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Abstract

The COVID-19 pandemic has not only presented a major global public health and
socio-economic crisis, but has also significantly impacted human behavior towards
adherence (or lack thereof) to public health intervention and mitigation measures
implemented in communities worldwide. This study is based on the use of mathe-
matical modeling approaches to assess the extent to which SARS-CoV-2 transmission
dynamics is impacted by population-level changes of human behavior due to factors
such as (a) the severity of transmission (such as disease-induced mortality and level of
symptomatic transmission), (b) fatigue due to the implementation of mitigation inter-
ventions measures (e.g., lockdowns) over a long (extended) period of time, (c) social
peer-pressure, among others. A novel behavior-epidemiology model, which takes the
form of a deterministic system of nonlinear differential equations, is developed and
fitted using observed cumulative SARS-CoV-2 mortality data during the first wave in
the United States. The model fits the observed data, as well as makes a more accurate
prediction of the observed daily SARS-CoV-2 mortality during the first wave (March
2020-June 2020), in comparison to the equivalent model which does not explicitly
account for changes in human behavior. This study suggests that, as more newly-
infected individuals become asymptomatically-infectious, the overall level of positive
behavior change can be expected to significantly decrease (while new cases may rise,
particularly if asymptomatic individuals have higher contact rate, in comparison to
symptomatic individuals).
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1 Introduction

Throughout history, human civilization has repeatedly faced devastating disease pan-
demics, ranging from the bubonic plague (which caused 200 million deaths from 1347
to 1351), Smallpox (which caused 56 million deaths in 1520 alone), the plague of Jus-
tinian (which caused 30 to 50 million deaths from the year 541 to 542 AD), the third
plague (which caused 12 million deaths in 1855 alone), the 1919 influenza pandemic
(which claimed 40 million to 50 million lives), the HIV/AIDS epidemic (which resulted
in 25 to 35 million deaths since its inception in 1981) (LePan et al. 2020; Huremovié
2019; Piret and Boivin 2021) to the 2019 novel coronavirus pandemic (COVID-19).
COVID-19, caused by the SARS-CoV-2, was first identified in the Wuhan city of China
in December of 2019 and rapidly spread around the world causing the greatest public
health challenge humans have faced since the 1918 influenza pandemic (LePan et al.
2020). It has caused over 670 million confirmed cases and 7 million deaths globally
during the first three years since its emergence (World Health Organization 2023).
In addition, it has induced severe socio-economic burden [with an estimated $12.5
trillion cost to the global economy projected through 2024 (Shalal 2022)]. Further,
Barber et al. (2022) estimates that by November 14, 2021, about 44% of the world’s
population was infected with COVID-19 at least once. Using a survey by the United
States Census Bureau, the United States Centers for Disease and Prevention (CDC)
estimated that one in five COVID-19-infected American adults has long COVID, a
phenomenon described as COVID-19 “symptoms lasting three or more months after
first contracting the virus” (Centers for Disease Control and Prevention 2022).

A pandemic of COVID-19’s devastating magnitude naturally invokes fear, unprece-
dented chaos, pandemonium, spread of mis(dis)information, mistrust, polarization
resulting in both positive and negative behavior changes with respect to adherence
(or lack thereof) of public health intervention and mitigation measures (Luo et al.
2021; Fitzpatrick et al. 2020; Liu et al. 2020; Ahorsu et al. 2020; Roozenbeek et al.
2020; Cuan-Baltazar et al. 2020). Numerous mathematical models, of varying types
(such as compartmental, agents-based, social network, statistical, and machine learn-
ing models) have been developed and used in an attempt to study the impact of human
behavior changes on the trajectory, transmission dynamics and overall burden of the
pandemic. Specifically, some of these models have accounted for the behavior change
due to the transmission of information through contacts between humans (Perra et al.
2011; Kiss et al. 2010; Tanaka et al. 2002; Funk et al. 2010; Yan 2022) or due to
the prevalence of the pandemic (Kiss et al. 2010; Perra et al. 2011; Del Valle et al.
2005). For instance, using data collected through a contact diary-based survey, Kum-
mer et al. (2022) showed the impact of the seasonal change in the number of contacts
made between individuals on the spread of the disease. Furthermore, d’Onofrio et
al. used a deterministic compartmental model to study vaccination uptake behavior
as a function of prevalence (d’Onofrio et al. 2007; Manfredi and D’Onofrio 2013).
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Coelho and Codeco (2009) used Bayesian inference to model vaccination behavior
as a function of individual perception of vaccine safety (Coelho and Codego 2009).
de Mooij et al. (2023) developed a large-scale agent-based epidemic model that uses
mobility data to calibrate the behavior of agents. Similarly, (Valle et al. 2013; Man-
fredi and D’Onofrio 2013) used an agent-based model to showcase the impact of
school closure and fear-based home isolation during a pandemic. Numerous studies
have used network models to assess the impact of human behavior on disease spread
and control (Wang et al. 2015; Mao and Yang 2012). Finally, Frieswijk et al. (2022)
developed a behavior-epidemic model where the classical S7 R epidemic model is cou-
pled with an evolutionary game-theoretic decision-making mechanism to incorporate
self-protective measures taken by individuals during disease outbreaks.

Some studies have shown that a key factor that affects both COVID-19 transmission
dynamics and human behavior changes with respect to the SARS-CoV-2 pandemic is
the level of asymptomatic transmission in the community (i.e., disease transmission
by infectious individuals who do not display clinical symptoms of the SARS-CoV-
2 pandemic) (Huff and Singh 2020; Nikolai et al. 2020; Ngonghala et al. 2020a;
Espinoza et al. 2021). Additionally, it is possible that for various reasons, such as
repeated exposures and partial cross-immunity, the proportion of exposed individuals
who become asymptomatic (as opposed to symptomatic) at the end of the exposed
period may increase. Hence, it is important to assess the impact of the proportion of
exposed individuals who become asymptomatic at the end of the exposed period on the
spread of the disease and human behavior. Furthermore, numerous studies have shown
that mathematical models for disease transmission that did not explicitly incorporate
human behavior and heterogeneities failed to accurately capture the correct trajectory
and burden of the pandemic (He et al. 2013; Manfredi and D’ Onofrio 2013; Roda et al.
2020). For example, although some mathematical models have correctly captured the
trajectory and burden of the ongoing COVID-19 pandemic (Sayers 2024; Brozak et al.
2021; Ngonghala et al. 2020a, 2023; Pant et al. 2024; Pant and Gumel 2024), numerous
others that did not explicitly account for social and human behavior aspects have
failed to correctly capture current and/or future course/trajectory of the pandemic [the
agents-based model developed by the United Kingdom’s Scientific Advisory Group
on Emergencies overestimated the burden of the SARS-CoV-2 Omicron at its peak
by a factor of 20; and this discrepancy is attributed, in part, by the lack of explicit
incorporation of human behavior elements into the model (Howard and Andrews
2024)].

