.1e-02 1.1 8.4e-16
k=2
8 5.8e-02 - 1.1e-01 - 1.1e-15
28 9.6e-03 2.6 2.6e-02 2.0 1.2e-15
152 1.5e-03 2.7 4.7¢-03 2.5 1.5e-15
576 1.6e-04 3.2 9.5e-04 2.3 1.3e-15
2348 1.5e-05 3.4 2.2e-04 2.1 1.2e-15

TABLE 1. Errors and spatial rates of convergence r for the solution in f for the test case

described in section 6.

i P v P ] PO e P
k=1
8 6.9¢-02 - 3.2e+01 - 1.6e-01 - 1.4e-01 -
28 1.8e-02 2.0 1.6e+01 0.9 4.0e-02 2.0 6.8e-02 1.0
152 2.8e-03 2.6 6.6e+-00 1.3 6.6e-03 2.6 2.9e-02 1.2
576 7.2e-04 2.0 3.4e+00 1.0 1.9e-03 1.8 1.5e-02 1.0
2348 1.7e-04 2.1 1.7e+00 1.0 5.2e-04 1.9 7.3e-03 1.0
k=2
8 9.7e-03 - 6.8e+00 - 4.5e-02 - 2.0e-02 -
28 2.2e-03 2.1 2.3e+00 1.5 4.9e-03 3.2 5.3e-03 1.9
152 1.9e-04 3.6 4.4e-01 2.4 4.7e-04 3.4 1.2e-03 2.2
576 2.2e-05 3.1 1.0e-01 2.1 1.0e-04 2.2 2.8e-04 2.1
2348 2.3e-06 3.2 2.6e-02 2.0 1.7e-05 2.7 6.6e-05 2.1

TABLE 2. Errors and spatial rates of convergence r for the solution in QP for the test case

described in section 6.

At Hu£ _ufHQf r ||pl’fL _prQf r ||Vul’fL||Qf
T/8 6.0e-02 - 8.2e-02 - 6.1e-12
T/16 3.6e-02 0.7 5.3e-02 0.6 5.9e-12
T/32 2.1e-02 0.8 3.2e-02 0.7 5.7e-12
T/64 1.1e-02 0.9 1.8e-02 0.8 4.3e-12

T/128 6.0e-03 0.9 9.8e-03 0.9 3.5e-12

TABLE 3. Errors and temporal rates of convergence r for the solution in Qf for the test case
described in section 6.

At lup —wllgy v llph—#"llgr v lzn—2llge  r llph —p"lge 7
T/8 5.5e-04 - 9.5¢-06 - 1le02 - 1.4e-03 -
T/16  3.0e04 09  45e06 1.1  57e03 1.0  T.le04 1.0
T/32 16e-04 09 2206 1.0  29e-03 1.0  3.6e-04 1.0
T/64  87e05 0.9  1.1e06 1.0 1.4e-03 1.0  1.8-04 1.0

T/128  4.6e-05 0.9  56e-07 1.0 7204 1.0 8905 1.0

TABLE 4. Errors and temporal rates of convergence r for the solution in Q for the test case

described in section 6.



TITLE WILL BE SET BY THE PUBLISHER 23

ignored. We proved stability and well-posedness under a small data assumption and presented an a priori error
analysis of the method.

Aycil Cesmelioglu and Jeonghun J. Lee acknowledge support from the National Science Foundation through grant
numbers DMS-2110782 and DMS-2110781. Sander Rhebergen acknowledges support from the Natural Sciences and
Engineering Research Council of Canada through the Discovery Grant program (RGPIN-2023-03237).
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APPENDIX A. PROOFS OF THE INEQUALITIES IN EQ. (10)

Before proving eq. (10) we present a few useful results. First, we have the following discrete Poincaré and
Korn’s inequalities (see [10,11] and [44, egs. (3.4) and (5.4)]):

lvnllgs <C O IVonlie+ > bt loall7) Vo, € Vi, j = f.b, (57a)
KeT/ FEF) UF)
ST AVorlk < Crorn (Y llewnllze+ Y. bzt Ilonll3) Yo, € Vi, j = f.b. (57b)
KeTi KeTi FeF] UF}

