1

26
27
28

l\' frontiers

Composing Recurrent Spiking Neural
Networks using Locally-Recurrent Motifs and
Risk-Mitigating Architectural Optimization

Wenrui Zhang !, Hejia Geng ' and Peng Li }*

I Department of Electrical and Computer Engineering, University of California, Santa
Barbara. Santa Barbara, CA 93106
Correspondence*:

Peng Li
lip@ucsb.edu

ABSTRACT

In neural circuits, recurrent connectivity plays a crucial role in network function and stability.
However, existing recurrent spiking neural networks (RSNNs) are often constructed by random
connections without optimization. While RSNNs can produce rich dynamics that are critical
for memory formation and learning, systemic architectural optimization of RSNNs is still an
open challenge. We aim to enable systematic design of large RSNNs via a new scalable
RSNN architecture and automated architectural optimization. We compose RSNNs based on
a layer architecture called Sparsely-Connected Recurrent Motif Layer (SC-ML) that consists of
multiple small recurrent motifs wired together by sparse lateral connections. The small size of
the motifs and sparse inter-motif connectivity leads to an RSNN architecture scalable to large
network sizes. We further propose a method called Hybrid Risk-Mitigating Architectural Search
(HRMAS) to systematically optimize the topology of the proposed recurrent motifs and SC-ML
layer architecture. HRMAS is an alternating two-step optimization process by which we mitigate
the risk of network instability and performance degradation caused by architectural change by
introducing a novel biologically-inspired “self-repairing” mechanism through intrinsic plasticity.
The intrinsic plasticity is introduced to the second step of each HRMAS iteration and acts as
unsupervised fast self-adaptation to structural and synaptic weight modifications introduced by
the first step during the RSNN architectural “evolution”. To the best of the authors’ knowledge, this
is the first work that performs systematic architectural optimization of RSNNs. Using one speech
and three neuromorphic datasets, we demonstrate the significant performance improvement
brought by the proposed automated architecture optimization over existing manually-designed
RSNNs.

Keywords: Brain Inspired Computing, Recurrent Spiking Neural Networks, Neural Architecture Search, Sparsely-Connected Recurrent

Motif Layer, Intrinsic Plasticity

1 INTRODUCTION

In the brain, recurrent connectivity is indispensable for maintaining dynamics, functions, and oscillations of
the network Buzsaki (2006). As a brain-inspired computational model, spiking neural networks (SNNs) are
well suited for processing spatiotemporal information (Maass, 1997). In particular, recurrent spiking neural

29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Sample et al. Hybrid Risk-Mitigating Architectural Search

networks (RSNNs) can mimic microcircuits in the biological brain and induce rich behaviors that are critical
for memory formation and learning. Recurrence has been explored in conventional non-spiking artificial
neural networks (ANNs) in terms of Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997), Echo State Networks (ESN) (Jaeger, 2001), Deep RNNs (Graves et al., 2013), Gated Recurrent Units
(GRU) (Cho et al., 2014), and Legendre Memory Units (LMU) (Voelker et al., 2019). While recurrence
presents unique challenges and opportunities in the context of spiking neural networks, RSNNs are yet to
be well explored.

Most existing works on RSNNs adopt recurrent layers or reservoirs with randomly generated connections.
The Liquid State Machine (LSM) (Maass et al., 2002) is one of the most widely adopted RSNN archite-
ctures with one or multiple recurrent reservoirs and an output readout layer wired up using feedforward
synapses (Zhang et al., 2015; Wang and Li, 2016; Srinivasan et al., 2018). However, there is a lack of
principled approaches for setting up the recurrent connections in reservoirs. Instead, ad-hoc randomly
generated wiring patterns are often adopted. Bellec et al. (2018) proposed an architecture called long short-
term memory SNNs (LSNNs). The recurrent layer contains a regular spiking portion with both inhibitory
and excitatory spiking neurons and an adaptive neural population. Zhang and Li (2019b) proposed to
train deep RSNNs by a spike-train level backpropagation (BP) method. Maes et al. (2020) demonstrated
a new reservoir with multiple groups of excitatory neurons and a central group of inhibitory neurons.
Furthermore, Zhang and Li (2020a) presented a recurrent structure named ScSr-SNNs in which recurrence
is simply formed by a self-recurrent connection to each neuron. However, the recurrent connections in
all of these works are either randomly generated with certain probabilities or simply constructed by self-
recurrent connections. Randomly generated or simple recurrent connections may not effectively optimize
RSNNs’ performance. Recently, Pan et al. (2023) introduced a multi-objective Evolutionary Liquid State
Machine (ELSM) inspired by neuroevolution process. Chakraborty and Mukhopadhyay (2023) proposed
Heterogeneous recurrent spiking neural network (HRSNN), in which recurrent layers are composed of
heterogeneous neurons with different dynamics. Chen et al. (2023) introduced an intralayer-connected
SNN and a hybrid training method combining probabilistic spike-timing dependent plasticity (STDP) with
BP. But their performance still has significant gaps. Systemic RSNN architecture design and optimization
remain as an open problem.

Neural architectural search (NAS), the process of automating the construction of non-spiking ANNs,
has become prevalent recently after achieving state-of-the-art performance on various tasks (Elsken et al.,
2019; Wistuba et al., 2019). Different types of strategies such as reinforcement learning (Zoph and Le,
2017), gradient-based optimization (Liu et al., 2018), and evolutionary algorithms (Real et al., 2019) have
been proposed to find optimal architectures of traditional CNNs and RNNs. In contrast, the architectural
optimization of SNNs has received little attention. Only recently, Tian et al. (2021) adopted a simulated
annealing algorithm to learn the optimal architecture hyperparameters of liquid state machine (LSM)
models through a three-step search. Similarly, a surrogate-assisted evolutionary search method was applied
in Zhou et al. (2020) to optimize the hyperparameters of LSM such as density, probability and distribution
of connections. However, both studies focused only on LSM for which hyperparameters indirectly affecting
recurrent connections as opposed to specific connectivity patterns were optimized. Even after selecting the
hyperparameters, the recurrence in the network remained randomly determined without any optimization.
Recently, Kim et al. (2022) explored a cell-based neural architecture search method on SNNs, but did
not involve large-scale recurrent connections. Na et al. (2022) introduced a spike-aware NAS framework
called AutoSNN to investigate the impact of architectural components on SNNs’ performance and energy
efficiency. Overall, NAS for RSNNSs is still rarely explored.

Frontiers 2

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96

97
98
99
100
101
102
103
104

105
106
107
108
109
110

111

112
113

Sample et al. Hybrid Risk-Mitigating Architectural Search

This paper aims to enable systematic design of large recurrent spiking neural networks (RSNNs) via a
new scalable RSNN architecture and automated architectural optimization. RSNNs can create complex
network dynamics both in time and space, which manifests itself as an opportunity for achieving great
learning capabilities and a challenge in practical realization. It is important to strike a balance between
theoretical computational power and architectural complexity. Firstly, we argue that composing RSNNs
based on well-optimized building blocks small in size, or recurrent motifs, can lead to an architectural
solution scalable to large networks while achieving high performance. We assemble multiple recurrent
motifs into a layer architecture called Sparsely-Connected Recurrent Motif Layer (SC-ML). The motifs in
each SC-ML share the same topology, defined by the size of the motif, i.e., the number of neurons, and
the recurrent connectivity pattern between the neurons. The motif topology is determined by the proposed
architectural optimization while the weights within each motif may be tuned by standard backpropagation
training algorithms. Motifs in a recurrent SC-ML layer are wired together using sparse lateral connections
determined by imposing spatial connectivity constraints. As such, there exist two levels of structured
recurrence: recurrence within each motif and recurrence between the motifs at the SC-ML level. The
fact that the motifs are small in size and that inter-motif connectivity is sparse alleviates the difficulty in
architectural optimization and training of these motifs and SC-ML. Furthermore, multiple SC-ML layers
can be stacked and wired using additional feedforward weights to construct even larger recurrent networks.

Secondly, we demonstrate a method called Hybrid Risk-Mitigating Architectural Search (HRMAS) to
optimize the proposed recurrent motifs and SC-ML layer architecture. HRMAS is an alternating two-step
optimization process hybridizing bio-inspired intrinsic plasticity for mitigating the risk in architectural
optimization. Facilitated by gradient-based methods (Liu et al., 2018; Zhang and Li, 2020b), the first step
of optimization is formulated to optimize network architecture defined by the size of the motif, intra and
inter-motif connectivity patterns, types of these connections, and the corresponding synaptic weight values,
respectively.

While structural changes induced by the architectural-level optimization are essential for finding high-
performance RSNNs, they may be misguided due to discontinuity in architectural search, and limited
training data, hence leading to over-fitting. We mitigate the risk of network instability and performance
degradation caused by architectural change by introducing a novel biologically-inspired “self-repairing’
mechanism through intrinsic plasticity, which has the same spirit of homeostasis during neural development
(Tien and Kerschensteiner, 2018). The intrinsic plasticity is introduced in the second step of each HRMAS
iteration and acts as unsupervised self-adaptation to mitigate the risks imposed by structural and synaptic
weight modifications introduced by the first step during the RSNN architectural “evolution”.