The current study focuses on developing and using a mathematical model, which
takes the form of a compartmental deterministic system of nonlinear differential equa-
tions, to assess the impact of human behavior changes on the transmission dynamics
and control of infectious diseases. The proposed model specifically considers human
behavior changes in two distinct population groups, one which strictly adheres to mit-
igation measures, and another one which ignores them. We assume that changes of
human behavior in these two groups may occur due to a number of key (epidemio-
logical) factors, such as (a) disease-related information received from members of the
other group, (b) the level of symptomatic transmission in the community (c) proportion
of non-symptomatic (susceptible, exposed, asymptomatic infectious and recovered)
individuals in the community, (d) the level of publicly-available disease-induced mor-
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tality information and (e) fatigue to adherence to control and mitigation interventions
in the community. Another notable feature of the model to be developed is the inclu-
sion of the impact of asymptomatic transmission on the disease dynamics as well as
on human behavior changes with respect to the spread and burden of the SARS-CoV-2
pandemic. The paper is organized as follows. The human behavior model is formulated
in Sect.2 with the functional form of behavior change functions derived in Sect.2.1.
A behavior-free model is also considered, which is a special case of the model with
behavior changes. Both the behavior and behavior-free version of the model are fitted
with observed data in Sect.2.2. Numerical simulations are carried out in Sect.3. The
behavior change functions considered in this study are visualized in Sect. 3.1 and their
impact on cumulative mortality and infection is also assessed through simulation. The
impact of change in the proportion of exposed individuals who become asymptomatic
on the reproduction number, mortality and behavior change is simulated in Sect. 3.3.
Finally, the main results of this study are discussed and summarized in Sect. 4.

2 Formulation of the Mathematical Model

The SARS-CoV-2 transmission model that incorporates human behavior in the disease
dynamics to be developed in this study is based on splitting the total human population
attime r, denoted by N (), into two groups based on adherence or lack thereof to public
health interventions implemented to combat or mitigate the burden of the pandemic.
Specifically, we define the following groups:

Group 1: Individuals who do not adhere to public health interventions and mitigation
measures (also defined as the non-adherent group).

Group 2: Individuals who strictly adhere to public health interventions and mitigation
measures (also defined as the adherent group).

The total population of individuals in group 1 at time 7, denoted by Nj(¢), is subdi-
vided into the mutually-exclusive compartments of non-adherent susceptible (S (¢)),
exposed/latent (E (¢)), symptomatically-infectious (/1 (¢)), asymptomatically-infectious
(A1(t)) and recovered (R (¢)) individuals, so that

Ni(t) = S1() + E1(t) + 1 (1) + A (1) + Ry (1). (1

Similarly, the total population in group 2 at time #, denoted by N (¢), is sub-divided into
the mutually-exclusive compartments of adherent susceptible (52(¢)), exposed/latent
(E,(t)), symptomatically-infectious (1> (¢)), asymptomatically-infectious (A3 (¢)) and
recovered (R, (t)) individuals, so that

Nao(t) = S2(t) + Ex(1) + I2(t) + A2(1) + Ra(2). 2

Thus, the total population at time ¢, N (¢), is given by N(t) = N1 (t) + Na(¢). Some
of the main behavior-related assumptions made in the formulation of the model are:

(i) Individuals change their behavior during disease outbreaks based on the following
epidemiological and social factors:
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(a) disease-related information members of one group received from members of
the other group, (b) the level of symptomatic transmission in the community (c)
the proportion of non-symptomatic (susceptible, exposed, asymptomatic infectious
and recovered) individuals in the community, (d) the level of publicly-available
disease-induced mortality information and (e) due to fatigue factor associated with
adherence to interventions over a long-term period.

(i) Symptomatic individuals in group 2 do not change their behavior (i.e., they do not
move to group 1) for the entire duration of their symptomatic status.

(iii) The proportion of new recruited individuals into the community recruitment who
are adherent to public health interventions depends on the proportion of symp-
tomatic individuals in the community.

We define the following behavior-related transition rates:

(a) wi‘}. : the rate at which individuals in group i change their behavior, and move to the
other group j (withi, j = {1, 2}andi # j), due to transmission of disease-related
information received from contact with individuals in group ;.

(b) 1/f{2: the rate at which individuals in group 1 positively change their non-adherent
behavior and move to group 2 due to the level of symptomatic transmission in the
community.

(c) 5] the rate at which individuals in group 2 negatively change their behavior
and move to the non-adherent group 1 due to the proportion of non-symptomatic
individuals in the community.

(d) 5 the rate at which individuals in group 1 positively change their behavior and
move to the adherent group 2 due to the level of publicly-available disease-induced
mortality information.

(e) wzfl: the rate at which individuals in group 2 negatively change their behavior
and move to the non-adherent group 1 due to fatigue to adherence to intervention
measures.

The functional forms of the aforementioned behavior-related rates will be derived in
Sect.2.1. In the formulation of the human behavior SARS-CoV-2 model, we let I1
represent the recruitment rate of individuals into the population or community (and
all recruited individuals are assumed to be susceptible). It is further assumed that a
proportion, p, of these individuals strictly adhere to public health intervention and
mitigation measures (i.e., pII is the recruitment rate into the susceptible population
of group 2), while the remaining proportion, 1 — p, are assumed to not adhere to
interventions (i.e., (1 — p)II is the recruitment rate of individuals into the susceptible
population in group 1). Individuals in all epidemiological compartments suffer natural
death or removal at a rate p. Individuals in group 1 (i.e., non-adherent individuals)
acquire infection at a rate A (force of infection), given by:

3

I+ 0,41+ (1 —e,)(Ir + 1 A
k:(ﬂ)[l naAr+ {1 —en)(+1n 2)i|’

N
where f is the effective contact rate associated with disease transmission by

symptomatically-infectious individuals, n, is a modification parameter accounting for
the variability in disease transmission by asymptomatically-infectious individuals, in
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comparison to symptomatically-infectious individuals and 0 < g, < 1 is the outward
efficacy of the public health intervention and mitigation measures (e.g., face mask) to
prevent the transmission of infection by infectious adherent individuals (group 2) to
susceptible individuals (Eikenberry et al. 2020; Ngonghala et al. 2020a). For simplic-
ity, it is assumed that the inward efficacy of the public health intervention measures to
prevent susceptible individuals in group from acquiring infection, following contact
with infectious individuals, is the same as the outward efficacy, and denoted by &,,.