Next, we note that

S rpt = YRRt — fond) — w — fonDlE+ D hptlonlln

FeF) UFL FeFl , FeF)
_ 2 _ _ 2 _ 2
<C( Y Mk oy = fon e + gt vy — €ondllz) + D (Bt lvallz) (58)
FeFl, FeFy
_ 2
=C Z hK1 lvn — {onHlox
KeTi

where we assumed shape regularity of the mesh. This result is used to show the second inequality in the
following equivalence result:

2 2 - 2 2
clonllipo < D e+ Y- hetllonllly < callvnlly g - (59)
KeT7 FeF) UF}
The first inequality in (59) was shown in [21, Appendix A]. Finally, let us note that we have the following
inequalities between different norms:

cilonlling < D len)lic+ D2 hp! Iloallle < Clllvalll ;- (60)
KeTi FeFl UF)

The first inequality is by eq. (59) while the second inequality follows by identical steps as in eq. (58) but with

{vn}} replaced by vp,.

We now prove eq. (10). The first inequalities in eqgs. (10a) and (10b) are a consequence of egs. (57a), (57b)
and (59). The second inequalities in egs. (10a) and (10b) are a consequence of eq. (60). The proof of eq. (10d) is
similar to egs. (10a) and (10b). Finally, [13, Theorem 4.4] implies that for 1 <r < co whend=2and 1 <r <
when d = 3

4

||vh||rorf <C(iltonr + 3 IVal% + S bt IIof]l3)-
KeT? rerf

int

By Holder’s inequality, egs. (57a), (57b) and (59) we obtain the first inequality of eq. (10c). The second
inequality is a consequence of eq. (60).

APPENDIX B. PROOFS OF LEMMA’S IN SECTION 4

B.1. Proof of Lemma 4.2

We first show uniqueness. Assume that both (w) ™ pptt 2+ pb "y and @yt prtt, it ph " are

n+1 n+1 _p,n+ly _
ayh 77‘ )

solutions to the fully discrete system eq. (17). Let us define their difference by (z}',
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n+l An+1 n+1 /\n-‘rl n+1 Nn+1 p,n+1 ~p,n+1 n+1 n+1 n+1 _p,n+l
(uy PR =Dy Py —p;""). We need to show that (xj, YRy ) =

0,0,0,0 Let us first note that "'H, PPt gyt e p"“ satisfies
h

1

b
s+t o) af el o) (el )+ b (o) (612)
1
b, _fntl b, _f - —f by =D
U ) el (L ), el o)) + b (] ). ) =0,
b, b
bl ) + (@ ““,qz) +en(( ", a) =0, (61D)
i p,n+1 p - p,n+1 _bn+l Py _ bb n+1 0 P _bI f,n+1 1 7b n+ly —p 0, 61
At(COTh th)Qb+Atch((Th ), aqy,) r((yr50),q}) n((@7, AL ")) = (61c)
(1 &=y ) g + 0% ((w, 0), 72+ = 0, (61d)
for all (vn,qy,wn,q)) € Xp,. Add the above equations, choose v£ = m{é’"“, vb = mZ”H, q£ = fr{;’"'H,
q; = Altrzn+17 wy, =yt and g} = rP" 1. Since u)" € B{L we find, using Prop051t10n 3.3 and eq. (11a),
that
+1 12 b,n+1 n+1 _bn+1vt)2
)" ||Qf + Sl Nl G ¢ + Apchen ™ I + il kT2 @ = &z YL,
A AT ok S | E eyt 2, < o,

so that m"+1 =0 and yZ‘H = 0. We are left to show that TZ‘H and Tﬁ’"“ are zero. To show that rZ‘H =0,
substitute 't = 0 into eq. (61a) and choose @i =% =0on Iy to find bﬁ(vh, ?L’"H) =0V, e V], j=f,b.
The result follows by the inf-sup condition eq. (12a). Similarly, to show that rh’"H = 0, substitute y"Jrl =0
into eq. (61d) to find b} ((wp,0), 7} " =0 Yy, € V2. The result follows by the inf-sup condition eq. (12c).
Finally, existence of a solutlon is a consequence of uniqueness since eq. (17) is a linear and finite dimensional
problem.