9

We evaluate the proposed techniques on speech dataset TI46-Alpha (Liberman et al., 1991), neuromorphic
speech dataset N-TIDIGITS (Anumula et al., 2018), neuromorphic video dataset DVS-Gesture (Amir et al.,
2017), and neuromorphic image dataset N-MNIST (Orchard et al., 2015). The SC-ML-based RSNN’s
optimized by HRMAS achieve state-of-the-art performance on all four datasets. With the same network
size, automated network design via HRMAS outperforms existing RSNNs by up to 3.38% performance
improvement.

2 MATERIALS AND METHODS
2.1 Spiking Neuron Model

In this work, we adopt the leaky integrate-and-fire (LIF) neuron model Gerstner and Kistler (2002) which
is one of the most popular neuron models for simulating SNNs. During the simulation, we use the fixed-step

Frontiers 3

114
115

116
117
118

119
120

121

122
123

124

125

126
127
128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144
145

Sample et al. Hybrid Risk-Mitigating Architectural Search

first-order Euler method to discretize the LIF model. In the rest of this paper, we only analyze an SNN in

(f)]

the discretized form. Consider the input spike train from pre-synaptic neuron j: s;[t] = Zt(Ot —1t;
J

()

where ¢) denotes a particular firing time of presynaptic neuron j. The incoming spikes are converted
into an (unweighted) postsynaptic current (PSC) a;[t] through a synaptic model. We adopt the first-order
synaptic model Gerstner and Kistler (2002):

ajlt] = (1 = —)a [t = 1] + s;[1], (1)

Tsyn

where 7, is the synaptic time constant. Then, the neuronal membrane voltage u;[t| of neuron ¢ at time ¢ is
given by

_ 1 R
up [t] = (1= —Juift — 1] + — > wijaglt), 2)
J
0, if u[t] >V
wl =% Y 3)
u; [t], otherwise

where R and 7 are the resistance and time constant of the membrane, w;; the synaptic weight from
pre-synaptic neuron j to neuron <. Moreover, the firing output of the neuron is expressed as

silt] = H (ui[t] = Vin), 4)
where V}y, is the firing threshold and H(-) is the Heaviside step function.

2.2 Sparsely-Connected Recurrent Motif Layer (SC-ML)

Unlike the traditional non-spiking RNNs that are typically constructed with units like LSTM or GRU, the
structure of existing RSNNs is random without specific optimization, which hinders RSNNs’ performance
and prevents scaling to large networks. However, due to the complexity of recurrent connections and
dynamics of spiking neurons, the optimization of RSNNs weights is still an open problem. As shown in
Table 3, recurrent connections that are not carefully set up may hinder network performance. To solve
this problem, we first designed the SC-ML layer, which is composed of multiple sparsely-connected
recurrent motifs, where each motif consists of a group of recurrently connected spiking neurons, as shown
in Figure 1. The motifs in each SC-ML share the same topology, which is defined as the size of the
motif, i.e., the number of neurons, and the recurrent connectivity pattern between the neurons (excitatory,
inhibitory or non-existent). Within the motif, synaptic connections can be constructed between any two
neurons including self-recurrent connections. Thus the problem of the recurrent layer optimization can be
simplified to that of learning the optimal motif and sparse inter-motif connectivity, alleviating the difficulty
in architectural optimization and allowing scalability to large networks.

This motif-based structure is motivated by both a biological and a computational perspective. First, from
a biological point of view, there is evidence that the neocortex is not only organized in layered minicolumn
structures but also into synaptically connected clusters of neurons within such structures (Perin et al., 2011;
Ko et al., 2011). For example, the networks of pyramidal cells cluster into multiple groups of a few dozen
neurons each. Second, we add onto the memory effects resulting from temporal integration of individual
spiking neurons by introducing sparse intra or inter-motif connections. This corresponds to a scalable and
biologically plausible RSNN architectural design space that closely mimics the microcircuits in the nervous

Frontiers 4

146
147
148
149
150

151
152
153
154
155
156

157

158
159
160
161
162
163
164

165
166
167
168
169
170

171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Sample et al. Hybrid Risk-Mitigating Architectural Search

system. From a computational perspective, optimizing the connectivity of the basic building block, i.e., the
motif, simplifies the problem of optimizing the connectivity of the whole recurrent layer. Furthermore, by
constraining most recurrent connections inside the motifs and allowing a few lateral connections between
neighboring motifs to exchange information across the SC-ML, the total number of recurrent connections
is limited. This leads to a great deal of sparsity as observed in biological networks (Seeman et al., 2018).

Figure 1 presents an example of SC-ML with 12-neuron motifs. The lateral inter-motif connections can be
introduced as the mutual connections between two corresponding neurons in neighboring motifs to ensure
sparsity and reduce complexity. With the proposed SC-ML, one can easily stack multiple SC-MLs to form a
multi-layer large RSNN using feedforward weights. Within a multi-layered network, information processing
is facilitated through local processing of different motifs, communication of motif-level responses via
inter-motif connections, and extraction and processing of higher-level features layer by layer.

2.3 Hybrid Risk-Mitigating Architectural Search (HRMAS)

Neural architecture search (NAS) has been applied for architectural optimization of traditional non-
spiking RNNs, where a substructure called cell is optimized by a search algorithm (Zoph and Le, 2017).
Nevertheless, this NAS approach may not be the best fit for RSNNs. First, recurrence in the cell is only
created by feeding previous hidden state back to the cell while connectivity inside the cell is feedforward.
Second, the overall operations and connectivity found by the above NAS procedure do not go beyond
an LSTM-like architecture. Finally, the considered combination operations and activation functions like
addition and elementwise multiplication are not biologically plausible.

In order to extend NAS to a wider range of spiking RNNs, we introduce the Hybrid Risk-Mitigating
Architectural Search (HRMAS). This framework systematically optimizes the motif topology and lateral
connections of SC-ML. Each optimization iteration consists of two alternating steps, hybridizing gradient-
based optimization and biologically-inspired intrinsic plasticity for robust NAS of RSNNs. We will
introduce the overall idea of HRMAS in 2.3.1, the optimization problem of HRMAS in 2.3.2, the gradient-
based optimization part in 2.3.3, and the bio-inspired optimization part in 2.3.4.

2.3.1 Hybrid Risk-Mitigating Architectural Search Framework

In HRMAS, all recurrent connections are categorized into three types: inhibitory, excitatory, and non-
existence. An inhibitory connection has a negative weight and is fixed without training in our current
implementation. In the recurrent network, negative weights mainly provide the function of inhibitory
stimulation. Here we follow the settings in previous research (Zhang and Li, 2020a, 2021) and adopt fixed
negative weights. In experiments, fixed negative weights can reduce the optimization complexity without
significant performance loss, while providing stable inhibitory connections. The weight of an excitatory
connection is positive and trained by a backpropagation (BP) method. HRMAS is an alternating two-step
optimization process, hybridizing architectural optimization with intrinsic plasticity (IP). The first step
of each HRMAS optimization iteration optimizes the topology of the motif and inter-motif connectivity
in SC-ML and the corresponding synaptic weights hierarchically. Specifically, the optimal number of
neurons in the motif is optimized over a finite set of motif sizes. All possible intra-motif connections are
considered and the type of each connection is optimized, which may lead to a sparser connectivity if the
connection types of certain synapses are determined to be “non-existence”. At the inter-motif level, a sparse
motif-to-motif connectivity constraint is imposed: neurons in one motif are only allowed to be wired up
with the corresponding neurons in the neighboring motifs as the Figure 1 shows. This locally connected
topology will serve as a hard constraint in the subsequent optimization process. Inter-motif connections

Frontiers 5

188
189
190
191

192
193
194
195
196

197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217
218
219
220

221
222
223
224

Sample et al. Hybrid Risk-Mitigating Architectural Search

9 &6 YA 13

also fall under one of the three types (“inhibitory”, “excitatory”, “non-existence”). Hence, a greater level of
sparsity is produced with the emergence of connections of type “non-existence”. The second step in each
HRMAS iteration executes an unsupervised IP rule to stabilize the network function and mitigate potential
risks caused by architectural changes.

Figure 4 illustrates the incremental optimization strategy we adopt for the architectural parameters. Using
the two-step optimization, initially all architectural parameters including motif size and connectivity are
optimized. After several training iterations, we choose the optimal motif size from a set of discrete options.
As the most critical architectural parameter is set, we continue to optimize the remaining architectural
parameters defining connectivity, allowing fine-tuning of performance based on the chosen motif size.

