

OPEN ACCESS

extrabol: A Python Package for Estimating Bolometric Light Curves of Thermal Transients

Ian Thornton¹ , V. Ashley Villar² , Sebastian Gomez³ , and Griffin Hosseinzadeh⁴

Published February 2024 • © 2024. The Author(s). Published by the American Astronomical Society.

Research Notes of the AAS, Volume 8, Number 2

Citation Ian Thornton *et al* 2024 *Res. Notes AAS* **8** 48

DOI 10.3847/2515-5172/ad28ba

¹ Department of Aerospace Engineering, Penn State University, University Park, PA 16802, USA

² Center for Astrophysics, Harvard & Smithsonian, USA

³ Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA

⁴ Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

Ian Thornton <https://orcid.org/0000-0003-2498-3008>

V. Ashley Villar <https://orcid.org/0000-0002-5814-4061>

Sebastian Gomez <https://orcid.org/0000-0001-6395-6702>

Griffin Hosseinzadeh <https://orcid.org/0000-0002-0832-2974>

1. Received February 2024

2. Revised February 2024

3. Accepted February 2024

4. Published February 2024

Light curves; Gaussian Processes regression; Time domain astronomy

 AAS-provided PDF

 Journal RSS

 Create or edit your corridor alerts

Abstract

We introduce a new, open-source, Python-based package, `extrabol`, for inferring the bolometric light curve evolution of extragalactic thermal transients. `extrabol` uses non-parametric Gaussian Process regression for light curve estimation that requires minimal user interaction. `extrabol` is available via GitHub.

Export citation and abstract

[BibTeX](#)

[RIS](#)

[← Previous article in issue](#)

[Next article in issue →](#)

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

1. Introduction and Rationale

Inferring the time-evolving bolometric luminosity of an extragalactic transient is essential for understanding their underlying power sources and progenitors. If one can obtain a spectrum with sufficient wavelength coverage and resolution, the bolometric luminosity can be directly calculated by integrating over all wavelengths. Unfortunately, such data is not typically available. Instead, broadband photometry sampled at discrete wavelengths is often used to estimate the time-variable bolometric luminosity. Given the deluge of discoveries enabled by the upcoming Vera C. Rubin Observatory, expected to discover over a million supernovae annually (LSST Science Collaboration et al. 2009; Ivezić et al. 2019), automated and data-driven methods for inferring the bolometric light curves of transients are essential to enable population-level analysis.

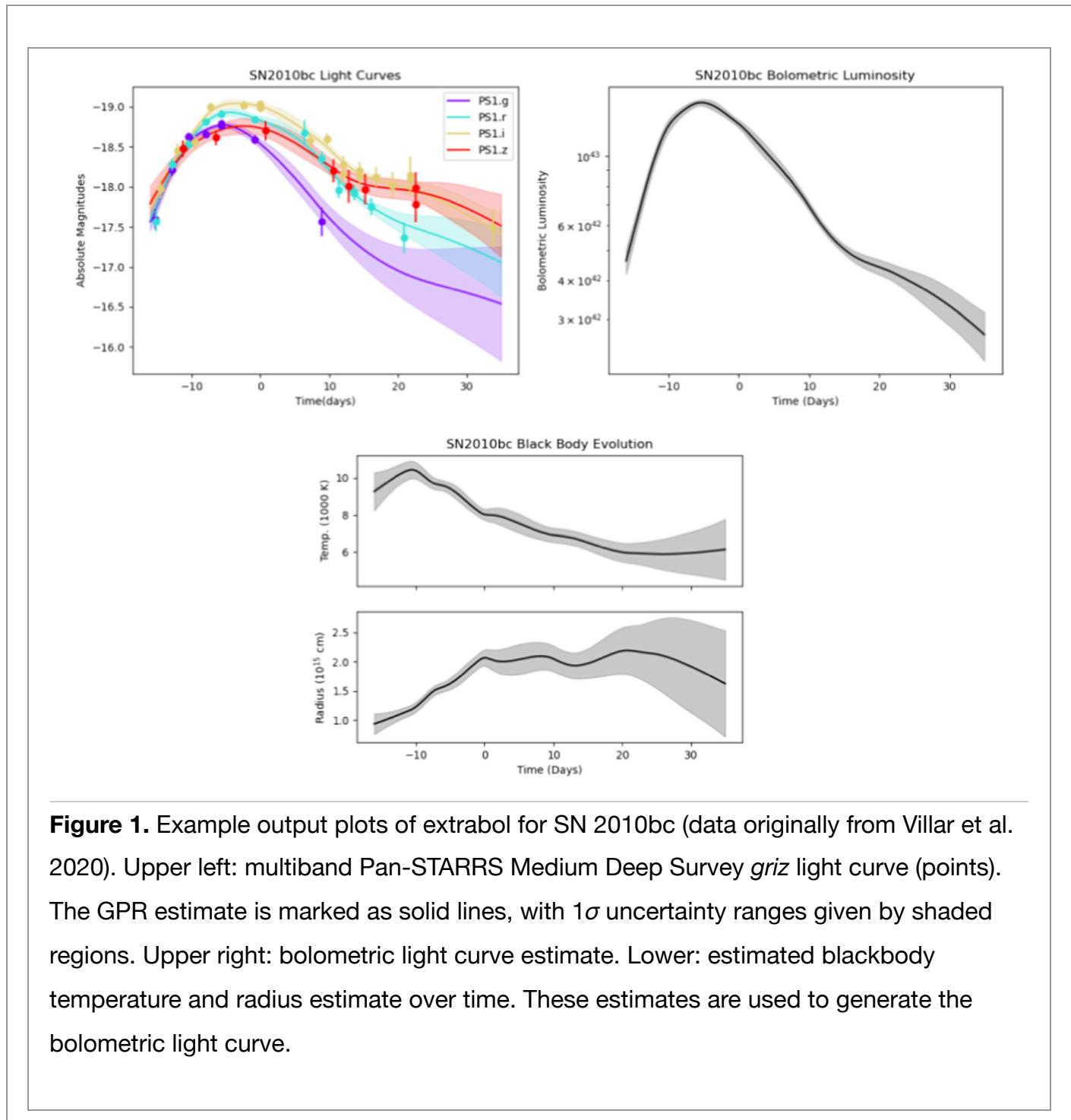
Here, we introduce a new open-source, Python-based code for estimating the *bolometric* light curves of extragalactic *transients*, `extrabol`. Given a multiband light curve, `extrabol` uses a non-parametric model to infer the underlying broadband light curves. Then, assuming a blackbody spectral energy distribution, `extrabol` estimates the time-evolving bolometric luminosity,