B.2. Proof of Lemma 4.3

Step 1: proof of eq. (27a). Let n = 0 in eq. (17). Use that the initial conditions are zero and choose

f— o f1 b 1,01 f __ it p_ . pl _ 1 1,61
vhfuh T fph ,thph , and wy, = z;. Furthermore, choose qh — AP, and note that

b,1 1 b1 b,1 b1y b1 .
b (uyt — Aoyt = =0 (&uyt pyt) and en((0) ' p)"), —4pn') = —en((oh" p0h).pit)- Equation (17)
becomes:

102 1 1 b,1 _b,1 1
2l M lgs + af (uf ulh) + af (upt, Hupt) + oyl sV @ - apt! ||F + A llapht — pl IIQb

+ L PE o + 1 A 2 e = Y uf Dar + (£, e Dae + (6" 5 e

Coercivity of af (see eq. (11a)), the Cauchy-Schwarz inequality, and using eq. (24) so that [P0 || < crap! 57 || 24|
we obtain

2 b, b1 _ _f1 _b,1 b,112
2 a2 — R A lapht — ph e

12 1

Al s + chopd llud,
12 - 2 , , ) , - ,

o+ il 2 les < I o lud M lor + 2 172 las Tub s + coan” 57 19" oo 128 llge - (62)

Using eq. (10b) and eq. (11a) so that

b,1 b, bl b1l
e < epllupllly, < cplchepu®) ™ 2ah (upt upt)'2, (63)
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and noting the nonnegativity of the second and the fourth terms of eq. (62), we further have

71 2 bl 1 2 _ 2
Al gy + Al ) + A lawl = o8 g + 58 15 g + 15 122 1

, b1 , b1 ~1.b,
<N Ml g s + Agep(chen”) ™| vap (upt up )Y ean 57 g o 12Nl - (64)

Let us define

12 b,1 -
Z? = [z, ||(zf +ah(uh ’uh )"‘ At Hapﬁ _ph ||Qb +co ||p1,'; ||Qb +Atﬂf“ ! ||Zh||Qb’

and write eq. (64) as

)2

ﬁZQ < (Hff’IHQf + ﬁcp(cgeﬂb)_l/z ||fb’1Hszb + Cta (At1)1/2 (Mf’f_l)lm Hgb’

This immediately implies, using that (X°)!/2 < & Z and that £ || W %] qs =

(A1) /2 |dyg>"||p» because f¥° =0 and g*° = 0,

= |\d:

(X2 < I s + eplcaen®) 2 def* M gn + cca(AO)Y2 (1 5712 ldeg™ g

so that eq. (27a) follows after squaring.

Step 2: proof of eq. (27b). We return to eq. (62). Applying Young’s inequality ab < a?/(21)) + ¢b?/2
to each term on the right hand side, using eq. (63) for the second term, choosing 1 = 2/At, ¥ = 2/At, and
Y = 2uf k™1 for the first, second, and third terms, respectively, and dividing both sides by At, we obtain, using
that %0 =0 and ¢*° =0,

2 2 2
o Atllldead 15 < I s + SeR(chen®) T def™ o + bk 5T AL |[dig™ 16

This proves eq. (27b).
Step 3: proof of eq. (28). Let 1 < n < N — 1. Subtract eq. (17) for the solution at time-level t,, from

eq. (17) for the solution at time-level ¢, 1, choose 'vfl = 6uh’"+1, v = Ait(éub’"+1 = 5u2’"), q{ = —5ph’"+1,
qt = 5pb " =020 @b = 5ph’”+1 and add the resulting equations:

6uf’"+1 — duy", 6uf’"+1)gf + th (uy, o, f’”“ 5uh’"+1) — th(u};’"—l;uﬁ’”,éui’”ﬂ)
a5, Su ™) af (Gu " R Gy — duy™))
+ bb( (6ub,,n+1 _ (5u s ) b, n+1) _ bb (5ub n+1’ At(;pb n+1)
Fab((eafm T, A (aym T — say™y), (salm Tt A (say™ Tt — say™))) (65)
— en((Opp ™ opy™ ), Ao + en (O™ = opl ™ opp " — opy™), adpl )
+ K5 O — O™ O e + (R0 02 e
— (5ff’n+1, 6uh,n+1)ﬂf + (5fb,n+1, A (5ub ;n+1 (5u2’n))gb + ((5 bn+1 5pp n+1) .

