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A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE

COUPLED NAVIER–STOKES/BIOT PROBLEM

Aycil Cesmelioglu1, Jeonghun J. Lee2 and Sander Rhebergen3

Abstract. In this paper we present a hybridizable discontinuous Galerkin method for the time-
dependent Navier–Stokes equations coupled to the quasi-static poroelasticity equations via interface
conditions. We determine a bound on the data that guarantees stability and well-posedness of the fully
discrete problem and prove a priori error estimates. A numerical example confirms our analysis.
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1. Introduction

In this paper we consider a system of partial differential equations such that the governing equations of two
different physical models on two disjoint subdomains are coupled across an interface. The two models are the
time-dependent Navier–Stokes equations of incompressible fluids and the quasi-static poroelasticity (or Biot)
equations [6–8]. The interface conditions coupling the two governing equations are derived by fundamental
physical laws and experimental data. This fluid and poroelastic structure interaction problem, which we refer
to here as the coupled Navier–Stokes/Biot problem, has applications in engineering fields such as hydrogeology,
petroleum engineering, and biomechanics.

To the best of our knowledge, the coupled Stokes/Biot model with general interface conditions was first pro-
posed in [50]. Soon after, Badia et al. [3] studied conforming finite element methods for the spatial discretization
of the coupled Navier–Stokes/Biot problem and monolithic and domain decomposition (partitioned) algorithms
to solve the fully discrete problem. A mathematical proof of existence and uniqueness of weak solutions to the
fully dynamic coupled Navier–Stokes and Biot problem, under a small data assumption, was given in [17]. In
this paper we consider the time-dependent Navier–Stokes equations coupled to the quasi-static Biot equations.
Well-posedness of this model is still an open question.

Various finite element methods have been studied for the coupled Stokes/Biot and Navier–Stokes/Biot prob-
lems. A Lagrange multiplier method for the coupled stationary Stokes and quasi-static poroelasticity equations
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was studied in [2], which was extended to a nonlinear model with non-Newtonian fluids in [1]. A conform-
ing/mixed finite element method was studied for the coupled stationary Stokes and quasi-static poroelasti-
city equations in [9, 45] using the total pressure formulation [34, 38]. Other formulations of this system of
equations have also been studied. These include the velocity-pressure (for Stokes) and stress-displacement-
velocity-pressure (for poroelasticity) formulation [37] and the stress-velocity-pressure (for Stokes) and stress-
displacement-velocity-pressure (for poroelasticity) formulation [16]. A conforming finite element method using
Nitsche’s technique for the Stokes/Biot problem is studied in [29]. They consider the velocity-pressure for-
mulation of the Stokes equations and a formulation using displacement, total pressure, and fluid content as
primary variables for the poroelasticity equations. For the coupled stationary Navier–Stokes and quasi-static
poroelasticity equations, an augmented mixed method using a pseudo-stress formulation of the Navier–Stokes
equations and a stress-displacement-velocity-pressure formulation of the poroelasticity model is studied in [36].
They prove existence and uniqueness of a continuous weak and a semidiscrete continuous-in-time formulation
of these equations. A conforming finite element method with stabilization for the time-dependent Stokes equa-
tions coupled to the dynamic poroelasticity equations was studied in [18]. Furthermore, many partitioned time
discretization schemes for efficient time discretization of the (Navier–)Stokes/Biot model have been studied, see,
for example, [5, 14,15,30,39].

In our previous work [21], we presented a locking-free hybridizable discontinuous Galerkin (HDG) [26] method
for the coupled stationary Stokes equations and quasi-static poroelasticity equations. This HDG method was
constructed such that: (i) the discrete velocities and displacement are divergence-conforming; (ii) the compress-
ibility equations are satisfied pointwise on the elements; and (iii) mass is conserved pointwise on the elements
for the semi-discrete problem in the absence of source/sink terms. In this paper we expand on our work in [21]
and propose and analyze an HDG method for the coupled time-dependent Navier–Stokes and quasi-static Biot
equations that inherits the three aforementioned properties of the HDG method for the coupled Stokes/Biot
problem. For this, we couple the exactly divergence-free HDG method for the time-dependent Navier–Stokes
equations of [41] to the locking-free HDG method for the Biot equations of [20].

We consider Backward Euler time-stepping for the time discretization, lagging the convective velocity in
the nonlinear term of the Navier–Stokes equations. To prove stability and well-posedness of our discretization,
the convective velocity across the interface must be small enough (this observation was also made in [28] for
the stationary Navier–Stokes/Darcy problem). We show this by assuming the data is small and extending
the stability and well-posedness analysis of [25] for a discontinuous Galerkin discretization of the Navier–
Stokes/Darcy problem to our HDG discretization of the Navier–Stokes/Biot problem. With well-posedness
established we proceed with an a priori error analysis. Here it is interesting to remark that all error bounds
are independent of the fluid pressure analogous to pressure-robust estimates found elsewhere in the literature
for divergence-conforming discretizations of incompressible flows (see, for example, [27,32,35,43,49,51] and the
review paper [31]).

The remainder of this paper is organized as follows. In section 2, we present the coupled Navier–Stokes/Biot
problem. Notation, definitions, useful preliminary results, and the HDG method are introduced in section 3.
The HDG method is shown to be stable and well-posed in section 4 and a priori error estimates are proven
in section 5. A numerical result is presented in section 6 and we end this paper with concluding remarks in
section 7.

2. The coupled Navier–Stokes/Biot problem

Let Ω be a bounded connected open subset of Rd, d = 2, 3, with polygonal/polyhedral boundaries, and
let Ωf and Ωb be two disjoint open connected subsets, both with polygonal/polyhedral boundaries, such that

Ω = Ωf ∪ Ωb. Furthermore, let J = [0, T ] denote the time interval of interest.
Let σj := 2µjε(uj) − pjI (j = f, b) and ε(u) := (∇u+ (∇u)T ) /2. The Navier–Stokes equations in Ωf × J

are given by

∂tu
f +∇ · (uf ⊗ uf )−∇ · σf = ff , ∇ · uf = 0, (1)
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where uf is the velocity in Ωf and pf is the pressure in Ωf . Furthermore, µf > 0 is the fluid viscosity and ff

is a given body force term. Biot’s equations in Ωb × J are given by

−∇ · ub + λ−1(αpp − pb) = 0, −∇ · σb = f b, µfκ−1z +∇pp = 0,

c0∂tp
p + αλ−1(α∂tp

p − ∂tp
b) +∇ · z = gb,

(2)

where ub is the displacement, pb, which is defined as

pb := αpp − λ∇ · ub, (3)

is the total pressure, pp is the pore pressure, and z is the Darcy velocity. Furthermore, µb and λ are the Lamé
constants, κ > 0 is the permeability constant, α ∈ (0, 1) is the Biot–Willis constant, and c0 ≥ 0 is the specific
storage coefficient. The body force in Ωb is denoted by f b while gb is a source/sink term.

Various equations are prescribed on the interface ΓI = ∂Ω
f ∩ ∂Ωb that couple the Navier–Stokes and Biot

equations. First, mass conservation across the interface is prescribed by

uf · n = (∂tu
b + z) · n on ΓI × J. (4a)

Here we use the convention that nj , j = f, b is the unit outward normal to Ωj and that on ΓI , n = nf = −nb.
Next, the balance of stresses is prescribed by

σfn = σbn, −(σfn) · n = pp on ΓI × J. (4b)

The Beavers–Joseph–Saffmann condition [4, 46] prescribes slip with friction and is given by

−2µf (ε(uf )n)
t
= γµfκ−1/2(uf − ∂tu

b)t on ΓI × J, (4c)

where γ > 0 is an experimentally determined dimensionless constant and where (w)t := w − (w · n)n.
The boundary of the domain is partitioned as follows. On each subdomain we define Γj = ∂Ω∩∂Ωj , j = f, b.

We then partition both Γf and Γb into Dirichlet ΓjD and Neumann ΓjN parts such that Γj = ΓjD ∪ ΓjN . Note

that ΓjD ∩ ΓjN = ∅ and we will assume that |ΓjD|, |Γ
j
N | > 0. It will also be useful to define ΓfIN := ΓI ∪ ΓfN . A

second partitioning of Γb is defined as Γb = ΓbP ∪ ΓbF with ΓbP ∩ ΓbF = ∅ and |ΓbP | > 0. See fig. 1 for an example
domain configuration depicting the notation. We now impose the following boundary conditions:

uj = 0 on ΓjD × J, j = f, b, σjn = 0 on ΓjN × J, j = f, b,

pp = 0 on ΓbP × J, z · n = 0 on ΓbF × J.
(5)

Initial conditions are given by

uf (x, 0) = uf0 (x) in Ωf , pp(x, 0) = pp0(x) in Ωb. (6)

Initial conditions for ub, z, and pb are determined by uf0 and pp0 assuming that uf0 ∈ [Hs(Ωf )]
d
, s > 3/2

and pp0 ∈ H1(Ωb). Indeed, first note that z0(x) = −(κ/µf )∇pp0(x) by the third equation in eq. (2). A weak
formulation of −∇ · σb0 = f b(x, 0) in eq. (2), with σb0 = 2µbε(ub0) + λ∇ · ub0I− αpp0I, gives∫︂

Ωb

(2µbε(ub0) + λ∇ · ub0I) : ε(vb) dx =

∫︂
Ωb

(αpp0∇ · vb + f b(x, 0) · vb) dx+
∫︂
ΓI

σf0n · vb ds ∀vb ∈ [H1
D(Ω

b)]
d
, (7)

where [H1
D(Ω

b)]
d
:= {vb ∈ [H1(Ωb)]

d
: vb|Γb

D
= 0} and the interface integral is by the first equality in eq. (4b)

and the second boundary condition in eq. (5), i.e., σb0n = 0 on ΓbN . Decomposing σf0n into its normal and
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Figure 1. An example domain configuration depicting the domain and boundary notation.

Note that ΓIN = ΓI ∪ ΓfN , Γf = ΓfD ∪ ΓfN , and Γb = ΓbD ∪ ΓbN = ΓbP ∪ ΓbF .

tangential components, using the second equality in eq. (4b), and the orthogonality of normal and tangential
vectors, eq. (7) can be rewritten as∫︂

Ωb

(2µbε(ub0) + λ∇ · ub0I) : ε(vb) dx

=

∫︂
Ωb

(αpp0∇ · vb + f b(x, 0) · vb) dx+

∫︂
ΓI

(−pp0vb · n+ (2µfε(uf0 )n)
t · (vb)t) ds ∀vb ∈ [H1

D(Ω
b)]

d
. (8)

The integral on ΓI is well-defined so that, by Korn’s inequality and the Lax–Milgram lemma, eq. (8) has a

unique solution ub0 ∈ [H1
D(Ω

b)]
d
. Finally, using eq. (3), pb0(x) = αpp0(x)− λ∇ · ub0(x).

In what follows, we write u|Ωj = uj , p|Ωj = pj , f |Ωj = f j , and µ|Ωj = µj for j = f, b so that u, p, f , and µ
are defined on the whole domain Ω.

3. Notation, the HDG method, and preliminary results

3.1. Mesh and time partitioning

We discretize the domains Ωj , j = f, b, by shape-regular triangulations which we denote by T j . We will
assume that the triangulations consist of simplices, denoted by K, that match at the interface and that the
triangulations are free of hanging nodes. The set of all simplices is denoted by T := T f ∪ T b. The boundary
of an element K is denoted by ∂K and we define ∂T j := {∂K : K ∈ T j} and ∂T := {∂K : K ∈ T }. We also

consider various sets of facets. The sets of all facets in Ω
j
and Ωj are denoted by F j and F j

int, respectively.
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The sets of facets on the Dirichlet ΓjD and Neumann ΓjN boundaries are denoted by, respectively, F j
D and

F j
N , while on ΓbF and ΓbP we denote the sets of facets by, respectively, Fb

F and Fb
P . The set of facets on the

interface is denoted by FI and the set of all facets is denoted by F . The union of facets in F j is denoted by
Γj0. Furthermore, we denote by F(K) the set of all facets of K. The diameter of an element K is denoted by
hK and we define h := maxK∈T hK . On the boundary of an element we denote by nK the unit outward normal
vector, however, we will drop the subscript K where no confusion can occur.

The time interval J is partitioned as follows: 0 = t0 < t1 < · · · < tN = T . For simplicity, we assume a
fixed time step, i.e., ∆t = T/N = tn − tn−1 for n = 1, . . . , N . A function f evaluated at time level n will
be denoted by fn := f(tn). We further introduce the difference δfn+1 := fn+1 − fn, the first order time
derivative dtf

n+1 := (fn+1 − fn)/∆t for n = 0, · · · , N − 1, and the second order time derivative dttf
b,n+1 =

(f b,n+1 − 2f b,n + f b,n−1)/(∆t)2 for n = 1, · · · , N − 1.

3.2. Function spaces and norms

Various function spaces will be used throughout this paper. First, the usual Sobolev spaces are denoted by
W k,p(D) for k ≥ 0 and 1 ≤ p ≤ ∞ on a Lipschitz domain D ⊂ Rd. The norm on W k,p(D) is denoted by
∥·∥p,k,D. As usual, Hk(D) = W k,2(D) with norm ∥·∥k,D = ∥·∥2,k,D and Lp(D) = W 0,p(D) with norm ∥·∥p,0,D.
If k = 0 and p = 2 we define L2(D) = W 0,2(D) with norm ∥·∥D = ∥·∥2,0,D. The Lp(S) norm on a surface

S ⊂ Rd−1 is defined similarly.
LetX be a Banach space with norm ∥·∥X , thenW k,p(J ;X) denotes a Bochner space with norm ∥f∥pWk,p(J;X)

:=∫︁ T
0

∑︁k
i=0 ∥∂itf(t)∥

p

X dt for 1 ≤ p < ∞. If k = 0, then Lp(J ;X) = W 0,p(J ;X). The norm on L∞(J ;X), i.e.,
the Bochner space for k = 0 and p = ∞, is defined as ∥f∥L∞(J;X) := ess supt∈J ∥f(t)∥X . Furthermore,

we denote by ℓp(J ;X) the space equipped with the norm ∥f∥ℓ∞(J;X) := max1≤i≤N ∥f i∥X for p = ∞ and

∥f∥pℓp(J;X)
:= ∆t

∑︁N
i=1 ∥f i∥

p

X for 1 ≤ p <∞.

Let us now define the following function spaces (for j = f, b):

V j := {v ∈ [H2(Ωj)]d : v|Γj
D
= 0} , Qj := H1(Ωj), Qb0 := {q ∈ H2(Ωb) : q|Γb

P
= 0} ,

and denote by V̄
j
the trace space of V j restricted to Γj0, Q̄

j
is the trace space of Qj restricted to Γj0, and Q̄

b0

is the trace space of Qb0 restricted to Γb0. For a compact notation, we define V j := V j × V̄
j
, Qj := Qj × Q̄

j
,

and Qb0 := Qb0 × Q̄
b0
. Furthermore, we define

Z := {v ∈ [H1(Ωb)]d : v · n|Γb
F
= 0} .

To define the HDG method we require the following element and facet function space pairs on each domain
Ωj , j = f, b:

V jh := {vh ∈ [L2(Ωj)]
d
: vh ∈ [Pk(K)]

d
, ∀ K ∈ T j} ,

V̄
j
h := {v̄h ∈ [L2(Γj0)]

d
: v̄h ∈ [Pk(F )]

d ∀ F ∈ Fj , v̄h = 0 on ΓjD} ,

and

Qjh := {qh ∈ L2(Ωj) : qh ∈ Pk−1(K), ∀ K ∈ T j} , Q̄
j
h := {q̄h ∈ L2(Γj0) : q̄h ∈ Pk(F ) ∀ F ∈ Fj} ,
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where Pr(D) denotes the set of polynomials of total degree at most r ≥ 0 defined on D. We will furthermore
require:

Vh := {vh ∈ [L2(Ω)]
d
: vh ∈ [Pk(K)]

d
, ∀K ∈ T } , Qh := {qh ∈ L2(Ω) : qh ∈ Pk−1(K), ∀ K ∈ T } ,

Q̄
b0
h := {q̄h ∈ Q̄

b
h : q̄h = 0 on ΓbP } .

