
1

Composing Recurrent Spiking Neural
Networks using Locally-Recurrent Motifs and
Risk-Mitigating Architectural Optimization
Wenrui Zhang 1, Hejia Geng 1 and Peng Li 1,∗

1Department of Electrical and Computer Engineering, University of California, Santa
Barbara. Santa Barbara, CA 93106
Correspondence*:
Peng Li
lip@ucsb.edu

ABSTRACT2

In neural circuits, recurrent connectivity plays a crucial role in network function and stability.3
However, existing recurrent spiking neural networks (RSNNs) are often constructed by random4
connections without optimization. While RSNNs can produce rich dynamics that are critical5
for memory formation and learning, systemic architectural optimization of RSNNs is still an6
open challenge. We aim to enable systematic design of large RSNNs via a new scalable7
RSNN architecture and automated architectural optimization. We compose RSNNs based on8
a layer architecture called Sparsely-Connected Recurrent Motif Layer (SC-ML) that consists of9
multiple small recurrent motifs wired together by sparse lateral connections. The small size of10
the motifs and sparse inter-motif connectivity leads to an RSNN architecture scalable to large11
network sizes. We further propose a method called Hybrid Risk-Mitigating Architectural Search12
(HRMAS) to systematically optimize the topology of the proposed recurrent motifs and SC-ML13
layer architecture. HRMAS is an alternating two-step optimization process by which we mitigate14
the risk of network instability and performance degradation caused by architectural change by15
introducing a novel biologically-inspired “self-repairing” mechanism through intrinsic plasticity.16
The intrinsic plasticity is introduced to the second step of each HRMAS iteration and acts as17
unsupervised fast self-adaptation to structural and synaptic weight modifications introduced by18
the first step during the RSNN architectural “evolution”. To the best of the authors’ knowledge, this19
is the first work that performs systematic architectural optimization of RSNNs. Using one speech20
and three neuromorphic datasets, we demonstrate the significant performance improvement21
brought by the proposed automated architecture optimization over existing manually-designed22
RSNNs.23

Keywords: Brain Inspired Computing, Recurrent Spiking Neural Networks, Neural Architecture Search, Sparsely-Connected Recurrent24
Motif Layer, Intrinsic Plasticity25

1 INTRODUCTION

In the brain, recurrent connectivity is indispensable for maintaining dynamics, functions, and oscillations of26
the network Buzsaki (2006). As a brain-inspired computational model, spiking neural networks (SNNs) are27
well suited for processing spatiotemporal information (Maass, 1997). In particular, recurrent spiking neural28

1

Sample et al. Hybrid Risk-Mitigating Architectural Search

networks (RSNNs) can mimic microcircuits in the biological brain and induce rich behaviors that are critical29
for memory formation and learning. Recurrence has been explored in conventional non-spiking artificial30
neural networks (ANNs) in terms of Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber,31
1997), Echo State Networks (ESN) (Jaeger, 2001), Deep RNNs (Graves et al., 2013), Gated Recurrent Units32
(GRU) (Cho et al., 2014), and Legendre Memory Units (LMU) (Voelker et al., 2019). While recurrence33
presents unique challenges and opportunities in the context of spiking neural networks, RSNNs are yet to34
be well explored.35

Most existing works on RSNNs adopt recurrent layers or reservoirs with randomly generated connections.36
The Liquid State Machine (LSM) (Maass et al., 2002) is one of the most widely adopted RSNN archite-37
ctures with one or multiple recurrent reservoirs and an output readout layer wired up using feedforward38
synapses (Zhang et al., 2015; Wang and Li, 2016; Srinivasan et al., 2018). However, there is a lack of39
principled approaches for setting up the recurrent connections in reservoirs. Instead, ad-hoc randomly40
generated wiring patterns are often adopted. Bellec et al. (2018) proposed an architecture called long short-41
term memory SNNs (LSNNs). The recurrent layer contains a regular spiking portion with both inhibitory42
and excitatory spiking neurons and an adaptive neural population. Zhang and Li (2019b) proposed to43
train deep RSNNs by a spike-train level backpropagation (BP) method. Maes et al. (2020) demonstrated44
a new reservoir with multiple groups of excitatory neurons and a central group of inhibitory neurons.45
Furthermore, Zhang and Li (2020a) presented a recurrent structure named ScSr-SNNs in which recurrence46
is simply formed by a self-recurrent connection to each neuron. However, the recurrent connections in47
all of these works are either randomly generated with certain probabilities or simply constructed by self-48
recurrent connections. Randomly generated or simple recurrent connections may not effectively optimize49
RSNNs’ performance. Recently, Pan et al. (2023) introduced a multi-objective Evolutionary Liquid State50
Machine (ELSM) inspired by neuroevolution process. Chakraborty and Mukhopadhyay (2023) proposed51
Heterogeneous recurrent spiking neural network (HRSNN), in which recurrent layers are composed of52
heterogeneous neurons with different dynamics. Chen et al. (2023) introduced an intralayer-connected53
SNN and a hybrid training method combining probabilistic spike-timing dependent plasticity (STDP) with54
BP. But their performance still has significant gaps. Systemic RSNN architecture design and optimization55
remain as an open problem.56

Neural architectural search (NAS), the process of automating the construction of non-spiking ANNs,57
has become prevalent recently after achieving state-of-the-art performance on various tasks (Elsken et al.,58
2019; Wistuba et al., 2019). Different types of strategies such as reinforcement learning (Zoph and Le,59
2017), gradient-based optimization (Liu et al., 2018), and evolutionary algorithms (Real et al., 2019) have60
been proposed to find optimal architectures of traditional CNNs and RNNs. In contrast, the architectural61
optimization of SNNs has received little attention. Only recently, Tian et al. (2021) adopted a simulated62
annealing algorithm to learn the optimal architecture hyperparameters of liquid state machine (LSM)63
models through a three-step search. Similarly, a surrogate-assisted evolutionary search method was applied64
in Zhou et al. (2020) to optimize the hyperparameters of LSM such as density, probability and distribution65
of connections. However, both studies focused only on LSM for which hyperparameters indirectly affecting66
recurrent connections as opposed to specific connectivity patterns were optimized. Even after selecting the67
hyperparameters, the recurrence in the network remained randomly determined without any optimization.68
Recently, Kim et al. (2022) explored a cell-based neural architecture search method on SNNs, but did69
not involve large-scale recurrent connections. Na et al. (2022) introduced a spike-aware NAS framework70
called AutoSNN to investigate the impact of architectural components on SNNs’ performance and energy71
efficiency. Overall, NAS for RSNNs is still rarely explored.72

Frontiers 2

Sample et al. Hybrid Risk-Mitigating Architectural Search

This paper aims to enable systematic design of large recurrent spiking neural networks (RSNNs) via a73
new scalable RSNN architecture and automated architectural optimization. RSNNs can create complex74
network dynamics both in time and space, which manifests itself as an opportunity for achieving great75
learning capabilities and a challenge in practical realization. It is important to strike a balance between76
theoretical computational power and architectural complexity. Firstly, we argue that composing RSNNs77
based on well-optimized building blocks small in size, or recurrent motifs, can lead to an architectural78
solution scalable to large networks while achieving high performance. We assemble multiple recurrent79
motifs into a layer architecture called Sparsely-Connected Recurrent Motif Layer (SC-ML). The motifs in80
each SC-ML share the same topology, defined by the size of the motif, i.e., the number of neurons, and81
the recurrent connectivity pattern between the neurons. The motif topology is determined by the proposed82
architectural optimization while the weights within each motif may be tuned by standard backpropagation83
training algorithms. Motifs in a recurrent SC-ML layer are wired together using sparse lateral connections84
determined by imposing spatial connectivity constraints. As such, there exist two levels of structured85
recurrence: recurrence within each motif and recurrence between the motifs at the SC-ML level. The86
fact that the motifs are small in size and that inter-motif connectivity is sparse alleviates the difficulty in87
architectural optimization and training of these motifs and SC-ML. Furthermore, multiple SC-ML layers88
can be stacked and wired using additional feedforward weights to construct even larger recurrent networks.89

Secondly, we demonstrate a method called Hybrid Risk-Mitigating Architectural Search (HRMAS) to90
optimize the proposed recurrent motifs and SC-ML layer architecture. HRMAS is an alternating two-step91
optimization process hybridizing bio-inspired intrinsic plasticity for mitigating the risk in architectural92
optimization. Facilitated by gradient-based methods (Liu et al., 2018; Zhang and Li, 2020b), the first step93
of optimization is formulated to optimize network architecture defined by the size of the motif, intra and94
inter-motif connectivity patterns, types of these connections, and the corresponding synaptic weight values,95
respectively.96