1
A

We simplify next the sum of the 6**, 7th, 9% and 10" terms on the left hand side of eq. (65) as follows. First,

[b%(ﬁ(au%’nﬁkl _ 6“ ) 6pb n+1) _ bb (6ub n+17 A 6pb n+1)] o ch((§ph,n+1 5pb n+1), Atépb ’I’LJrl)
+ Ech((ép];l’n's'1 —oph" 5pb mtl (5pb ™), aéph’"+1) =1+ 1)+ Is.
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Note that
b1 bn+1 bn+1 b/ 1 b,n bn+1 b bn+l 1 bn+1y _ b/ 1 b,n b,n+1
Iy = b (370w, 0py, ) = by (xz0uy, ", 0py, ") — by (Suy, ™, 270p," ) = — by (z70uw, ", 0p, ")

=cn (@9}, 0p™), Ao,

where the last equality follows by subtracting eq. (17b) at time-level ¢, from eq. (17b) at time-level t,,11 and
choosing g/ =0, ¢} = &51)2’"“. We immediately find that

I+ 1o+ I3 = ﬁch((éph’n+1 — 5ph’”7(5pl;;n+1 — 5p2’")7a5ph’"+1 — 5pl;;"+1).

Noting also that th(ui’n; u{’”“, 6u£’”+1) =t (ufln, 5u£’"+1, 5u£’"+1)+th(u£’n; ui’", 5u£’"+1), we write eq. (65)
as:

§(§u£,n+1 _ 5uh,n’§u£,n+1)gf +th(ui’n;éui’n+1,5u}fl’n+l) + a}{(§u}{’n+1,6u£7n+l)

b,n b,n b,n
+ ap, (Suy, A (0w, i —ou,,"))

s At
+ap((af" Y, A eap"tt - sup™), (a4 (0uy "t - suy™)))
e (P = aplm spy T — apl™), adply " — app T (66)

+ 8 (@R = oph " app " e + (W RO 2 g
:((Sff»”Jrl, 5uh7n+1)ﬂf + (5fb,n+1’ A%E((;u%n-&-l _ 6@6%"))911 + (6gb’”+1, 5p£,n+1)m

— [tn(ul ™ ™ sul ) — (] ™ Sul ).
For the left hand side of eq. (66), since we assumed that uhn € B£, we have by eq. (15),
tn(uh s 0wl Sul ™)+ af (Sl ul ™) = el [Sul "I -
For the right hand side of eq. (66) (see also [22, Proof of Lemma 4.5]):

o (™ ™, ™) — b (" S ) e ™ = a7 |

||U,f|||5uh
1
[

v,f

=cuw [10uy™ ||y s llwn ™l 11

1
6wl -

all

Scw|”6uh7n”|v,f|”uh v, f

Applying also the Cauchy—Schwarz inequality to the terms on the right hand side of eq. (66) and using
I16u, " lor < cplldu™ I, ; (by eq. (10a)), and [|6p5" |y < crapd 571 10277 || (by a simple modification

of the proof to eq. (24)), we obtain

A O™ = sul ™ ul " o + Aah (Gup™ T Sy — sup™)

+ Rpen((Opy™ T = opp™ opp ™t = opp™), adph ™ — apptY)

+ 80Py =" opn " e + Sl ||Sul IS

+ i w8 v kY|l — A (st — 6@2’”)tlli1
<cp I6F7™ s M0w], ™ M, + 25 (7", dup™ = up™) o

+ ! K065 oo 1027 | + collldud ™| fontt

U,f|||uh7n|||v,f|”5uh |||U,f'
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Apply Young’s inequality ab < a?/ (21&) +1pb%/2 to the first, third, and fourth terms on the right hand side of
eq. (67), choose ¢ = 1cf pu/, ¢ = p/k™1, and ¢ = 1 for the first, third and fourth terms, respectively, and note

that since we assumed that u;™ € B{L that Ll oyl — cw|||u£’ [ 1cf pf. We find from eq. (67):