temperature and radius. `extrabol` is easily parallelizable and designed to work with minimal user interaction. This is in contrast to `superbol` (Nicholl 2018), a Python-based package which also computes bolometric light curves from broadband observations. Unlike `extrabol`, `superbol` uses deterministic interpolation methods (e.g., polynomial fits) and requires a degree of user interactivity in order to fit each object.

`extrabol` is available GitHub⁵ and PyPI; a copy has also been placed on Zenodo (Thornton et al. 2024).

2. Methodology

The main functionality of `extrabol` can be summarized in three steps.


First, the data is read-in and pre-processed. The user must provide a data file including observational times, magnitudes, uncertainties and filters used to conduct the observation. Each filter must have a corresponding ID in the Spanish Virtual Observatory (Gutiérrez et al. 2006). After reading in all data from a user-generated text file, `extrabol` corrects for redshift and extinction due to galactic dust using the extinction model presented in Fitzpatrick & Massa (2007). The user can optionally correct the light curve for host galaxy reddening. Data points are culled based on a minimum signal-to-noise ratio and a desired temporal window specified by the user.

Next, `extrabol` uses Gaussian Process regression (GPR) to estimate the full evolution of the multiband light curves, based on the measured magnitudes. GPR is a non-parametric method which models the covariance between pairs of photometric points (see e.g., Aigrain & Foreman-Mackey 2023 for a recent review). We utilize a 2D kernel that incorporates the covariance across time and wavelength. We optimize the kernel parameters using the open-source code `george` (Foreman-Mackey 2015) via the `minimize` function from `scipy` (Virtanen et al. 2020), which uses a gradient descent optimizer. In the presence of large temporal gaps between data points, it is possible that the GP will yield an unrealistic interpolation near the mean function. For this reason, we additionally provide a series of SN templates to optionally use as GP mean functions. Specifically, the user may select from a set of Type Ia, Type Ib/c, Type IIL and Type IIP templates originally provided online.⁶

With a densely sampled interpolation, `extrabol` finally fits a series of blackbodies to the light curves, giving estimates of the bolometric luminosity, radius, and temperature over time. The user can specify whether a gradient descent method (using the `curve_fit` method in `scipy`) or a Markov

Chain Monte Carlo (emcee; Foreman-Mackey et al. 2019) is used in this step. While the gradient descent option is significantly quicker, a Markov Chain Monte Carlo (with a flat prior) may be desirable for better error estimation.

Finally, extrabol produces several output files, including the blackbody temperature, radius and luminosity as a function of time. Figure 1 shows an example of three output plots from extrabol.

Figure 1. Example output plots of extrabol for SN 2010bc (data originally from Villar et al. 2020). Upper left: multiband Pan-STARRS Medium Deep Survey *griz* light curve (points). The GPR estimate is marked as solid lines, with 1σ uncertainty ranges given by shaded regions. Upper right: bolometric light curve estimate. Lower: estimated blackbody temperature and radius estimate over time. These estimates are used to generate the bolometric light curve.

Acknowledgments

This work was generously supported by LSSTC through an Enabling Science Award (#2021-08).

Footnotes

5 <https://github.com/villrv/extrabol>

6 https://c3.lbl.gov/nugent/nugent_templates.html

IOPSCIENCE

Journals

IOP PUBLISHING

Books

PUBLISHING SUPPORT

IOP Conference Series

Copyright 2024 IOP Publishing

Authors

About IOPscience

Terms and Conditions

Reviewers

Contact Us

Disclaimer

Conference Organisers

Developing countries access

Privacy and Cookie Policy

IOP Publishing open access policy

Accessibility

IOP

This site uses cookies. By continuing to use this site you agree to our use of cookies.