While structural changes induced by the architectural-level optimization are essential for finding high-97
performance RSNNs, they may be misguided due to discontinuity in architectural search, and limited98
training data, hence leading to over-fitting. We mitigate the risk of network instability and performance99
degradation caused by architectural change by introducing a novel biologically-inspired “self-repairing”100
mechanism through intrinsic plasticity, which has the same spirit of homeostasis during neural development101
(Tien and Kerschensteiner, 2018). The intrinsic plasticity is introduced in the second step of each HRMAS102
iteration and acts as unsupervised self-adaptation to mitigate the risks imposed by structural and synaptic103
weight modifications introduced by the first step during the RSNN architectural “evolution”.104

We evaluate the proposed techniques on speech dataset TI46-Alpha (Liberman et al., 1991), neuromorphic105
speech dataset N-TIDIGITS (Anumula et al., 2018), neuromorphic video dataset DVS-Gesture (Amir et al.,106
2017), and neuromorphic image dataset N-MNIST (Orchard et al., 2015). The SC-ML-based RSNNs107
optimized by HRMAS achieve state-of-the-art performance on all four datasets. With the same network108
size, automated network design via HRMAS outperforms existing RSNNs by up to 3.38% performance109
improvement.110

2 MATERIALS AND METHODS

2.1 Spiking Neuron Model111

In this work, we adopt the leaky integrate-and-fire (LIF) neuron model Gerstner and Kistler (2002) which112
is one of the most popular neuron models for simulating SNNs. During the simulation, we use the fixed-step113

Frontiers 3

Sample et al. Hybrid Risk-Mitigating Architectural Search

first-order Euler method to discretize the LIF model. In the rest of this paper, we only analyze an SNN in114

the discretized form. Consider the input spike train from pre-synaptic neuron j: sj [t] =
∑

t
(f)
j

δ[t− t
(f)
j],115

where t
(f)
j denotes a particular firing time of presynaptic neuron j. The incoming spikes are converted116

into an (unweighted) postsynaptic current (PSC) aj [t] through a synaptic model. We adopt the first-order117
synaptic model Gerstner and Kistler (2002):118

aj [t] = (1− 1

τsyn
)aj [t− 1] + sj [t], (1)

where τsyn is the synaptic time constant. Then, the neuronal membrane voltage ui[t] of neuron i at time t is119
given by120

u−i [t] = (1− 1

τ
)ui[t− 1] +

R

τ

∑
j

wijaj [t], (2)

121

ui[t] =

{
0, if u−i [t] > Vth

u−i [t], otherwise
(3)

where R and τ are the resistance and time constant of the membrane, wij the synaptic weight from122
pre-synaptic neuron j to neuron i. Moreover, the firing output of the neuron is expressed as123

si[t] = H (ui[t]− Vth) , (4)

where Vth is the firing threshold and H(·) is the Heaviside step function.124

2.2 Sparsely-Connected Recurrent Motif Layer (SC-ML)125

Unlike the traditional non-spiking RNNs that are typically constructed with units like LSTM or GRU, the126
structure of existing RSNNs is random without specific optimization, which hinders RSNNs’ performance127
and prevents scaling to large networks. However, due to the complexity of recurrent connections and128
dynamics of spiking neurons, the optimization of RSNNs weights is still an open problem. As shown in129
Table 3, recurrent connections that are not carefully set up may hinder network performance. To solve130
this problem, we first designed the SC-ML layer, which is composed of multiple sparsely-connected131
recurrent motifs, where each motif consists of a group of recurrently connected spiking neurons, as shown132
in Figure 1. The motifs in each SC-ML share the same topology, which is defined as the size of the133
motif, i.e., the number of neurons, and the recurrent connectivity pattern between the neurons (excitatory,134
inhibitory or non-existent). Within the motif, synaptic connections can be constructed between any two135
neurons including self-recurrent connections. Thus the problem of the recurrent layer optimization can be136
simplified to that of learning the optimal motif and sparse inter-motif connectivity, alleviating the difficulty137
in architectural optimization and allowing scalability to large networks.138

This motif-based structure is motivated by both a biological and a computational perspective. First, from139
a biological point of view, there is evidence that the neocortex is not only organized in layered minicolumn140
structures but also into synaptically connected clusters of neurons within such structures (Perin et al., 2011;141
Ko et al., 2011). For example, the networks of pyramidal cells cluster into multiple groups of a few dozen142
neurons each. Second, we add onto the memory effects resulting from temporal integration of individual143
spiking neurons by introducing sparse intra or inter-motif connections. This corresponds to a scalable and144
biologically plausible RSNN architectural design space that closely mimics the microcircuits in the nervous145

Frontiers 4

Sample et al. Hybrid Risk-Mitigating Architectural Search

system. From a computational perspective, optimizing the connectivity of the basic building block, i.e., the146
motif, simplifies the problem of optimizing the connectivity of the whole recurrent layer. Furthermore, by147
constraining most recurrent connections inside the motifs and allowing a few lateral connections between148
neighboring motifs to exchange information across the SC-ML, the total number of recurrent connections149
is limited. This leads to a great deal of sparsity as observed in biological networks (Seeman et al., 2018).150

Figure 1 presents an example of SC-ML with 12-neuron motifs. The lateral inter-motif connections can be151
introduced as the mutual connections between two corresponding neurons in neighboring motifs to ensure152
sparsity and reduce complexity. With the proposed SC-ML, one can easily stack multiple SC-MLs to form a153
multi-layer large RSNN using feedforward weights. Within a multi-layered network, information processing154
is facilitated through local processing of different motifs, communication of motif-level responses via155
inter-motif connections, and extraction and processing of higher-level features layer by layer.156

2.3 Hybrid Risk-Mitigating Architectural Search (HRMAS)157

Neural architecture search (NAS) has been applied for architectural optimization of traditional non-158
spiking RNNs, where a substructure called cell is optimized by a search algorithm (Zoph and Le, 2017).159
Nevertheless, this NAS approach may not be the best fit for RSNNs. First, recurrence in the cell is only160
created by feeding previous hidden state back to the cell while connectivity inside the cell is feedforward.161
Second, the overall operations and connectivity found by the above NAS procedure do not go beyond162
an LSTM-like architecture. Finally, the considered combination operations and activation functions like163
addition and elementwise multiplication are not biologically plausible.164

In order to extend NAS to a wider range of spiking RNNs, we introduce the Hybrid Risk-Mitigating165
Architectural Search (HRMAS). This framework systematically optimizes the motif topology and lateral166
connections of SC-ML. Each optimization iteration consists of two alternating steps, hybridizing gradient-167
based optimization and biologically-inspired intrinsic plasticity for robust NAS of RSNNs. We will168
introduce the overall idea of HRMAS in 2.3.1, the optimization problem of HRMAS in 2.3.2, the gradient-169
based optimization part in 2.3.3, and the bio-inspired optimization part in 2.3.4.170

2.3.1 Hybrid Risk-Mitigating Architectural Search Framework171

In HRMAS, all recurrent connections are categorized into three types: inhibitory, excitatory, and non-172
existence. An inhibitory connection has a negative weight and is fixed without training in our current173
implementation. In the recurrent network, negative weights mainly provide the function of inhibitory174
stimulation. Here we follow the settings in previous research (Zhang and Li, 2020a, 2021) and adopt fixed175
negative weights. In experiments, fixed negative weights can reduce the optimization complexity without176
significant performance loss, while providing stable inhibitory connections. The weight of an excitatory177
connection is positive and trained by a backpropagation (BP) method. HRMAS is an alternating two-step178
optimization process, hybridizing architectural optimization with intrinsic plasticity (IP). The first step179
of each HRMAS optimization iteration optimizes the topology of the motif and inter-motif connectivity180
in SC-ML and the corresponding synaptic weights hierarchically. Specifically, the optimal number of181
neurons in the motif is optimized over a finite set of motif sizes. All possible intra-motif connections are182
considered and the type of each connection is optimized, which may lead to a sparser connectivity if the183
connection types of certain synapses are determined to be “non-existence”. At the inter-motif level, a sparse184
motif-to-motif connectivity constraint is imposed: neurons in one motif are only allowed to be wired up185
with the corresponding neurons in the neighboring motifs as the Figure 1 shows. This locally connected186
topology will serve as a hard constraint in the subsequent optimization process. Inter-motif connections187

Frontiers 5

Sample et al. Hybrid Risk-Mitigating Architectural Search

also fall under one of the three types (“inhibitory”, “excitatory”, “non-existence”). Hence, a greater level of188
sparsity is produced with the emergence of connections of type “non-existence”. The second step in each189
HRMAS iteration executes an unsupervised IP rule to stabilize the network function and mitigate potential190
risks caused by architectural changes.191