For (uh, ph) ∈ Vh × Qh, we will write uh|Ωj = ujh ∈ V jh and ph|Ωj = pjh ∈ Qjh for j = f, b. We group element
and facet unknowns together as follows:

vh = (vh, v̄
f
h, v̄

b
h) ∈ V h := Vh × V̄

f
h × V̄

b
h, vjh = (vjh, v̄

j
h) ∈ V j

h := V jh × V̄
j
h,

qh = (qh, q̄
f
h, q̄

b
h) ∈ Qh := Qh × Q̄

f
h × Q̄

b
h, qjh = (qjh, q̄

j
h) ∈ Qj

h := Qjh × Q̄
j
h,

qph = (qph, q̄
p
h) ∈ Qb0

h := Qbh × Q̄
b0
h ,

where j = f, b, and (vh, qh, wh, q
p
h) ∈ Xh := V h × Qh × V bh × Qb0

h . We will also require the following two

subspaces of V j
h and V h, respectively:

˜︁V j

h := {vh ∈ V j
h : v̄h|ΓI

= 0} , ˆ︁V h := {vh ∈ V h : v̄fh · n = v̄bh · n on ΓI} . (9)

Extended function spaces are defined as (for j = f, b):

V j(h) := V jh + V j , V j(h) := V j
h + V j , Z(h) := V bh + Z,

Qj(h) := Qj
h +Qj , Qb0(h) := Qb0

h +Qb0,

and

V f,div(h) := {v ∈ V f (h) ∩H(div; Ωf ) : ∇ · v = 0 for x ∈ K, ∀K ∈ T f} .
We will work with the following norms:

|||vj |||2v,j :=
∑︂
K∈T j

(∥ε(vj)∥2K + h−1
K ∥vj − v̄j∥2∂K) ∀vj ∈ V j(h), j = f, b,

|||vj |||2v′,j := |||vj |||2v,j +
∑︂
K∈T j

h2K |vj |22,K ∀vj ∈ V j(h), j = f, b,

|||q|||2q,j := ∥q∥2Ωj +
∑︂
K∈T j

hK ∥q̄j∥2∂K ∀q ∈ Qj(h), j = f, b,

|||vh|||2v := |||vfh|||
2
v,f + |||vbh|||

2
v,b + ∥(v̄fh − v̄bh)

t∥
2

ΓI
∀vh ∈ V h,

∥vh∥1,h,Ωj := |||(vh, {{vh}})|||v,j ∀vh ∈ V jh ,

|||qh|||
2
q := |||qfh|||

2
q,f + |||qbh|||

2
q,b ∀qh ∈ Qh,

∥qh∥21,h,Ωb :=
∑︂
K∈T b

∥∇qh∥2K +
∑︂

F∈Fb
int∪Fb

P

h−1
F ∥JqhK∥2F ∀qh ∈ Qbh,

|||qh|||
2
1,h,b :=

∑︂
K∈T b

(∥∇qh∥2K + h−1
K ∥qh − q̄h∥

2
∂K) ∀qh ∈ Qb0

h ,

where the average operator {{·}} across an interior facet F = ∂K+ ∩ ∂K− ∈ Fj
int is defined as {{vh}} :=

(vh|K+ + vh|K−). On F ∈ F j
N ∪ FI we define {{vh}} := vh and on F ∈ F j

D we define {{vh}} := 0. Furthermore,
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the jump operator J·K is defined as JvKh := vh|K+ − vh|K− across an interior facet and as JvKh := vh|K on a
boundary facet.

It is useful to remark that the discrete bilinear form of the diffusion term in the Navier–Stokes equation
is continuous on V j(h) in the norm |||·|||v′,j (see eq. (11b)). On V j

h the norm |||·|||v′,j is equivalent to |||·|||v,j ,
i.e., there exists a constant ce > 0 independent of h such that |||v|||v,j ≤ |||v|||v′,j ≤ ce|||v|||v,j for all v ∈ V j

h

(see [52, eq. (5.5)]).
In appendix A we prove that there exist constants cp, csi,r > 0, independent of h, such that

∥vh∥Ωf ≤ cp∥vh∥1,h,Ωf ≤ cp|||vh|||v,f ∀vh ∈ V f
h, (10a)

∥vh∥Ωb ≤ cp∥vh∥1,h,Ωb ≤ cp|||vh|||v,b ∀vh ∈ V b
h, (10b)

∥vfh∥r,0,Γf
IN

≤ csi,r∥vh∥1,h,Ωf ≤ csi,r|||vh|||v,f ∀vh ∈ V f
h, (10c)

∥qh∥Ωb ≤ cpp ∥qh∥1,h,Ωb ≤ cpp|||qh|||1,h,b ∀qh ∈ Qb0
h , (10d)

where, in eq. (10c), ∥vfh∥r,0,Γf
IN

is a trace norm with 1 ≤ r <∞ if d = 2 and 1 ≤ r ≤ 4 if d = 3.

Consider two scalar functions w and z. We will denote by (w, z)D the integral of wz over a domain D ⊂ Rd
and by ⟨w, z⟩D the integral of wz over a domain D ⊂ Rd−1. We furthermore introduce the notation

(w, z)Ωj :=
∑︂
K∈T j

(w, z)K , (w, z)Ω :=
∑︂
K∈T

(w, z)K , ⟨w, z⟩ΓI
:=

∑︂
F∈FI

⟨w, z⟩F ,

⟨w, z⟩∂T j :=
∑︂
K∈T j

⟨w, z⟩∂K , ⟨w, z⟩∂T :=
∑︂
K∈T

⟨w, z⟩∂K , ⟨w, z⟩Γf
IN

:=
∑︂

F∈FI∪Ff
N

⟨w, z⟩F .

If w and z are vector functions, then (w, z)D :=
∑︁d
i=1(wi, zi)D and ⟨w, z⟩D :=

∑︁d
i=1⟨wi, zi⟩D. Similarly, if w

and z are matrix functions, then (w, z)D :=
∑︁d
i,j=1(wij , zij)D and ⟨w, z⟩D :=

∑︁d
i,j=1⟨wij , zij⟩D.

3.3. Forms and their properties

For uj ,vj ∈ V j(h), we define

ajh(u
j ,vj) :=(2µjε(u), ε(v))Ωj + ⟨2βjµjh−1

K (u− ūj), v − v̄j⟩∂T j

− ⟨2µjε(u)nj , v − v̄j⟩∂T j − ⟨2µjε(v)nj , u− ūj⟩∂T j ,

ah(u,v) :=a
f
h(u

f ,vf ) + abh(u
b,vb),

where βj > 0 is a penalty parameter. It was shown in [24, Lemmas 2 and 3] and [40, Lemmas 4.2 and 4.3] that

there exist constants β0 > 0, cjae > 0, and cjab > 0, independent of h and ∆t, such that

ajh(v
j
h,v

j
h) ≥ cjaeµ

j |||vjh|||
2
v,j ∀vjh ∈ V j

h, β > β0, (11a)

|ajh(u
j ,vj)| ≤ cjacµ

j |||uj |||v′,j |||v
j |||v′,j ∀u,v ∈ V j(h). (11b)

For vj ∈ V j(h) and qj ∈ Qj(h) we define

bjh(v
j , qj) := −(q,∇ · v)Ωj + ⟨q̄j , (v − v̄j) · nj⟩∂T j , bh(v, q) := bfh(v

f , qf ) + bbh(v
b, qb).
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The form bbh(·, ·) is also defined on (Z(h)×{0})×Qb0(h). We have the following inf-sup conditions (see [21, eqs
(17)-(19)] and [42]):

inf
0̸=qh∈Qj

h

sup
0 ̸=vh∈ ˜︁V j

h

bjh(vh, qh)

|||vh|||v,j |||qh|||q,j
≥ cbj , j = f, b, (12a)

inf
0 ̸=qh∈Qh

sup
0̸=vh∈ ˆ︁V h

bh(vh, qh)

|||vh|||v|||qh|||q
≥ cb, (12b)

inf
0̸=qp

h∈Qb0
h

sup
0̸=wh∈V b

h

bbh((wh, 0), q
p
h)

∥wh∥Ωb |||qph|||q,b
≥ cbp, (12c)

where cbf , cbb, cb, and cbp are positive constants independent of h. On (Qb0(h)×Qb(h))×Qb(h), we define

ch((p, r), q) := (λ−1(αp− r), q)Ωb ,

while on the interface we define

aIh((ū
f , ūb), (v̄f , v̄b)) := ⟨γµfκ−1/2(ūf − ūb)t, (v̄f − v̄b)t⟩ΓI

, bIh((v̄
f , v̄b), q̄) := ⟨q̄, (v̄f − v̄b) · nf ⟩ΓI

,

where aIh is defined on ((V̄
f
+ V̄

f
h)× (V̄

b
+ V̄

b
h))× ((V̄

f
+ V̄

f
h)× (V̄

b
+ V̄

b
h)) and b

I
h is defined on ((V̄

f
+ V̄

f
h)×

(V̄
b
+ V̄

b
h))× (Q̄

b0
+ Q̄

b0
h ).

The forms ah(·, ·), aIh(·, ·), bh(·, ·), bIh(·, ·), and ch(·, ·) discussed above are identical to those considered for the
coupled Stokes and Biot problem in [21]. In addition to these forms, we now also require the following discrete

convection term for w ∈ V f,div(h) and u,v ∈ V f (h):

th(w;u,v) := −(u⊗ w,∇v)Ωf + 1
2 ⟨w · nf (u+ ū), v − v̄⟩∂T f

+ 1
2 ⟨|w · nf | (u− ū), v − v̄⟩∂T f + ⟨(w · nf )ū, v̄⟩Γf

IN
.

We have the following properties for th.

Proposition 3.1. For all w1, w2 ∈ V f,div(h), and u,v ∈ V f (h), there exists a cw > 0 such that

|th(w1;u,v)− th(w2;u,v)| ≤ cw ∥w1 − w2∥1,h,Ωf |||u|||v,f |||v|||v,f . (13)

Proof. Using that 1
2 (w ·nf + |w ·nf |)u+ 1

2 (w ·nf − |w ·nf |)ū = w ·nf ū+Sw(u− ū), where Sw = max(w ·nf , 0),
we can write th after integration by parts as

th(w;u,v) = (∇u, v ⊗ w)Ωf − ⟨((u− ū)⊗ w)nf , v⟩∂T f + ⟨Sw(u− ū), v − v̄⟩∂T f .

The remainder of the proof is given by [19, Proposition 3.4]. □

Proposition 3.2. For w ∈ V f,div(h) and v ∈ V (h) it holds that

th(w;v,v) =
1
2 ⟨|w · nf | , |v − v̄|2⟩∂T f + 1

2 ⟨w · nf , |v̄|2⟩Γf
IN
. (14)

Proof. Note that

th(w;v,v) = −(v ⊗ w,∇v)Ωf + 1
2 ⟨w · nf (v + v̄), v − v̄⟩∂T f + 1

2 ⟨|w · nf |, |v − v̄|2⟩∂T f + ⟨w · nf , |v̄|2⟩Γf
IN
.
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Note that (v + v̄) · (v − v̄) = |v|2 − |v̄|2. Furthermore, −(v ⊗ w,∇v)Ωf = −⟨ 12w · nf , |v|2⟩∂T f since −v ⊗ w :

∇v = − 1
2∇ · (|v|2w). Therefore, also using that ⟨ 12w · nf , |v̄|2⟩∂T f = ⟨ 12w · nf , |v̄|2⟩ΓI

+ ⟨ 12w · nf , |v̄|2⟩Γf
N
, the

result follows. □

Proposition 3.3. Let w ∈ V f,div(h) and ∥w · n∥Γf
IN

≤ 1
2µ

fcfae(c
2
pq + c2si,4)

−1. Then, for β > β0,

th(w;vh,vh) + afh(vh,vh) ≥
1
2c
f
aeµ

f |||vfh|||
2
v,f ∀vh ∈ V f

h. (15)

Proof. By eq. (14), we find that

th(w;vh,vh) ≥ − 1
2 ⟨|w · nf |, |v̄h|2⟩Γf

IN
.

By a scaling identity there exists a constant cpq > 0 independent of h such that ∥v̄∥4,0,∂K ≤ cpqh
(1−d)/4 ∥v̄∥∂K

for v̄ ∈ {q ∈ L2(∂K) : q|F ∈ Pk(F ), ∀F ∈ F(K)}. By the identical steps as used in the proof of [23, Lemma 6]
(see also [28, Lemma 2]) it then follows that

th(w;vh,vh) ≥ −(c2pq + c2si,4) ∥w · n∥Γf
IN

|||vh|||2v,f ,

where csi,4 is the constant from eq. (10c) with r = 4. We find, using eq. (11a),

th(w;vh,vh) + afh(vh,vh) ≥ (cfaeµ
f − (c2pq + c2si,4) ∥w · n∥Γf

IN
) |||vfh|||

2
v,f .

The result follows by the assumption on ∥w · n∥Γf
IN

. □

Remark 3.4. In Proposition 3.3, we assume a smallness condition on ∥w · n∥Γf
IN

. If ΓfN represents an outflow

boundary (on which w · n > 0), then the smallness condition only needs to hold on ∥w · n∥ΓI
. Numerically,

however, it cannot be guaranteed that w · n > 0 on ΓfN .

3.4. The HDG method

The semi-discrete HDG method for the coupled Navier–Stokes/Biot problem eqs. (1), (2), (4) and (5) is given
by: For t ∈ J , find (uh(t),ph(t), zh(t),p

p
h(t)) ∈ Xh such that for all (vh, qh, wh, q

p
h) ∈ Xh,

(∂tuh, vh)Ωf + th(u
f
h;u

f
h,v

f
h) + ah(uh,vh) + bh(vh,ph) + aIh((ū

f
h, ∂tū

b
h), (v̄

f
h, v̄

b
h)) + bIh((v̄

f
h, v̄

b
h), p̄

p
h) (16a)

= (f, vh)Ω,

bh(uh, qh) + ch((p
p
h, p

b
h), q

b
h) = 0, (16b)

(c0∂tp
p
h, q

p
h)Ωb + ch((∂tp

p
h, ∂tp

b
h), αq

p
h)− bbh((zh, 0), q

p
h)− bIh((ū

f
h, ∂tū

b
h), q̄

p
h) = (gb, qph)Ωb , (16c)

(µfκ−1zh, wh)Ωb + bbh((wh, 0),p
p
h) = 0. (16d)

Using Backward Euler time-stepping, with lagging of the convective velocity, the fully-discrete HDG method is
given by: For n = 0, 1, · · · , N − 1, find (un+1

h ,pn+1
h , zn+1

h ,pp,n+1
h ) ∈ Xh such that for all (vh, qh, wh, q

p
h) ∈ Xh,
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(dtu
n+1
h , vh)Ωf + th(u

f,n
h ;uf,n+1

h ,vfh) + ah(u
n+1
h ,vh) + bh(vh,p

n+1
h ) + aIh((ū

f,n+1
h , dtū

b,n+1
h ), (v̄fh, v̄

b
h)) (17a)

+ bIh((v̄
f
h, v̄

b
h), p̄

p,n+1
h ) = (fn+1, vh)Ω,

bh(u
n+1
h , qh) + ch((p

p,n+1
h , pb,n+1

h ), qbh) = 0, (17b)

(c0dtp
p,n+1
h , qph)Ωb + ch((dtp

p,n+1
h , dtp

b,n+1
h ), αqph)− bbh((z

n+1
h , 0), qph)− bIh((ū

f,n+1
h , dtū

b,n+1
h ), q̄ph) (17c)

= (gb,n+1, qph)Ωb ,

(µfκ−1zn+1
h , wh)Ωb + bbh((wh, 0),p

p,n+1
h ) = 0. (17d)

Note that despite the coupled Navier–Stokes/Biot problem being nonlinear, the fully-discrete HDG method
eq. (17) is linear at each time step due to lagging of the convective velocity.