Individuals in group 1 (non-adherents) positively change their behavior and become
adherents due to the positive information they received about the disease from indi-
viduals in group 2 (due to contact at a rate v{,). They also change their behavior
positively and move to group 2 due to the level of symptomatic transmission in the
community (at a rate df{z) and due to the level of disease-induced mortality in the
community, obtained from publicly-available sources (at a rate v{3). Similarly, indi-
viduals in group 2 negatively change their behavior and move to group 1 due to: the
contact-related information received from individuals in group 1 (at a rate v5,), the
proportion of non-symptomatic individuals in the community (at a rate ¥5;) and due

to fatigue to adherence of intervention (at a rate 1//{1 ). Adherents susceptible indi-
viduals acquire infection at a reduced rate (1 — &,,)A, where 0 < ¢, < 1 is the
efficacy of public health intervention and mitigation measures implemented in the
community to prevent the acquisition of infection. Let o represents the rate at which
exposed (i.e., newly-infected) individuals progress to to either the asymptomatically-
infectious class (at a rate ro, where 0 < r < 1 is the proportion of these individuals
that become asymptomatically-infectious at the end of the exposed period) or develop
clinical symptoms of the disease (atarate (1 —r)o, where the complement, 1 —r, is the
proportion of exposed individuals who display clinical symptoms of the disease at the
end of the exposed period). Symptomatic (asymptomatic) infectious individuals are
assumed to recover at a rate y;(y,), and symptomatic-infectious individuals in group
1 (group 2) suffer disease-induced mortality at a rate §;1(8>). It follows, based on the
above assumptions and derivations, that the endemic model for the SARS-CoV-2 pan-
demic, that explicitly incorporates elements of human behavior during the outbreaks
of the disease, is given by the following deterministic system of nonlinear differential
equations (where a dot represents differentiation with respect to time #):

$1() = TH(L = p) + (U5, + W35 + ¥)S2 — AS1 — (W + iy + YiD)S1 — 1S,
$2(t) = TIp + (U + Yy + YIS — (1 — 2282 — (5; + U3 + ¥ S — s,
E\(t) = ASt + (U5 + W25 + V) Er — (U, + ¥y + YIDE) — (0 + WE),

Ex(t) = (1 — em)ASa + (W5, + Yiy + VD EL — (WS + V45 + Wi Ex — (0 + W Ea,
h(t)=(0=roEl— Wi+ Vi, +¥h — (i + e+ 801,

L) = =roEy+ Wi+ ¥l + ¥ I — i+ n+ )1,

ALY = ro Ey+ (W5, + U35 + W) As — (U + Wiy + Ui AL — (ra + DAL,
As(t) = ro Ex + (W, + Wiy + U AL — (WS, + U35 + i) A2 — (va + ) A,
Rit) =yl + va A1 + (Y5, + ¥ + I/’zfl)Rz — iy + ¥ia + YID R — Ry,

Ro(t) = vila + vaAz + (Ufy + Uiy + YR — (U5 + Y55 + I/’2f1)R2 — 1Ry

“

@ Springer



Mathematical Assessment of the Role of Human Behavior... Page70f53 92

In the behavior-epidemiology model (4), the proportion p of individuals recruited into
the community who adhere to public health interventions is assumed to defend on the
proportion of individuals who are symptomatic at time ¢, and is defined as:

- (1 I
p:p<l+2), 5)

N

where p is the maximum proportion of recruited individuals who are adherent. The
proportion p is behavior-related, since it is a function of the total proportion of symp-
tomatic individuals in the community. It is zero if there are no symptomatic individuals
in the community, and it rises to its maximum (p) if the proportion of symptomatic
individuals in the community tend towards one; in other words, newly-recruited indi-
viduals choose to remain in group 1 if the proportion of symptomatic individuals in
the community is small, and opt to move to group 2 if the proportion of symptomatic
individuals is large).

It is convenient to define the rate of change of cumulative mortality due to the disease
as

D(t) = 8[L1(t) + L (1)], (6)

from which it follows that the daily mortality on day k (denoted by Mjy) is given by:

k
Mk:/ D(z) dr. (7
k—1

Figure 1 depicts the flow diagram of the model, and the state variables and parameters
are described in Tables 1 and 2, respectively.

2.1 Derivation of the Functional Forms of Behavior-Related Parameters of the
Model

The behavior-related transition rates of the behavior-epidemiology model (4) are
described and derived below.

2.1.1 Behavior Change Due to Information Received from Contact with Members of
the Other Group (tpfj(t))

Since the behavior-epidemiology model to be developed in this study stratifies the
total population into two subgroups, namely group 1 of individuals who do not adhere
to public health control and mitigation interventions and group 2 consisting of indi-
viduals who strictly adhere to such interventions, contacts between individuals of
one group with those of the other could induce behavior change with respect to the
adherence (or lack thereof) to interventions (due, for instance, to peer influence or
pressure). It is intuitive to assume that the probability of such contact-induced behav-
ior change depends on the capacity of (or degree or extent to which) members of
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Fig.1 Flow diagram of the behavior-epidemiology model (4), where A and p are defined in Eqgs. (3) and (5),
respectively. The state variables and parameters of the model are described in Tables 1 and 2, respectively

Table 1 Description of the state variables of the behavior-epidemiology model (4)

State variable Description

S1 Number of non-adherent susceptible individuals

S Number of adherent susceptible individuals

E| Number of non-adherent exposed individuals

E> Number of adherent exposed individuals

I Number of non-adherent symptomatically-infectious individuals
I Number of adherent symptomatically-infectious individuals