Figure 4 illustrates the incremental optimization strategy we adopt for the architectural parameters. Using192
the two-step optimization, initially all architectural parameters including motif size and connectivity are193
optimized. After several training iterations, we choose the optimal motif size from a set of discrete options.194
As the most critical architectural parameter is set, we continue to optimize the remaining architectural195
parameters defining connectivity, allowing fine-tuning of performance based on the chosen motif size.196

2.3.2 Alternating Two-Step Optimization in HRMAS197

The alternating two-step optimization in HRMAS is inspired by the evolution in neural development. As198
shown in Figure 2, neural circuits may experience weight changes through synaptic plasticity. Over a longer199
time scale, circuit architecture, i.e., connectivity, may evolve through learning and environmental changes.200
In addition, spontaneous firing behaviors of individual neurons may be adapted by intrinsic plasticity201
(IP). We are motivated by the important role of local IP mechanisms in stabilizing neuronal activity and202
coordinating structural changes to maintain proper circuit functions (Tien and Kerschensteiner, 2018).203
We view IP as a “fast-paced” self-adapting mechanism of individual neurons to react to and minimize204
the risks of weight and architectural modifications. As shown in Figure 3, we define the architectural205
parameters (motif size and intra/inter-motif connection types weights), synaptic weights, and intrinsic206
neuronal parameters as α, w, and β, respectively. Each HRMAS optimization iteration consists of two207
alternating steps. In the first step, we optimize α and w hierarchically based on gradient-based optimization208
using backpropagation (BP). In Figure 3, δ is the backpropagated error obtained via the employed BP209
method. In the second step, we use an unsupervised IP rule to adapt the intrinsic neuronal parameters210
of each neuron over a time window (“IP window”) during which training examples are presented to the211
network. IP allows the neurons to respond to the weight and architectural changes introduced in the first212
step and mitigate possible risks caused by such changes. In Step 1 of the subsequent iteration, the error213
gradients w.r.t the synaptic weights and architectural parameters are computed based on the most recent214
values of β updated in the preceding iteration. In summary, the k-th HRMAS iteration solves a bi-level215
optimization problem:216

α∗ = argmin
α
Lvalid(α,w

∗(α), β∗) (5)

s.t. β∗ = argmin
β
Lip(α,w

∗(α), β∗
−), (6)

s.t. w∗(α) = argmin
w
Ltrain(α,w, β

∗
−), (7)

where Lvalid and Ltrain are the loss functions defined based on the validation and training sets used to217
train α and w respectively; Lip is the local loss to be minimized by the IP rule as further discussed in218
Section 2.3.4; β∗

− are the intrinsic parameter values updated in the preceding (k − 1)-th iteration; w∗(α)219
denotes the optimal synaptic weights under the architecture specified by α.220

In the implementation of HRMAS, architectural parameters and synaptic weights are optimized by the221
first step. The architectural parameters are defined as motif size and types of intra/inter-motif connecti-222
ons. The general architectural optimization is performed by generating architecture and evaluating the223
architecture by a standard training and validation process on data. The validation performance is used to224

Frontiers 6

Sample et al. Hybrid Risk-Mitigating Architectural Search

train the architectural parameters and generate a better structure. These steps are repeated until the optimal225
architecture is found. The first step of the k-th HRMAS iteration solves a bi-level optimization problem226
using BP:227

minαLvalid(α,w∗(α), β∗
−) (8)

s.t. w∗(α) = argwminLtrain(α,w, β∗
−), (9)

where Lvalid and Ltrain are the loss functions defined based on the validation and training sets used to train228
α and w respectively; β∗

− is the intrinsic parameter values updated in the preceding (k − 1)-th iteration;229
w∗(α, β) denotes the optimal synaptic weights under the architecture specified by α. The second step of230
the k-th iteration solves the optimization problem below:231

β∗ = argβminLip(α∗, w∗, β) (10)

Lip is the local loss to be minimized by the IP rule.232

2.3.3 Gradient-based Optimization in HRMAS233

2.3.3.1 Relaxing SC-ML layer’s architectural parameters from discrete to continuous234

Optimizing the weight and architectural parameters by solving the bi-level optimization problem of (5, 6,235
7) can be computationally expensive. We adapt the recent method proposed in Liu et al. (2018) to reduce236
computational complexity by relaxing the discrete architectural parameters to continuous ones for efficient237
gradient-based optimization. Without loss of generality, we consider a multi-layered RSNN consisting of238
one or more SC-ML layers, where connections between layers are assumed to be feedforward. We focus239
on one SC-ML layer, as shown in Figure 5, to discuss the proposed gradient-based optimization.240

The number of neurons in the SC-ML layer is fixed. The motif size is optimized such that each neuron is241
partitioned into a specific motif based on the chosen motif size. The largest white square in Figure 5 shows242
the layer-connectivity matrix of all intra-layer connections of the whole layer, where the dimension of the243
matrix corresponds to the neuron count of the layer. We superimpose three sets of smaller gray squares onto244
the layer-connectivity matrix, one for each of the three possible motif sizes of v1, v2, and v3 considered.245
Choosing a particular motif size packs neurons in the layer into multiple motifs, and the corresponding246
gray squares illustrate the intra-motif connectivity introduced within the SC-ML layer.247

The entry of the layer-connectivity matrix at row r and column i specifies the existence and nature of248
the connection from neuron r to neuron i. We consider multiple motif size and connection type choices249
during architectural search using continuous-valued parameterizations αv and αc

ir, respectively for each250
motif size v and connection type c. We relax the categorical choice of each motif size using a softmax over251
all possible options as α̂v, and similarly relax the categorical choice of each connection type based on the252
corresponding motif size as α̂c

ir:253

α̂v =
exp(αv)∑

v′∈V exp(αv′)
, α̂c

ir =
exp(αc

ir)∑
c′∈C exp(α

c′
ir)

(11)

Here, V and C are the set of all motif sizes and possible connection types, respectively; α̂v and α̂c
ir254

are the continuous-valued categorical choice of motif size v and connection type c, respectively, which255
can also be interpreted as the probability of selecting the corresponding motif size or connection type.256

Frontiers 7

Sample et al. Hybrid Risk-Mitigating Architectural Search

As in Figure 5, the synaptic weight of the connection from neuron r to neuron i is expressed as the257
summation of weights under all possible motif sizes and connection types weighted by the respective258
continuous-valued categorical choices (selection probabilities). In this paper, we use hat over the variable259
to denote the architectural parameter processed by softmax. Then, the task of architecture optimization is260
reduced to learn a set of continuous variables α̂ = {α̂c

ir, α̂
v}. With the continuous architectural parameters,261

a gradient-based method like BP is applicable to learn the recurrent connectivity.262

Since IP rules are independent of the network architecture search problem, in following derivation,263
we do not express the IP method parameters β explicitly and express the term Lvalid(α,w∗(α), β∗

−)264
as Lvalid(α,w∗(α)) for simplicity. In Liu et al. (2018), the bi-level optimization problem is simply265
approximated to a one-shot model to reduce the expensive computational cost of the inner optimization266
which can be expressed as267

∇α̂Lvalid(α̂, w∗(α̂)) = ∇α̂Lvalid(α̂, w − η∇wLtrain(w, α̂)), (12)

where η is the learning rate for a step of inner loop. Both the weights of the search network and the268
architectural parameters are trained by the BP method. The architectural gradient can be approximated by269

dLvalid
dα̂

(α̂) = ∇α̂Lvalid(α̂, w∗)− η∇wLvalid(α̂, w∗)∇2
α̂,wLtrain(w∗, α̂)). (13)

The complexity is further reduced by using the finite difference approximation around w± = w ±270
ϵ∇wLvalid(α̂, w∗) for small perturbation ϵ to compute the gradient of ∇α̂Lvalid(α̂, w∗). Finally the271
architectural updates in (13) can be calculated as272

dLvalid
dα̂

(α̂) = ∇α̂Lvalid(α̂, w∗)− η

2ϵ
(∇α̂Ltrain(w+, α̂)−∇α̂Ltrain(w−, α̂)). (14)