2.3.2 Alternating Two-Step Optimization in HRMAS

The alternating two-step optimization in HRMAS is inspired by the evolution in neural development. As
shown in Figure 2, neural circuits may experience weight changes through synaptic plasticity. Over a longer
time scale, circuit architecture, i.e., connectivity, may evolve through learning and environmental changes.
In addition, spontaneous firing behaviors of individual neurons may be adapted by intrinsic plasticity
(IP). We are motivated by the important role of local IP mechanisms in stabilizing neuronal activity and
coordinating structural changes to maintain proper circuit functions (Tien and Kerschensteiner, 2018).
We view IP as a “fast-paced” self-adapting mechanism of individual neurons to react to and minimize
the risks of weight and architectural modifications. As shown in Figure 3, we define the architectural
parameters (motif size and intra/inter-motif connection types weights), synaptic weights, and intrinsic
neuronal parameters as «, w, and (3, respectively. Each HRMAS optimization iteration consists of two
alternating steps. In the first step, we optimize « and w hierarchically based on gradient-based optimization
using backpropagation (BP). In Figure 3, ¢ is the backpropagated error obtained via the employed BP
method. In the second step, we use an unsupervised IP rule to adapt the intrinsic neuronal parameters
of each neuron over a time window (“IP window’’) during which training examples are presented to the
network. IP allows the neurons to respond to the weight and architectural changes introduced in the first
step and mitigate possible risks caused by such changes. In Step 1 of the subsequent iteration, the error
gradients w.r.t the synaptic weights and architectural parameters are computed based on the most recent
values of J updated in the preceding iteration. In summary, the k-th HRMAS iteration solves a bi-level
optimization problem:

o = argmin Lygiq(a, w*(a), 5))
st 7 = argmin Lip(a, w”(a), 52), (6)
S.t. w*(a) = arg min Etrain(aa w, ﬁi)a (7)

where L, and Lyqiyn are the loss functions defined based on the validation and training sets used to
train o and w respectively; L;, is the local loss to be minimized by the IP rule as further discussed in
Section 2.3.4; 8* are the intrinsic parameter values updated in the preceding (k — 1)-th iteration; w*(«)
denotes the optimal synaptic weights under the architecture specified by a.

In the implementation of HRMAS, architectural parameters and synaptic weights are optimized by the
first step. The architectural parameters are defined as motif size and types of intra/inter-motif connecti-
ons. The general architectural optimization is performed by generating architecture and evaluating the
architecture by a standard training and validation process on data. The validation performance is used to

Frontiers 6

225
226
227

228
229
230
231

232

233

234

235
236
237
238
239
240

241
242
243
244
245
246
247

248
249
250
251
252
253

254
255
256

Sample et al. Hybrid Risk-Mitigating Architectural Search

train the architectural parameters and generate a better structure. These steps are repeated until the optimal
architecture is found. The first step of the k-th HRMAS iteration solves a bi-level optimization problem
using BP:

mine Loyaria(c, w* (), B) (8)

st w'(a) = arguminLirein(o, w,), ©)

where L,41;4 and L;,qip are the loss functions defined based on the validation and training sets used to train
a and w respectively; 5* is the intrinsic parameter values updated in the preceding (k — 1)-th iteration;
w*(a, B) denotes the optimal synaptic weights under the architecture specified by «. The second step of
the k-th iteration solves the optimization problem below:

B* = arggminLy(o, w*, B) (10)
Ly is the local loss to be minimized by the IP rule.

2.3.3 Gradient-based Optimization in HRMAS
2.3.3.1 Relaxing SC-ML layer’s architectural parameters from discrete to continuous

Optimizing the weight and architectural parameters by solving the bi-level optimization problem of (5, 6,
7) can be computationally expensive. We adapt the recent method proposed in Liu et al. (2018) to reduce
computational complexity by relaxing the discrete architectural parameters to continuous ones for efficient
gradient-based optimization. Without loss of generality, we consider a multi-layered RSNN consisting of
one or more SC-ML layers, where connections between layers are assumed to be feedforward. We focus
on one SC-ML layer, as shown in Figure 5, to discuss the proposed gradient-based optimization.

The number of neurons in the SC-ML layer is fixed. The motif size is optimized such that each neuron is
partitioned into a specific motif based on the chosen motif size. The largest white square in Figure 5 shows
the layer-connectivity matrix of all intra-layer connections of the whole layer, where the dimension of the
matrix corresponds to the neuron count of the layer. We superimpose three sets of smaller gray squares onto
the layer-connectivity matrix, one for each of the three possible motif sizes of vy, v, and v3 considered.
Choosing a particular motif size packs neurons in the layer into multiple motifs, and the corresponding
gray squares illustrate the intra-motif connectivity introduced within the SC-ML layer.

The entry of the layer-connectivity matrix at row and column ¢ specifies the existence and nature of
the connection from neuron r to neuron . We consider multiple motif size and connection type choices
during architectural search using continuous-valued parameterizations o and o, respectively for each
motif size v and connection type c. We relax the categorical choice of each motif size using a softmax over
all possible options as &", and similarly relax the categorical choice of each connection type based on the

corresponding motif size as a5,

av — exp(a®) o _ exp(ag) (11)
Y ey exp(a?) " Y oeecerp(as)

Here, V and C are the set of all motif sizes and possible connection types, respectively; &" and &5,
are the continuous-valued categorical choice of motif size v and connection type c, respectively, which
can also be interpreted as the probability of selecting the corresponding motif size or connection type.

Frontiers 7

257
258
259
260
261
262

263
264
265
266
267

268
269

270
271
272

273

274

275
276
277

278
279
280
281
282
283
284
285
286

Sample et al. Hybrid Risk-Mitigating Architectural Search

As in Figure 5, the synaptic weight of the connection from neuron r to neuron ¢ is expressed as the
summation of weights under all possible motif sizes and connection types weighted by the respective
continuous-valued categorical choices (selection probabilities). In this paper, we use hat over the variable
to denote the architectural parameter processed by softmax. Then, the task of architecture optimization is
reduced to learn a set of continuous variables & = {a5,, &"}. With the continuous architectural parameters,
a gradient-based method like BP is applicable to learn the recurrent connectivity.

Since IP rules are independent of the network architecture search problem, in following derivation,
we do not express the IP method parameters 5 explicitly and express the term L,q;4(a, w*(«), 5%)
as Lyqia(o, w*(«)) for simplicity. In Liu et al. (2018), the bi-level optimization problem is simply
approximated to a one-shot model to reduce the expensive computational cost of the inner optimization
which can be expressed as

Vd‘cvalid(dy w*(d)) = vdﬁvalid(@v w — nvwﬁtrain(w; d))a (12)

where 7) is the learning rate for a step of inner loop. Both the weights of the search network and the
architectural parameters are trained by the BP method. The architectural gradient can be approximated by

dLyalid . .
;; : () Va ﬁval1d<a w) - nvwﬁvalid(aa w*)vé’wﬁtrm’n (w*7 05)) (13)
The complexity is further reduced by using the finite difference approximation around w* = w +

eV wLyaria(d, w*) for small perturbation € to compute the gradient of V4L, q14(&, w*). Finally the
architectural updates in (13) can be calculated as

dﬁvalzd
on @)=

Va Lvalzd<a w) 2776(V Et'ram(w a) Va £tram(764)) (14)

2.3.3.2 Backpropagation via HRMAS framework
2.3.3.2.1 Integrating architectural parameterizations into the LIF model

Based on the leaky integrate-and-fire (LIF) neuron model in (3), the neuronal membrane voltage u;|t]
of neuron 7 in the SC-ML layer at time ¢ is given by integrating currents from all inter-layer inputs and
intra-layer recurrent connections under all possible architectural parameterizations:

I
wlt] = (1= Dyuft — 1]+ Zwua] F@ Y @Gubal 1), ()

veY r ceC

where I? and 7 are the resistance and time constant of the membrane, w;; the synaptic weight from neuron
J in the previous layer to neuron ¢, wy, the recurrent weight from neuron 7 to neuron ¢ of connection type c,
and a[t] the (unweighted) postsynaptic current (PSC) converted from spikes of neuron j through a synaptic
model. To reduce clutter in the notation, we use I; to denote the number of presynaptic connections
afferent onto neuron 2’s input in the recurrent layer when choosing motif size v, which includes both inter
and intra-motif connections and will be introduced in detail in the next paragraph. We further drop the
explicit dependence of &, on &”. We assume feedforward connections have no time delay and recurrent
connections have one time step delay. The response of neuron 7 obtained from recurrent connections is the
summation of all the weighted recurrent inputs over the probabilities of connection types and motif sizes.