Aq Number of non-adherent asymptomatically-infectious individuals
A Number of adherent asymptomatically-infectious individuals

Ry Number of non-adherent recovered individuals

Ry Number of adherent recovered individuals

one group to influence members of the other and the relative size of the other group
(Perra et al. 2011; Kiss et al. 2010; Tanaka et al. 2002; Funk et al. 2010; Yan 2022).
Recall that ¥{,(¢) (5, (¢)) represents the rate at which non-adherent (adherent) indi-
viduals become adherents (non-adherents), at time 7, following contacts with adherent
(non-adherent) individuals in the community. The rate ¥/}, (#) can then be defined as
the product of the maximum rate of behavior change of non-adherent individuals to
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become adherents due to contacts with adherent individuals (denoted by a7, ), the prob-
ability of influence adherent individuals have on non-adherent individuals to become
adherent due to transmission of disease-related information by contact (denoted by
0 < g{, < 1) and the current proportion of adherent individuals in the community
( Na(1)

N(@)

). Thus, the rate 7, (¢) is given by:

probability of influence adherent individuals have
on non-adherent individuals to become adherent
due to transmission of information by contact

Vi) = (O‘fz) X (ﬁz)
—_——

maximum rate of behavior change of

non-adherent individuals due to
contact with adherent individuals

" [Nz(t)}. @)

N(t)
—— —
current proportion of adherent individuals

Similarly, the rate at which adherent individuals in the community become non-
adherent due to contacts with non-adherent individuals at time ¢ (15, (t)) is defined as
the product of the maximum rate of behavior change of adherent individuals due to
contacts with non-adherent individuals (denoted by «5,), the probability of influence
non-adherent individuals have on adherent individuals to become non-adherents due
to transmission of disease-related information by contacts (denoted by 0 < g5, < 1)

Ni(t
and the current proportion of non-adherent individuals in the community ( 1( )>,

N(1)
so that:
probability of influence non-adherent individuals
have on adherent individuals to become non-adherents
due to transmission of information by contacts
Ni (1)
. . . 1(¢
WS, (1) = (a‘ ) x (q‘ ) x . 9
21 21 21 N() ( )
N —_—

maximum rate of behavior change of
adherent individuals due to contact
with non-adherent individuals

current proportion of non-adherent individuals

2.1.2 Behavior Change Due to the Level of Symptomatic Transmission (Mz(t)) in
Community

Individuals can also change their behavior with respect to adherence to interventions
based on the current relative level of symptomatic transmission in the community
(Perra et al. 2011). Let w{z(t) represent the rate at which non-adherent individuals
become adherent due to the level of symptomatic transmission in the community.
The rate 1//{2(1) is defined as the product of the maximum behavior change of non-
adherent individuals due to the level of symptomatic transmission in the community
(O‘liz)’ the probability of influence on non-adherent individuals due to the level of
symptomatic transmission in the community (q{z) and therelative level of symptomatic
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transmission in the community (given by the Holling Type-II saturation incidence
function (11 (¢) + I2(2)) /(K + I (t) + I5(t)), where K > 0 is the saturation constant).
That is,

probability of influence on non-adherent
individuals due to level of symptomatic
transmission in the community

Ui () = (“12) X <Qiz>
—_——

maximum rate of behavior change of

non-adherent individuals due to the level of
symptomatic transmission in the community

[ Li(t) + I (1) ]

(10)
K+ I (t) + Ix(1)

level of symptomatic
transmission in the community

2.1.3 Behavior Change Due to the Proportion of Non-symptomatic (43 (t)) Pool in
Community

Individuals can also change their behavior due to the proportion of non-symptomatic
(i.e., susceptible, exposed, asymptomatic, and recovered) individuals in the community
(Kiss et al. 2010). Let v57 (¢) represent the rate at which adherent individuals become
non-adherent due to the current proportion of non-symptomatic individuals in the
community. The parameter for the rate of behavior change of adherent individuals
to become non-adherent due to the proportion of non-symptomatic individuals in the
community (¥57) is given by the product of the maximum rate of behavior change
of adherent individuals due to the proportion of non-symptomatic individuals in the
community (a5}), the probability of influence on adherent individuals due to the current
size of the non-symptomatic pool in the community (¢5}) and the proportion of the
non-symptomatic pool in the community (given by (S;(¢) + S2(¢) + E1(¢) + E2(t) +
A1(t) + Ax(t) + Ri(t) + Ra(1))/N(t)). Hence,

probability of influence on
adherent individuals due to
proportion of non-symptomatic
individuals in the community

maximum rate of
behavior change of

adherent individuals (11
due to proportion of

non-symptomatic individuals
in the community individuals

|:Sl(t) + S0+ E1()+ Ex@) + A1) + Ax(t) + R (1) + Rz(t)]
N(t) ’

proportion of non-symptomatic
individuals in the community

@ Springer



Mathematical Assessment of the Role of Human Behavior... Page130f53 92

2.1.4 Behavior Change Due to Level of Daily Reported Disease-Induced Mortality
(yh (1)

Individuals can also change their behavior due to the level of daily reported disease-
induced mortality (obtained from publicly-available information sources, such as the
print/audio/visual/social and the internet) (Perra et al. 2011). To model the rate of
behavior change due to such access to information on the level of daily disease-induced
mortality in the community, we first assume that the level of disease-induced mortality
in the community only causes behavior change in group 1, and not in group 2 (i.e., only
the non-adherent individuals can change their behavior to become adherent in fear of
succumbing to the disease; whereas those that are strictly adherent, in group 2, are not
expected to negatively change their behavior, when daily disease-induced mortality is
on the rise, and move to group 1). The rate v/}’ (¢) can then be expressed as a product
of the maximum rate of behavior change of non-adherent individuals due to the level
of daily reported disease-induced mortality in the community (denoted by ), the
probability of influence adherent individuals have on non-adherent individuals due to
the size of the reported daily disease-induced mortality in the community (denoted
by g{5) and the current level of disease-induced mortality (modeled by the Ivlev
function (Ivlev 1961), (1 —e M (’)), where M (t) is the daily mortality on day ¢ of
the pandemic, as defined by Eq. (7) and 1/¢ [with O < ¢ < 1) could be thought of as
the threshold number of reported daily disease-induced mortality above which fear or
panic wave begin to rapidly spread in the community (Perra et al. 2011)]. Thus,

probability of influence
on non-adherent individuals
due to disease-induced mortality