2.3.3.2 Backpropagation via HRMAS framework273

2.3.3.2.1 Integrating architectural parameterizations into the LIF model274

Based on the leaky integrate-and-fire (LIF) neuron model in (3), the neuronal membrane voltage ui[t]275
of neuron i in the SC-ML layer at time t is given by integrating currents from all inter-layer inputs and276
intra-layer recurrent connections under all possible architectural parameterizations:277

ui[t] = (1− 1

τ
)ui[t− 1] +

R

τ
(
∑
j

wijaj [t] +
∑
v∈V

(α̂v

Ivi∑
r

∑
c∈C

(α̂c
irw

c
irar[t− 1]))), (15)

where R and τ are the resistance and time constant of the membrane, wij the synaptic weight from neuron278
j in the previous layer to neuron i, wc

ir the recurrent weight from neuron r to neuron i of connection type c,279
and aj [t] the (unweighted) postsynaptic current (PSC) converted from spikes of neuron j through a synaptic280
model. To reduce clutter in the notation, we use Ivi to denote the number of presynaptic connections281
afferent onto neuron i’s input in the recurrent layer when choosing motif size v, which includes both inter282
and intra-motif connections and will be introduced in detail in the next paragraph. We further drop the283
explicit dependence of α̂c

ir on α̂v. We assume feedforward connections have no time delay and recurrent284
connections have one time step delay. The response of neuron i obtained from recurrent connections is the285
summation of all the weighted recurrent inputs over the probabilities of connection types and motif sizes.286

Frontiers 8

Sample et al. Hybrid Risk-Mitigating Architectural Search

2.3.3.2.2 SC-ML’s topology and scalability287

In this section we formally describe the topology of SC-ML and discuss its scalability. Ivi denote the288
number of presynaptic connections afferent onto neuron i’s input in the recurrent layer when choosing289
motif size v, and could be formally expressed as a union of inter-motif Ivi,inter and intra-motif Ivi,intra290
neuron connections (We have omitted the superscript of connection type c for convenience):291

Ivi = Ivi,inter ∪ Ivi,intra (16)

Hence the recurrent input weight of neuron i be expressed by292

wir = winter
ir ∪ wintra

ir (17)

Let us consider a SC-ML layer with N neurons, divided into motif size = v, with N/v motifs within this
layer. Let us denote the index of the motif by k ∈ (0, 1, 2, ..., N/v − 1). Assuming the neuron i is located
in the kth motif (i.e.: kv ≤ i ≤ kv + v − 1), then the intra-layer recurrent connection into neuron i be
expressed as

wintra
ir ,where r ∈ (kv, kv + 1, kv + 2, ..., kv + v − 1)

The inter-layer recurrent connection into neuron i be expressed as

winter
ir ,where r ∈ (i− v, i+ v)

The figure expression is shown in Figure 1. The essence of SC-ML architecture design is to reduce the huge293
search space of the recurrent matrix and improve optimization efficiency through biologically inspired294
and carefully designed local recurrent connections as inductive bias. Hence, the SC-ML architecture can295
naturally adopt different inter and intra-motif topological connection patten across different layers, while296
providing scalability.297

2.3.3.2.3 Backpropagation in output layer298

Through (15), the continuous architecture parameterizations influence the integration of input currents,299
and hence firing activities of neurons in all layers and affect the loss function defined at the output layer.300
As such, the task of architecture optimization reduces to the one that learns the set of optimal continuous301
variables α̂c and α̂v. The final architecture is constructed by choosing the parameterizations with the highest302
selection probabilities obtained from the optimization. During the learning, We define the loss function as303

L =
T∑

k=0

E[tk], (18)

where T is the total time steps and E[tk] the loss at tk. From (15) and (4), the membrane potential ui[t] of304
the neuron i at time t demonstrates contribution to all future fires and losses of the neuron through its PSC305
ai[t]. Therefore, the error gradient with respect to the presynaptic weight wij from neuron j to neuron i can306

Frontiers 9

Sample et al. Hybrid Risk-Mitigating Architectural Search

be defined as307

∂L

∂wij
=

T∑
k=0

∂E[tk]

∂wij
=

T∑
k=0

k∑
m=0

∂E[tk]

∂ui[tm]

∂ui[tm]

∂wij

=
T∑

m=0

R

τ
aj [tm]

T∑
k=m

∂E[tk]

∂ui[tm]
=

T∑
m=0

R

τ
aj [tm]δi[tm],

(19)

where δi[tm] denotes the error for neuron i at time tm and is defined as:308

δi[tm] =
T∑

k=m

∂E[tk]

∂ui[tm]
=

T∑
k=m

∂E[tk]

∂ai[tk]

∂ai[tk]

∂ui[tm]
. (20)

In this work, the output layer is regular feedforward layer without recurrent connection. Therefore, the309
weight woj of output neuron o is updated by310

∂L

∂woj
=

T∑
m=0

R

τ
aj [tm]

T∑
k=m

∂E[tk]

∂ao[tk]

∂ao[tk]

∂uo[tm]
, (21)

where ∂E[tk]
∂ao[tk]

depends on the choice of the loss function.311

2.3.3.2.4 Backpropagation in hidden layers312

Now, we focus on the backpropagation in the recurrent hidden layer while the feedforward hidden layer313
case can be derived similarly. For a neuron i in SC-ML, in addition to the error signals from the next314
layer, the error backpropagated from the recurrent connections should also be taken into consideration. The315
backpropagated error can be calculated by:316

δi[tm] =
T∑

k=m

T∑
j=k

∂ai[tk]

∂ui[tm]

Np∑
p=1

(
∂up[tk]

∂ai[tk]

∂E[tj]

∂up[tk]

)
+

T∑
k=m

T∑
j=k+1

∂ai[tk]

∂ui[tm]

Nr∑
r

(
∂ur[tk + 1]

∂ai[tk]

∂E[tj]

∂ur[tk + 1]

)

=
T∑

k=m

∂ai[tk]

∂ui[tm]

N∑
p=1

(
R

τ
wpiδp[tk]) +

T−1∑
k=m

∂a
(l)
i [tk]

∂u
(l)
i [tm]

∑
v∈V

(α̂v

Ov
i∑
r

∑
c∈C

R

τ
α̂c
riw

c
riδr[tk + 1]),

(22)

where Np and Nr are the number of neurons in the next layer and the number of neurons in this recurrent317
layer, respectively. δp and δr are the errors of the neuron p in the next layer and the error from the neuron r318
through the recurrent connection. Ov

i represents all the postsynaptic neurons of neuron i’s outputs in the319
recurrent layer when choosing motif size v, which includes both inter and intra-motif connections.320

The key term in (22) is ∂a[tk]
∂u[tm] which reflects the effect of neuron’s membrane potential on its output321

PSC. Due to the non-differentiable spiking events, it becomes the main difficulty for the BP of SNNs.322
Various approaches are proposed to handle this problem such as probability density function of spike323
state change Shrestha and Orchard (2018), surrogate gradient Neftci et al. (2019), and Temporal Spike324
Sequence Learning via Backpropagation (TSSL-BP) Zhang and Li (2020b). In our experiments, we adopt325

Frontiers 10

Sample et al. Hybrid Risk-Mitigating Architectural Search

the TSSL-BP method to calculated ∂a[tk]
∂u[tm] . With the error backpropagated according to (22), the weights326

and architectural parameters can be updated by gradient descent as:327

∆wij ∝ δi[t]
R

τ
aj [t], ∆α̂v ∝

Nr∑
i

δi[t]
R

τ

Ivi∑
r

(
∑
c∈C

α̂c
irw

c
irar[t− 1]),

∆wc
ir ∝ δi[t]

R

τ

∑
v∈V

(α̂vα̂c
irar[t− 1]), ∆α̂c

ir ∝ δi[t]
R

τ

∑
v∈V

(α̂vwc
irar[t− 1]).

(23)

where δi[t] is the backpropagated error for neuron i at time t given in (22), Nr is the number of neurons in328
this recurrent layer, R and τ are the leaky resistance and membrane time constant, two intrinsic parameters329
adapted by the IP rule, aj [t] and ar[t] are the (unweighted) postsynaptic currents (PSCs) generated based330
on synpatic model by the presynaptic neuron j in the preceding layer and the r-th neuron in this recurrent331
layer, respectively.332

2.3.4 Risk Minimizing Optimization with Intrinsic Plasticity333

For architectural optimization of non-spiking RNNs, gradient-based methods are shown to be unstable in334
some cases due to misguided architectural changes and conversion from the optimized continuous-valued335
parameterization to a discrete architectural solution, hindering the final performance and demolishing the336
effectiveness of learning (Zela et al., 2019). Adaptive regularization which modifies the regularization337
strength (weight decay) guided by the largest eigenvalue of ∇2

αLvalid was proposed to address this338
problem (Zela et al., 2019). While this method shows promise for non-spiking RNNs, it is computationally339
intensive due to frequent expensive eigenvalue computation, severely limiting its scalability.340