5 f,n+1 6 £n’5uh,n+l) P + Atah(éuthrl 5 bn+1 6ul;L,n)

b,n+1

27 (0u
+ ECh((fm —5ph7 L Spr T sph™y, adph
@ (gpp = o, oph " e + Sed ! (16wl 2

_ _ _fntl —btl byt 2
+iulk 1||6z;z“||m+w e A A I A

n+1 ,n+1 _ 5pb,n+1)
h

2 . f
2 Cralt b 2 b, b,n+1 b, 2
"lgs +7t§,€ 169" g + a7 (857", 6up™™ — Suy ™) + |||uh (Il ¢ M0, ™ (Il -

ae

For the last term on the right hand side of eq. (68) use |||u£n||| < ¢f.uf/(4cy) (assumption uh" € Bf)
Furthermore, by 2a(a — b) = a® — b* + (a — b)?, coercivity of a? (see eq. (11a)), and eq. (10b), we find:
ab (Ful ™t Sul ™ — sul™) =ab (Gul ™t sul ) — af (6ul™, dul™)
+ab (Suy™ Tt = sul™ sub ™t — sul™)

2
Sl (Fu ™ oup ) — af (0uf " 0w + e |5 = 80l g

Also using 2a(a — b) > a? — b?, we obtain after multiplying eq. (68) by 2/At, replacing n by k, using that
di fFH1 = At=15fF+1 and summing for k =1 to k = n:

2
”dtu£7n+1HQf +ap (dyuy ™ dyup ™) 4+ byt Z ldpuy ™ = dyup® g

+ A7t ||O‘dtph’n+1 dtphn+ ||Qb +co ||dtpp n+1||Qb + lcaeNfAt|||dtuh7n+1H‘if
n
_ 2 _ _ _ _
+ulk 1Atz dezf 1o + 2707 1/2Atz |deaf " — A (day™ T — dyapt) ||F
k=1 k=1

_ 2 2
< ||dt“ + ah(dtuh 7dtuh ) +A7t Hadtph’l - dtp%lHQb +co Hdtpi’l”m

2 n

12 2¢ K412

+ et Dtllda I + ; ALY |ldif T g
ae k=1

n

c Hf - 2 b,k+1 b,k
+ %Atz Ideg™ M low + a2z DO Sup ™ = b ).
k=1 k=1

Apply summation-by-parts to the last term on the right hand side of eq. (69):

n

(@ F R Sup T — Sup ™) g

= (dtfb’nﬂadtuf{n“)m - (dtf 2 dtuh Qb — Atz Ay fOFT dyu Z’k)m (70)

b, b bk
< Nldef > e ldeuy™ g + Ilde W g + Atz dee f*" g eyl

k=2
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where the summation term on the right hand side is zero if n = 1. Note that by eq. (10b) and eq. (11a) we have

bk 2 b,k - b,k bk
||dt“h ||Qb <C;27|||dtuh |||v,b SC;(CZer) 1a2(dtuh s diwy, )- (71)

Combining egs. (69) to (71), and using the definition of X™ (see eq. (19)), we obtain

. . 262 " 2 02 ! n
112 1% 2
X" <3X0+ el pf Atllldrud 2 S + 7 Zf A Jlde fPR G, + %Atz ldeg 2,
ae k=1 k=1

p(hott”) T (e S lge XY 4 (1def* e (2XO)Y2 + ALY e f* | gn (2XFTHY).
k=2

k_
Assume maxj<g<, X" = X™. Then,

2
QCp

cl uf

ae

2 C X 2
X" < 3XO 4 Jelopd Atlldauf 7+ LAY [dn P g + A dig" g
k=1

k=1

+ V26 (chon”) 21" o+ ldef P2 g + A ldee M ) (X2 (72)
k=2

For nonnegative A and B the following holds:
X" < A+ BXMY2 & (X2~ 1B <A+ 1B = X" < [LB+ (A1 1B)YY <244 B2,
Applying this to eq. (72) and using the definition of F™ (see eq. (20b)),
X" < 6X0+ Sef pf Atllldyuf 2, + P (73)

Note that if the assumption maxi<p<n, X k = X™ does not hold, then there exists 0 < m < n such that
maxj<kg<n, X® = X™. In this case, eq. (73) holds with n replaced by m and we find:

X" < X™ < 6X0 + Lel pf At de I3, + F™ < 6X° + el pf Atf|deud 2, + P
This completes the proof of eq. (28).
B.3. Proof of Lemma 4.5

Before proving Lemma 4.5 we first prove the following minor modification of [20, Lemma 2].