—

m m m
V() = (“12) X (6112)
—
maximum rate of behavior change of

non-adherent individuals due
disease-induced mortality

x (1 - e—s“Mm) . (12)

— ———
mortality-induced behavior
change function

2.1.5 Behavior Change Due to High Level of Fatigue to Interventions in the
Community (lp‘g1)

Behavior change “requires a person to disrupt a current habit while simultaneously
fostering a new, possibly unfamiliar, set of actions” (Bouton 2014). Thus, perhaps
for that reason, behavior change, even if it is triggered by health-related reasons (i.e.,
triggered by the need to adhere to public health intervention and mitigation measures
to minimize the risk of acquiring infection, severe disease, hospitalization or even
death), can often be quite difficult to sustain. To model behavior change due to fatigue
to adherence to public health intervention and mitigation measures, it is plausible to,
first of all, assume that only individuals in group 2 (the adherent group) can develop
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intervention fatigue (due to being strictly adherent for an extended period of time) and
potentially negatively change their behavior to become non-adherents. For simplicity,
it is assumed that adherent individuals begin to experience fatigue of adherence to
intervention after a certain fatigue time threshold (denoted by 75) has been met. This
factor can be modeled using a Heaviside-like function (H/), given by:

S 1 ift>1¢ 13)
o ifr <1,

with H/ set to 1 if the fatigue time threshold has been met or exceeded (i.e., t > 1)
and H/ = 0 if the threshold has not been met, and adherents are not experiencing
intervention fatigue (i.e., t < ty). The rate at which adherent individuals become

non-adherent due to fatigue (wéfl) can then be expressed as a product of the maximum

rate of behavior change of adherent individuals due to fatigue (denoted by agl), the
probability of influence non-adherent individuals have on adherent individuals due
to high fatigue level to intervention (denoted by q'zf 1) and the fatigue threshold time
(given by the function H/).

probability of influence on adherent
individuals due to high
fatigue level to interventions

vl () = (of)) x (1)

maximum rate of behavior change of
adherent individuals due to high
fatigue level to interventions

!
x @ (14)

function that determines the time from
which individuals begin to experience

high fatigue level to interventions

2.2 Data-Fitting and Parameter Estimation of Behavior-Epidemiology Model (4)

The behavior-epidemiology model (4) consists of many parameters, the values of
many of which (at least 16) are known from the literature. The values of a few of
the parameters, particularly the disease-induced mortality rate (§; and §; although,
for simplicity, we assume that § = §; = &, since it is reasonable to assume that both
adherent and non-adherent infected individuals die at the same rate due to, for example
having access to the same quality of disease-induced mortality prevention treatment),
the effective contact rate of symptomatic individuals (), the modification parameter
for the effective contact rate of asymptomatic individuals (1,) and the product of
the maximum rate of behavior change from one group to another and the associated
parameter of influence (a’i2qi2, abiqyy, afhqis and a{lq'zfl) are unknown and will be
estimated through fitting. Furthermore, behavior-related functions are computed using
the fixed and fitted parameters as well as the associated state variables at time ¢. The
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model (4) will be fitted and cross-validated using the cumulative mortality data for
the COVID-19 pandemic in the United States for the period from March Ist, 2020 to
June 18th, 2020, which corresponds to the first wave of the pandemic in the United
States. Specifically, the model will be fitted using a segment of this data, for the period
between March 1, 2020, to May 29, 2020, and the remaining data is used to cross-
validate the model. Additionally, some of the initial conditions will be fitted from the
data as well.

Before describing the data fitting of the behavior-epidemiology, the values of the
16 known parameters (also known as fixed parameters) of the model are described
below.

2.2.1 Values of the Fixed (Known) Parameters of the Behavior-Epidemiology Model

The values of the 16 known parameters of the model (4) (tabulated in Table 3) are
described as follows: the value of the daily recruitment rate parameter (IT) is obtained
from using the census data for the United States, and noting that the total population
of the United States prior to the emergence of the SARS-CoV-2 pandemic (i.e., at the
disease-free equilibrium) is IT/u (where 1/u is the average lifespan). Since the total
population of the United States was approximately 331.4 million (Epstein and Lofquist
2023) and the average lifespan is 77.8 years (Arias et al. 2020) (so that 1/ = 77.8
years; hence, u© = 3.52 x 10~ per day), it follows that IT = 331.4 million x pu =
11,670 per day. Since the incubation period for SARS-CoV-2 (1/0) is estimated
to be 3.6 days, we set the transition parameter (o) from the exposed class to the
symptomatic or asymptomatic infectious class to be ¢ = 1/3.6 per day (Li et al.
2020). Using a meta-analysis, Ma et al. (2021) estimated that 40% of individuals
who get infected with COVID-19 become asymptomatically-infectious [this estimate
is also consistent with those reported in Oran and Topol (2020), Yanes-Lane et al.
(2020)]. Consequently, we set r = 0.4. Ferguson et al. (2020) estimated the duration
of recovery for symptomatically-infectious individuals (1/y;) to be 5 days (hence,
y1 = 1/5perday).Niuetal. (2021) estimated the infectious duration for asymptomatic
recovery (1/y,) to be five days (hence, y4 = 1/5 per day). During the time period
considered in the study, the highly-effective N95 respirator (with an associated efficacy
of &, = 0.95) or equivalent (Eikenberry et al. 2020; Ngonghala et al. 2021, 2020b)
were not readily available to the general public (they were prioritized for frontline
healthcare workers), we assume that the overall average efficacy of the mask used in
the community (i.e., by individuals in group 2) is &, = 0.5 (this figure is estimated by
averaging the relative efficacy of the surgical (0.7) and cloth (0.3) masks, which were
the predominant masks used during the first wave) (Ngonghala et al. 2020a; Eikenberry
et al. 2020). Finally, survey data collected for the “COVID States Project” (COVID
2023) shows the maximum proportion of respondents claiming to wear masks during
the survey period of April 2020 to May 2022 was around 80%, hence we estimate that
the maximum proportion of new recruitment that adhere to interventions to be 80%
(thus, p = 0.80). For simplicity, we assumed that mask fatigue was always in play in
the United States, albeit the level of fatigue increases with the length or duration of
the pandemic (thus, we set 1y = 0).
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2.2.2 Estimated (Fitted) Parameters of the Behavior-Epidemiology Model