To address risks observed in architectural changes for RSNNs, we introduce a biologically-inspired341
risk-mitigation method. Biological circuits demonstrate that Intrinsic Plasticity (IP) is crucial in reducing342
such risks. IP is a self-regulating mechanism in biological neurons ensuring homeostasis and influencing343
neural circuit dynamics (Marder et al., 1996; Baddeley et al., 1997; Desai et al., 1999). IP is based on local344
neural firing activities and performs online adaptation with minimal additional computational overhead.345
It not only stabilizes neuronal activity but also coordinates connectivity and excitability changes across346
neurons to stabilize circuits (Maffei and Fontanini, 2009; Tien and Kerschensteiner, 2018). IP has been347
applied in spiking neural networks for locally regulating neuron activity (Lazar et al., 2007; Bellec et al.,348
2018). In Zhang et al. (2019), the application of IP mechanism significantly improves computational349
performance in terms of learning speed, accuracy, and robustness to input variations and noise. Fourati et al.350
(2020) proposes a deep echo state network that utilizes intrinsic plasticity to drive reservoir neuron activities351
to follow a desired Gaussian distribution, enabling the learning of discriminative EEG representations and352
demonstrating its effectiveness on emotion recognition benchmarks. Zhang et al. (2020) proposes a novel353
IP learning rule based on a soft-reset spiking neuron model, which ensures the neuron’s membrane potential354
is mathematically continuous and differentiable. Experimental results demonstrate that the proposed IP355
rule can effectively improve the classification accuracy, inference speed, and noise robustness. Zhang et al.356
(2021) proposes input-driven and self-driven intrinsic IP learning rules for spiking convolutional neural357
networks (SCNNs), where IP updates occur only when a neuron receives input spikes or generates an358
output spike, respectively. Experiments show that the event-driven IP rules significantly reduce IP update359
operations and accelerate convergence while maintaining accuracy.360

Frontiers 11

Sample et al. Hybrid Risk-Mitigating Architectural Search

Drawing from these findings, we make use of IP for mitigating the risk of RSNN architectural modificati-361
ons in this work. Our HRMAS framework integrates the IP rule into the architectural optimization, applied362
in the second step of each iteration. We adopt the SpiKL-IP rule (Zhang and Li, 2019a) for all recurrent363
neurons during architecture optimization. SpiKL-IP adapts the intrinsic parameters of a spiking neuron364
while minimizing the KL-divergence from the output firing rate distribution to a targeted exponential365
distribution. It both maintains a level of network activity and maximizes the information transfer for each366
neuron. We adapt leaky resistance and membrane time constant of each neuron using SpiKL-IP which367
effectively solves the optimization problem in (6) in an online manner. Specifically:368

∆R =
2yτVth −W − Vth − 1

µτVthy
2

RW
, ∆τ =

−1 + y
µ

τ
, W =

Vth

e
1
τy − 1

, (24)

where µ is the desired mean firing rate, y the average firing rate of the neuron. Similar to biological neurons,369
we use the intracellular calcium concentration ϕ[t] as a good indicator of the averaged firing activity and y370
can be expressed with the time constant of calcium concentration τcal as371

ϕi[t] = (1− 1

τcal
)ϕi[t− 1] + si[t], yi[t] =

ϕi[t]

τcal
. (25)

We explicitly express the neuronal parameters R and τ of neuron i tuned through time as Ri[t] and τi[t],372
since they are adjusted by the IP rule at each time step. They are updated by373

Ri[t] = Ri[t− 1]− γ∆Ri, τi[t] = τi[t− 1]− γ∆τi, (26)

where γ is the learning rate of the SpiKL-IP rule. By including time-variant neuronal parameters R and τ374
into (22) and (23), the one time step architectural parameter and weight updates change to375

δi[tm] =
T∑

k=m

∂ai[tk]

∂ui[tm]

N∑
p=1

(
Rp[tk]

τp[tk]
wpiδp[tk])

+
T−1∑
k=m

∂a
(l)
i [tk]

∂u
(l)
i [tm]

∑
v∈V

(α̂v

Ov
i∑
r

∑
c∈C

Rr[tk + 1]

τr[tk + 1]
α̂c
riw

c
riδr[tk + 1])

(27)

∆wij ∝ δi[t]
Ri[t]

τi[t]
aj [t], ∆α̂v ∝

Nr∑
i

δi[t]
Ri[t]

τi[t]

Ivi∑
r

(
∑
c∈C

α̂c
irw

c
irar[t− 1]),

∆wc
ir ∝ δi[t]

Ri[t]

τi[t]

∑
v∈V

(α̂vα̂c
irar[t− 1]), ∆α̂ir ∝ δi[t]

Ri[t]

τi[t]

∑
v∈V

(α̂vwc
irar[t− 1]),

(28)

The proposed alternating two-step optimization of HRMAS is summarized in Algorithm 1. Architectural376
parameters α includes size of motif, and type of motif connections. They are optimized separately in two377
consecutive stages. We express here only a formal unification, for the sake of clarity in the architecture378
search problem.379

Frontiers 12

Sample et al. Hybrid Risk-Mitigating Architectural Search

Algorithm 1 Hybrid Risk-Mitigating Architectural Search
Initialize weights w, intrinsic parameters β, architectural parameters α, and correspondingly α̂.
repeat

Update α̂ by
η1∇α̂Lvalid(α̂, w − η2∇wLtrain(α̂, w, β));
Update w by η2∇wLtrain(α̂, w, β);
β ←− SpiKL-IP(α̂, w);

until converged

3 RESULTS

The proposed HRMAS optimized RSNNs with the SC-ML layer architecture and five motif size options380
are evaluated on speech dataset TI46-Alpha (Liberman et al., 1991), neuromorphic speech dataset N-381
TIDIGITS (Anumula et al., 2018), neuromorphic video dataset DVS-Gesture (Amir et al., 2017), and382
neuromorphic image dataset N-MNIST (Orchard et al., 2015). The performances are compared with383
recently reported state-of-the-art manually designed architectures of SNNs and ANNs such as feedforward384
SNNs, RSNNs, LSM, and LSTM. For the proposed work, the architectural parameters are optimized by385
HRMAS with the weights trained on a training set and architectural parameters learned on a validation set386
as shown in Algorithm 1. The accuracy of each HRMAS optimized network is evaluated on a separate387
testing set with all weights reinitialized. Table 2 shows all results.388

3.1 Experimental Settings389

3.1.1 Dataset390

The proposed HRMAS framework with SC-ML is evaluated on speech dataset TI46-Alpha Liberman391
et al. (1991), neuromorphic speech dataset N-TIDIGITS Anumula et al. (2018), neuromorphic video dataset392
DVS-Gesture Amir et al. (2017), and neuromorphic image dataset N-MNIST Orchard et al. (2015). The393
performances are compared with several existing results on different structures of SNNs and ANNs such as394
feedforward SNNs, RSNNs, Liquid State Machine(LSM), LSTM, and so on.395

3.1.2 Loss Function396

For the BP method used in this work, the loss function can be defined by any errors that measure the397
distance between the actual outputs and the desired outputs. In our experiments, since hundreds of time398
steps are required for simulating speech and neuromorphic inputs, we choose the accumulated output399
PSCs to define the error which is similar to the firing count used in many existing works Jin et al. (2018);400
Shrestha and Orchard (2018). We suppose the simulation time steps for a sample is T . In addition, for401
neuron o of the output layer, we define the desired output as do = (do[t0], do[t1]...., do[tN]) and real output402
as ao = (ao[t0], ao[t1]...., ao[tN]) and do is manually determined. Therefore, the loss is determined by the403
square error of the outputs404

L =
T∑

k=1

E[tk] =
T∑

k=1

N (out)∑
o

1

2
(do[tk]− ao[tk])

2 (29)

Frontiers 13

Sample et al. Hybrid Risk-Mitigating Architectural Search

where N (out) is the number of neurons in the output layer and E[tk] is the error at time step tk. is simply405
defined by the averaged loss through all the time steps:406

E[tk] ≜
N (out)∑

o

1

2
(do[tk]− ao[tk])

2. (30)

With the loss function defined above, the error δ can be calculated for each layer according to (22). We use407
a manually specified target output sequence to calculate the loss. Typically, we want neurons in a target408
class to fire at every timestep with spike train output: (1,1,,1), while neurons in other classes are silenced409
with spike train output: (0,0,,0). Loss is then calculated by comparing the target spike train’s PSC do410
with the actual spike train’s PSC ao in 29.411

3.1.3 Network architecture and hyperparameters412

In the SNNs of the experiments, the fully connected weights between layers are initialized by the He413
Normal initialization proposed in He et al. (2015). The recurrent weights of excitatory connections are414
initialized to 0.2 and tuned by the BP method. The weights of inhibitory connections are initialized to −2415
and fixed. The simulation step size is set to 1 ms. The parameters like thresholds and learning rate are416
empirically tuned. No synaptic delay is applied for feedforward connections while recurrent connections417
have 1 time step delay. No refractory period, normalization, or dropout is used. Adam Kingma and Ba418
(2014) is adopted as the optimizer. The mean and standard deviation (std) of the accuracy reported is419
obtained by repeating the experiments five times.420