Remark 3.5. The HDG method eq. (17) is an extension of the HDG method previously presented in [21]
for the coupled Stokes/Biot model. For this HDG method, it was proven in [21, Lemma 1] that the discrete
velocities and displacement are divergence-conforming. Furthermore, it was shown that the compressibility
equations are satisfied pointwise on the elements and that, for the semi-discrete problem eq. (16) and in the
absence of source/sink terms, that mass is conserved pointwise on the elements. These properties are inherited
by eq. (17). The proof is identical to that of [21, Lemma 1] and therefore not included here.

4. Stability and well-posedness

Before showing well-posedness of the discretization we introduce some definitions and inequalities. First, we
define the discrete function spaces

V div
h := {vh ∈ V f

h : bfh(vh, qh) = 0 ∀qh ∈ Qf
h} ,

Bf
h := {vh ∈ V div

h : |||vh|||v,f ≤ min (
µfcfae

2csi,2(c2pq + c2si,4)
,
cfaeµ

f

4cw
)} ,

where we note that if ufh ∈ Bf
h, then by eq. (10c),

∥ufh · n∥Γf
IN

≤ csi,2|||ufh|||v,f ≤ µfcfae
2(c2pq + c2si,4)

. (18)

For 0 ≤ j ≤ N − 1, we define

Xj := ∥dtuf,j+1
h ∥

2

Ωf + 1
2a
b
h(dtu

b,j+1
h , dtu

b,j+1
h ) + λ−1 ∥αdtpp,j+1

h − dtp
b,j+1
h ∥

2

Ωb + c0 ∥dtpp,j+1
h ∥

2

Ωb . (19)

Furthermore,

F 0 :=3 ∥ff,1∥2Ωf +
3c2p
cbaeµ

b
∥dtf b,1∥

2

Ωb +
3c2tdµ

f

κ
∆t ∥dtgb,1∥

2

Ωb , (20a)

Fm :=
4c2p

cfaeµf
∆t

m∑︂
k=1

∥dtff,k+1∥2Ωf +
2c2tdµ

f

κ
∆t

m∑︂
k=1

∥dtgb,k+1∥2Ωb (20b)

+ 2c2p(c
b
acµ

b)−1( max
1≤k≤m

∥dtf b,k+1∥Ωb + ∥dtf b,2∥Ωb +∆t

m∑︂
k=2

∥dttf b,k+1∥Ωb)
2, 1 ≤ m ≤ N − 1,
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where
∑︁m
k=2 ∥dttf b,k+1∥Ωb in eq. (20b) is zero if m = 1. It will also be useful to define

G0 := F 0 and Gm := 145
24 F

0 + Fm for 1 ≤ m ≤ N − 1. (21)

Finally, let us define

H := 2 ∥ff∥ℓ1(J;Ωf ) + ctd(µ
f/κ)1/2 ∥gb∥ℓ2(J;Ωb) + 2cp(c

b
aeµ

b)−1/2 ∥dtf b∥ℓ1(J;Ωb)

+ 2cp(c
b
aeµ

b)−1/2 ∥f b∥ℓ∞(J;Ωb) . (22)

In this section we will prove well-posedness of the HDG method eq. (17) assuming the data satisfies

max (H2, ∥ff∥ℓ∞(J;Ωf )H + 1
2c

2
tdµ

fκ−1 ∥gb∥2ℓ∞(J;Ωb) + cp(c
b
aeµ

b)−1/2 ∥f b∥ℓ∞(J;Ωb) (2G
N−1)1/2 +H(2GN−1)1/2)

≤ 1
2c
f
aeµ

f [min (
µfcfae

2csi,2(c2pq + c2si,4)
,
µfcfae
4cw

)]

2

. (23)

In our proofs we will use the following result from [22, Lemma 4.2]: if pp,nh and znh are part of the solution to
eq. (17) for n ≥ 1, then there exists a constant cpd, independent of h, such that

∥pp,nh ∥
Ωb ≤ cpp ∥pp,nh ∥

1,h,Ωb ≤ cpp|||pp,nh |||1,h,b ≤ ctdµ
fκ−1 ∥znh∥Ωb , (24)

where ctd = cppcpd. We remark that the final inequality in eq. (24) follows by using modified local BDM
degrees-of-freedom that incorporate HDG facet unknowns and eq. (17d).

The main goal of this section is to prove well-posedness under the assumptions that f b,0 = 0, gb,0 = 0,

uf,0h = 0 and pp,0h = 0. These assumptions are necessary to prove well-posedness for the first time-step.

Theorem 4.1 (Well-posedness). Assume that eq. (23) holds, and that f b,0 = 0 and gb,0 = 0. Then, starting

with uf,0h = 0 and pp,0h = 0, a unique solution to eq. (17) exists. We furthermore have the following uniform
bounds (in n and h) for 1 ≤ n ≤ N :

1
2c
f
aeµ

f |||uf,nh |||2v,f + γµfκ−1/2 ∥(ūf,nh − dtū
b,n
h )t∥

2

ΓI
+ 1

2µ
fκ−1 ∥znh∥

2
Ωb (25a)

≤ 1
2c
f
aeµ

f [min (
µfcfae

2csi,2(c2pq + c2si,4)
,
µfcfae
4cw

)]

2

,

cbaeµ
b|||ub,nh |||2v,b + λ−1 ∥αpp,nh − pb,nh ∥

2

Ωb + c0 ∥pp,nh ∥2
Ωb ≤ 1

2c
f
aeµ

f [min (
µfcfae

2csi,2(c2pq + c2si,4)
,
µfcfae
4cw

)]

2

. (25b)

The pressures are bounded as:

|||pp,nh |||21,h,b ≤
1
2c

2
pdµ

f (cfae)
2κ−1 min (

1

csi,2(c2pq + c2si,4)
,

1

2cw
) , (26a)

cb|||pn+1
h |||q ≤cp ∥f

f∥ℓ∞(J;L2(Ωf )) + cp ∥f b∥ℓ∞(J;L2(Ωb)) + cp(G
N−1)1/2 (26b)

+ 1
2µ

fcfaecwmin (
1

csi,2(c2pq + c2si,4)
,

1

2cw
)

+ (cfacµ
f + cbac(c

f
ae/c

b
ae)

1/2(µf/µb)1/2 + ( 12c
f
aeγκ

−1/2)1/2µf )×

[min (
µfcfae

2csi,2(c2pq + c2si,4)
,
cfaeµ

f

4cw
)]

1/2

.
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The proof of Theorem 4.1 is by induction and follows at the end of this section after first proving some
intermediate results. The following lemma shows uniqueness of the discrete solution at tn+1 assuming that

uf,nh ∈ Bf
h for some 1 ≤ n ≤ N − 1.

Lemma 4.2 (Uniqueness). Let uf,0h = 0 and pp,0h = 0. Assume that (unh,p
n
h, z

n
h ,p

p,n
h ) ∈ Xh is the solution to

eq. (17) for some 1 ≤ n ≤ N − 1. If uf,nh ∈ Bf
h, then a unique solution (un+1

h ,pn+1
h , zn+1

h ,pp,n+1
h ) ∈ Xh to

eq. (17) exists.

Proof. See appendix B.1. □

In the following lemma, which extends [22, Lemma 4.5] for Navier–Stokes/Darcy to Navier–Stokes/Biot, and
the following corollary, we obtain bounds on Xn (see eq. (19) for the definition of Xn). These bounds will be

used to prove the pressure bound eq. (26b) and to show that if uf,kh ∈ Bf
h for all 0 ≤ k ≤ n with 0 ≤ n ≤ N −1,

then uf,n+1
h ∈ Bf

h (see Lemma 4.5 and Remark 4.6).

Lemma 4.3. Assume f b,0 = 0, gb,0 = 0, uf,0h = 0, and pp,0h = 0. If (ukh,p
k
h, z

k
h,p

p,k
h ) ∈ Xh is a solution to

eq. (17) for 1 ≤ k ≤ n, then

X0 ≤ F 0, (27a)

cfaeµ
f∆t|||dtuf,1h |||2v,f ≤ 1

12F
0. (27b)

Furthermore, if uf,kh ∈ Bf
h for all 0 ≤ k ≤ n, with 1 ≤ n ≤ N − 1, then

Xn ≤ 6X0 + 1
2c
f
aeµ

f∆t|||dtuf,1h |||2v,f + Fn. (28)

Proof. See appendix B.2. □

An immediate consequence of eqs. (27) and (28) is the following result.

Corollary 4.4. Under the assumptions of Lemma 4.3,

Xn ≤ Gn ∀0 ≤ n ≤ N − 1, (29)

where Gn is defined in eq. (21).

In the following lemma we obtain results that are used to prove eqs. (25a), (25b) and (26a).

Lemma 4.5. For 1 ≤ i ≤ N , let

A2
i :=

1
2 ∥u

f,i
h ∥

2

Ωf + 1
2a
b
h(u

b,i
h ,u

b,i
h ) + 1

2λ
−1 ∥αpp,ih − pb,ih ∥

2

Ωb +
1
2c0 ∥p

p,i
h ∥

2

Ωb , (30a)

B2
i := 1

4∆tc
f
aeµ

f |||uf,ih |||2v,f +
1
2∆tγµ

fκ−1/2 ∥(ūf,ih − dtū
b,i
h )t∥

2

ΓI
+ 1

2∆tµ
fκ−1 ∥zih∥

2

Ωb . (30b)

Assume f b,0 = 0, gb,0 = 0, uf,0h = 0, and pp,0h = 0. Let 1 ≤ n ≤ N − 1 and assume that (ukh,p
k
h, z

k
h,p

p,k
h ) ∈ Xh

is a solution to eq. (17) for all 0 ≤ k ≤ n such that uf,kh ∈ Bf
h. Then

(A2
n+1 +

n+1∑︂
i=1

B2
i )

1/2

≤ 1√
2
H, (31)

and

1
2c
f
aeµ

f |||uf,n+1
h |||2v,f + γµfκ−1/2 ∥(ūf,n+1

h − dtū
b,n+1
h )t∥

2

ΓI
+ 1

2µ
fκ−1 ∥zn+1

h ∥2
Ωb

≤ ∥ff,n+1∥Ωf H + 1
2c

2
tdµ

fκ−1 ∥gb,n+1∥2Ωb + cp(c
b
aeµ

b)−1/2 ∥f b,n+1∥Ωb (2G
n)1/2 +H(2Gn)1/2. (32)
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Proof. See appendix B.3. □

Remark 4.6. A consequence of eq. (32) and eq. (23) is that uf,n+1
h ∈ Bf

h. This result will be used in the proof
of Theorem 4.1 to prove uniqueness.

We end this section with proving Theorem 4.1.

Proof of Theorem 4.1. Equation (25a) follows directly from eq. (32) and eq. (23). Furthermore, eq. (25a) implies

uf,nh ∈ Bf
h for 1 ≤ n ≤ N so that existence and uniqueness follow from Lemma 4.2. The bound eq. (25b) follows

from eq. (31), eq. (11a), and eq. (23). The bound eq. (26a) is a direct consequence of eq. (24) and eq. (25a).
Finally, we consider the pressure bound eq. (26b). From eq. (12b) and eq. (17) we obtain:

cb|||pn+1
h |||q ≤ sup

0̸=vh∈ ˆ︁V h

|bh(vh,pn+1
h )|

|||vh|||v
≤ sup

0̸=vh∈ ˆ︁V h

B

|||vh|||v
(33)

where

B = |(fn+1, vh)Ω|+ |(dtun+1
h , vh)Ωf |+ |th(uf,nh ;uf,n+1

h ,vfh)|+ |ah(un+1
h ,vh)|

+ |aIh((ū
f,n+1
h , dtū

b,n+1
h ), (v̄fh, v̄

b
h))|+ |bIh((v̄

f
h, v̄

b
h), p̄

p,n+1
h )|.

First, note that bIh((v̄
f
h, v̄

b
h), p̄

p,n+1
h ) = 0 by the definition of ˆ︁V h. Using the Cauchy–Schwarz inequality, eq. (10a),

eq. (10b), eq. (13), eq. (11b):

|(fn+1, vh)Ω| ≤ cp ∥ff,n+1∥Ωf |||vfh|||v,f + cp ∥f b,n+1∥Ωb |||vbh|||v,b,

|(dtun+1
h , vh)Ωf | ≤ cp ∥dtun+1

h ∥
Ωf |||vfh|||v,f ,

|th(uf,nh ;uf,n+1
h ,vfh)| ≤ cw|||uf,nh |||v,f |||u

f,n+1
h |||v,f |||v

f
h|||v,f ,

|ah(un+1
h ,vh)| ≤ cfacµ

f |||uf,n+1
h |||v,f |||v

f
h|||v,f + cbacµ

b|||ub,n+1
h |||v,b|||v

b
h|||v,b,

|aIh((ū
f,n+1
h , dtū

b,n+1
h ), (v̄fh, v̄

b
h))| ≤ γµfκ−1/2 ∥(ūf,n+1

h − dtū
b,n+1
h )t∥

ΓI
|||vh|||v.

Combined now with eq. (33), Corollary 4.4, eq. (25a), and eq. (25b) we obtain the result eq. (26b). □

5. Error analysis

For the error analysis we first define interpolation operators to decompose the errors. For scalar functions, we

denote by ΠjQ, Π̄
j
Q, and Π̄

b
Q0 the L2-projection operators onto Qjh, Q̄

j
h, and Q̄

b0
h , respectively. For vector valued

functions, we define ΠjV : H(div,Ωj) ∩ [Lr(Ωj)]d → V jh , for r > 2 and j = f, b, to be the interpolation operator

to the Brezzi–Douglas–Marini (BDM) finite element spaces [12, Section III.3] and Π̄
j
V : [L2(F j)]d → V̄

j
h to be

the L2-projection onto V̄
j
h. It is known that

(qh,∇·ΠjV u
j)K = (qh,∇·uj)K ∀qh ∈ Pk−1(K),K ∈ T j , ⟨q̄h, n·Π

j
V u

j⟩F = ⟨q̄h, n·uj⟩F ∀q̄h ∈ Pk(F ), F ∈ Fj ,

and

if uj |K ∈ [Hk+1(K)]d : ∥uj −ΠjV u
j∥m,K ≤ Chl−mK ∥uj∥l,K , m = 0, 1, 2, max{1,m} ≤ l ≤ k + 1,

if uj |K ∈ [W 1
∞(K)]d : ∥uj −ΠjV u

j∥L∞(K) ≤ ChK |u|W 1
∞(K).
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For time stepping index n, we introduce the following notation for the errors:

uj,n − uj,nh = (uj,n −ΠjV u
j,n)− (uj,nh −ΠjV u

j,n) =: eI,nuj − eh,nuj , (34a)

ūj,n − ūj,nh = (ūj,n − Π̄
j
V ū

j,n)− (ūj,nh − Π̄
j
V ū

j,n) =: ēI,nuj − ēh,nuj , (34b)

zn − znh = (zn −ΠbV z
n)− (znh −ΠbV z

n) =: eI,nz − eh,nz , (34c)

pj,n − pj,nh = (pj,n −ΠjQp
j,n)− (pj,nh −ΠjQp

j,n) =: eI,npj − eh,npj , (34d)

p̄j,n − p̄j,nh = (p̄j,n − Π̄
j
Qp̄

j,n)− (p̄j,nh − Π̄
j
Qp

j,n) =: ēI,npj − ēh,npj , (34e)

pp,n − pp,nh = (pp,n −ΠbQp
p,n)− (pp,nh −ΠbQp

p,n) =: eI,npp − eh,npp , (34f)

p̄p,n − p̄p,nh = (p̄p,n − Π̄
b
Q0 p̄p,n)− (p̄p,nh − Π̄

b
Q0 p̄p,n) =: ēI,npp − ēh,npp , (34g)

and define eω,nu and eω,np such that eω,nu |Ωj = eω,nuj and eω,np |Ωj = eω,npj , for ω = I, h.

The following lemma now determines the error equations.