In this section, the values of the unknown parameters of the model will be generated
by fitting the model (4) with the observed cumulative disease-induced mortality for
the SARS-CoV-2 pandemic for the aforementioned period from March 1, 2020 to
May 29, 2020 (i.e., during the first wave of the pandemic) in the United States (recall
that we set § = §; = &2). Nonlinear least-squares optimization method was used to
fit the model. MATLAB’s minimization function Isqcurvefit is specifically used to
minimize the sum of the squared differences between each data point [obtained from
Johns Hopkins University COVID-19 repository (CSSE 2020)], and the value of the
corresponding cumulative mortality generated by solving the model (4). The results
obtained, for the model fitting, is depicted in Fig. 2a with a blue curve. Furthermore, the
values of unknown parameters obtained from the data fitting are tabulated in Table 4.
The goodness of the fit in Fig.2a is assessed by using the fixed and fitted parameters
to predict the daily SARS-CoV-2 mortality for the United States during the fitting
period and compare this with the actual observed daily SARS-CoV-2 mortality. The
results obtained, depicted in Fig. 2b, show a very good fit. The fitted model was cross-
validated by comparing the model projection with the observed data for 20 days after
the fitting period (i.e., May 30, 2020, to June 18, 2020). The cross-validation period
is illustrated by the segment of the curves to the right of the vertical dashed line in
Fig.2 (the model’s projection during this period is shown by the green curve). Here,
too, Fig.2 shows that the model fits both the cumulative and daily mortality data quite
well during the cross-validation period.

It should be mentioned that the data fitting (and associated parameter estimation)
depicted in Fig. 2 (and Table 4) was carried out using MATLAB’s minimization func-
tion Isqcurvefit. Other alternative minimization algorithms, such as dual annealing
algorithm [a stochastic optimization method used to perform nonlinear least-square
fitting and parameter uncertainty quantification (Chen and Fu 2022; Zelinski et al.
2022; Farrington et al. 2023)] and MATLAB’s fmincon with multistart routines could
also be used to fit the model (it is noteworthy to highlight the fact that the dual
annealing method is particularly very effective in conducting effective quantification
of parameter uncertainties).

2.2.3 Initial Conditions of the Behavior-Epidemiology Model

The numerical values of the initial conditions used in the simulations of the behavior-
epidemiology model (4) are described below. First of all, the initial values of some
of the state variables of the model for individuals in group 1, notably the number
of exposed individuals in group 1 (E7), the number of symptomatic individuals in
group 1 (I1) and the number of asymptomatic infectious individuals in group 1 (A1),
were obtained from fitting the model with the cumulative mortality data. Specifically,
the data fitting shows that the estimated values of E;(0), I;(0) and A;(0) are 5754,
2338 and 2501, respectively. The remaining initial values of the state variables of the
model were either obtained from demographic/census data or assumed, as described
below. Since the simulations are started at the beginning of the epidemic (i.e., near the
disease-free equilibrium), we set the initial cumulative mortality, D(0), to D(0) = 1
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Fig. 2 Data fitting, parameter estimation and cross-validation of the behavior-epidemiology model (4),
using SARS-CoV-2 cumulative mortality data for the United States during the first wave of the pandemic
(corresponding to the period from March Ist, 2020 to June 18th, 2020). a Least-squares fitting of the
behavior-epidemiology model (4), showing the cumulative COVID-19 mortality generated from the model,
compared to the observed cumulative mortality data for the United States during the first wave [obtained from
the Johns Hopkins University COVID-19 repository (CSSE 2020)]. b Simulation results of the behavior-
epidemiology model (4), depicting the daily COVID-19 mortality for the United States, as a function of
time, predicted by the behavior-epidemiology model using the fixed and estimated parameters tabulated
in Tables 3 and 4, respectively, in comparison to the observed daily mortality data for the United States
during the first wave [obtained from the Johns Hopkins University COVID-19 repository (CSSE 2020)]. The
behavior-epidemiology model was fitted to the data from March 1st, 2020 until May 29th, 2020 (depicted
by a dashed black line in the figure), and cross-validated by comparing the model output with the observed
mortality data for the remaining 20 days (depicted with a green curve). Three of the initial conditions of the
behavior-epidemiology model [namely E1(0), 71(0) and A1 (0)] were estimated from fitting the model with
the aforementioned cumulative mortality data. The estimated values were E1(0) = 5754, I1(0) = 2338
and A1(0) = 2501, respectively. The remaining initial conditions were set to (using US census data near the
disease-free equilibrium): N(0) = 3.314 x 108, $2(0) =1, E2(0) =0, I(0) =0, A2(0) =0, R (0) =
0, R2(0) =0, D(0) =1, and S1(0) = N(0) — E1(0) — I1(0) — A1 (0) — S2(0) (Color figure online)

(CSSE 2020), while the initial total population size of the United States is set at
N(0) = 3.314 x 10% (Epstein and Lofquist 2023). Further, we set the initial number
of recovered individuals to zero (i.e., R1(0) = R»>(0) = 0) and the initial size of the
susceptible pool in group 2 is set to 1 (i.e., S2(0) = 1), while the initial values of the
remaining state variables of the model for individuals in group 2 are set to zero (i.e.,
E>(0) = I(0) = A2(0) = 0). The initial susceptible population in group 1 (S7(0))
can be obtained by taking the difference between the initial total population (N (0))
and the sum of the initial values of the remaining state variables of the model with a
non-zero initial value [i.e., we set S1(0) = N(0) — (E1(0) + I;(0) + A1 (0) + S»(0))].