Frontiers 8

287

288
289
290
291

292

293
294
295
296
297

298

299
300
301
302
303

304
305
306

Sample et al. Hybrid Risk-Mitigating Architectural Search

2.3.3.2.2 SC-MLs topology and scalability

In this section we formally describe the topology of SC-ML and discuss its scalability. 7 denote the
number of presynaptic connections afferent onto neuron 7’s input in the recurrent layer when choosing
motif size v, and could be formally expressed as a union of inter-motif 7/, . . and intra-motif 1, .
neuron connections (We have omitted the superscript of connection type ¢ for convenience): '

IY

7

Y

,
ianter

ulr (16)

ianitra

Hence the recurrent input weight of neuron ¢ be expressed by

Wiy = w;‘;r}te’r' U w;‘;r}t’ra (17)
Let us consider a SC-ML layer with N neurons, divided into motif size = v, with N/v motifs within this
layer. Let us denote the index of the motif by k£ € (0, 1,2, ..., N/v — 1). Assuming the neuron i is located
in the %y, motif (i.e.: kv < ¢ < kv + v — 1), then the intra-layer recurrent connection into neuron ¢ be
expressed as

wi™ where r € (kv, kv +1,kv+2, ..., kv +v—1)

or
The inter-layer recurrent connection into neuron ¢ be expressed as

witter where r € (i —v,i +v)
The figure expression is shown in Figure 1. The essence of SC-ML architecture design is to reduce the huge
search space of the recurrent matrix and improve optimization efficiency through biologically inspired
and carefully designed local recurrent connections as inductive bias. Hence, the SC-ML architecture can
naturally adopt different inter and intra-motif topological connection patten across different layers, while
providing scalability.

2.3.3.2.3 Backpropagation in output layer

Through (15), the continuous architecture parameterizations influence the integration of input currents,
and hence firing activities of neurons in all layers and affect the loss function defined at the output layer.
As such, the task of architecture optimization reduces to the one that learns the set of optimal continuous
variables & and &". The final architecture is constructed by choosing the parameterizations with the highest
selection probabilities obtained from the optimization. During the learning, We define the loss function as

T
L= Elt], (18)

k=0

where 7' is the total time steps and E[t| the loss at ¢;. From (15) and (4), the membrane potential u;[t] of
the neuron ¢ at time ¢ demonstrates contribution to all future fires and losses of the neuron through its PSC
a;[t]. Therefore, the error gradient with respect to the presynaptic weight w;; from neuron j to neuron ¢ can

Frontiers 9

307

308

309
310

311

312

313
314
315
316

317
318
319
320

321
322
323
324
325

Sample et al. Hybrid Risk-Mitigating Architectural Search

be defined as
T k
oL OE[tk] Z Z OE[tx] Ou;ltm)
8wi] a 8wz~j a ou; [tm] 8wm
k=0 k=0 m=0 (1 9)
T T T
B R OE[ty] B R
- Z ?CL] [tm] aui[tm] - Z ?CLJ [tm](si [tm]7
m=0 m=0
where §;[t,,,| denotes the error for neuron i at time ¢,,, and is defined as:
k] Oa;lty]
2
Z 8uZ Z aaz | Qugltm] 20

In this work, the output layer is regular feedforward layer without recurrent connection. Therefore, the
weight w,; of output neuron o is updated by

T T
8L Z Eaj [tm] 8E[tk] 8a0[tk] (21)

=T = aoty] Oueltm]

0wy

where gE[t’“} depends on the choice of the loss function.
aoltr]

2.3.3.2.4 Backpropagation in hidden layers

Now, we focus on the backpropagation in the recurrent hidden layer while the feedforward hidden layer
case can be derived similarly. For a neuron ¢ in SC-ML, in addition to the error signals from the next
layer, the error backpropagated from the recurrent connections should also be taken into consideration. The
backpropagated error can be calculated by:

T T Np T Ny
‘ - Oa|ty] Ouy, 7 0az [t1] Ouy [ty + 1] aE[tj]
)= 303 G S (G ST) 3 3 Julid 57 (el el
T N 1 5,0
B aal[tk] 8@2
- Z aui[tm] Z(T wpzép[tkb + 8u.l [t] Z Z Z _arzwm(s tk + 1])a
k=m p=1 k=m 7 veY r ceC

(22)

where N, and NV, are the number of neurons in the next layer and the number of neurons in this recurrent
layer, respectively. ,, and ¢, are the errors of the neuron p in the next layer and the error from the neuron r
through the recurrent connection. O} represents all the postsynaptic neurons of neuron ¢’s outputs in the
recurrent layer when choosing motif size v, which includes both inter and intra-motif connections.

da tk}

The key term in (22) is 5 which reflects the effect of neuron’s membrane potential on its output
PSC. Due to the non- dlfferentlable spiking events, it becomes the main difficulty for the BP of SNNs.
Various approaches are proposed to handle this problem such as probability density function of spike
state change Shrestha and Orchard (2018), surrogate gradient Neftci et al. (2019), and Temporal Spike
Sequence Learning via Backpropagation (TSSL-BP) Zhang and Li (2020b). In our experiments, we adopt

Frontiers 10

326
327

328
329
330
331
332

333

334
335
336
337
338
339
340

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

Sample et al. Hybrid Risk-Mitigating Architectural Search

the TSSL-BP method to calculated (i ?[Efi;]} . With the error backpropagated according to (22), the weights

and architectural parameters can be updated by gradient descent as:

N, I’
R AV - R ~C C
Awij o §it] —ayft], Aa” o E ailt]— > (O aswfanlt — 1)),
7 r ceC (23)
At o Sl S (@G arlt— 1)), Adg o Gl S (@ wS ant — 1)
r ? T = T) r ? T = T .

where ¢;[t] is the backpropagated error for neuron 7 at time ¢ given in (22), N, is the number of neurons in
this recurrent layer, R and 7 are the leaky resistance and membrane time constant, two intrinsic parameters
adapted by the IP rule, a;[t] and a,[t] are the (unweighted) postsynaptic currents (PSCs) generated based
on synpatic model by the presynaptic neuron j in the preceding layer and the r-th neuron in this recurrent
layer, respectively.

2.3.4 Risk Minimizing Optimization with Intrinsic Plasticity

For architectural optimization of non-spiking RNNs, gradient-based methods are shown to be unstable in
some cases due to misguided architectural changes and conversion from the optimized continuous-valued
parameterization to a discrete architectural solution, hindering the final performance and demolishing the
effectiveness of learning (Zela et al., 2019). Adaptive regularization which modifies the regularization
strength (weight decay) guided by the largest eigenvalue of V2 L,,;q was proposed to address this
problem (Zela et al., 2019). While this method shows promise for non-spiking RNNSs, it is computationally
intensive due to frequent expensive eigenvalue computation, severely limiting its scalability.

To address risks observed in architectural changes for RSNNs, we introduce a biologically-inspired
risk-mitigation method. Biological circuits demonstrate that Intrinsic Plasticity (IP) is crucial in reducing
such risks. IP is a self-regulating mechanism in biological neurons ensuring homeostasis and influencing
neural circuit dynamics (Marder et al., 1996; Baddeley et al., 1997; Desai et al., 1999). IP is based on local
neural firing activities and performs online adaptation with minimal additional computational overhead.
It not only stabilizes neuronal activity but also coordinates connectivity and excitability changes across
neurons to stabilize circuits (Maffei and Fontanini, 2009; Tien and Kerschensteiner, 2018). IP has been
applied in spiking neural networks for locally regulating neuron activity (Lazar et al., 2007; Bellec et al.,
2018). In Zhang et al. (2019), the application of IP mechanism significantly improves computational
performance in terms of learning speed, accuracy, and robustness to input variations and noise. Fourati et al.
(2020) proposes a deep echo state network that utilizes intrinsic plasticity to drive reservoir neuron activities
to follow a desired Gaussian distribution, enabling the learning of discriminative EEG representations and
demonstrating its effectiveness on emotion recognition benchmarks. Zhang et al. (2020) proposes a novel
IP learning rule based on a soft-reset spiking neuron model, which ensures the neuron’s membrane potential
is mathematically continuous and differentiable. Experimental results demonstrate that the proposed IP
rule can effectively improve the classification accuracy, inference speed, and noise robustness. Zhang et al.
(2021) proposes input-driven and self-driven intrinsic IP learning rules for spiking convolutional neural
networks (SCNNs), where IP updates occur only when a neuron receives input spikes or generates an
output spike, respectively. Experiments show that the event-driven IP rules significantly reduce IP update
operations and accelerate convergence while maintaining accuracy.