Lemma 5.1 (Error equations). Suppose that {(unh,pnh, znh ,p
p,n
h )}

n
are the solutions to eq. (17). Furthermore,

assume that (u, p, z, pp) is the solution to eqs. (1), (2) and (4) to (6) on the time interval J = (0, T ] with

uf0 (x) = 0 and pp0(x) = 0. Define u := (u, u|Γf
0
, u|Γb

0
), p := (p, p|Γf

0
, p|Γb

0
), and pp := (pp, pp|Γb

0
). Then, for n ≥ 0

and for all (vh, qh, wh, q
p
h) ∈ Xh we have:

(dte
h,n+1
uf , vfh)Ωf + th(u

f,n
h ; eh,n+1

uf ,vfh) + ah(e
h,n+1
u ,vh) + bh(vh, e

h,n+1
p ) (35a)

+ aIh((ē
h,n+1
uf , dtē

h,n+1
ub ), (v̄fh, v̄

b
h)) + bIh((v̄

f
h, v̄

b
h), ē

h,n+1
pp )

= (∂tu
f,n+1 − (∆t)−1(ΠfV u

f,n+1 −ΠfV u
f,n), vfh)Ωf + ah(e

I,n+1
u ,vh)

+ aIh((0, ∂tū
b,n+1 − dtū

b,n+1), (v̄fh, v̄
b
h)) + [th(u

f,n+1;uf,n+1,vfh)− th(u
f,n;uf,n+1,vfh)]

+ th(u
f,n; eI,n+1

uf ,vfh) + [th(u
f,n;Πf

V u
f,n+1,vfh)− th(u

f,n
h ;Πf

V u
f,n+1,vfh)] ,

bfh(e
h,n+1
uf , qfh) + bbh(dte

h,n+1
ub , qbh) + ch((dte

h,n+1
pp , dte

h,n+1
pb

), qbh) = 0, (35b)

(c0dte
h,n+1
pp , qph)Ωb + ch((dte

h,n+1
pp , dte

h,n+1
pb

), αqph)− bbh((e
h,n+1
z , 0), qph)− bIh((ē

h,n+1
uf , dtē

h,n+1
ub ), q̄ph) (35c)

= (c0(∂tp
p,n+1 − dtp

p,n+1), qph)Ωb + ch((∂tp
p,n+1 − dtp

p,n+1, ∂tp
b,n+1 − dtp

b,n+1), αqph)

− bIh((0, ∂tū
b,n+1 − dtū

b,n+1), q̄ph),

(µfκ−1eh,n+1
z , wh)Ωb + bbh((wh, 0), e

h,n+1
pp ) = (µfκ−1eI,n+1

z , wh)Ωb . (35d)

Proof. It can easily be shown, by standard arguments, that the semi-discrete HDG method eq. (16) is consistent.
Therefore, substituting the exact solution at time level t = tn+1 into eq. (16) and subtracting eq. (17) from the
result, we obtain:

(∂tu
f,n+1 − dtu

f,n+1
h , vfh)Ωf + th(u

f,n+1;uf,n+1,vfh)− th(u
f,n
h ;uf,n+1

h ,vfh) (36a)

+ ah(u
n+1 − un+1

h ,vh) + bh(vh,p
n+1 − pn+1

h )

+ aIh((ū
f,n+1 − ūf,n+1

h , ∂tū
b,n+1 − dtū

b,n+1
h ), (v̄fh, v̄

b
h)) + bIh((v̄

f
h, v̄

b
h), p̄

p,n+1 − p̄p,n+1
h ) = 0,

bh(u
n+1 − un+1

h , qh) + ch((p
p,n+1 − pp,n+1

h , pb,n+1 − pb,n+1
h ), qbh) = 0, (36b)

(c0(∂tp
p,n+1 − dtp

p,n+1
h ), qph)Ωb + ch((∂tp

p,n+1 − dtp
p,n+1
h , ∂tp

b,n+1 − dtp
b,n+1
h ), αqph) (36c)

− bbh((z
n+1 − zn+1

h , 0), qph)− bIh((ū
f,n+1 − ūf,n+1

h , ∂tū
b,n+1 − dtū

b,n+1
h ), q̄ph) = 0,

µfκ−1(zn+1 − zn+1
h , wh)Ωb + bbh((wh, 0),p

p,n+1 − pp,n+1
h ) = 0. (36d)
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Noting that ∂tu
f,n+1 − dtu

f,n+1
h = −dteh,n+1

uf + [∂tu
f,n+1 − (∆t)−1(ΠfV u

f,n+1 −ΠfV u
f,n)], and similar for the

other time derivative terms, and using the error decomposition eq. (34), we can write eq. (36) as

(dte
h,n+1
uf , vfh)Ωf − th(u

f,n+1;uf,n+1,vfh) + th(u
f,n
h ;uf,n+1

h ,vfh) (37a)

+ ah(e
h,n+1
u ,vh) + bh(vh, e

h,n+1
p ) + aIh((ē

h,n+1
uf , dtē

h,n+1
ub ), (v̄fh, v̄

b
h)) + bIh((v̄

f
h, v̄

b
h), ē

h,n+1
pp )

= (∂tu
f,n+1 − (∆t)−1(ΠfV u

f,n+1 −ΠfV u
f,n), vfh)Ωf + ah(e

I,n+1
u ,vh) + bh(vh, e

I,n+1
p )

+ aIh((ē
I,n+1
uf , ∂tū

b,n+1 − (∆t)−1(Π̄
b
V ū

b,n+1 − Π̄
b
V ū

b,n)), (v̄fh, v̄
b
h)) + bIh((v̄

f
h, v̄

b
h), ē

I,n+1
pp ),

bh(e
h,n+1
u , qh) + ch((e

h,n+1
pp , eh,n+1

pb
), qbh) = bh(e

I,n+1
u , qh) + ch((e

I,n+1
pp , eI,n+1

pb
), qbh), (37b)

(c0dte
h,n+1
pp , qph)Ωb + ch((dte

h,n+1
pp , dte

h,n+1
pb

), αqph)− bbh((e
h,n+1
z , 0), qph) (37c)

− bIh((ē
h,n+1
uf , dtē

h,n+1
ub ), q̄ph)

= (c0 [∂tp
p,n+1 − (∆t)−1(ΠbQp

p,n+1 −ΠbQp
p,n)] , qph)Ωb

+ ch((∂tp
p,n+1 − (∆t)−1(ΠbQp

p,n+1 −ΠbQp
p,n)), ∂tp

b,n+1 − (∆t)−1(ΠbQp
b,n+1 −ΠbQp

b,n)), αqph)

− bbh((e
I,n+1
z , 0), qph)− bIh((ē

I,n+1
uf , ∂tū

b,n+1 − (∆t)−1(Π̄
b
V ū

b,n+1 − Π̄
b
V ū

b,n)), q̄ph),

(µfκ−1eh,n+1
z , wh)Ωb + bbh((wh, 0), e

h,n+1
pp ) = (µfκ−1eI,n+1

z , wh)Ωb + bbh((wh, 0), e
I,n+1
pp ). (37d)

By properties of ΠjV and Π̄
j
V , j = f, b, we have that bh(e

I,n+1
u , qh) = 0 for all qh ∈ Qh and bbh((e

I,n+1
z , 0), qph) = 0

for all qph ∈ Qb0
h . Similarly, ch((e

I,n+1
pp , eI,n+1

pb
), qbh) = 0 for all qbh ∈ Qbh because ΠbQ is the L2-projection onto

Qbh, and bh(vh, e
I,n+1
p ) = 0 for all vh ∈ V h, b

b
h((wh, 0), e

I,n+1
pp ) = 0 for all wh ∈ V bh , and b

I
h((v̄

f
h, v̄

b
h), ē

I,n+1
pp ) = 0

for all (v̄fh, v̄
b
h) ∈ V̄

f
h × V̄

b
h because ΠjQ, Π̄

j
Q, j = f, b, and Π̄

b
Q0 are L2-projections. Furthermore, since Π̄

j
V , Π̄

j
Q,

j = f, b, Π̄
b
Q0 are L2-projections,

aIh((ē
I,n+1
uf , (∆t)−1(Π̄

b
V ū

b,n+1 − Π̄
b
V ū

b,n)− ∂tū
b,n+1), (v̄fh, v̄

b
h)) = aIh((0, dtū

b,n+1 − ∂tū
b,n+1), (v̄fh, v̄

b
h)),

bIh((ē
I,n+1
uf , (∆t)−1(Π̄

b
V ū

b,n+1 − Π̄
b
V ū

b,n)− ∂tū
b,n+1), q̄ph) = bIh((0, dtū

b,n+1 − ∂tū
b,n+1), q̄ph),

(c0((∆t)
−1(ΠbQp

p,n+1 −ΠbQp
p,n)− ∂tp

p,n+1), qph)Ωb = (c0(dtp
p,n+1 − ∂tp

p,n+1), qph)Ωb ,

ch(((∆t)
−1(ΠbQp

p,n+1 −ΠbQp
p,n)− ∂tp

p,n+1, (∆t)−1(ΠbQp
b,n+1 −ΠbQp

b,n)− ∂tp
b,n+1), αqph)

= ch((dtp
p,n+1 − ∂tp

p,n+1, dtp
b,n+1 − ∂tp

b,n+1), αqph).

Therefore, we can write eq. (37) as

(dte
h,n+1
uf , vfh)Ωf − th(u

f,n+1;uf,n+1,vfh) + th(u
f,n
h ;uf,n+1

h ,vfh) (38a)

+ ah(e
h,n+1
u ,vh) + bh(vh, e

h,n+1
p ) + aIh((ē

h,n+1
uf , dtē

h,n+1
ub ), (v̄fh, v̄

b
h)) + bIh((v̄

f
h, v̄

b
h), ē

h,n+1
pp )

= (∂tu
f,n+1 − (∆t)−1(ΠfV u

f,n+1 −ΠfV u
f,n), vfh)Ωf + ah(e

I,n+1
u ,vh)

+ aIh((0, ∂tū
b,n+1 − dtū

b,n+1)), (v̄fh, v̄
b
h)),

bh(e
h,n+1
u , qh) + ch((e

h,n+1
pp , eh,n+1

pb
), qbh) = 0, (38b)

(c0dte
h,n+1
pp , qph)Ωb + ch((dte

h,n+1
pp , dte

h,n+1
pb

), αqph)− bbh((e
h,n+1
z , 0), qph)− bIh((ē

h,n+1
uf , dtē

h,n+1
ub ), q̄ph) (38c)

= (c0(∂tp
p,n+1 − dtp

p,n+1), qph)Ωb + ch((∂tp
p,n+1 − dtp

p,n+1, ∂tp
b,n+1 − dtp

b,n+1), αqph)

− bIh((0, ∂tū
b,n+1 − dtū

b,n+1), q̄ph),

(µfκ−1eh,n+1
z , wh)Ωb + bbh((wh, 0), e

h,n+1
pp ) = (µfκ−1eI,n+1

z , wh)Ωb . (38d)
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To simplify this further, note that

−th(uf,n+1;uf,n+1,vfh) + th(u
f,n
h ;uf,n+1

h ,vfh) =− th(u
f,n+1;uf,n+1,vfh) + th(u

f,n;uf,n+1,vfh)

− th(u
f,n; eI,n+1

uf ,vfh)− th(u
f,n;Πf

V u
f,n+1,vfh)

+ th(u
f,n
h ;Πf

V u
f,n+1,vfh) + th(u

f,n
h ; eh,n+1

uf ,vfh).

(39)

Furthermore, splitting eq. (38b) into its terms on Ωf and Ωb and applying the discrete time derivative on Ωb,
we can write eq. (38b) as

bfh(e
h,n+1
uf , qfh) + bbh(dte

h,n+1
ub , qbh) + ch((dte

h,n+1
pp , dte

h,n+1
pb

), qbh) = 0. (40)

Combining eqs. (38a), (38c), (38d), (39) and (40) we find eq. (35). □

The following auxiliary result will be useful to prove the error estimate in Theorem 5.3.

Lemma 5.2. Let pp,nh , znh , p
p, and zn be as defined in Lemma 5.1. There exists a C > 0, independent of h,

∆t, and n, such that for n ≥ 0:

∥eh,n+1
pp ∥

Ωb ≤ Cµfκ−1(∥eh,n+1
z ∥Ωb + ∥eI,n+1

z ∥Ωb), (41a)

∥ēh,n+1
pp ∥

ΓI
≤ Cµfκ−1(∥eh,n+1

z ∥Ωb + ∥eI,n+1
z ∥Ωb). (41b)

Proof. In [21, eq. (42)] we proved that ∥eh,n+1
pp ∥

1,h,Ωb ≤ Cµfκ−1 ∥z − zh∥Ωb . Equation (41a) now follows by

eq. (10d) and a triangle inequality. The proof of eq. (41b) is given by [21, Lemma 4]. □

The main result of this section is the following theorem.

Theorem 5.3. Suppose that {(unh,pnh, znh ,p
p,n
h )}n are the solutions to eq. (17), that the assumptions of The-

orem 4.1 hold and that (u, p, z, pp) is the solution to eqs. (1), (2) and (4) to (6) on the time interval J = (0, T ]

with f b(x, 0) = 0, gb(x, 0) = 0, uf0 (x) = 0, and pp0(x) = 0. Furthermore, let u := (u, u|Γf
0
, u|Γb

0
), p :=

(p, p|Γf
0
, p|Γb

0
), and pp := (pp, pp|Γb

0
). If

uf ∈ H1(J, [Hk(Ωf )]d) ∩H2(J, [L2(Ωf )]d) ∩ ℓ∞(J, [W 1,3(Ωf ) ∩Hk+1(Ωf )]d),

ub ∈ H2(J, [H1(Ωb)]d) ∩W 2,1(J, [Hk+1(Ωb)]d),

z ∈ ℓ∞(J,Hk(Ωb)), pp, pb ∈ H2(J, L2(Ωb)),

(42)

then,

∥eh,m
uf ∥

2

Ωf + abh(e
h,m
ub , eh,m

ub ) + λ−1 ∥αeh,mpp − eh,m
pb

∥
2

Ωb
+ c0 ∥eh,mpp ∥

2

Ωb

+∆t

m∑︂
i=1

[µf |||eh,i
uf |||2v,f + γµfκ−1/2 ∥αēh,i

uf − dtē
h,i
ub ∥

2

ΓI
+ µfκ−1 ∥eh,iz ∥2Ωb ] ≤ CG [h2k + (∆t)2] , (43)

with CG a constant resulting from a discrete Grönwall inequality that depends on T and the norms of uf , ub,
z, pp, and pb in eq. (42). Moreover,

|||eh,m
pb

|||q,b ≤ C(µb)1/2abh(e
h,m
ub , eh,m

ub )1/2 + Cµbhk ∥ub,m∥k+1,Ωb . (44)
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Proof. Set vfh = eh,n+1
uf , vbh = dte

h,n+1
ub , qfh = −eh,n+1

pf
, qbh = −eh,n+1

pb
, wh = eh,n+1

z , qph = eh,n+1
pp in eq. (35),

sum the equations, use the algebraic inequality a(a − b) ≥ (a2 − b2)/2 for the time-derivative terms, and use
eq. (15), to obtain:

1
2∆t (∥e

h,n+1
uf ∥

2

Ωf − ∥eh,n
uf ∥

2

Ωf ) +
1
2c
f
aeµ

f |||eh,n+1
uf |||2v,f +

1
2∆t (a

b
h(e

h,n+1
ub , eh,n+1

ub )− abh(e
h,n
ub , e

h,n
ub ))

+ γµfκ−1/2 ∥(ēh,n+1
uf − dtē

h,n+1
ub )t∥

2

ΓI
+ λ−1

2∆t (∥αe
h,n+1
pp − eh,n+1

pb
∥
2

Ωb
− ∥αeh,npp − eh,n

pb
∥
2

Ωb
)

+ c0
2∆t (∥e

h,n+1
pp ∥

2

Ωb − ∥eh,npp ∥
2

Ωb) + µfκ−1 ∥eh,n+1
z ∥2Ωb

≤In1 + In2 + In3 + In4 ,

(45)

where enuf = uf,n − uf,nh and where

In1 := In1a + In1b + In1c + In1d + In1e + In1f

:= (∂tu
f,n+1 − (∆t)−1(ΠfV u

f,n+1 −ΠfV u
f,n), eh,n+1

uf )Ωf

+ [th(u
f,n+1;uf,n+1, eh,n+1

uf )− th(u
f,n;uf,n+1, eh,n+1

uf )]

+ th(u
f,n; eI,n+1

uf , eh,n+1
uf ) + [th(u

f,n;Πf
V u

f,n+1, eh,n+1
uf )− th(u

f,n
h ;Πf

V u
f,n+1, eh,n+1

uf )]

+ afh(e
I,n+1
uf , eh,n+1

uf ) + abh(e
I,n+1
ub , dte

h,n+1
ub ),

In2 := aIh((0, ∂tū
b,n+1 − dtū

b,n+1), (ēh,n+1
uf , dtē

h,n+1
ub )),

In3 := In3a + In3b + In3c

:= (c0(∂tp
p,n+1 − dtp

p,n+1), eh,n+1
pp )Ωb

+ ch((∂tp
p,n+1 − dtp

p,n+1, ∂tp
b,n+1 − dtp

b,n+1), αeh,n+1
pp )

− bIh((0, ∂tū
b,n+1 − dtū

b,n+1), ēh,n+1
pp ),

In4 := (µfκ−1eI,n+1
z , eh,n+1

z )Ωb .