2.2.4 Insight from Fitting the Behavior-Epidemiology Model
The numerical values or sizes of the estimated parameters of the behavior-
epidemiology model (4), tabulated in Table 4, can provide important insight into

the impact of human behavior changes on the trajectory and burden of the disease
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during the simulation/fitting period (i.e., during the first wave of the pandemic in the
United States). In particular, since the estimated value of the modification parameter
accounting for the variability in disease transmission by asymptomatically-infectious
individuals, in comparison to symptomatically-infectious individuals, is n, = 2.275,
it follows that the transmission rate for asymptomatic infectious individuals (81,) is
at least twice the size of the transmission rate for symptomatic infected individuals
(B). Furthermore, asymptomatic infectious individuals accounted for at least 70% of
all new SARS-CoV-2 cases in the United States during the first wave of the pandemic
(this is computed from the ratio: n, 8/(na B + B) x 100%). Thus, it follows from
the parameter estimation associated with fitting the behavior-epidemiology model
with the cumulative SARS-CoV-2 mortality data, that this study confirms that asymp-
tomatic infectious individuals were the main drivers of the SARS-CoV-2 pandemic
in the United States during the first wave (Huff and Singh 2020; Nikolai et al. 2020;
Ngonghala et al. 2020a).

Table 4 also shows that the estimated value for the product of the maximum rate
of behavior change attributed to fatigue to adherence to the public health interven-

tions implemented in the United States during the first wave (ag 1)» and its associated

probability of influence (q{l), given by 0‘{1 q{l = 5.681 x 107> per day, is excep-
tionally small. Hence, it can be inferred (from the very small value of the product
a‘zf lq'zf 1) that behavior change due to fatigue to adherence to interventions was negli-
gible (if at all) during the first wave of the pandemic in the United States. Similarly,
the estimated values for the product of parameters associated with behavior change
attributed to contact (i.e., a{,q¢, = 9.337 x 1072 per day and a5, ¢5, = 9.223 x 1073
per day), as well as those for the parameters associated with the proportion of non-
symptomatic individuals in the community (i.e., a57g5] = 2.597 x 1073 per day)
were relatively small, suggesting behavior changes due to these metrics (contacts and
size of non-symptomatic pools) were of marginal impact on the trajectory or burden
of the pandemic during the first wave in the United States. On the other hand, Table 4
shows that the value of the product of the parameters associated with behavior change
due to the level of symptomatic transmission in the community (i.e., O‘izqiz =0.110
per day) and disease-induced mortality (i.e., a{5g], = 0.305 per day) were rela-
tively large (in comparison to the sizes of the other estimated parameters). Hence,
behavior change due to these metrics (level of symptomatic transmission and disease-
induced mortality) play significant role in driving the pandemic during the first wave
in the United States (i.e., the most influential forms of behavior change were linked
to mortality followed by the level of symptomatic transmission during the first wave
of the SARS-CoV-2 pandemic in the United States). The behavior change functions
will be further analysed in Sect.3.1 (and their impact on disease transmission and
disease-induced mortality will also be discussed there).

Finally, it is intuitive to determine how well the model does in capturing the trajectory
and burden of the pandemic. This is explored below. It should be, first of all, be recalled
that the behavior-epidemiology model was fitted with the cumulative mortality data
for the period from March 1, 2020 to May 29, 2020 (shown by the curves to the left
of the dashed vertical line in Fig. 2). The fitted model was then used to cross-validate
the data for the next 20 days, from May 30, 2020 to June 18, 2020 (as shown by the
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green curve, depicted to the right of the dashed vertical line). Data from the Johns
Hopkins University COVID-19 repository (CSSE 2020) (see also Fig.2) shows that
the observed cumulative mortality for the SARS-CoV-2 pandemic in the United States
at the end of the cross-validation period (i.e., the cumulative mortality as of June 18,
2020) was 121, 131, and the value predicted by the model (green curve for June
18, 2020) is 119, 264 (representing about 1.54% underestimate of the actual data).
It should also be stated that during the fitting period (from March 1, 2020 to May
29, 2020), the observed cumulative mortality was 106,290. Since there were 121,132
cumulative deaths at the end of the cross-validation period, it follows that there were
121,132 — 106,290 = 14,842 additional deaths during the cross-validation period.
Figure 2 predicts an additional 119,264 — 106,290 = 12,974 deaths during the cross-
validation period (which underestimates the corresponding additional mortality by
about 12.59%).

The goodness of the fitting depicted in Fig.2 can also be measured in terms of the
sum of the squares of the associated residuals, as follows. Let Y; be the observed data
(for example, the cumulative mortality or daily mortality) on day i, and let Y; be the
model’s output data on day i. Thus, the residual on day i is ¥; — Y; and the sum of
squared residuals (SSR), also defined as the sum of squared error (SSE), is given by
Martcheva (2015):

n 2
SSE = (ZY,»—?Z-) , (15)

i=k

where £ is the starting point of the sum and 7 is the total number of the given or available
(observed) data points. The SSE on the cumulative mortality during the fitting period
(i.e., March 1, 2020, to May 29, 2020) and during the cross-validation period (i.e.,
May 30, 2020, to June 18, 2020) for the model (4) was 4.99 x 107 and 1.49 x 107,
respectively. Similarly, the SSE values for the predicted daily mortality during the
fitting period (i.e., the period from March 1, 2020, to May 29, 2020) and during the
cross-validation period (i.e., the period from May 30, 2020, to June 18, 2020) for the
behavior-epidemiology model (4) were computed to be 4.87 x 10 and 9.02 x 107,
respectively. These values of the SSE will be compared with the corresponding SSE
values for the behavior-free equivalent of the model (4) (given in Appendix A) to
determine which of the two models best fits (i.e., has lower SSE values) the observed
cumulative mortality data. That is, the goodness of fit (to the cumulative mortality data
in Fig. 2a, and the predicted daily mortality data in Fig. 2b) will be compared with the
goodness of fit for the version of the behavior-epidemiology model (4) that does not
explicitly incorporate human behavior (given by Eq. (A.1) in Appendix A, with the
corresponding fits depicted in Fig. 3a, b, respectively).