Frontiers 11

361
362
363
364
365
366
367
368

369
370
371

372
373

374
375

376
377
378
379

Sample et al. Hybrid Risk-Mitigating Architectural Search

Drawing from these findings, we make use of IP for mitigating the risk of RSNN architectural modificati-
ons in this work. Our HRMAS framework integrates the IP rule into the architectural optimization, applied
in the second step of each iteration. We adopt the SpiKL-IP rule (Zhang and Li, 2019a) for all recurrent
neurons during architecture optimization. SpiKL-IP adapts the intrinsic parameters of a spiking neuron
while minimizing the KL-divergence from the output firing rate distribution to a targeted exponential
distribution. It both maintains a level of network activity and maximizes the information transfer for each
neuron. We adapt leaky resistance and membrane time constant of each neuron using SpiKL-IP which
effectively solves the optimization problem in (6) in an online manner. Specifically:

2yTVip — W — Vi — 17Viy? 14+ ¥
AR — ytVi th = 4 ty’ Ar— L= 1Vth 7 (24)
RW T 6@_1

where 1 is the desired mean firing rate, y the average firing rate of the neuron. Similar to biological neurons,
we use the intracellular calcium concentration ¢|[t] as a good indicator of the averaged firing activity and y
can be expressed with the time constant of calcium concentration 7.,; as

Lygilt— 104 silf, wilt] = 2 @)

Teal Teal

¢ilt] = (1 -

We explicitly express the neuronal parameters R and 7 of neuron ¢ tuned through time as R;[t] and 7;(t],
since they are adjusted by the IP rule at each time step. They are updated by

Ri[t] = Ri[t — 1] = vAR;, T7i[t] =7t — 1] — AT, (26)

where -y is the learning rate of the SpiKL-IP rule. By including time-variant neuronal parameters R and 7
into (22) and (23), the one time step architectural parameter and weight updates change to

T N
Siltm] =) aa.i[tk] Z(Rp[t:]wpiép[tk])

= Ou;[tm] = [ts]
T-1 (z) (27)
— O, Ry [ty +
— ws;dr [ty + 1
! k=m auz(l [tm veEY ; Z Ty tk +1 M Wri [L])
N, v
R;|t v R;lt e
Awij X (Si[t]T[t]]aj [t], AaY Z (52[15] — [[t]] Z(Z a5 wi.ay [t - 1]),
! i ’ r ceC (28)
R;lt [T R R;[t e
Aws,. o< 6;[t] - [Ef]] Z(a as.ar[t — 1)), Ady, o< 6;]t] TZ[[t}] Z(a ws.ap[t —1]),

veY

The proposed alternating two-step optimization of HRMAS is summarized in Algorithm 1. Architectural
parameters « includes size of motif, and type of motif connections. They are optimized separately in two
consecutive stages. We express here only a formal unification, for the sake of clarity in the architecture
search problem.

Frontiers 12

380
381
382
383
384
385
386
387
388

389

390

391
392
393
394
395

396

397
398
399
400
401
402
403
404

Sample et al. Hybrid Risk-Mitigating Architectural Search

Algorithm 1 Hybrid Risk-Mitigating Architectural Search

Initialize weights w, intrinsic parameters [3, architectural parameters «, and correspondingly .
repeat

Update & by

mVa ‘Cvalzd(a w —12Vy »Ctram(w ﬁ»,

Update w by 12V Lirain (&, w, 5);

B «— SpiKL-IP(&, w);
until converged

3 RESULTS

The proposed HRMAS optimized RSNNs with the SC-ML layer architecture and five motif size options
are evaluated on speech dataset TI46-Alpha (Liberman et al., 1991), neuromorphic speech dataset N-
TIDIGITS (Anumula et al., 2018), neuromorphic video dataset DVS-Gesture (Amir et al., 2017), and
neuromorphic image dataset N-MNIST (Orchard et al., 2015). The performances are compared with
recently reported state-of-the-art manually designed architectures of SNNs and ANNs such as feedforward
SNNs, RSNNs, LSM, and LSTM. For the proposed work, the architectural parameters are optimized by
HRMAS with the weights trained on a training set and architectural parameters learned on a validation set
as shown in Algorithm 1. The accuracy of each HRMAS optimized network is evaluated on a separate
testing set with all weights reinitialized. Table 2 shows all results.

3.1 Experimental Settings
3.1.1 Dataset

The proposed HRMAS framework with SC-ML is evaluated on speech dataset TI46-Alpha Liberman
et al. (1991), neuromorphic speech dataset N-TIDIGITS Anumula et al. (2018), neuromorphic video dataset
DVS-Gesture Amir et al. (2017), and neuromorphic image dataset N-MNIST Orchard et al. (2015). The
performances are compared with several existing results on different structures of SNNs and ANNs such as
feedforward SNNs, RSNNs, Liquid State Machine(LSM), LSTM, and so on.

3.1.2 Loss Function

For the BP method used in this work, the loss function can be defined by any errors that measure the
distance between the actual outputs and the desired outputs. In our experiments, since hundreds of time
steps are required for simulating speech and neuromorphic inputs, we choose the accumulated output
PSCs to define the error which is similar to the firing count used in many existing works Jin et al. (2018);
Shrestha and Orchard (2018). We suppose the simulation time steps for a sample is 7. In addition, for
neuron o of the output layer, we define the desired output as d, = (d,[to], do[t1]...., do[t n]) and real output
as a, = (aoltol, aolt1]...., aolt 5]) and d, is manually determined. Therefore, the loss is determined by the
square error of the outputs

T T
1
L= ZE t] = Z 5 (dolt] — aolti])” (29)

Frontiers 13

405
406

407
408
409
410
411

412

413
414
415
416
417
418
419
420

421
422
423
424

425

426
427
428
429
430
431
432
433
434

435

436
437
438
439
440

Sample et al. Hybrid Risk-Mitigating Architectural Search

where N (%) is the number of neurons in the output layer and Elty] is the error at time step tj. is simply
defined by the averaged loss through all the time steps:

N’(out)

Bl £ Y S(dolt] — aolti)® (30)

o

With the loss function defined above, the error ¢ can be calculated for each layer according to (22). We use
a manually specified target output sequence to calculate the loss. Typically, we want neurons in a target
class to fire at every timestep with spike train output: (1,1,,1), while neurons in other classes are silenced
with spike train output: (0,0,,0). Loss is then calculated by comparing the target spike train’s PSC d,,
with the actual spike train’s PSC a, in 29.

3.1.3 Network architecture and hyperparameters

In the SNNs of the experiments, the fully connected weights between layers are initialized by the He
Normal initialization proposed in He et al. (2015). The recurrent weights of excitatory connections are
initialized to 0.2 and tuned by the BP method. The weights of inhibitory connections are initialized to —2
and fixed. The simulation step size is set to 1 ms. The parameters like thresholds and learning rate are
empirically tuned. No synaptic delay is applied for feedforward connections while recurrent connections
have 1 time step delay. No refractory period, normalization, or dropout is used. Adam Kingma and Ba
(2014) is adopted as the optimizer. The mean and standard deviation (std) of the accuracy reported is
obtained by repeating the experiments five times.

Table 1 lists the typical constant values of parameters adopted in our experiments for each dataset. The
SC-ML size denotes the number of neurons in the SC-ML. In our experiments, each network contains one
SC-ML as the hidden layer. In addition, five motif sizes are predetermined before the experiment. The
HRMAS framework optimizes the motif size from one of the five options.

3.1.4 Traing process

Our experiments contain two phases. In the first phase, the weights are trained via the training set while
the validation set is used to optimize architectural parameters. In the second phase, the motif topology and
type of lateral connections are fixed after obtaining the optimal architecture. All the weights of the network
are reinitialized. Then, the new network is trained on the training set and tested on the testing set. The test
performance is reported in the paper. In addition, since all the datasets adopted in this paper only contain
training sets and testing sets, our strategy is to divide the training set. In the first phase, the training set is
equally divided into a training subset and a validation subset. Then, the architecture is optimized on these
subsets. In the second phase, since all the weights are reinitialized, we can train the weights with the full
training set and test on the testing set. Note that the testing set is only used for the final evaluation.

3.2 Performance of HRMAS

Table 2 shows the results on the TI46-Alpha dataset. In order to verify the performance of the HRMAS
algorithm, we conducted five experiments on each dataset (using different initialization seeds) and recorded
the highest accuracy, average accuracy and standard deviation. The HRMAS-optimized RSNN has one
hidden SC-ML layer with 800 neurons, and outperforms all other models while achieving 96.44% accuracy
with mean of 96.08% and standard deviation (std) of 0.27% on the testing set. The proposed RSNN

Frontiers 14

441
442
443
444
445

446
447
448
449
450
451

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

467

468

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

Sample et al. Hybrid Risk-Mitigating Architectural Search

outperforms the LSM model in Wijesinghe et al. (2019) by 18.44%. It also outperforms the larger multi-
layered RSNN with more tunable parameters in Zhang and Li (2019b) trained by the spike-train level BP
(ST-RSBP) by 3.1%. Recently, Zhang and Li (2020a) demonstrated improved performances from manually
designed RNNs with self-recurrent connections trained using the same TSSL-BP method. Our automated
HRMAS architectural search also produces better performing networks.

We also show that a HRMAS-optimized RSNN with a 400-neuron SC-ML layer outperforms several
state-of-the-art results on the N-TIDIGITS dataset (Zhang and Li, 2019b), achieving 94.66% testing
accuracy (mean: 94.27%, std: 0.35%). Our RSNN has more than a 3% performance gain over the widely
adopted recurrent structures of ANNSs, the GRU and LSTM. It also significantly outperforms a feedforward
SNN with the same hyperparameters, achieving an accuracy improvement of almost 9.82%, demonstrating
the potential of automated architectural optimization.