By definition of In1a, the Cauchy–Schwarz inequality, eq. (10a), the triangle inequality, approximation properties

of the BDM interpolation operator (ΠfV ), Taylor’s theorem, and Young’s inequality,

|In1a| ≤ C ∥−dteI,n+1
uf + dtu

f,n+1 − ∂tu
f,n+1∥

Ωf |||e
h,n+1
uf |||v,f

≤ 2ψ|||eh,n+1
uf |||2v,f +

C
ψ h

2k(∆t)−1 ∥∂tuf∥
2

L2(tn,tn+1;Hk(Ωf )) +
C
ψ∆t ∥∂ttu

f∥2L2(tn,tn+1;L2(Ωf )) ,
(46)

where ψ > 0 will be chosen later. Next, by eq. (13) and Young’s inequality,

|In1b| ≤ C ∥uf,n+1 − uf,n∥1,h,Ωf ∥uf,n+1∥1,Ωf |||eh,n+1
uf |||v,f

≤ C(∆t)1/2 ∥∂tuf∥L2(tn,tn+1;H1(Ωf )) ∥u
f,n+1∥1,Ωf |||eh,n+1

uf |||v,f

≤ ψ|||eh,n+1
uf |||2v,f +

C

ψ
∆t ∥∂tuf∥

2

L2(tn,tn+1;H1(Ωf )) ∥u
f,n+1∥21,Ωf .

(47)
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By eq. (13), approximation properties of the BDM interpolation operator (ΠfV ) and facet L2-projection (Π̄
f
V ),

and Young’s inequality,

|In1c| ≤ C ∥uf,n∥1,h,Ωf |||eI,n+1
uf |||v,f |||e

h,n+1
uf |||v,f

≤ Chk ∥uf,n∥1,Ωf ∥uf,n+1∥k+1,Ωf |||eh,n+1
uf |||v,f

≤ ψ|||eh,n+1
uf |||2v,f +

C

ψ
h2k ∥uf,n∥21,Ωf ∥uf,n+1∥2k+1,Ωf .

(48)

For In1d we have for ψ > 0 (see [22, Appendix C]):

|In1d| ≤ 2ψ|||eh,n+1
uf |||2v,f +

C

ψ
h2k ∥uf,n+1∥2k+1,Ωf ∥uf,n∥

2

k+1,Ωf +
C

ψ
∥eh,n
uf ∥

2

Ωf ∥uf,n+1∥2W 1
3 (Ω

f ) . (49)

For In1e, using eq. (11b), Young’s inequalities, and interpolation properties, we find

|In1e| ≤ Cµfh2k ∥uf,n+1∥2k+1,Ωf + 1
8c
f
aeµ

f |||eh,n+1
uf |||2v,f . (50)

We postpone estimating In1f until later and proceed with estimating In2 . By the Cauchy–Schwarz inequality,
Young’s inequality, and the trace inequality,

|In2 | ≤ γµfκ−1/2 ∥dtūb,n+1 − ∂tū
b,n+1∥ΓI

∥ēh,n+1
uf − dtē

h,n+1
ub ∥

ΓI

≤ 1
2γµ

fκ−1/2 ∥ēh,n+1
uf − dtē

h,n+1
ub ∥

2

ΓI
+ 1

2γµ
fκ−1/2 ∥dtūb,n+1 − ∂tū

b,n+1∥2ΓI

≤ 1
2γµ

fκ−1/2 ∥ēh,n+1
uf − dtē

h,n+1
ub ∥

2

ΓI
+ Cµfκ−1/2∆t ∥∂ttūb∥

2

L2(tn,tn+1;L2(ΓI))

≤ 1
2γµ

fκ−1/2 ∥ēh,n+1
uf − dtē

h,n+1
ub ∥

2

ΓI
+ Cµfκ−1/2∆t ∥∂ttub∥

2

L2(tn,tn+1;H1(Ωb)) .

(51)

By the Cauchy–Schwarz inequality, Lemma 5.2, Young’s inequality, and an argument similar to the estimate in
eq. (46),

|In3a| ≤ c0 ∥dtpp,n+1 − ∂tp
p,n+1∥Ωb ∥eh,n+1

pp ∥
Ωb

≤ c0µ
fκ−1C ∥dtpp,n+1 − ∂tp

p,n+1∥Ωb (∥eh,n+1
z ∥Ωb + ∥eI,n+1

z ∥Ωb)

≤ 1
5µ

fκ−1 ∥eh,n+1
z ∥2Ωb + Cµfκ−1h2k ∥zn+1∥2Hk(Ωb) + Cc20µ

fκ−1∆t ∥∂ttpp∥2L2(tn,tn+1;L2(Ωb)) .

(52)

Likewise, and using that 0 < α ≤ 1, we find for In3b,

|In3b| ≤ λ−1 ∥α(dtpp,n+1 − ∂tp
p,n+1)− (dtp

b,n+1 − ∂tp
b,n+1)∥Ωb ∥eh,n+1

pp ∥
Ωb

≤ 1
5µ

fκ−1 ∥eh,n+1
z ∥2Ωb + Cµfκ−1h2k ∥zn+1∥2Hk(Ωb)

+ Cλ−2µfκ−1∆t(∥∂ttpp∥2L2(tn,tn+1;L2(Ωb)) + ∥∂ttpb∥
2

L2(tn,tn+1;L2(Ωb))).

(53)

For In3c, by eq. (41b) and an argument similar to the estimate eq. (51),

|In3c| ≤ 1
5µ

fκ−1 ∥eh,n+1
z ∥2Ωb + Cµfκ−1h2k ∥zn+1∥2Hk(Ωb) + Cµfκ−1∆t ∥∂ttub∥

2

L2(tn,tn+1;H1(Ωb)) . (54)

For In4 , using the Cauchy–Schwarz inequality, Young’s inequality, and the approximation properties of the BDM
interpolant, we find

|In4 | ≤ 1
5µ

fκ−1 ∥eh,n+1
z ∥2Ωb + Cµfκ−1h2k ∥zn+1∥2Hk(Ωb) . (55)
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Combining the estimates in eqs. (46) to (55) with eq. (45), choosing ψ = cfaeµ
f/24, summing for n = 0 to

n = m − 1, multiplying both sides of the inequality by ∆t, and taking into account the vanishing initial data,
we find:

1
2 ∥e

h,m
uf ∥

2

Ωf + ∆t
8 c

f
aeµ

f
m∑︂
i=1

|||eh,i
uf |||2v,f +

1
2a
b
h(e

h,m
ub , eh,m

ub ) + ∆t
2 γµ

fκ−1/2
m∑︂
i=1

∥(ēh,i
uf − dtē

h,i
ub )

t∥
2

ΓI

+ λ−1

2 ∥αeh,mpp − eh,m
pb

∥
2

Ωb
+ c0

2 ∥eh,mpp ∥
2

Ωb +
∆t
5 µ

fκ−1
m∑︂
i=1

∥eh,iz ∥2Ωb

≤ C(µf )−1h2k ∥∂tuf∥
2

L2(0,tm;Hk(Ωf )) + C(µf )−1(∆t)2 ∥∂ttuf∥
2

L2(0,tm;L2(Ωf ))

+ C(µf )−1(∆t)2
m∑︂
i=1

∥∂tuf∥
2

L2(ti−1,ti;H1(Ωf )) ∥u
f,i∥21,Ωf

+ C(µf )−1∆th2k
m∑︂
i=1

((µf )2 + ∥uf,i−1∥21,Ωf + ∥uf,i−1∥2k+1,Ωf ) ∥uf,i∥
2

k+1,Ωf +∆t

m∑︂
i=1

Ii−1
1f

+ C(µf )−1∆t

m∑︂
i=1

∥eh,i−1
uf ∥

2

Ωf ∥uf,i∥
2

W 1
3 (Ω

f ) + Cµfκ−1/2(∆t)2 ∥∂ttub∥
2

L2(0,tm;H1(Ωb))

+ Cµfκ−1∆th2k
m∑︂
i=1

∥zi∥2Hk(Ωb) + Cc20µ
fκ−1(∆t)2 ∥∂ttpp∥2L2(0,tm;L2(Ωb))

+ Cλ−2µfκ−1(∆t)2( ∥∂ttpp∥2L2(0,tm;L2(Ωb)) + ∥∂ttpb∥
2

L2(0,tm;L2(Ωb)) )

+ Cµfκ−1(∆t)2 ∥∂ttub∥
2

L2(0,tm;H1(Ωb)) .

(56)

Let us now consider the term I1f . Using summation-by-parts and that the initial data vanishes,

∆t

m∑︂
i=1

Ii−1
1f = abh(e

I,m
ub , eh,m

ub ) +

m∑︂
i=2

abh(e
I,i−1
ub − eI,i

ub , e
h,i−1
ub ).

Note also that, by the Cauchy–Schwarz and Young’s inequalities, eq. (11b), and approximation properties of
the BDM interpolant,

abh(e
I,i−1
ub − eI,i

ub , e
h,i−1
ub ) ≤ abh(e

I,i−1
ub − eI,i

ub , e
I,i−1
ub − eI,i

ub )
1/2abh(e

h,i−1
ub , eh,i−1

ub )1/2

≤ (∆t)−1abh(e
I,i−1
ub − eI,i

ub , e
I,i−1
ub − eI,i

ub ) +
∆t
4 a

b
h(e

h,i−1
ub , eh,i−1

ub )

≤ (∆t)−1cbacµ
b|||eI,i−1

ub − eI,i
ub |||2v′,j +

∆t
4 a

b
h(e

h,i−1
ub , eh,i−1

ub )

≤ (∆t)−1Cµbh2k ∥ub,i−1 − ub,i∥2k+1,Ωb + ∆t
4 a

b
h(e

h,i−1
ub , eh,i−1

ub )

≤ Cµbh2k ∥∂tub∥
2

L2(ti−1,ti;Hk+1(Ωb)) +
∆t
4 a

b
h(e

h,i−1
ub , eh,i−1

ub ),

and, similarly,

abh(e
I,m
ub , eh,m

ub ) ≤ Cµbh2k ∥ub,m∥2k+1,Ωb + 1
4a
b
h(e

h,m
ub , eh,m

ub ).
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The above inequalities together with eq. (56) result in:

1
2 ∥e

h,m
uf ∥

2

Ωf + ∆t
8 c

f
aeµ

f
m∑︂
i=1

|||eh,i
uf |||2v,f +

1
4a
b
h(e

h,m
ub , eh,m

ub ) + ∆t
2 γµ

fκ−1/2
m∑︂
i=1

∥(ēh,i
uf − dtē

h,i
ub )

t∥
2

ΓI

+ λ−1

2 ∥αeh,mpp − eh,m
pb

∥
2

Ωb
+ c0

2 ∥eh,mpp ∥
2

Ωb +
∆t
5 µ

fκ−1
m∑︂
i=1

∥eh,iz ∥2Ωb

≤ C(µf )−1h2k ∥∂tuf∥
2

L2(0,tm;Hk(Ωf )) + C(µf )−1(∆t)2 ∥∂ttuf∥
2

L2(0,tm;L2(Ωf ))

+ CT (µf )−1(∆t)2 ∥∂tuf∥
2

L2(0,tm;H1(Ωf )) ∥u
f∥2ℓ∞(0,tm;H1(Ωf ))

+ CT (µf )−1h2k((µf )2 + ∥uf∥2ℓ∞(0,tm;H1(Ωf )) + ∥uf∥2ℓ∞(0,tm;Hk+1(Ωf ))) ∥u
f∥2ℓ∞(0,tm;Hk+1(Ωf ))

+ Cµbh2k ∥∂tub∥
2

L2(0,tm;Hk+1(Ωb)) + Cµbh2k ∥ub∥2ℓ∞(0,tm;Hk+1(Ωb))

+ C(µf )−1∆t

m∑︂
i=1

∥eh,i−1
uf ∥

2

Ωf ∥uf,i∥
2

W 1
3 (Ω

f ) + Cµfκ−1/2(∆t)2 ∥∂ttub∥
2

L2(0,tm;H1(Ωb))

+ ∆t
4

m∑︂
i=2

abh(e
h,i−1
ub , eh,i−1

ub ) + Cµfκ−1Th2k ∥z∥2ℓ∞(0,tm;Hk(Ωb))

+ Cc20µ
fκ−1(∆t)2 ∥∂ttpp∥2L2(0,tm;L2(Ωb)) + Cµfκ−1(∆t)2 ∥∂ttub∥

2

L2(0,tm;H1(Ωb))

+ Cλ−2µfκ−1(∆t)2(∥∂ttpp∥2L2(0,tm;L2(Ωb)) + ∥∂ttpb∥
2

L2(0,tm;L2(Ωb))).

Equation (43) follows by a discrete Grönwall inequality (see, e.g., [33, Lemma 28]).

We next prove eq. (44). For this, let us first note that by eq. (12a) there exists a ṽbh ∈ Ṽ
b

h, with Ṽ
b

h defined

in eq. (9), such that bbh(ṽ
b
h, e

h,n+1
pb

) = |||eh,n+1
pb

|||2q,b and |||ṽbh|||v,b ≤ C|||eh,n+1
pb

|||q,b. Take vfh = 0 and vbh = ṽbh in

eq. (35a) which then reduces to abh(e
h,n+1
ub , ṽbh) + |||eh,n+1

pb
|||2q,b = abh(e

I,n+1
ub , ṽbh). By eq. (11b) we obtain:

|||eh,n+1
pb

|||2q,b ≤ |abh(e
h,n+1
ub , ṽbh)|+ |abh(e

I,n+1
ub , ṽbh)| ≤ Cµb (|||eh,n+1

ub |||v,b + |||eI,n+1
ub |||v′,b) |||e

h,n+1
pb

|||q,b,

so that eq. (44) follows by using eq. (11a) and approximation properties of the interpolant. □

An immediate consequence of Theorem 5.3, the triangle inequality, and approximation properties of the
different interpolants is the following corollary.

Corollary 5.4. Suppose that all the assumptions in Theorem 5.3 hold. Then:

∥uf,m − uf,mh ∥
2

Ωf + µb|||ub,m − ub,mh |||2v,b + λ−1 ∥α(pp,m − pp,mh )− (pb,m − pb,mh )∥
2

Ωb

+ c0 ∥pp,m − pp,mh ∥2
Ωb + |||pb,m − pb,mh |||2q,b

+∆t

m∑︂
i=1

[µf |||uf,i − uf,ih |||2v,f + γµfκ−1/2 ∥α(ūf,i − ūf,ih )− dt(ū
b,i − ūb,ih )∥

2

ΓI
+ µfκ−1 ∥zi − zih∥

2

Ωb ]

≤ C ′
G [h2k + (∆t)2] ,

with C ′
G depending on CG (see Theorem 5.3), the norms of the exact solutions, the constants of the approximation

properties of the interpolation operators ΠjV , Π̄
j
V , Π

j
Q, Π̄

j
Q, and the different model parameters.
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6. Numerical example

In this final section, we present a numerical example to confirm our analysis. For this, we consider the
time-dependent manufactured solution of [21, Section 6.2]. We consider the domain Ω := (0, 1)2 with Ωf :=
(0, 1)× (0.5, 1) and Ωb := (0, 1)× (0, 0.5). The boundaries of the domain are defined as:

ΓfD := {x ∈ Γf : x1 = 0 or x2 = 1} , ΓfN := {x ∈ Γf : x1 = 1} ,

ΓbP = ΓbD := {x ∈ Γb : x0 = 0 or x2 = 0} , ΓbF = ΓbN := {x ∈ Γb : x1 = 1} .