Lemma B.1. Let {A;},,{B:},, {Ei};, {Ei},, {Ez}l, and {D;}, be nonnegative sequences. Suppose these
sequences satisfy

n n n—1 n
=1 =1 =1 i=1
for allm > 1. Then for anyn > 1,
n 1/2 n n—1 n 1/2
2 2 = =
: < ) , . .
(A, + Z;Bz) > ,—21 E; + 2 E; + 121%)(” E; + (; D;) (75)

with C' > 0 independent of n.
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Proof. Suppose that

n 4
A2+ B? = max {A}+ ) B}}. (76)
=1 =1

1<¢<n

If A2 45" B? <Y" | D, then eq. (75) naturally holds. If A2 +>°"  B? > Y"" | D;, then eq. (74) and
eq. (76) imply

n n n—1 n /2 p 1/2
2 2 =
2 < , , , , .
A2 4 2B1 < (; E; + ; B+ Ep) max Ai+ (2 D;) (; D;)
n n—1 n 1/2 n 1/2
<O EA+Y Ei+E.+ (). D) )(AZ+> B}
i=1 i=1 i=1 i=1
Equation (75) follows from dividing this by (42 + 37 B2)"/?.
If eq. (76) is not true, then there exists 1 < ng < n such that
no L
2 2 _ 2 2
By the same argument as above, we have
no 1/2 no ’I’Lofl no 1/2
2 2 = =
Ao+ 2B <3 B+ 3 Bt max Bt (D) (77)
Then, eq. (75) follows by eq. (77), ng < n, and the nonnegativities of E;, F;, E;, D;. O
We now proceed with the proof of Lemma 4.5.
Proof of Lemma 4.5. Step 1: proof of eq. (31). Split eq. (17b) as
bh (v, @) + en((dephy ™ diph ™), a) = 0, (78a)
bh (u ™ qf) =0, (78b)
where we applied d; to the terms in the Biot region to obtain eq. (78a). Now, choose 'vh‘ = u}i’”“, vl;L = dtuZ’"H,

gl = —p]™, qb = —pb" T wy, = 27 gf = pP™ ! inegs. (17) and (78) and add the resulting equations to

find:

n+1 fin+1 fin.  fin+1 fin+1 f fin+1 fin+1 b bn+1 bn+1
(dewy, ™ up™ o + ta(uy sy wy )+ ap (wy T wy ) ap (wy T dewy )

_ _f, _b, 2 , b, , b,
oyl kT2 @ = dap™ Y g 4 en((dph ™ dipl ™), aph ™t — gt

+ (codepy™ o™ e + 0l KT |2

_ (ff,n+1’ ui,n+1)ﬂf + (]eb,n+17 dtuz,nJrl)Qb + (gb,nJrl’pz;L,nJrl)Qb.

79
12, )

Using the algebraic inequality a(a —b) > (a? —b%)/2 for the discrete time-derivative terms, eq. (15) (which holds
by the assumption that u;" € B{L)7 the Cauchy—Schwarz inequality applied to the first and third term on the
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right hand side of eq. (79), and eq. (24), we find, using the definitions of A; and B;:

A2, —A2+2B2, < V2At 15" s Angr + cra(2Atp! K=1)1? 9" |y Bra

+ AL daul ™ g, (80)

Let us pause to note that, by summation-by-parts, using that uZ’O = 0, the Cauchy—Schwarz inequality, eq. (10b),
the coercivity result eq. (11a), and the definition of A;, we have

n

n
At Z(fb,i+1,dtuz,z+1)9b :(fb,n-‘rl’u%nJrl)Qb _ AtZ(dtfb,i—ﬁ-l’uz,Z)Qb

i=0 i=1

n
b,n+1 K byi
<ep 72" o lla™ Ml + ot Y Idef ™ lgn ey,
i=1

<cp 12" H g (chep®) ™2 V2A0 44

+ep AL [lde f2 Y | (hop?) T2 V24,.
=1

Therefore, replacing n by ¢ in eq. (80) and summing for i from 0 to n, and Young’s inequality,