Table 1 lists the typical constant values of parameters adopted in our experiments for each dataset. The421
SC-ML size denotes the number of neurons in the SC-ML. In our experiments, each network contains one422
SC-ML as the hidden layer. In addition, five motif sizes are predetermined before the experiment. The423
HRMAS framework optimizes the motif size from one of the five options.424

3.1.4 Traing process425

Our experiments contain two phases. In the first phase, the weights are trained via the training set while426
the validation set is used to optimize architectural parameters. In the second phase, the motif topology and427
type of lateral connections are fixed after obtaining the optimal architecture. All the weights of the network428
are reinitialized. Then, the new network is trained on the training set and tested on the testing set. The test429
performance is reported in the paper. In addition, since all the datasets adopted in this paper only contain430
training sets and testing sets, our strategy is to divide the training set. In the first phase, the training set is431
equally divided into a training subset and a validation subset. Then, the architecture is optimized on these432
subsets. In the second phase, since all the weights are reinitialized, we can train the weights with the full433
training set and test on the testing set. Note that the testing set is only used for the final evaluation.434

3.2 Performance of HRMAS435

Table 2 shows the results on the TI46-Alpha dataset. In order to verify the performance of the HRMAS436
algorithm, we conducted five experiments on each dataset (using different initialization seeds) and recorded437
the highest accuracy, average accuracy and standard deviation. The HRMAS-optimized RSNN has one438
hidden SC-ML layer with 800 neurons, and outperforms all other models while achieving 96.44% accuracy439
with mean of 96.08% and standard deviation (std) of 0.27% on the testing set. The proposed RSNN440

Frontiers 14

Sample et al. Hybrid Risk-Mitigating Architectural Search

outperforms the LSM model in Wijesinghe et al. (2019) by 18.44%. It also outperforms the larger multi-441
layered RSNN with more tunable parameters in Zhang and Li (2019b) trained by the spike-train level BP442
(ST-RSBP) by 3.1%. Recently, Zhang and Li (2020a) demonstrated improved performances from manually443
designed RNNs with self-recurrent connections trained using the same TSSL-BP method. Our automated444
HRMAS architectural search also produces better performing networks.445

We also show that a HRMAS-optimized RSNN with a 400-neuron SC-ML layer outperforms several446
state-of-the-art results on the N-TIDIGITS dataset (Zhang and Li, 2019b), achieving 94.66% testing447
accuracy (mean: 94.27%, std: 0.35%). Our RSNN has more than a 3% performance gain over the widely448
adopted recurrent structures of ANNs, the GRU and LSTM. It also significantly outperforms a feedforward449
SNN with the same hyperparameters, achieving an accuracy improvement of almost 9.82%, demonstrating450
the potential of automated architectural optimization.451

On DVS-Gesture and N-MNIST, our method achieves accuracies of 90.28% (mean: 88.40%, std: 1.71%)452
and 98.72% (mean: 98.60%, std: 0.08%), respectively. Table2 compares a HRMAS-optimized RSNN with453
models including feedforward SNNs trained by TSSL-BP (Zhang and Li, 2020b) or STBP (Wu et al.,454
2018) with the same size, and non-spiking ANNs vanilla LSTM (He et al., 2020). Note that although455
our RSNN and the LSTM model have the same number of units in the recurrent layer, the LSTM model456
has a much greater number of tunable parameters and a improved rate-coding-inspired loss function. Our457
HRMAS-optimized model surpasses all other models. For a more intuitive understanding, Figure 6 presents458
two examples of the motif topology optimized by HRMAS: motif sizes 2 in options [2, 4, 8, 16, 32] for the459
N-MNIST dataset and motif size 16 in options [5, 10, 16, 25, 40] for the TI-Alpha dataset. We also shows in460
the Figure 7 the weight matrix of the RSNN with SC-ML optimized by the HRMAS method. The original461
fully connected recurrent matrix size is 800*800. We set the search space of motif size to [2,4,8,16,32]. In462
five random experiments, the HRMAS optimization method always gave the search results of motif-size=2,463
with similar inter/intra motif topology. This limits the huge recurrent matrix to a highly sparse band matrix464
with non-zero values only near the diagonal, greatly reducing the search space, parameter amount, and465
optimization difficulty.466

3.3 Ablation Analysis467

3.3.1 Ablation experiments of proposed components468

We conduct ablation studies on the RSNN optimized by HRMAS for the TI46-Alpha dataset to reveal the469
contributions of various proposed techniques. When all proposed techniques are included, the HRMAS-470
optimized RSNN achieves 96.44% accuracy. In Table 3, removing of the IP rule from the second step of471
the HRMAS optimization iteration visibly degrades the performance, showing the efficacy of intrinsic472
plasticity for mitigating risks of architectural changes. A similar performance degradation is observed when473
the sparse inter-motif connections are excluded from the SC-ML layer architecture. Without imposing a474
structure in the hidden layer by using motifs as a basic building block, HRMAS can optimize all possible475
connectivity types of the large set of 800 hidden neurons. However, this creates a large and highly complex476
architectural search space, rendering a tremendous performance drop. Finally, we compare the HRMAS477
model with an RSNN of a fixed architecture with full recurrent connectivity in the hidden layer. The478
application of the BP method is able to train the latter model since no architectural (motifs or connection479
types) optimization is involved. However, albeit its significantly increased model complexity due to dense480
connections, this model has a large performance drop in comparison with the RSNN fully optimized by481
HRMAS. We provide additional data including ablation experiments, the computational resources required482
by our method, and the IP rule’s effect on performance during optimizing process in Section 3.3.1.483

Frontiers 15

Sample et al. Hybrid Risk-Mitigating Architectural Search

3.3.2 Ablation experiments of network parameters484

We provided additional ablation experiments in Table 4, including: random search in the search space as485
the baseline for HRMAS, effect of IP rule, HRMAS perfermence on larger network. Experimental results486
show that: the HRMAS method shows consistent superiority (around 2%) over the random search baseline;487
IP rule brings stable performance improvement (around 1.3%); our method can be efficiently extended to488
networks with more neurons while providing good performance.489

3.4 IP rule’s effect on performance during optimizing process490

We plotted the performance curve of the network optimization process on the TI46-alpha dataset. Figure 8491
and Figure 9 show the loss and accuracy on the validation set respectively. The solid line and shading show492
the mean and standard deviation of the 5 experiments. We conducted experiments with IP rule turned on493
and off. We use green text to mark each phase of architecture optimization.494

The experimental results show: 1.When the network architecture changes drastically, such as iteration =495
750 (the cell size search ends and the connection type search starts), and iteration = 1500 (the connection496
type search ends, the network is discretized and fine-tuned), the network There will be a slight performance497
degradation. But it can be quickly improved to a higher level by the next stage of training. 2.It can be found498
that IP method brings two benefits: improved network performance and a more stable training process. The499
figures showed that the red solid line (mean) has always performed better than the blue solid line without500
the IP method; at the same time, the red shadow (standard deviation) has always been narrower than the501
blue shadow, which means a more stable network architecture search process.502

The effect of IP rules is mainly to stabilize the performance loss caused by architecture changes when503
the network architecture undergoes huge changes. Therefore, we found that at 750 epoch, that is, the504
network plays the most significant role from searching for cell size to searching for connection type: the505
loss distribution with ip rules (red shading) is much smaller than the loss distribution without ip rules (blue506
shading). At epoch 1500, since the fine-tuning phase does not involve drastic architectural changes, the507
role of IP rules is relatively limited.508

3.5 The computational resources required for HRMAS509

The proposed HRMAS bi-level optimization process is similar to DARTS, so the overall computational510
complexity is similar to DARTS; the IP method is an localized unsupervised learning method and does not511
constitute significant computational consumption. Furthermore, our proposed SC-ML topology greatly512
reduces the search space. Specifically, as the Figure 7 shows, the HRMAS optimization of a SC-ML layer,513
with n neurons, a motif size of s and n/s motifs, reduces the parameters that need to be optimized for514
the recurrent connection matrix from O(n2) to O(sn): O(n/s) inter-motif connections + O(n/s ∗ s2)515
intra-motif connections + O(n) neuron hyperparameters. Generally, s≪ n, which reduces the parameter516
space of recurrent connections to linear growth with the neuron numbers, allowing our algorithm scale517
well. Specifically, a complete training process of a RSNN with 800 neurons hidden layer for TI46-alpha518
dataset, including 150 epoch for cell size search, 150 epoch for connection type search and 400 epoch for519
finetune, takes 4 hours on single NVIDIA GeForce RTX 3090 GPU.520

4 CONCLUSION

We present an RSNN architecture based on SC-ML layers composed of multiple recurrent motifs with521
sparse inter-motif connections as a solution to constructing large recurrent spiking neural models. We522