We consider the Navier–Stokes/Biot problem eqs. (1) and (2) with boundary conditions

uf = Uf on ΓfD × J, ub = U b on ΓbD × J, pp = P p on ΓbP × J,

σfn = Sf on ΓfN × J, σbn = Sb on ΓbN × J, z · n = Zd on ΓbF × J,

and interface conditions

uf · n = (∂tu
b + z) · n+Mu on ΓI × J,

σfn = σbn+Ms on ΓI × J,

(σfn) · n = pp +Mp on ΓI × J,

−2µf (ε(uf )n)
t
= γµfκ−1/2(uf − ∂tu

b)t +Me on ΓI × J.

The functionsMu,Ms,Mp, andMe in the aforementioned modified interface conditions, as well as the boundary
data, Uf , U b, P p, Sf , Sb, and Zd, body forces ff and f b, source/sink term gb, and the initial conditions are
chosen such that the exact solution is given by

uf =

[︃
πx1 cos(π(x1x2 − t)) + 1

−πx2 cos(π(x1x2 − t)) + 2x1

]︃
, ub =

[︃
sin(10πt) cos(4(x1 − t)) cos(3x2)
sin(10πt) sin(5x1) cos(2(x2 − t))

]︃
,

pf = sin(3x1) cos(4(x2 − t)), pp = sin(3(x1x2 − t)).

The model parameters are chosen as follows: µf = 10−2, µb = 10−3, α = 0.2, λ = 102, κ = 10−2, c0 = 10−2,
and γ = 0.3, while the HDG penalty parameters are chosen as βf = βb = 8k2, where k is the polynomial
degree. We consider the time interval J = [0, 0.01] and implement the HDG method in the Netgen/NGSolve
finite element library [47,48].

We first consider the spatial rates of convergence. For this, we compute the solution using k = 1 and k = 2
and list the errors measured in the L2-norm and rates of convergence of the unknowns in Ωf in table 1 and in

Ωb in table 1. We use a time step of ∆t = 1
10h

k+2. From both tables we observe that ∥ufh − uf∥
Ωf , ∥ubh − ub∥Ωb ,

and ∥zh − z∥Ωb are O(hk+1) while ∥pfh − pf∥
Ωf , ∥pbh − pb∥Ωb , and ∥pph − pp∥

Ωb are O(hk).

We next consider the temporal rates of convergence. The errors, measured in the L2-norm, and temporal
rates of convergence for the unknowns in Ωf are given in table 3 and in Ωb are given in table 4. To compute
these results we choose k = 4 and compute on the solution on a mesh consisting of 37548 cells. We observe that
the error for all unknowns is O(∆t).

7. Conclusions

In this paper we introduced and analyzed an HDG discretization for the time-dependent Navier–Stokes
equations coupled to the Biot equations. Appealing properties of the discretization include that the velocities
and displacement are divergence-conforming, that the compressibility equations are satisfied pointwise on the
elements, and that mass is conserved pointwise for the semi-discrete problem when source and sink terms are
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Cells ∥uf
h − uf∥

Ωf r ∥pfh − pf∥
Ωf r ∥∇ · uf

h∥Ωf

k = 1
8 2.4e-01 - 6.0e-01 - 6.3e-16
28 5.8e-02 2.0 1.2e-01 2.4 5.3e-16
152 1.5e-02 2.0 4.7e-02 1.3 9.6e-16
576 3.2e-03 2.2 2.2e-02 1.1 8.5e-16
2348 6.8e-04 2.2 1.1e-02 1.1 8.4e-16

k = 2
8 5.8e-02 - 1.1e-01 - 1.1e-15
28 9.6e-03 2.6 2.6e-02 2.0 1.2e-15
152 1.5e-03 2.7 4.7e-03 2.5 1.5e-15
576 1.6e-04 3.2 9.5e-04 2.3 1.3e-15
2348 1.5e-05 3.4 2.2e-04 2.1 1.2e-15

Table 1. Errors and spatial rates of convergence r for the solution in Ωf for the test case
described in section 6.

Cells ∥ub
h − ub∥Ωb r ∥pbh − pb∥Ωb r ∥zh − z∥Ωb r ∥pph − pp∥

Ωb r

k = 1
8 6.9e-02 - 3.2e+01 - 1.6e-01 - 1.4e-01 -
28 1.8e-02 2.0 1.6e+01 0.9 4.0e-02 2.0 6.8e-02 1.0
152 2.8e-03 2.6 6.6e+00 1.3 6.6e-03 2.6 2.9e-02 1.2
576 7.2e-04 2.0 3.4e+00 1.0 1.9e-03 1.8 1.5e-02 1.0
2348 1.7e-04 2.1 1.7e+00 1.0 5.2e-04 1.9 7.3e-03 1.0

k = 2
8 9.7e-03 - 6.8e+00 - 4.5e-02 - 2.0e-02 -
28 2.2e-03 2.1 2.3e+00 1.5 4.9e-03 3.2 5.3e-03 1.9
152 1.9e-04 3.6 4.4e-01 2.4 4.7e-04 3.4 1.2e-03 2.2
576 2.2e-05 3.1 1.0e-01 2.1 1.0e-04 2.2 2.8e-04 2.1
2348 2.3e-06 3.2 2.6e-02 2.0 1.7e-05 2.7 6.6e-05 2.1

Table 2. Errors and spatial rates of convergence r for the solution in Ωb for the test case
described in section 6.

∆t ∥uf
h − uf∥

Ωf r ∥pfh − pf∥
Ωf r ∥∇ · uf

h∥Ωf

T/8 6.0e-02 - 8.2e-02 - 6.1e-12
T/16 3.6e-02 0.7 5.3e-02 0.6 5.9e-12
T/32 2.1e-02 0.8 3.2e-02 0.7 5.7e-12
T/64 1.1e-02 0.9 1.8e-02 0.8 4.3e-12
T/128 6.0e-03 0.9 9.8e-03 0.9 3.5e-12

Table 3. Errors and temporal rates of convergence r for the solution in Ωf for the test case
described in section 6.

∆t ∥ub
h − ub∥Ωb r ∥pbh − pb∥Ωb r ∥zh − z∥Ωb r ∥pph − pp∥

Ωb r

T/8 5.5e-04 - 9.5e-06 - 1.1e-02 - 1.4e-03 -
T/16 3.0e-04 0.9 4.5e-06 1.1 5.7e-03 1.0 7.1e-04 1.0
T/32 1.6e-04 0.9 2.2e-06 1.0 2.9e-03 1.0 3.6e-04 1.0
T/64 8.7e-05 0.9 1.1e-06 1.0 1.4e-03 1.0 1.8e-04 1.0
T/128 4.6e-05 0.9 5.6e-07 1.0 7.2e-04 1.0 8.9e-05 1.0

Table 4. Errors and temporal rates of convergence r for the solution in Ωb for the test case
described in section 6.
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ignored. We proved stability and well-posedness under a small data assumption and presented an a priori error
analysis of the method.

Aycil Cesmelioglu and Jeonghun J. Lee acknowledge support from the National Science Foundation through grant
numbers DMS-2110782 and DMS-2110781. Sander Rhebergen acknowledges support from the Natural Sciences and
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Appendix A. Proofs of the inequalities in eq. (10)

Before proving eq. (10) we present a few useful results. First, we have the following discrete Poincaré and
Korn’s inequalities (see [10,11] and [44, eqs. (3.4) and (5.4)]):

∥vh∥Ωj ≤ C (
∑︂
K∈T j

∥∇vh∥2K +
∑︂

F∈Fj
int∪Fj

D

h−1
F ∥JvhK∥2F ) ∀vh ∈ V jh , j = f, b, (57a)

∑︂
K∈T j

∥∇vh∥2K ≤ CKorn (
∑︂
K∈T j

∥ε(vh)∥2K +
∑︂

F∈Fj
int∪Fj

D

h−1
F ∥JvhK∥2F ) ∀vh ∈ V jh , j = f, b. (57b)

Next, we note that∑︂
F∈Fj

int∪Fj
D

h−1
F ∥JvhK∥2F =

∑︂
F∈Fj

int

h−1
F ∥(v+h − {{vh}})− (v−h − {{vh}})∥

2

F
+

∑︂
F∈Fj

D

h−1
F ∥vh∥2F

≤ C (
∑︂

F∈Fj
int

(h−1
K+ ∥v+h − {{vh}}∥

2

F
+ h−1

K− ∥v−h − {{vh}}∥
2

F
) +

∑︂
F∈Fj

D

(h−1
K ∥vh∥2F ))

= C
∑︂
K∈T j

h−1
K ∥vh − {{vh}}∥2∂K ,

(58)

where we assumed shape regularity of the mesh. This result is used to show the second inequality in the
following equivalence result:

c1∥vh∥21,h,Ωj ≤
∑︂
K∈T j

∥ε(vh)∥2K +
∑︂

F∈Fj
int∪Fj

D

h−1
F ∥JvhK∥2F ≤ c2∥vh∥21,h,Ωj . (59)

The first inequality in (59) was shown in [21, Appendix A]. Finally, let us note that we have the following
inequalities between different norms:

c1∥vh∥21,h,Ωj ≤
∑︂
K∈T j

∥ε(vh)∥2K +
∑︂

F∈Fj
int∪Fj

D

h−1
F ∥JvhK∥2F ≤ C|||vh|||2v,j . (60)

The first inequality is by eq. (59) while the second inequality follows by identical steps as in eq. (58) but with
{{vh}} replaced by v̄h.

We now prove eq. (10). The first inequalities in eqs. (10a) and (10b) are a consequence of eqs. (57a), (57b)
and (59). The second inequalities in eqs. (10a) and (10b) are a consequence of eq. (60). The proof of eq. (10d) is
similar to eqs. (10a) and (10b). Finally, [13, Theorem 4.4] implies that for 1 ≤ r <∞ when d = 2 and 1 ≤ r ≤ 4
when d = 3

∥vfh∥
2

r,0,Γf
IN

≤ C (∥vfh∥
2

1,0,Ωf +
∑︂
K∈T f

∥∇vh∥2K +
∑︂

F∈Ff
int

h−1
F ∥JvfhK∥

2

F
) .

By Hölder’s inequality, eqs. (57a), (57b) and (59) we obtain the first inequality of eq. (10c). The second
inequality is a consequence of eq. (60).

Appendix B. Proofs of lemma’s in section 4

B.1. Proof of Lemma 4.2

We first show uniqueness. Assume that both (un+1
h ,pn+1

h , zn+1
h ,pp,n+1

h ) and (ˆ︁un+1
h , ˆ︁pn+1

h , ˆ︁zn+1
h , ˆ︁pp,n+1

h ) are

solutions to the fully discrete system eq. (17). Let us define their difference by (xn+1
h , rn+1

h , yn+1
h , rp,n+1

h ) =
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(un+1
h − ˆ︁un+1

h ,pn+1
h − ˆ︁pn+1

h , zn+1
h − ˆ︁zn+1

h ,pp,n+1
h − ˆ︁pp,n+1

h ). We need to show that (xn+1
h , rn+1

h , yn+1
h , rp,n+1

h ) =

(0,0, 0,0). Let us first note that (xn+1
h , rn+1

h , yn+1
h , rp,n+1

h ) satisfies

1

∆t
(xn+1
h , vfh)Ωf + th(u

f,n
h ;xf,n+1

h ,vfh) + afh(x
f,n+1
h ,vfh) + abh(x

b,n+1
h ,vbh) + bfh(v

f
h, r

f,n+1
h ) (61a)

+ bbh(v
b
h, r

b,n+1
h ) + aIh((x̄

f,n+1
h ,

1

∆t
x̄b,n+1
h ), (v̄fh, v̄

b
h)) + bIh((v̄

f
h, v̄

b
h), r̄

p,n+1
h ) = 0,

bfh(x
f,n+1
h , qfh) + bbh(x

b,n+1
h , qbh) + ch((r

p,n+1
h , rb,n+1

h ), qbh) = 0, (61b)

1

∆t
(c0r

p,n+1
h , qph)Ωb +

1

∆t
ch((r

p,n+1
h , rb,n+1

h ), αqph)− bbh((y
n+1
h , 0), qph)− bIh((x̄

f,n+1
h ,

1

∆t
x̄b,n+1
h ), q̄ph) = 0, (61c)

(µfκ−1yn+1
h , wh)Ωb + bbh((wh, 0), r

p,n+1
h ) = 0, (61d)

for all (vh, qh, wh, q
p
h) ∈ Xh. Add the above equations, choose vfh = xf,n+1

h , vbh = 1
∆tx

b,n+1
h , qfh = −rf,n+1

h ,

qbh = − 1
∆tr

b,n+1
h , wh = yn+1

h , and qph = rp,n+1. Since uf,nh ∈ Bf
h we find, using Proposition 3.3 and eq. (11a),

that

1
∆t ∥x

f,n+1
h ∥

2

Ωf + 1
2c
f
aeµ

f |||xf,n+1
h |||2v,f +

1
∆tc

b
aeµ

b|||xb,n+1
h |||2v,b + γµfκ−1/2 ∥(x̄f,n+1

h − 1
∆t x̄

b,n+1
h )t∥

2

ΓI

+ 1
∆tλ

−1 ∥αrp,n+1
h − rb,n+1

h ∥
2

Ωb +
c0
∆t ∥r

p,n+1
h ∥

2

Ωb + µfκ−1 ∥yn+1
h ∥2

Ωb ≤ 0,

so that xn+1
h = 0 and yn+1

h = 0. We are left to show that rn+1
h and rp,n+1

h are zero. To show that rn+1
h = 0,

substitute xn+1
h = 0 into eq. (61a) and choose v̄fh = v̄bh = 0 on ΓI to find bjh(v

j
h, r

j,n+1
h ) = 0 ∀vjh ∈ ˜︁V jh , j = f, b.

The result follows by the inf-sup condition eq. (12a). Similarly, to show that rp,n+1
h = 0, substitute yn+1

h = 0

into eq. (61d) to find bbh((wh, 0), r
p,n+1
h ) = 0 ∀wh ∈ V bh . The result follows by the inf-sup condition eq. (12c).

Finally, existence of a solution is a consequence of uniqueness since eq. (17) is a linear and finite dimensional
problem.

B.2. Proof of Lemma 4.3

Step 1: proof of eq. (27a). Let n = 0 in eq. (17). Use that the initial conditions are zero and choose

vfh = uf,1h , vbh = 1
∆tu

b,1
h , qfh = −pf,1h , qph = pp,1h , and wh = z1h. Furthermore, choose qbh = − 1

∆tp
b,1
h and note that

bbh(u
b,1
h ,− 1

∆tp
b,1
h ) = −bbh( 1

∆tu
b,1
h ,pb,1h ) and ch((p

p,1
h , pb,1h ),− 1

∆tp
b,1
h ) = −ch(( 1

∆tp
p,1
h , 1

∆tp
b,1
h ), pb,1h ). Equation (17)

becomes:

1
∆t ∥u

f,1
h ∥

2

Ωf + afh(u
f,1
h ,uf,1h ) + abh(u

b,1
h , 1

∆tu
b,1
h ) + γµfκ−1/2 ∥(ūf,1h − 1

∆t ū
b,1
h )t∥

2

ΓI
+ λ−1

∆t ∥αpp,1h − pb,1h ∥
2

Ωb

+ c0
∆t ∥p

p,1
h ∥

2

Ωb + µfκ−1 ∥z1h∥
2

Ωb = (ff,1, uf,1h )Ωf + (f b,1, 1
∆tu

b,1
h )Ωb + (gb,1, pp,1h )Ωb .