AL Y OBR L SATHV2Y AL s Ay + ALY [l | gn ep(chon®) T PV2A;
=0

=0 i=1

n (81)
12
L g p(hen®) T 2V2AL L + 2 At 5T g g
i=0
Defining

E; = V2AL | g Bi = Atldef* g ep(chep®) T 2V2,

~ . .9

E; = Hfb’z| Qb Cp(cgeﬂb)_1/2ﬂ7 D; = %ngAt/‘f“_l ||9b’z||szb )

and noting that Ag = 0 by our assumption on the initial conditions, we can write eq. (81), for all n > 1, as

n n n—1 n
A% 4 ZBE < ZEiAi + ZEiAi + E A, + ZDi-
=1 =1 i=1 =1

Therefore, by Lemma B.1, for any n > 1,

1/2 1/2

n n ; n ; 9
(AL + DB <V2ALY (1 g + calzn! /)2 (ALY 11" llgn)
i=1 i=1

i=1
n—1
+ V20 (chon) ALY Il gn + V2ep(chep’) T2 max £ g
i=1 -

By definition of A; and B; (see eq. (30)) and H (see eq. (22)) we conclude eq. (31) (since we consider 1 < n < N).
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Step 2: proof of eq. (32). Let us start with eq. (79). For 1 <n < N:
(deud ™ ul ™) s + th(ul" ™ wl ™) + af (wl™ ul ™)+ al (ul”, diul™)

_ _ _b 2 b b
Haul kT2 @™ = dyap ™I, + en((depf” dipp™), apl™ = pr™)
n D, - 2 : b, :
+ (codepy ™, P Ve + 1 57 21 5 = (P ul ™ ar + (£, deup ™ an + (65", 0™ ).

By the assumption that ui’"_l € B£ we know that

2
|

n—1 , s s s s
tn ("l ™)+ af (ul " ™) > el lud”

v, f?
and so,
)2 - _f, _b, 2 - 2
sclet ™2 ¢ + v 5= 2@l = ey ™I, + pf w7 g
< \(ff’nyuz’n)m + (o, dtU%n)Qb + (gb’napﬁ’n)m (82)

— (deu ™ ul M) or — ab(ul™ deul ™) — en((dep?™, dieph™), apt?™ — ph™) — (codept™, PR .

The Cauchy—Schwarz and Young’s inequalities, eq. (10b), eq. (11a), eq. (24), and the definitions of X™ eq. (19)
and A, eq. (30a) yields

" a™ar | < I s 1™ s < 15 s V2An, (83a)
(9" Ph ™| < 119" N cran’ 5™ (12 g < e 54 lgP gy + 317w |2 N3, (83b)
(P2, deul ™ o] < 175 g 1ol ™ e < e 175 g Widersly™ I, (83¢)

< cp(chop?) V2 £ o al (i, dpuy™)

< (o) T2 £ g (2X7 )12

(deuf™ u ™) s | < el ™o lud ™ o - (83d)
Jap (up™, ™| < ap (up™ wp ™) 2al (dyul”, dyup ™), (83¢)
len((depl™, dipy™), ™ = ph™)| < A2 i (apl™ = pb™) g A2 ™ = pi™ oy (83f)
|(codep™ 28 )| < e/ 1Py ™l o/ ldepy ™ g - (83g)

Furthermore, combining eqgs. (83d) to (83g) and using the definitions of A,, and X™, we find

[(deud ™ uf ™ Ve | + la (up™, druy™)| + len(dep}™, dipy™), opf™ = pp™)| + |(codsp}™, 5™ )|
< 2An(Xn_1)1/2.
Combining the above inequality, egs. (83a) to (83c) with eq. (82), and using eq. (31) and eq. (29),
on 12 — —fin —b,n 2 — n| 2

sl 5, + v 572 @™ = dey ™), + S0l 5 12 G

n — n 2 — n n— n—
<™ lar V240 + 360" 57 197 lgn + cp(chen”) T2 g (XTI 4 24, (X2

n — np2 — n n— n—
< ||ff lor H + %cfd,uf/{ ! Hgb’ lgs + cp(cgeub) 1/2 ||fb’ oo (2G 1)1/2 + H(Q2G 1)1/2'

We therefore conclude eq. (32). O
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