On DVS-Gesture and N-MNIST, our method achieves accuracies of 90.28% (mean: 88.40%, std: 1.71%)
and 98.72% (mean: 98.60%, std: 0.08%), respectively. Table2 compares a HRMAS-optimized RSNN with
models including feedforward SNNs trained by TSSL-BP (Zhang and Li, 2020b) or STBP (Wu et al.,
2018) with the same size, and non-spiking ANNs vanilla LSTM (He et al., 2020). Note that although
our RSNN and the LSTM model have the same number of units in the recurrent layer, the LSTM model
has a much greater number of tunable parameters and a improved rate-coding-inspired loss function. Our
HRMAS-optimized model surpasses all other models. For a more intuitive understanding, Figure 6 presents
two examples of the motif topology optimized by HRMAS: motif sizes 2 in options |2, 4, 8, 16, 32] for the
N-MNIST dataset and motif size 16 in options [5, 10, 16, 25, 40] for the TI-Alpha dataset. We also shows in
the Figure 7 the weight matrix of the RSNN with SC-ML optimized by the HRMAS method. The original
fully connected recurrent matrix size is 800*800. We set the search space of motif size to [2,4,8,16,32]. In
five random experiments, the HRMAS optimization method always gave the search results of motif-size=2,
with similar inter/intra motif topology. This limits the huge recurrent matrix to a highly sparse band matrix
with non-zero values only near the diagonal, greatly reducing the search space, parameter amount, and
optimization difficulty.

3.3 Ablation Analysis
3.3.1 Ablation experiments of proposed components

We conduct ablation studies on the RSNN optimized by HRMAS for the TI46-Alpha dataset to reveal the
contributions of various proposed techniques. When all proposed techniques are included, the HRMAS-
optimized RSNN achieves 96.44% accuracy. In Table 3, removing of the IP rule from the second step of
the HRMAS optimization iteration visibly degrades the performance, showing the efficacy of intrinsic
plasticity for mitigating risks of architectural changes. A similar performance degradation is observed when
the sparse inter-motif connections are excluded from the SC-ML layer architecture. Without imposing a
structure in the hidden layer by using motifs as a basic building block, HRMAS can optimize all possible
connectivity types of the large set of 800 hidden neurons. However, this creates a large and highly complex
architectural search space, rendering a tremendous performance drop. Finally, we compare the HRMAS
model with an RSNN of a fixed architecture with full recurrent connectivity in the hidden layer. The
application of the BP method is able to train the latter model since no architectural (motifs or connection
types) optimization is involved. However, albeit its significantly increased model complexity due to dense
connections, this model has a large performance drop in comparison with the RSNN fully optimized by
HRMAS. We provide additional data including ablation experiments, the computational resources required
by our method, and the IP rule’s effect on performance during optimizing process in Section 3.3.1.

Frontiers 15

484

485
486
487
488
489

490

491
492
493
494

495
496
497
498
499
500
501
502

503
504
505
506
507
508

509

510
511
512
513
514
515
516
517
518
519
520

521
522

Sample et al. Hybrid Risk-Mitigating Architectural Search

3.3.2 Ablation experiments of network parameters

We provided additional ablation experiments in Table 4, including: random search in the search space as
the baseline for HRMAS, effect of IP rule, HRMAS perfermence on larger network. Experimental results
show that: the HRMAS method shows consistent superiority (around 2%) over the random search baseline;
IP rule brings stable performance improvement (around 1.3%); our method can be efficiently extended to
networks with more neurons while providing good performance.

3.4 IP rule’s effect on performance during optimizing process

We plotted the performance curve of the network optimization process on the TI46-alpha dataset. Figure 8
and Figure 9 show the loss and accuracy on the validation set respectively. The solid line and shading show
the mean and standard deviation of the 5 experiments. We conducted experiments with IP rule turned on
and off. We use green text to mark each phase of architecture optimization.

The experimental results show: 1.When the network architecture changes drastically, such as iteration =
750 (the cell size search ends and the connection type search starts), and iteration = 1500 (the connection
type search ends, the network is discretized and fine-tuned), the network There will be a slight performance
degradation. But it can be quickly improved to a higher level by the next stage of training. 2.It can be found
that IP method brings two benefits: improved network performance and a more stable training process. The
figures showed that the red solid line (mean) has always performed better than the blue solid line without
the IP method; at the same time, the red shadow (standard deviation) has always been narrower than the
blue shadow, which means a more stable network architecture search process.

The effect of IP rules is mainly to stabilize the performance loss caused by architecture changes when
the network architecture undergoes huge changes. Therefore, we found that at 750 epoch, that is, the
network plays the most significant role from searching for cell size to searching for connection type: the
loss distribution with ip rules (red shading) is much smaller than the loss distribution without ip rules (blue
shading). At epoch 1500, since the fine-tuning phase does not involve drastic architectural changes, the
role of IP rules is relatively limited.

3.5 The computational resources required for HRMAS

The proposed HRMAS bi-level optimization process is similar to DARTS, so the overall computational
complexity is similar to DARTS; the IP method is an localized unsupervised learning method and does not
constitute significant computational consumption. Furthermore, our proposed SC-ML topology greatly
reduces the search space. Specifically, as the Figure 7 shows, the HRMAS optimization of a SC-ML layer,
with n neurons, a motif size of s and n/s motifs, reduces the parameters that need to be optimized for
the recurrent connection matrix from O(n?) to O(sn): O(n/s) inter-motif connections + O(n/s * s2)
intra-motif connections + O(n) neuron hyperparameters. Generally, s < n, which reduces the parameter
space of recurrent connections to linear growth with the neuron numbers, allowing our algorithm scale
well. Specifically, a complete training process of a RSNN with 800 neurons hidden layer for TI46-alpha
dataset, including 150 epoch for cell size search, 150 epoch for connection type search and 400 epoch for
finetune, takes 4 hours on single NVIDIA GeForce RTX 3090 GPU.

4 CONCLUSION

We present an RSNN architecture based on SC-ML layers composed of multiple recurrent motifs with
sparse inter-motif connections as a solution to constructing large recurrent spiking neural models. We

Frontiers 16

523
524
525
526
527
528
529
530
531

532
533

534
535

536
537
538
539
540

541
542
543
544
545
546
547
548
549
550
551
5562
553
554
5565
556
557

Sample et al. Hybrid Risk-Mitigating Architectural Search

further propose the automated architectural optimization framework HRMAS hybridizing the “evolution” of
the architectural parameters and corresponding synaptic weights based on backpropagation and biologically-
inspired mitigation of risks of architectural changes using intrinsic plasticity. We show that HRMAS-
optimized RSNNs impressively improve performance on four datasets over the previously reported state-of-
the-art RSNNs and SNNs. Notably, our HRMAS framework can be easily extended to more flexible network
architectures, optimizing sparse and scalable RSNN architectures. By sharing the PyTorch implementation
of our HRMAS framework, this work aims to foster advancements in high-performance RSNNs for both
general-purpose and dedicated neuromorphic computing platforms, potentially inspiring innovative designs
in brain-inspired recurrent spiking neural models and their energy-efficient deployment.

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

WZ and PL developed the theoretical approach for HRMAS. WZ and HG implemented HRMAS and
related learning rules and performed the simulation studies. WZ, HG and PL wrote the paper.

FUNDING

The author(s) declare that financial support was received for the research, authorship, and/or publication
of this article. This work supported by the National Science Foundation (NSF). Any opinions, findings,
conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of NSF, UCSB and their contractors. This material is based upon work supported by the
National Science Foundation under Grant Nos. 1948201 and 2310170.

REFERENCES

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al. (2017). A low power, fully
event-based gesture recognition system. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 7243-7252

Anumula, J., Neil, D., Delbruck, T., and Liu, S.-C. (2018). Feature representations for neuromorphic audio
spike streams. Frontiers in neuroscience 12, 23

Baddeley, R., Abbott, L. F., Booth, M. C., Sengpiel, F., Freeman, T., Wakeman, E. A., et al. (1997).
Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings of
the Royal Society of London B: Biological Sciences 264, 1775-1783

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long short-term memory
and learning-to-learn in networks of spiking neurons. In Advances in Neural Information Processing
Systems. 787797

Buzsaki, G. (2006). Rhythms of the Brain (Oxford University Press)

Chakraborty, B. and Mukhopadhyay, S. (2023). Heterogeneous recurrent spiking neural network for
spatio-temporal classification. Frontiers in Neuroscience 17, 994517

Chen, L., Li, X., Zhu, Y., Wang, H., Li, J., Liu, Y., et al. (2023). Intralayer-connected spiking neural
network with hybrid training using backpropagation and probabilistic spike-timing dependent plasticity.
International Journal of Intelligent Systems 2023

Frontiers 17

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

Sample et al. Hybrid Risk-Mitigating Architectural Search

Cho, K., van Merrienboer, B., Giil¢ehre, C., Bahdanau, D., Bougares, F., Schwenk, H., et al. (2014).
Learning phrase representations using rnn encoder-decoder for statistical machine translation. In
EMNLP

Desai, N. S., Rutherford, L. C., and Turrigiano, G. G. (1999). Plasticity in the intrinsic excitability of
cortical pyramidal neurons. Nature neuroscience 2, 515

Elsken, T., Metzen, J. H., Hutter, F,, et al. (2019). Neural architecture search: A survey. J. Mach. Learn.