Coercivity of afh (see eq. (11a)), the Cauchy–Schwarz inequality, and using eq. (24) so that ∥pp,1h ∥
Ωb ≤ ctdµ

fκ−1 ∥z1h∥Ωb ,
we obtain

1
∆t ∥u

f,1
h ∥

2

Ωf + cfaeµ
f |||uf,1h |||2v,f +

1
∆ta

b
h(u

b,1
h ,ub,1h ) + γµfκ−1/2 ∥(ūf,1h − 1

∆t ū
b,1
h )t∥

2

ΓI
+ λ−1

∆t ∥αpp,1h − pb,1h ∥
2

Ωb

+ c0
∆t ∥p

p,1
h ∥

2

Ωb + µfκ−1 ∥z1h∥
2

Ωb ≤ ∥ff,1∥Ωf ∥uf,1h ∥
Ωf + 1

∆t ∥f
b,1∥Ωb ∥ub,1h ∥

Ωb + ctdµ
fκ−1 ∥gb,1∥Ωb ∥z1h∥Ωb . (62)

Using eq. (10b) and eq. (11a) so that

∥ub,1h ∥
Ωb ≤ cp|||ub,1h |||v,b ≤ cp(c

b
aeµ

b)−1/2abh(u
b,1
h ,ub,1h )1/2, (63)
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and noting the nonnegativity of the second and the fourth terms of eq. (62), we further have

1
∆t ∥u

f,1
h ∥

2

Ωf + 1
∆ta

b
h(u

b,1
h ,ub,1h ) + λ−1

∆t ∥αpp,1h − pb,1h ∥
2

Ωb +
c0
∆t ∥p

p,1
h ∥

2

Ωb + µfκ−1 ∥z1h∥
2

Ωb

≤ ∥ff,1∥Ωf ∥uf,1h ∥
Ωf + 1

∆tcp(c
b
aeµ

b)−1/2 ∥f b,1∥Ωb a
b
h(u

b,1
h ,ub,1h )1/2 + ctdµ

fκ−1 ∥gb,1∥Ωb ∥z1h∥Ωb . (64)

Let us define

Z2 := ∥uf,1h ∥
2

Ωf + abh(u
b,1
h ,ub,1h ) + λ−1 ∥αpp,1h − pb,1h ∥

2

Ωb + c0 ∥pp,1h ∥
2

Ωb +∆tµfκ−1 ∥z1h∥
2

Ωb ,

and write eq. (64) as:

1
∆tZ

2 ≤ ( ∥ff,1∥Ωf + 1
∆tcp(c

b
aeµ

b)−1/2 ∥f b,1∥Ωb + ctd
1

(∆t)1/2
(µfκ−1)1/2 ∥gb,1∥Ωb )Z.

This immediately implies, using that (X0)1/2 ≤ 1
∆tZ and that 1

∆t ∥f
b,1∥Ωb = ∥dtf b,1∥Ωb and 1

(∆t)1/2
∥gb,1∥Ωb =

(∆t)1/2 ∥dtgb,1∥Ωb because f b,0 = 0 and gb,0 = 0,

(X0)1/2 ≤ ∥ff,1∥Ωf + cp(c
b
aeµ

b)−1/2 ∥dtf b,1∥Ωb + ctd(∆t)
1/2(µfκ−1)1/2 ∥dtgb,1∥Ωb ,

so that eq. (27a) follows after squaring.
Step 2: proof of eq. (27b). We return to eq. (62). Applying Young’s inequality ab ≤ a2/(2ψ) + ψb2/2

to each term on the right hand side, using eq. (63) for the second term, choosing ψ = 2/∆t, ψ = 2/∆t, and
ψ = 2µfκ−1 for the first, second, and third terms, respectively, and dividing both sides by ∆t, we obtain, using
that f b,0 = 0 and gb,0 = 0,

cfaeµ
f∆t|||dtuf,1h |||2v,f ≤ 1

4 ∥f
f,1∥2Ωf + 1

4c
2
p(c

b
aeµ

b)−1 ∥dtf b,1∥
2

Ωb + 1
4c

2
tdµ

fκ−1∆t ∥dtgb,1∥
2

Ωb .

This proves eq. (27b).
Step 3: proof of eq. (28). Let 1 ≤ n ≤ N − 1. Subtract eq. (17) for the solution at time-level tn from

eq. (17) for the solution at time-level tn+1, choose vfh = δuf,n+1
h , vbh = 1

∆t (δu
b,n+1
h − δub,nh ), qfh = −δpf,n+1

h ,

qbh = − 1
∆tδp

b,n+1
h , wh = δzn+1

h , qph = δpp,n+1
h and add the resulting equations:

1
∆t (δu

f,n+1
h − δuf,nh , δuf,n+1

h )Ωf + th(u
f,n
h ;uf,n+1

h , δuf,n+1
h )− th(u

f,n−1
h ;uf,nh , δuf,n+1

h )

+ afh(δu
f,n+1
h , δuf,n+1

h ) + abh(δu
b,n+1
h , 1

∆t (δu
b,n+1
h − δub,nh ))

+ bbh(
1
∆t (δu

b,n+1
h − δub,nh ), δpb,n+1

h )− bbh(δu
b,n+1
h , 1

∆tδp
b,n+1
h )

+ aIh((δū
f,n+1
h , 1

∆t (δū
b,n+1
h − δūb,nh )), (δūf,n+1

h , 1
∆t (δū

b,n+1
h − δūb,nh )))

− ch((δp
p,n+1
h , δpb,n+1

h ), 1
∆tδp

b,n+1
h ) + 1

∆tch((δp
p,n+1
h − δpp,nh , δpb,n+1

h − δpb,nh ), αδpp,n+1
h )

+ c0
∆t (δp

p,n+1
h − δpp,nh , δpp,n+1

h )Ωb + (µfκ−1δzn+1
h , δzn+1

h )Ωb

= (δff,n+1, δuf,n+1
h )Ωf + (δf b,n+1, 1

∆t (δu
b,n+1
h − δub,nh ))Ωb + (δgb,n+1, δpp,n+1

h )Ωb .

(65)

We simplify next the sum of the 6th, 7th, 9th, and 10th terms on the left hand side of eq. (65) as follows. First,

[bbh(
1
∆t (δu

b,n+1
h − δub,nh ), δpb,n+1

h )− bbh(δu
b,n+1
h , 1

∆tδp
b,n+1
h )]− ch((δp

p,n+1
h , δpb,n+1

h ), 1
∆tδp

b,n+1
h )

+ 1
∆tch((δp

p,n+1
h − δpp,nh , δpb,n+1

h − δpb,nh ), αδpp,n+1
h ) =: I1 + I2 + I3.



28 TITLE WILL BE SET BY THE PUBLISHER

Note that

I1 = bbh(
1
∆tδu

b,n+1
h , δpb,n+1

h )− bbh(
1
∆tδu

b,n
h , δpb,n+1

h )− bbh(δu
b,n+1
h , 1

∆tδp
b,n+1
h ) =− bbh(

1
∆tδu

b,n
h , δpb,n+1

h )

=ch((δp
p,n
h , δpb,nh ), 1

∆tδp
b,n+1
h ),

where the last equality follows by subtracting eq. (17b) at time-level tn from eq. (17b) at time-level tn+1 and

choosing qfh = 0, qbh = 1
∆tδp

b,n+1
h . We immediately find that

I1 + I2 + I3 = 1
∆tch((δp

p,n+1
h − δpp,nh , δpb,n+1

h − δpb,nh ), αδpp,n+1
h − δpb,n+1

h ).

Noting also that th(u
f,n
h ;uf,n+1

h , δuf,n+1
h ) = th(u

f,n
h ; δuf,n+1

h , δuf,n+1
h )+th(u

f,n
h ;uf,nh , δuf,n+1

h ), we write eq. (65)
as:

1
∆t (δu

f,n+1
h − δuf,nh , δuf,n+1

h )Ωf + th(u
f,n
h ; δuf,n+1

h , δuf,n+1
h ) + afh(δu

f,n+1
h , δuf,n+1

h )

+ abh(δu
b,n+1
h , 1

∆t (δu
b,n+1
h − δub,nh ))

+ aIh((δū
f,n+1
h , 1

∆t (δū
b,n+1
h − δūb,nh )), (δūf,n+1

h , 1
∆t (δū

b,n+1
h − δūb,nh )))

+ 1
∆tch((δp

p,n+1
h − δpp,nh , δpb,n+1

h − δpb,nh ), αδpp,n+1
h − δpb,n+1

h )

+ c0
∆t (δp

p,n+1
h − δpp,nh , δpp,n+1

h )Ωb + (µfκ−1δzn+1
h , δzn+1

h )Ωb

=(δff,n+1, δuf,n+1
h )Ωf + (δf b,n+1, 1

∆t (δu
b,n+1
h − δub,nh ))Ωb + (δgb,n+1, δpp,n+1

h )Ωb

− [th(u
f,n
h ;uf,nh , δuf,n+1

h )− th(u
f,n−1
h ;uf,nh , δuf,n+1

h )] .

(66)

For the left hand side of eq. (66), since we assumed that uf,nh ∈ Bf
h, we have by eq. (15),

th(u
f,n
h ; δuf,n+1

h , δuf,n+1
h ) + afh(δu

f,n+1
h , δuf,n+1

h ) ≥ 1
2c
f
aeµ

f |||δuf,n+1
h |||2v,f .

For the right hand side of eq. (66) (see also [22, Proof of Lemma 4.5]):

|th(uf,nh ;uf,nh , δuf,n+1
h )− th(u

f,n−1
h ;uf,nh , δuf,n+1

h )| ≤cw ∥uf,nh − uf,n−1
h ∥

1,h,Ωf |||uf,nh |||v,f |||δu
f,n+1
h |||v,f

=cw ∥δuf,nh ∥
1,h,Ωf |||uf,nh |||v,f |||δu

f,n+1
h |||v,f

≤cw|||δuf,nh |||v,f |||u
f,n
h |||v,f |||δu

f,n+1
h |||v,f .

Applying also the Cauchy–Schwarz inequality to the terms on the right hand side of eq. (66) and using

∥δuf,n+1
h ∥

Ωf ≤ cp|||δuf,n+1
h |||v,f (by eq. (10a)), and ∥δpp,n+1

h ∥
Ωb ≤ ctdµ

fκ−1 ∥δzn+1
h ∥

Ωb (by a simple modification

of the proof to eq. (24)), we obtain

1
∆t (δu

f,n+1
h − δuf,nh , δuf,n+1

h )Ωf + 1
∆ta

b
h(δu

b,n+1
h , δub,n+1

h − δub,nh )

+ 1
∆tch((δp

p,n+1
h − δpp,nh , δpb,n+1

h − δpb,nh ), αδpp,n+1
h − δpb,n+1

h )

+ c0
∆t (δp

p,n+1
h − δpp,nh , δpp,n+1

h )Ωb + 1
2c
f
aeµ

f |||δuf,n+1
h |||2v,f

+ µfκ−1 ∥δzn+1
h ∥2

Ωb + γµfκ−1/2 ∥(δūf,n+1
h − 1

∆t (δū
b,n+1
h − δūb,nh )t∥

2

ΓI

≤cp ∥δff,n+1∥Ωf |||δuf,n+1
h |||v,f +

1
∆t (δf

b,n+1, δub,n+1
h − δub,nh )Ωb

+ ctdµ
fκ−1 ∥δgb,n+1∥Ωb ∥δzn+1

h ∥
Ωb + cw|||δuf,nh |||v,f |||u

f,n
h |||v,f |||δu

f,n+1
h |||v,f .

(67)
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Apply Young’s inequality ab ≤ a2/(2ψ) + ψb2/2 to the first, third, and fourth terms on the right hand side of
eq. (67), choose ψ = 1

2c
f
aeµ

f , ψ = µfκ−1, and ψ = 1 for the first, third, and fourth terms, respectively, and note

that since we assumed that uf,nh ∈ Bf
h that 1

2c
f
aeµ

f − cw|||uf,nh |||v,f ≥ 1
4c
f
aeµ

f . We find from eq. (67):

1
∆t (δu

f,n+1
h − δuf,nh , δuf,n+1

h )Ωf + 1
∆ta

b
h(δu

b,n+1
h , δub,n+1

h − δub,nh )

+ 1
∆tch((δp

p,n+1
h − δpp,nh , δpb,n+1

h − δpb,nh ), αδpp,n+1
h − δpb,n+1

h )

+ c0
∆t (δp

p,n+1
h − δpp,nh , δpp,n+1

h )Ωb + 1
8c
f
aeµ

f |||δuf,n+1
h |||2v,f

+ 1
2µ

fκ−1 ∥δzn+1
h ∥2

Ωb + γµfκ−1/2 ∥(δūf,n+1
h − 1

∆t (δū
b,n+1
h − δūb,nh )t∥

2

ΓI

≤
c2p

cfaeµf
∥δff,n+1∥2Ωf +

c2tdµ
f

2κ
∥δgb,n+1∥2Ωb + 1

∆t (δf
b,n+1, δub,n+1

h − δub,nh )Ωb +
cw
2
|||uf,nh |||v,f |||δu

f,n
h |||2v,f .

(68)

For the last term on the right hand side of eq. (68) use |||uf,nh ||| ≤ cfaeµ
f/(4cw) (assumption uf,nh ∈ Bf

h).

Furthermore, by 2a(a− b) = a2 − b2 + (a− b)2, coercivity of abh (see eq. (11a)), and eq. (10b), we find:

2abh(δu
b,n+1
h , δub,n+1

h − δub,nh ) =abh(δu
b,n+1
h , δub,n+1

h )− abh(δu
b,n
h , δub,nh )

+ abh(δu
b,n+1
h − δub,nh , δub,n+1

h − δub,nh )

≥abh(δu
b,n+1
h , δub,n+1

h )− abh(δu
b,n
h , δub,nh ) + cbaeµ

bc−1
p ∥δub,n+1

h − δub,nh ∥
2

Ωb .

Also using 2a(a − b) ≥ a2 − b2, we obtain after multiplying eq. (68) by 2/∆t, replacing n by k, using that
dtf

k+1 = ∆t−1δfk+1, and summing for k = 1 to k = n:

∥dtuf,n+1
h ∥

2

Ωf + abh(dtu
b,n+1
h , dtu

b,n+1
h ) + cbaeµ

bc−1
p

n∑︂
k=1

∥dtub,k+1
h − dtu

b,k
h ∥

2

Ωb

+ λ−1 ∥αdtpp,n+1
h − dtp

b,n+1
h ∥

2

Ωb + c0 ∥dtpp,n+1
h ∥

2

Ωb +
1
4c
f
aeµ

f∆t|||dtuf,n+1
h |||2v,f

+ µfκ−1∆t

n∑︂
k=1

∥dtzk+1
h ∥2

Ωb + 2γµfκ−1/2∆t

n∑︂
k=1

∥dtūf,k+1
h − 1

∆t (dtū
b,k+1
h − dtū

b,k
h )t∥

2

ΓI

≤∥dtuf,1h ∥
2

Ωf + abh(dtu
b,1
h , dtu

b,1
h ) + λ−1 ∥αdtpp,1h − dtp

b,1
h ∥

2

Ωb + c0 ∥dtpp,1h ∥
2

Ωb

+ 1
4c
f
aeµ

f∆t|||dtuf,1h |||2v,f +
2c2p

cfaeµf
∆t

n∑︂
k=1

∥dtff,k+1∥2Ωf

+
c2tdµ

f

κ
∆t

n∑︂
k=1

∥dtgb,k+1∥2Ωb + 2
(∆t)2

n∑︂
k=1

(δf b,k+1, δub,k+1
h − δub,kh )Ωb .