Frontiers 16

Sample et al. Hybrid Risk-Mitigating Architectural Search

further propose the automated architectural optimization framework HRMAS hybridizing the “evolution” of523
the architectural parameters and corresponding synaptic weights based on backpropagation and biologically-524
inspired mitigation of risks of architectural changes using intrinsic plasticity. We show that HRMAS-525
optimized RSNNs impressively improve performance on four datasets over the previously reported state-of-526
the-art RSNNs and SNNs. Notably, our HRMAS framework can be easily extended to more flexible network527
architectures, optimizing sparse and scalable RSNN architectures. By sharing the PyTorch implementation528
of our HRMAS framework, this work aims to foster advancements in high-performance RSNNs for both529
general-purpose and dedicated neuromorphic computing platforms, potentially inspiring innovative designs530
in brain-inspired recurrent spiking neural models and their energy-efficient deployment.531

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial532
relationships that could be construed as a potential conflict of interest.533

AUTHOR CONTRIBUTIONS

WZ and PL developed the theoretical approach for HRMAS. WZ and HG implemented HRMAS and534
related learning rules and performed the simulation studies. WZ, HG and PL wrote the paper.535

FUNDING

The author(s) declare that financial support was received for the research, authorship, and/or publication536
of this article. This work supported by the National Science Foundation (NSF). Any opinions, findings,537
conclusions or recommendations expressed in this material are those of the authors and do not necessarily538
reflect the views of NSF, UCSB and their contractors. This material is based upon work supported by the539
National Science Foundation under Grant Nos. 1948201 and 2310170.540

REFERENCES

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al. (2017). A low power, fully541
event-based gesture recognition system. In Proceedings of the IEEE Conference on Computer Vision542
and Pattern Recognition. 7243–7252543

Anumula, J., Neil, D., Delbruck, T., and Liu, S.-C. (2018). Feature representations for neuromorphic audio544
spike streams. Frontiers in neuroscience 12, 23545

Baddeley, R., Abbott, L. F., Booth, M. C., Sengpiel, F., Freeman, T., Wakeman, E. A., et al. (1997).546
Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings of547
the Royal Society of London B: Biological Sciences 264, 1775–1783548

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long short-term memory549
and learning-to-learn in networks of spiking neurons. In Advances in Neural Information Processing550
Systems. 787–797551

Buzsaki, G. (2006). Rhythms of the Brain (Oxford University Press)552
Chakraborty, B. and Mukhopadhyay, S. (2023). Heterogeneous recurrent spiking neural network for553

spatio-temporal classification. Frontiers in Neuroscience 17, 994517554
Chen, L., Li, X., Zhu, Y., Wang, H., Li, J., Liu, Y., et al. (2023). Intralayer-connected spiking neural555

network with hybrid training using backpropagation and probabilistic spike-timing dependent plasticity.556
International Journal of Intelligent Systems 2023557

Frontiers 17

Sample et al. Hybrid Risk-Mitigating Architectural Search

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., et al. (2014).558
Learning phrase representations using rnn encoder-decoder for statistical machine translation. In559
EMNLP560

Desai, N. S., Rutherford, L. C., and Turrigiano, G. G. (1999). Plasticity in the intrinsic excitability of561
cortical pyramidal neurons. Nature neuroscience 2, 515562

Elsken, T., Metzen, J. H., Hutter, F., et al. (2019). Neural architecture search: A survey. J. Mach. Learn.563
Res. 20, 1–21564

Fourati, R., Ammar, B., Jin, Y., and Alimi, A. M. (2020). Eeg feature learning with intrinsic plasticity based565
deep echo state network. In 2020 international joint conference on neural networks (IJCNN) (IEEE),566
1–8567

Gerstner, W. and Kistler, W. M. (2002). Spiking neuron models: Single neurons, populations, plasticity568
(Cambridge university press)569

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recurrent neural570
networks. In 2013 IEEE international conference on acoustics, speech and signal processing (IEEE),571
6645–6649572

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level per-573
formance on imagenet classification. In Proceedings of the IEEE international conference on computer574
vision. 1026–1034575

He, W., Wu, Y., Deng, L., Li, G., Wang, H., Tian, Y., et al. (2020). Comparing snns and rnns on576
neuromorphic vision datasets: Similarities and differences. Neural Networks 132, 108–120577

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation 9, 1735–1780578

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural networks-with an579
erratum note. Bonn, Germany: German National Research Center for Information Technology GMD580
Technical Report 148, 13581

Jin, Y., Zhang, W., and Li, P. (2018). Hybrid macro/micro level backpropagation for training deep spiking582
neural networks. Advances in neural information processing systems 31, 7005–7015583

[Dataset] Kim, Y., Li, Y., Park, H., Venkatesha, Y., and Panda, P. (2022). Neural architecture search for584
spiking neural networks585

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint586
arXiv:1412.6980587

Ko, H., Hofer, S. B., Pichler, B., Buchanan, K. A., Sjöström, P. J., and Mrsic-Flogel, T. D. (2011).588
Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91589

Lazar, A., Pipa, G., and Triesch, J. (2007). Fading memory and time series prediction in recurrent networks590
with different forms of plasticity. Neural Networks 20, 312–322591

[Dataset] Liberman, M., Amsler, R., Church, K., Fox, E., Hafner, C., Klavans, J., et al. (1991). TI 46-word592
LDC93S9593

Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture search. In International594
Conference on Learning Representations595

Maass, W. (1997). Networks of spiking neurons: the third generation of neural network models. Neural596
networks 10, 1659–1671597

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing without stable states: A new598
framework for neural computation based on perturbations. Neural computation 14, 2531–2560599

Maes, A., Barahona, M., and Clopath, C. (2020). Learning spatiotemporal signals using a recurrent spiking600
network that discretizes time. PLoS computational biology 16, e1007606601

Frontiers 18

Sample et al. Hybrid Risk-Mitigating Architectural Search

Maffei, A. and Fontanini, A. (2009). Network homeostasis: a matter of coordination. Current opinion in602
neurobiology 19, 168–173603

Marder, E., Abbott, L., Turrigiano, G. G., Liu, Z., and Golowasch, J. (1996). Memory from the dynamics604
of intrinsic membrane currents. Proceedings of the national academy of sciences 93, 13481–13486605

[Dataset] Na, B., Mok, J., Park, S., Lee, D., Choe, H., and Yoon, S. (2022). Autosnn: Towards606
energy-efficient spiking neural networks607

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in spiking neural networks:608
Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Processing609
Magazine 36, 51–63610

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting static image datasets to611
spiking neuromorphic datasets using saccades. Frontiers in neuroscience 9, 437612

[Dataset] Pan, W., Zhao, F., Han, B., Dong, Y., and Zeng, Y. (2023). Emergence of brain-inspired613
small-world spiking neural network through neuroevolution614

Perin, R., Berger, T. K., and Markram, H. (2011). A synaptic organizing principle for cortical neuronal615
groups. Proceedings of the National Academy of Sciences 108, 5419–5424616

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized evolution for image classifier617
architecture search. In Proceedings of the aaai conference on artificial intelligence. vol. 33, 4780–4789618

Seeman, S. C., Campagnola, L., Davoudian, P. A., Hoggarth, A., Hage, T. A., Bosma-Moody, A., et al.619
(2018). Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and human cortex.620
Elife 7, e37349621

Shrestha, S. B. and Orchard, G. (2018). Slayer: Spike layer error reassignment in time. In Advances in622
Neural Information Processing Systems. 1412–1421623

Srinivasan, G., Panda, P., and Roy, K. (2018). Spilinc: Spiking liquid-ensemble computing for unsupervised624
speech and image recognition. Frontiers in neuroscience 12625

Tian, S., Qu, L., Wang, L., Hu, K., Li, N., and Xu, W. (2021). A neural architecture search based framework626
for liquid state machine design. Neurocomputing 443, 174–182627

Tien, N.-W. and Kerschensteiner, D. (2018). Homeostatic plasticity in neural development. Neural628
development 13, 1–7629

Voelker, A., Kajić, I., and Eliasmith, C. (2019). Legendre memory units: Continuous-time representation630
in recurrent neural networks. In Advances in Neural Information Processing Systems. 15570–15579631

Wang, Q. and Li, P. (2016). D-lsm: Deep liquid state machine with unsupervised recurrent reservoir tuning.632
In 2016 23rd International Conference on Pattern Recognition (ICPR) (IEEE), 2652–2657633

Wijesinghe, P., Srinivasan, G., Panda, P., and Roy, K. (2019). Analysis of liquid ensembles for enhancing634
the performance and accuracy of liquid state machines. Frontiers in Neuroscience 13, 504635