Res. 20, 1-21

Fourati, R., Ammar, B., Jin, Y., and Alimi, A. M. (2020). Eeg feature learning with intrinsic plasticity based
deep echo state network. In 2020 international joint conference on neural networks (IJCNN) (IEEE),
1-8

Gerstner, W. and Kistler, W. M. (2002). Spiking neuron models: Single neurons, populations, plasticity
(Cambridge university press)

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recurrent neural
networks. In 2013 IEEE international conference on acoustics, speech and signal processing (IEEE),
6645-6649

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In Proceedings of the IEEE international conference on computer
vision. 1026-1034

He, W., Wu, Y., Deng, L., Li, G., Wang, H., Tian, Y., et al. (2020). Comparing snns and rnns on
neuromorphic vision datasets: Similarities and differences. Neural Networks 132, 108-120

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation 9, 1735-1780

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural networks-with an
erratum note. Bonn, Germany: German National Research Center for Information Technology GMD
Technical Report 148, 13

Jin, Y., Zhang, W., and Li, P. (2018). Hybrid macro/micro level backpropagation for training deep spiking
neural networks. Advances in neural information processing systems 31, 7005-7015

[Dataset] Kim, Y., Li, Y., Park, H., Venkatesha, Y., and Panda, P. (2022). Neural architecture search for
spiking neural networks

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980

Ko, H., Hofer, S. B., Pichler, B., Buchanan, K. A., Sjostrom, P. J., and Mrsic-Flogel, T. D. (2011).
Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87-91

Lazar, A., Pipa, G., and Triesch, J. (2007). Fading memory and time series prediction in recurrent networks
with different forms of plasticity. Neural Networks 20, 312-322

[Dataset] Liberman, M., Amsler, R., Church, K., Fox, E., Hafner, C., Klavans, J., et al. (1991). TI 46-word
LDC93S9

Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture search. In International
Conference on Learning Representations

Maass, W. (1997). Networks of spiking neurons: the third generation of neural network models. Neural
networks 10, 1659-1671

Maass, W., Natschlédger, T., and Markram, H. (2002). Real-time computing without stable states: A new
framework for neural computation based on perturbations. Neural computation 14, 2531-2560

Maes, A., Barahona, M., and Clopath, C. (2020). Learning spatiotemporal signals using a recurrent spiking
network that discretizes time. PLoS computational biology 16, 1007606

Frontiers 18

602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

Sample et al. Hybrid Risk-Mitigating Architectural Search

Maffei, A. and Fontanini, A. (2009). Network homeostasis: a matter of coordination. Current opinion in
neurobiology 19, 168—-173

Marder, E., Abbott, L., Turrigiano, G. G., Liu, Z., and Golowasch, J. (1996). Memory from the dynamics
of intrinsic membrane currents. Proceedings of the national academy of sciences 93, 13481-13486

[Dataset] Na, B., Mok, J., Park, S., Lee, D., Choe, H., and Yoon, S. (2022). Autosnn: Towards
energy-efficient spiking neural networks

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in spiking neural networks:
Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Processing
Magazine 36, 51-63

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting static image datasets to
spiking neuromorphic datasets using saccades. Frontiers in neuroscience 9, 437

[Dataset] Pan, W., Zhao, F., Han, B., Dong, Y., and Zeng, Y. (2023). Emergence of brain-inspired
small-world spiking neural network through neuroevolution

Perin, R., Berger, T. K., and Markram, H. (2011). A synaptic organizing principle for cortical neuronal
groups. Proceedings of the National Academy of Sciences 108, 5419-5424

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized evolution for image classifier
architecture search. In Proceedings of the aaai conference on artificial intelligence. vol. 33, 4780-4789

Seeman, S. C., Campagnola, L., Davoudian, P. A., Hoggarth, A., Hage, T. A., Bosma-Moody, A., et al.
(2018). Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and human cortex.
Elife 7, e37349

Shrestha, S. B. and Orchard, G. (2018). Slayer: Spike layer error reassignment in time. In Advances in
Neural Information Processing Systems. 1412-1421

Srinivasan, G., Panda, P., and Roy, K. (2018). Spilinc: Spiking liquid-ensemble computing for unsupervised
speech and image recognition. Frontiers in neuroscience 12

Tian, S., Qu, L., Wang, L., Hu, K., Li, N., and Xu, W. (2021). A neural architecture search based framework
for liquid state machine design. Neurocomputing 443, 174-182

Tien, N.-W. and Kerschensteiner, D. (2018). Homeostatic plasticity in neural development. Neural
development 13, 1-7

Voelker, A., Kajié, 1., and Eliasmith, C. (2019). Legendre memory units: Continuous-time representation
in recurrent neural networks. In Advances in Neural Information Processing Systems. 15570-15579

Wang, Q. and Li, P. (2016). D-lIsm: Deep liquid state machine with unsupervised recurrent reservoir tuning.
In 2016 23rd International Conference on Pattern Recognition (ICPR) (IEEE), 2652-2657

Wijesinghe, P., Srinivasan, G., Panda, P., and Roy, K. (2019). Analysis of liquid ensembles for enhancing
the performance and accuracy of liquid state machines. Frontiers in Neuroscience 13, 504

Wistuba, M., Rawat, A., and Pedapati, T. (2019). A survey on neural architecture search. arXiv preprint
arXiv:1905.01392

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation for training
high-performance spiking neural networks. Frontiers in neuroscience 12, 331

Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., and Hutter, F. (2019). Understanding and
robustifying differentiable architecture search. In International Conference on Learning Representations

Zhang, A., Gao, Y., Niu, Y., Li, X., and Chen, Q. (2020). Intrinsic plasticity for online unsupervised
learning based on soft-reset spiking neuron model. IEEE Transactions on Cognitive and Developmental
Systems 15, 337-347

Zhang, A., L1, X., Gao, Y., and Niu, Y. (2021). Event-driven intrinsic plasticity for spiking convolutional
neural networks. IEEE Transactions on Neural Networks and Learning Systems 33, 1986-1995

Frontiers 19

647
648

649
650

651
652

653
654

655
656

657
658

659
660
661

662
663

664
665
666

Sample et al. Hybrid Risk-Mitigating Architectural Search

Zhang, A., Zhou, H., Li, X., and Zhu, W. (2019). Fast and robust learning in spiking feed-forward neural
networks based on intrinsic plasticity mechanism. Neurocomputing 365, 102—112

Zhang, W. and Li, P. (2019a). Information-theoretic intrinsic plasticity for online unsupervised learning in
spiking neural networks. Frontiers in neuroscience 13, 31

Zhang, W. and Li, P. (2019b). Spike-train level backpropagation for training deep recurrent spiking neural
networks. In Advances in Neural Information Processing Systems. 7800-7811

Zhang, W. and Li, P. (2020a). Skip-connected self-recurrent spiking neural networks with joint intrinsic
parameter and synaptic weight training. arXiv preprint arXiv:2010.12691

Zhang, W. and Li, P. (2020b). Temporal spike sequence learning via backpropagation for deep spiking
neural networks. Advances in Neural Information Processing Systems 33

Zhang, W. and Li, P. (2021). Spiking neural networks with laterally-inhibited self-recurrent units. In 2021
International Joint Conference on Neural Networks (IJICNN) (IEEE), 1-8

Zhang, Y., Li, P, Jin, Y., and Choe, Y. (2015). A digital liquid state machine with biologically inspired
learning and its application to speech recognition. IEEE transactions on neural networks and learning
systems 26, 2635-2649

Zhou, Y., Jin, Y., and Ding, J. (2020). Surrogate-assisted evolutionary search of spiking neural architectures
in liquid state machines. Neurocomputing 406, 12-23

Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement learning. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings (OpenReview.net)

Frontiers 20

Sample et al. Hybrid Risk-Mitigating Architectural Search

Table 1. Parameters settings.

| Parameter | TI46-Alpha | N-TIDIGITS | DvsGesture | N-MNIST |
Tm 16 ms 64 ms 64 ms 16 ms
Ts 8 ms 8 ms 8 ms 8 ms
Teal 16 ms 16 ms 16 ms 16 ms
learning rate 0.0005 0.0005 0.0001 0.0005
Batch Size 50 50 20 50
Time steps 100 300 400 100
Epochs for searching 300 200 60 30
Epochs for testing 400 400 150 100
SC-ML size 800 800 512 512
| Motif size options | [5, 10, 16, 25, 40] | [2, 4,8, 16, 32] |