(69)

Apply summation-by-parts to the last term on the right hand side of eq. (69):

1
(∆t)2

n∑︂
k=1

(δf b,k+1, δub,k+1
h − δub,kh )Ωb

= (dtf
b,n+1, dtu

b,n+1
h )Ωb − (dtf

b,2, dtu
b,1
h )Ωb −∆t

n∑︂
k=2

(dttf
b,k+1, dtu

b,k
h )Ωb

≤ ∥dtf b,n+1∥Ωb ∥dtub,n+1
h ∥

Ωb + ∥dtf b,2∥Ωb ∥dtub,1h ∥
Ωb +∆t

n∑︂
k=2

∥dttf b,k+1∥Ωb ∥dtub,kh ∥
Ωb ,

(70)
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where the summation term on the right hand side is zero if n = 1. Note that by eq. (10b) and eq. (11a) we have

∥dtub,kh ∥
2

Ωb ≤ c2p|||dtu
b,k
h |||v,b ≤ c2p(c

b
aeµ

b)−1abh(dtu
b,k
h , dtu

b,k
h ). (71)

Combining eqs. (69) to (71), and using the definition of Xn (see eq. (19)), we obtain

Xn ≤ 3X0 + 1
4c
f
aeµ

f∆t|||dtuf,1h |||2v,f +
2c2p

cfaeµf
∆t

n∑︂
k=1

∥dtff,k+1∥2Ωf +
c2tdµ

f

κ
∆t

n∑︂
k=1

∥dtgb,k+1∥2Ωb

+ cp(c
b
acµ

b)−1/2(∥dtf b,n+1∥Ωb (2X
n)1/2 + ∥dtf b,2∥Ωb (2X

0)1/2 +∆t

n∑︂
k=2

∥dttf b,k+1∥Ωb (2X
k−1)1/2).

Assume max1≤k≤nX
k = Xn. Then,

Xn ≤ 3X0 + 1
4c
f
aeµ

f∆t|||dtuf,1h |||2v,f +
2c2p

cfaeµf
∆t

n∑︂
k=1

∥dtff,k+1∥2Ωf +
c2tdµ

f

κ
∆t

n∑︂
k=1

∥dtgb,k+1∥2Ωb

+
√
2cp(c

b
acµ

b)−1/2(∥dtf b,n+1∥Ωb + ∥dtf b,2∥Ωb +∆t

n∑︂
k=2

∥dttf b,k+1∥Ωb)(X
n)1/2. (72)

For nonnegative A and B the following holds:

Xn ≤ A+B(Xn)1/2 ⇔ ((Xn)1/2 − 1
2B)

2
≤ A+ 1

4B
2 ⇒ Xn ≤ [ 12B + (A+ 1

4B
2)

1/2
]
2

≤ 2A+B2.

Applying this to eq. (72) and using the definition of Fn (see eq. (20b)),

Xn ≤ 6X0 + 1
2c
f
aeµ

f∆t|||dtuf,1h |||2v,f + Fn. (73)

Note that if the assumption max1≤k≤nX
k = Xn does not hold, then there exists 0 ≤ m < n such that

max1≤k≤nX
k = Xm. In this case, eq. (73) holds with n replaced by m and we find:

Xn < Xm ≤ 6X0 + 1
2c
f
aeµ

f∆t|||dtuf,1h |||2v,f + Fm ≤ 6X0 + 1
2c
f
aeµ

f∆t|||dtuf,1h |||2v,f + Fn.

This completes the proof of eq. (28).

B.3. Proof of Lemma 4.5

Before proving Lemma 4.5 we first prove the following minor modification of [20, Lemma 2].

Lemma B.1. Let {Ai}i , {Bi}i, {Ei}i, {Ei}i, { ˜︁Ei}i, and {Di}i be nonnegative sequences. Suppose these
sequences satisfy

A2
n +

n∑︂
i=1

B2
i ≤

n∑︂
i=1

EiAi +

n−1∑︂
i=1

EiAi + ˜︁EnAn +

n∑︂
i=1

Di, (74)

for all n ≥ 1. Then for any n ≥ 1,

(A2
n +

n∑︂
i=1

B2
i )

1/2

≤
n∑︂
i=1

Ei +

n−1∑︂
i=1

Ei + max
1≤i≤n

˜︁Ei + (

n∑︂
i=1

Di)

1/2

(75)

with C > 0 independent of n.
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Proof. Suppose that

A2
n +

n∑︂
i=1

B2
i = max

1≤ℓ≤n
{A2

ℓ +

ℓ∑︂
i=1

B2
i } . (76)

If A2
n +

∑︁n
i=1B

2
i ≤

∑︁n
i=1Di, then eq. (75) naturally holds. If A2

n +
∑︁n
i=1B

2
i >

∑︁n
i=1Di, then eq. (74) and

eq. (76) imply

A2
n +

n∑︂
i=1

B2
i ≤ (

n∑︂
i=1

Ei +

n−1∑︂
i=1

Ei + ˜︁En) max
1≤i≤n

Ai + (

n∑︂
i=1

Di)

1/2

(

n∑︂
i=1

Di)

1/2

≤ (

n∑︂
i=1

Ei +

n−1∑︂
i=1

Ei + ˜︁En + (

n∑︂
i=1

Di)

1/2

) (A2
n +

n∑︂
i=1

B2
i )

1/2

.

Equation (75) follows from dividing this by (A2
n +

∑︁n
i=1B

2
i )

1/2
.

If eq. (76) is not true, then there exists 1 ≤ n0 < n such that

A2
n0

+

n0∑︂
i=1

B2
i = max

1≤ℓ≤n
{A2

ℓ +

ℓ∑︂
i=0

B2
i } .

By the same argument as above, we have

(A2
n0

+

n0∑︂
i=1

B2
i )

1/2

≤
n0∑︂
i=1

Ei +

n0−1∑︂
i=0

Ei + max
1≤i≤n0

˜︁Ei + (

n0∑︂
i=1

Di)

1/2

. (77)

Then, eq. (75) follows by eq. (77), n0 < n, and the nonnegativities of Ei, Ei, ˜︁Ei, Di. □

We now proceed with the proof of Lemma 4.5.

Proof of Lemma 4.5. Step 1: proof of eq. (31). Split eq. (17b) as

bbh(dtu
b,n+1
h , qbh) + ch((dtp

p,n+1
h , dtp

b,n+1
h ), qbh) = 0, (78a)

bfh(u
f,n+1
h , qfh) = 0, (78b)

where we applied dt to the terms in the Biot region to obtain eq. (78a). Now, choose vfh = uf,n+1
h , vbh = dtu

b,n+1
h ,

qfh = −pf,n+1
h , qbh = −pb,n+1

h , wh = zn+1
h , qph = pp,n+1

h in eqs. (17) and (78) and add the resulting equations to
find:

(dtu
f,n+1
h , uf,n+1

h )Ωf + th(u
f,n
h ;uf,n+1

h ,uf,n+1
h ) + afh(u

f,n+1
h ,uf,n+1

h ) + abh(u
b,n+1
h , dtu

b,n+1
h )

+ γµfκ−1/2 ∥(ūf,n+1
h − dtū

b,n+1
h )t∥

2

ΓI
+ ch((dtp

p,n+1
h , dtp

b,n+1
h ), αpp,n+1

h − pb,n+1
h )

+ (c0dtp
p,n+1
h , pp,n+1

h )Ωb + µfκ−1 ∥zn+1
h ∥2

Ωb

= (ff,n+1, uf,n+1
h )Ωf + (f b,n+1, dtu

b,n+1
h )Ωb + (gb,n+1, pp,n+1

h )Ωb .

(79)

Using the algebraic inequality a(a−b) ≥ (a2−b2)/2 for the discrete time-derivative terms, eq. (15) (which holds

by the assumption that uf,nh ∈ Bf
h), the Cauchy–Schwarz inequality applied to the first and third term on the
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right hand side of eq. (79), and eq. (24), we find, using the definitions of Ai and Bi:

A2
n+1 −A2

n + 2B2
n+1 ≤

√
2∆t ∥ff,n+1∥Ωf An+1 + ctd(2∆tµ

fκ−1)1/2 ∥gb,n+1∥Ωb Bn+1

+∆t(f b,n+1, dtu
b,n+1
h )Ωb . (80)

Let us pause to note that, by summation-by-parts, using that ub,0h = 0, the Cauchy–Schwarz inequality, eq. (10b),
the coercivity result eq. (11a), and the definition of Ai, we have

∆t

n∑︂
i=0

(f b,i+1, dtu
b,i+1
h )Ωb =(f b,n+1, ub,n+1

h )Ωb −∆t

n∑︂
i=1

(dtf
b,i+1, ub,ih )Ωb

≤cp ∥f b,n+1∥Ωb |||ub,n+1
h |||v,b + cp∆t

n∑︂
i=1

∥dtf b,i+1∥Ωb |||ub,ih |||v,b

≤cp ∥f b,n+1∥Ωb (c
b
aeµ

b)−1/2
√
2An+1

+ cp∆t

n∑︂
i=1

∥dtf b,i+1∥Ωb (c
b
aeµ

b)−1/2
√
2Ai.

Therefore, replacing n by i in eq. (80) and summing for i from 0 to n, and Young’s inequality,

A2
n+1 +

n∑︂
i=0

B2
i+1 ≤A2

0 +
√
2

n∑︂
i=0

∆t ∥ff,i+1∥Ωf Ai+1 +∆t

n∑︂
i=1

∥dtf b,i+1∥Ωb cp(c
b
aeµ

b)−1/2
√
2Ai

+ ∥f b,n+1∥Ωb cp(c
b
aeµ

b)−1/2
√
2An+1 +

1
2

n∑︂
i=0

c2td∆tµ
fκ−1 ∥gb,i+1∥2Ωb .

(81)

Defining

Ei =
√
2∆t ∥ff,i∥Ωf , Ēi = ∆t ∥dtf b,i+1∥Ωb cp(c

b
aeµ

b)−1/2
√
2,

Ẽi = ∥f b,i∥Ωb cp(c
b
aeµ

b)−1/2
√
2, Di =

1
2c

2
td∆tµ

fκ−1 ∥gb,i∥2Ωb ,

and noting that A0 = 0 by our assumption on the initial conditions, we can write eq. (81), for all n ≥ 1, as

A2
n +

n∑︂
i=1

B2
i ≤

n∑︂
i=1

EiAi +

n−1∑︂
i=1

ĒiAi + ẼnAn +

n∑︂
i=1

Di.

Therefore, by Lemma B.1, for any n ≥ 1,

(A2
n +

n∑︂
i=1

B2
i )

1/2

≤
√
2∆t

n∑︂
i=1

∥ff,i∥Ωf + ctd(
1
2µ

f/κ)1/2 (∆t

n∑︂
i=1

∥gb,i∥2Ωb)

1/2

+
√
2cp(c

b
aeµ

b)−1/2∆t

n−1∑︂
i=1

∥dtf b,i+1∥Ωb +
√
2cp(c

b
aeµ

b)−1/2 max
1≤i≤n

∥f b,i∥Ωb .

By definition of Ai and Bi (see eq. (30)) and H (see eq. (22)) we conclude eq. (31) (since we consider 1 ≤ n ≤ N).
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Step 2: proof of eq. (32). Let us start with eq. (79). For 1 ≤ n ≤ N :

(dtu
f,n
h , uf,nh )Ωf + th(u

f,n−1
h ;uf,nh ,uf,nh ) + afh(u

f,n
h ,uf,nh ) + abh(u

b,n
h , dtu

b,n
h )

+ γµfκ−1/2 ∥(ūf,nh − dtū
b,n
h )t∥

2

ΓI
+ ch((dtp

p,n
h , dtp

b,n
h ), αpp,nh − pb,nh )

+ (c0dtp
p,n
h , pp,nh )Ωb + µfκ−1 ∥znh∥

2
Ωb = (ff,n, uf,nh )Ωf + (f b,n, dtu

b,n
h )Ωb + (gb,n, pp,nh )Ωb .

By the assumption that uf,n−1
h ∈ Bf

h we know that

th(u
f,n−1
h ;uf,nh ,uf,nh ) + afh(u

f,n
h ,uf,nh ) ≥ 1

2c
f
aeµ

f |||uf,nh |||2v,f ,

and so,

1
2c
f
aeµ

f |||uf,nh |||2v,f + γµfκ−1/2 ∥(ūf,nh − dtū
b,n
h )t∥

2

ΓI
+ µfκ−1 ∥znh∥

2
Ωb

≤ |(ff,n, uf,nh )Ωf + (f b,n, dtu
b,n
h )Ωb + (gb,n, pp,nh )Ωb

− (dtu
f,n
h , uf,nh )Ωf − abh(u

b,n
h , dtu

b,n
h )− ch((dtp

p,n
h , dtp

b,n
h ), αpp,nh − pb,nh )− (c0dtp

p,n
h , pp,nh )Ωb |.

(82)

The Cauchy–Schwarz and Young’s inequalities, eq. (10b), eq. (11a), eq. (24), and the definitions of Xn eq. (19)
and An eq. (30a) yields

|(ff,n, uf,nh )Ωf | ≤ ∥ff,n∥Ωf ∥uf,nh ∥
Ωf ≤ ∥ff,n∥Ωf

√
2An, (83a)

|(gb,n, pp,nh )Ωb | ≤ ∥gb,n∥Ωb ctdµ
fκ−1 ∥znh∥Ωb ≤ 1

2c
2
tdµ

fκ−1 ∥gb,n∥2Ωb + 1
2µ

fκ−1 ∥znh∥
2
Ωb , (83b)

|(f b,n, dtub,nh )Ωb | ≤ ∥f b,n∥Ωb ∥dtub,nh ∥
Ωb ≤ cp ∥f b,n∥Ωb |||dtub,nh |||v,b (83c)

≤ cp(c
b
aeµ

b)−1/2 ∥f b,n∥Ωb a
b
h (dtu

b,n
h , dtu

b,n
h )

1/2

≤ cp(c
b
aeµ

b)−1/2 ∥f b,n∥Ωb (2X
n−1)1/2

|(dtuf,nh , uf,nh )Ωf | ≤ ∥dtuf,nh ∥
Ωf ∥uf,nh ∥

Ωf , (83d)

|abh(u
b,n
h , dtu

b,n
h )| ≤ abh(u

b,n
h ,ub,nh )1/2abh(dtu

b,n
h , dtu

b,n
h )1/2, (83e)

|ch((dtpp,nh , dtp
b,n
h ), αpp,nh − pb,nh )| ≤ λ−1/2 ∥dt(αpp,nh − pb,nh )∥

Ωb λ
−1/2 ∥αpp,nh − pb,nh ∥

Ωb , (83f)

|(c0dtpp,nh , pp,nh )Ωb | ≤ c
1/2
0 ∥pp,nh ∥

Ωb c
1/2
0 ∥dtpp,nh ∥

Ωb . (83g)

Furthermore, combining eqs. (83d) to (83g) and using the definitions of An and Xn, we find

|(dtuf,nh , uf,nh )Ωf |+ |abh(u
b,n
h , dtu

b,n
h )|+ |ch((dtpp,nh , dtp

b,n
h ), αpp,nh − pb,nh )|+ |(c0dtpp,nh , pp,nh )Ωb |

≤ 2An(X
n−1)1/2.

Combining the above inequality, eqs. (83a) to (83c) with eq. (82), and using eq. (31) and eq. (29),

1
2c
f
aeµ

f |||uf,nh |||2v,f + γµfκ−1/2 ∥(ūf,nh − dtū
b,n
h )t∥

2

ΓI
+ 1

2µ
fκ−1 ∥znh∥

2
Ωb

≤ ∥ff,n∥Ωf

√
2An + 1

2c
2
tdµ

fκ−1 ∥gb,n∥2Ωb + cp(c
b
aeµ

b)−1/2 ∥f b,n∥Ωb (2X
n−1)1/2 + 2An(X

n−1)1/2

≤ ∥ff,n∥Ωf H + 1
2c

2
tdµ

fκ−1 ∥gb,n∥2Ωb + cp(c
b
aeµ

b)−1/2 ∥f b,n∥Ωb (2G
n−1)1/2 +H(2Gn−1)1/2.

We therefore conclude eq. (32). □
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