Wistuba, M., Rawat, A., and Pedapati, T. (2019). A survey on neural architecture search. arXiv preprint636
arXiv:1905.01392637

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation for training638
high-performance spiking neural networks. Frontiers in neuroscience 12, 331639

Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., and Hutter, F. (2019). Understanding and640
robustifying differentiable architecture search. In International Conference on Learning Representations641

Zhang, A., Gao, Y., Niu, Y., Li, X., and Chen, Q. (2020). Intrinsic plasticity for online unsupervised642
learning based on soft-reset spiking neuron model. IEEE Transactions on Cognitive and Developmental643
Systems 15, 337–347644

Zhang, A., Li, X., Gao, Y., and Niu, Y. (2021). Event-driven intrinsic plasticity for spiking convolutional645
neural networks. IEEE Transactions on Neural Networks and Learning Systems 33, 1986–1995646

Frontiers 19

Sample et al. Hybrid Risk-Mitigating Architectural Search

Zhang, A., Zhou, H., Li, X., and Zhu, W. (2019). Fast and robust learning in spiking feed-forward neural647
networks based on intrinsic plasticity mechanism. Neurocomputing 365, 102–112648

Zhang, W. and Li, P. (2019a). Information-theoretic intrinsic plasticity for online unsupervised learning in649
spiking neural networks. Frontiers in neuroscience 13, 31650

Zhang, W. and Li, P. (2019b). Spike-train level backpropagation for training deep recurrent spiking neural651
networks. In Advances in Neural Information Processing Systems. 7800–7811652

Zhang, W. and Li, P. (2020a). Skip-connected self-recurrent spiking neural networks with joint intrinsic653
parameter and synaptic weight training. arXiv preprint arXiv:2010.12691654

Zhang, W. and Li, P. (2020b). Temporal spike sequence learning via backpropagation for deep spiking655
neural networks. Advances in Neural Information Processing Systems 33656

Zhang, W. and Li, P. (2021). Spiking neural networks with laterally-inhibited self-recurrent units. In 2021657
International Joint Conference on Neural Networks (IJCNN) (IEEE), 1–8658

Zhang, Y., Li, P., Jin, Y., and Choe, Y. (2015). A digital liquid state machine with biologically inspired659
learning and its application to speech recognition. IEEE transactions on neural networks and learning660
systems 26, 2635–2649661

Zhou, Y., Jin, Y., and Ding, J. (2020). Surrogate-assisted evolutionary search of spiking neural architectures662
in liquid state machines. Neurocomputing 406, 12–23663

Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement learning. In 5th International664
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference665
Track Proceedings (OpenReview.net)666

Frontiers 20

Sample et al. Hybrid Risk-Mitigating Architectural Search

Table 1. Parameters settings.

Parameter TI46-Alpha N-TIDIGITS DvsGesture N-MNIST
τm 16 ms 64 ms 64 ms 16 ms
τs 8 ms 8 ms 8 ms 8 ms
τcal 16 ms 16 ms 16 ms 16 ms

learning rate 0.0005 0.0005 0.0001 0.0005
Batch Size 50 50 20 50
Time steps 100 300 400 100

Epochs for searching 300 200 60 30
Epochs for testing 400 400 150 100

SC-ML size 800 800 512 512
Motif size options [5, 10, 16, 25, 40] [2, 4, 8, 16, 32]

Table 2. Accuracy on TI46-Alpha, N-TIDIGITS, DVS-Gesture and N-MNIST. HeNHeS result is from
(Chakraborty and Mukhopadhyay, 2023)

Dataset Network Structure Learning Rule Hidden Layers Best
TI46-Alpha LSM (Wijesinghe et al., 2019) Non-spiking BP 2000 78%

RSNN (Zhang and Li, 2019b) ST-RSBP 400− 400− 400 93.35%
Sr-SNN (Zhang and Li, 2020a) TSSL-BP 400− 400− 400 94.62%

This work TSSL-BP 800 96.44%
N-TIDIGITS GRU (Anumula et al., 2018) Non-spiking BP 200− 200− 100 90.90%

Phase LSTM (Anumula et al., 2018) Non-spiking BP 250− 250 91.25%
RSNN (Zhang and Li, 2019b) ST-RSBP 400− 400− 400 93.90%

Feedforward SNN TSSL-BP 400 84.84%
This work TSSL-BP 400 94.66%

DVS-Gesture Feedforward SNN (He et al., 2020) STBP P4− 512 87.50%
LSTM (He et al., 2020) Non-spiking BP P4− 512 88.19%

HeNHeS STDP 500 90.15%
Feedforward SNN TSSL-BP P4− 512 88.19%

This work TSSL-BP P4− 512 90.28%
N-MNIST Feedforward SNN (He et al., 2020) STBP 512 98.19%

RNN (He et al., 2020) Non-spiking BP 512 98.15%
LSTM (He et al., 2020) Non-spiking BP 512 98.69%
ELSM(Pan et al., 2023) Non-spiking BP 8000 97.23%

This work TSSL-BP 512 98.72%

Table 3. Ablation studies of HRMAS on TI46-Alpha

Setting Accuracy
Full HRMAS 96.44%

Without IP 95.20%
Without motif 88.35%

Without inter-motif connections 95.73%
Fully connected RSNN 94.10%

Frontiers 21

Sample et al. Hybrid Risk-Mitigating Architectural Search

Table 4. Test Accuracy on TI46-Alpha, obtained by repeating 5 times with different random seeds,
including: HRMAS perfermence on Larger network, effect of IP rule, random search as the baseline
architecture.

Arch Optimization Learning Rule SC-ML Sizes Best Mean Std
HRMAS (with IP) TSSL-BP 800 96.44% 96.08% 0.27%
HRMAS (with IP) TSSL-BP 1600 96.26% - -
HRMAS (with IP) TSSL-BP 2400 96.58% - -
HRMAS (with IP) TSSL-BP 3200 96.45% - -
HRMAS (w/o IP) TSSL-BP 800 95.17% 94.74% 0.32%

Random TSSL-BP 800 94.47% 94.18% 0.30%

Figure 1. Sparsely-Connected Recurrent Motif Layer.

Frontiers 22

Sample et al. Hybrid Risk-Mitigating Architectural Search

Figure 2. Evolution in neural development.

Figure 3. Proposed HRMAS.

Frontiers 23

Sample et al. Hybrid Risk-Mitigating Architectural Search

Figure 4. Architectural optimization in HRMAS.

Figure 5. SC-ML with relaxed architectural parameters.

Frontiers 24

Sample et al. Hybrid Risk-Mitigating Architectural Search

Figure 6. Optimized motif topologies.

Frontiers 25

Sample et al. Hybrid Risk-Mitigating Architectural Search

Figure 7. Recurrent Weight Matrix after optimization by HRMAS.

Frontiers 26

Sample et al. Hybrid Risk-Mitigating Architectural Search

Figure 8. Test Loss in architectural optimization in HRMAS. The solid line and shading show the mean
and standard deviation of the 5 experiments. We conducted experiments with ip rule turned on (red) and
off (blue). It can be found that IP method brings two benefits: improved network performance and a more
stable training process. The figures showed that the red solid line (mean) has lower loss than the blue solid
line without the IP method; at the same time, the red shadow (standard deviation) has always been narrower
than the blue shadow, which means a more stable network architecture search process.

Frontiers 27

Sample et al. Hybrid Risk-Mitigating Architectural Search

Figure 9. Test Accuracy in architectural optimization in HRMAS. The solid line and shading show the
mean and standard deviation of the 5 experiments. We conducted experiments with ip rule turned on (red)
and off (blue). It can be found that IP method brings two benefits: improved network performance and a
more stable training process. The figures showed that the red solid line (mean) has higher accuracy than
the blue solid line without the IP method; at the same time, the red shadow (standard deviation) has always
been narrower than the blue shadow, which means a more stable network architecture search process.

Frontiers 28

	Introduction
	Materials and Methods
	Spiking Neuron Model
	Sparsely-Connected Recurrent Motif Layer (SC-ML)
	Hybrid Risk-Mitigating Architectural Search (HRMAS)
	Hybrid Risk-Mitigating Architectural Search Framework
	Alternating Two-Step Optimization in HRMAS
	Gradient-based Optimization in HRMAS
	Relaxing SC-ML layer's architectural parameters from discrete to continuous
	Backpropagation via HRMAS framework

	Risk Minimizing Optimization with Intrinsic Plasticity

	Results
	Experimental Settings
	Dataset
	Loss Function
	Network architecture and hyperparameters
	Traing process

	Performance of HRMAS
	Ablation Analysis
	Ablation experiments of proposed components
	Ablation experiments of network parameters

	IP rule's effect on performance during optimizing process
	The computational resources required for HRMAS

	Conclusion