Table 2. Accuracy on TI46-Alpha, N-TIDIGITS, DVS-Gesture and N-MNIST. HeNHeS result is from

(Chakraborty and Mukhopadhyay, 2023)

Dataset Network Structure Learning Rule Hidden Layers Best
TI46-Alpha LSM (Wijesinghe et al., 2019) Non-spiking BP 2000 78%
RSNN (Zhang and Li, 2019b) ST-RSBP 400 — 400 — 400 | 93.35%
Sr-SNN (Zhang and Li, 2020a) TSSL-BP 400 — 400 — 400 | 94.62%
This work TSSL-BP 800 96.44 %
N-TIDIGITS GRU (Anumula et al., 2018) Non-spiking BP | 200 — 200 — 100 | 90.90%
Phase LSTM (Anumula et al., 2018) | Non-spiking BP 250 — 250 91.25%
RSNN (Zhang and Li, 2019b) ST-RSBP 400 — 400 — 400 | 93.90%
Feedforward SNN TSSL-BP 400 84.84%
This work TSSL-BP 400 94.66 %
DVS-Gesture | Feedforward SNN (He et al., 2020) STBP P4 —512 87.50%
LSTM (He et al., 2020) Non-spiking BP P4 — 512 88.19%
HeNHeS STDP 200 90.15%
Feedforward SNN TSSL-BP P4 — 512 88.19%
This work TSSL-BP P4 —512 90.28%
N-MNIST Feedforward SNN (He et al., 2020) STBP 512 98.19%
RNN (He et al., 2020) Non-spiking BP 512 98.15%
LSTM (He et al., 2020) Non-spiking BP 512 98.69%
ELSM(Pan et al., 2023) Non-spiking BP 8000 97.23%
This work TSSL-BP 512 98.72%
Table 3. Ablation studies of HRMAS on TI146-Alpha
Setting Accuracy

Full HRMAS 96.44 %

Without IP 95.20%

Without motif 88.35%

Without inter-motif connections | 95.73%

Fully connected RSNN 94.10%

Frontiers 21

Sample et al.

Hybrid Risk-Mitigating Architectural Search

Table 4. Test Accuracy on TI46-Alpha, obtained by repeating 5 times with different random seeds,
including: HRMAS perfermence on Larger network, effect of IP rule, random search as the baseline

architecture.

Arch Optimization

Learning Rule

SC-ML Sizes Best Mean Std

ARMAS (withIP) | TSSL-BP 800 96.44% | 96.08% | 0.27%
ARMAS (withIP) | TSSL-BP 1600 96.26% - -
ARMAS (withIP) | TSSL-BP 2400 96.58% - -
HRMAS (withIP) | TSSL-BP 3200 96.45% - -
ARMAS (W/oIP) | TSSL-BP 800 95.17% | 94.74% | 0.32%
Random TSSL-BP 800 94.47% | 94.18% | 0.30%

Recurrent
Layer

Outputs

Lateral Connections

Motif 1: ? ? " QI

Motif 2; eeeee Illee

Existing connection:— Possible connection: ---+

e Motif

Figure 1. Sparsely-Connected Recurrent Motif Layer.

Frontiers

22

Sample et al.

Hybrid Risk-Mitigating Architectural Search

([T I | I
high \
Activity: D D
small
Weight: x l 1
large \—/ N b d ;/
‘
(| 1 (
\ 1 P 1 ' ip ! IP
| I I
W — x x . l) === - -_—) . . . -
1 Weight Architecture |
\ > evolution ji] evolution I
Time
Figure 2. Evolution in neural development.
Trainw
IP Window IP Window IP Window
a a
W1 m 1& wy' m 1;
I ! - Vin _?_’ ‘1 - Ven 4’ _T_’
N) N
N S i . ~
S T 1 RS e -
Sso__BP __.-" 8 S~ BP__--7
Train a =T
I= T s s s s e
: BP 8,a,f,wy
! IP Window IP Window IP Window
a' a’
W m -&» wy' m A
I ' - Vin _L’ I tz\ - Ven 4’ _L’
N M2k Ja 0P
\ < PRAEEREN S
S . Tm===T [N - S ———- - :
2 \~“-EF:.—“” 8 \~"-——BE—"’
Figure 3. Proposed HRMAS.
23

Frontiers

Sample et al. Hybrid Risk-Mitigating Architectural Search

Size 1 - - "
Selected Size Selected Size & Connection
Determine =7 <. Determine type of 7 Ny
4 ~ 4 ~
size of moti ,,/ \\ intra/inter-motif connections /,' \\
A ~ — L7 e
7 ~ ‘/ ~
Motif Inhibitory < Motif
Excitatory
| Non-existence |
7 All Three types 7
c % g :
L] L] L[] L]

Figure 4. Architectural optimization in HRMAS.

Motif size: v,, Probability: @+

f . . aC1 Cq
/| Motif size: v,, Probability: 2”2 | Non-existence: &;;, w;,'=0
/ o Excitatory: &;2, wy? Wir = Z av Z Wiy
1] ’
Motif size :v3, Probability: @”2 | Inhibitory: &;2, w v
> 4 t

a"7 -
4

- Presynaptic neuron index

U SR

Intra-motif connection for motif
size v, Inter-motif connection
for motif size v, and v,

\
|
Postsynaptic neuron index

Figure 5. SC-ML with relaxed architectural parameters.

Frontiers 24

Sample et al. Hybrid Risk-Mitigating Architectural Search

‘\\

Excitatory: ———

r

Inhibitory: ———
- /

Optimized motif for N-MNIST Optimized motif for TI46-Alpha

H H N L
T o
T H
/7 Motifsize=2 "\ = ==m u
HEE B L] _
HER l. Non-existence: |
| H
.l.l .] Excitatory: [
Bl | = -
Inhibitory:
H = o i
III.I |]
L
--ll-
H L
BN B

/

Figure 6. Optimized motif topologies.

Frontiers 25

Sample et al. Hybrid Risk-Mitigating Architectural Search

I-(I)eatmap of the 800x800 Recurrent Weight Matrix

0.6

100 -
" 0.4

200 - i
300 - - 0.2
400 - \ - 0.0
500 -

-0.2
600 -
700 -

-0.4

0 100 200 300 400 500 600 700

Figure 7. Recurrent Weight Matrix after optimization by HRMAS.

Frontiers 26

Sample et al. Hybrid Risk-Mitigating Architectural Search

T146-alpha Testing Loss

10

0.8 1

0.6

rch Cell Size Search Connection Type Finetune

Loss

0.4 1

0.2 4

—— Testing Loss, With IP
—— Testing Loss, Without IP

[| Iy——

0.0 T T T T
0 1000 1250 1500 1750

fteration

0 250 500

~

Figure 8. Test Loss in architectural optimization in HRMAS. The solid line and shading show the mean
and standard deviation of the 5 experiments. We conducted experiments with ip rule turned on (red) and
off (blue). It can be found that IP method brings two benefits: improved network performance and a more
stable training process. The figures showed that the red solid line (mean) has lower loss than the blue solid
line without the IP method; at the same time, the red shadow (standard deviation) has always been narrower
than the blue shadow, which means a more stable network architecture search process.

Frontiers 27

Sample et al. Hybrid Risk-Mitigating Architectural Search

T1l46-alpha Testing Accuracy

100 +
—— Testing Acc, With IP

T
1
]
—— Testing Acc, Without IP :
|
|

80

60

Search Cell Size Search Connection Type Finetune

Accuracy

40

20 A

Y T

0 1000 1250 1500 1750
fteration

o
n
w
o
u
f=
(=]
=~

Figure 9. Test Accuracy in architectural optimization in HRMAS. The solid line and shading show the
mean and standard deviation of the 5 experiments. We conducted experiments with ip rule turned on (red)
and off (blue). It can be found that IP method brings two benefits: improved network performance and a
more stable training process. The figures showed that the red solid line (mean) has higher accuracy than
the blue solid line without the IP method; at the same time, the red shadow (standard deviation) has always
been narrower than the blue shadow, which means a more stable network architecture search process.

Frontiers 28

	Introduction
	Materials and Methods
	Spiking Neuron Model
	Sparsely-Connected Recurrent Motif Layer (SC-ML)
	Hybrid Risk-Mitigating Architectural Search (HRMAS)
	Hybrid Risk-Mitigating Architectural Search Framework
	Alternating Two-Step Optimization in HRMAS
	Gradient-based Optimization in HRMAS
	Relaxing SC-ML layer's architectural parameters from discrete to continuous
	Backpropagation via HRMAS framework

	Risk Minimizing Optimization with Intrinsic Plasticity

	Results
	Experimental Settings
	Dataset
	Loss Function
	Network architecture and hyperparameters
	Traing process

	Performance of HRMAS
	Ablation Analysis
	Ablation experiments of proposed components
	Ablation experiments of network parameters

	IP rule's effect on performance during optimizing process
	The computational resources required for HRMAS

	Conclusion