2.3 Fitting the Behavior-Free Model with Data
In order to fully understand the impact of explicitly accounting for human behavior
elements in the model, it is instructive to also consider the version of the behavior-

epidemiology model (4) without the behavior elements (known as the behavior-free
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Table 3 Values of the fixed parameters of the behavior-epidemiology (4) and behavior-free (A.1) model

Parameter Value Source

1 11,670 daly_1 Epstein and Lofquist (2023), Arias et al. (2020)

D 0.80 (dimensionless) COVID (2023)

" 1/(77.8 x 365) day_1 Arias et al. (2020)

Em 0.5 (dimensionless) Ngonghala et al. (2020a), Eikenberry et al. (2020)

r 0.4 (dimensionless) Ma et al. (2021)

o 1/3.6 day ! Li et al. (2020)

Vi 1/5 day~! Niu et al. (2021)

Ya 1/5 day~! Kissler et al. (2020)

ty 0 (day) Assumed

¢ 1/1500 (human—!) Assumed

K 5,000,000 (dimensionless) Assumed

Tab!e 4 Values of the fitted Parameter Estimated (fitted) value

(estimated) parameters of the

l():)havior-epidemiology model aiﬂlcz 9.337 x 103 day_l
as,45; 9.223 x 1073 day~!
alhgiy 0.110 day~!
oAighy 2.597 x 1073 day~!
bl 0.305 day~!
ol ] 5.682 x 1075 day~!
B 0.661 day~!
Na 2.275 (dimensionless)
§=58,=5 2.505 x 10~4 day !

model. The equations for the behavior-free model, obtained by setting all the behavior-
related parameters of the behavior-epidemiology model (4) to zero (i.e., we consider
the model (4) with p = ¥, = 3, = @[/fz =Yy =y = I//zfl = 0), are given by
Eq. (A.1) in Appendix A. The resulting behavior-free model (A.1) will also be fitted
using the same cumulative mortality data used to fit the behavior-epidemiology model
and fixed parameters given in Table 3. Here, too, some parameters of the behavior-
free model (namely, B, n, and §), as well as initial conditions [namely E;(0), /1(0)
and A1(0)] will be estimated from the data fitting. The remaining initial conditions
used in the fitting were (i.e., the same as used for the corresponding state variables
of the behavior-epidemiology model): N(0) = 3.314 x 108, $2(0) = 1, E»2(0) =
0, 2(0) = 0, A2(0) = 0, R1(0) = 0, R2(0) = 0, D(0) = 1, and $1(0) = N(0) —
E1(0)—11(0)—A1(0)—S2(0). The results obtained, for fitting the behavior-free model,
are depicted in Fig. 3, and the values of the estimated parameters (obtained from fitting
the behavior-free model) were obtained to be 8 = 0.152 per day, n, = 5.349 and
8 = 1.611 x 10~ per day. Similarly, the estimated values of the initial conditions
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Fig.3 Datafitting, parameter estimation and cross-validation of the behavior-free model (A.1), using SARS-
CoV-2 cumulative mortality data for the United States during the first wave of the pandemic (corresponding
to the period from March Ist, 2020 to June 18th, 2020). a Least-squares fitting of the behavior-free model
(A.1), showing the cumulative COVID-19 mortality generated from the model, compared to the observed
cumulative mortality data for the United States during the first wave (obtained from the Johns Hopkins
University COVID-19 repository (CSSE 2020). b Simulation results of the behavior-free model (A.1),
depicting the daily COVID-19 mortality for the United States, as a function of time, predicted by the
behavior-free model using the fixed parameters tabulated in Table 3 and estimated parameters obtained
through fitting (i.e., 8 = 0.132 per day, n, = 5.349 and § = 1.611 x 1074 per day), in comparison
to the observed daily mortality data for the United States during the first wave [obtained from the Johns
Hopkins University COVID-19 repository (CSSE 2020)]. The behavior-free model was fitted to the data
from March 1st, 2020 until May 29th, 2020 (depicted by a dashed black line in the figure), and cross-
validated by comparing the model output with the observed mortality data for the remaining 20 days
(depicted with a green curve). Three of the initial conditions of the behavior-free model (namely £ (0), 71 (0)
and A1(0)) were estimated from fitting the model with the aforementioned cumulative mortality data.
The estimated values were E1(0) = 1,388,568, 11(0) = 10,3571 and A;(0) = 350,357, respectively.
The remaining initial conditions were set to (using US census data near the disease-free equilibrium):
$5(0) = 1, E2(0) = 0, 15(0) = 0, A2(0) = 0, R1(0) = 0, R2(0) = 0, D(0) = 1, N(0) = 3.314 x 108,
and S1(0) = N(0) — E1(0) — I1(0) — A1(0) — R1(0), R1(0) = 0 (Color figure online)

were: E1(0) = 1,388,568, I1(0) = 10,3571 and A1(0) = 350,357, respectively.
Figure 3 also shows a general qualitative trend, but with some important differences,
in comparison to the results of the fitting obtained for the behavior-epidemiology
model (4), as described below.

2.3.1 Insights from Fitting the Behavior-Free Model (A.1) with Data

First of all, since the estimated value of the modification parameter accounting for the
variability in disease transmission by asymptomatically-infectious individuals (n,),
for the behavior-free model, is n, = 5.41, it follows that, for the behavior-free model
(A.1), the transmission rate for asymptomatic infectious individuals (87,) is at least
five times as much as that of symptomatic infected individuals (8). Thus, the behavior-
free model shows that asymptomatic infectious individuals are a lot more influential
(in generating more new cases), in comparison to the model with human behavior
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(in other words, adding heterogeneity due to human behavior changes during an epi-
demic significantly reduces the relative infectiousness or influence of asymptomatic
transmission). Furthermore, specifically for this model, the fitting shows that asymp-
tomatic infectious individuals accounted for about 84% (1,8/(n.B + B) x 100%) of
all new cases during the first wave of the pandemic in the United States [recall, from
Sect. 2.2.2, that asymptomatic individuals accounted for 70% of new cases using the
behavior-epidemiology model (4)]. Since most of the modeling and empirical studies
suggest that asymptomatic individuals accounted for between 50 and 70% of new cases
(Subramanian et al. 2021; Moghadas et al. 2020; Tindale et al. 2020), this study shows
that the model without human behavior (unlike with human behavior) over-estimated
the influence of asymptotic transmission in the United States.

It should be recalled that the model was fitted with data for the period from March
1,2020 to May 29, 2020 (shown by the curves to the left of the dashed vertical line in
Fig.3). The fitted model was then used to cross-validate the data for the next 20 days,
May 30, 2020 to June 18, 2020 (as shown by the green curve, depicted to the right of the
dashed vertical line). Data from the Johns Hopkins repository (CSSE 2020) (see also
Fig.3) showed that the observed cumulative mortality for the SARS-CoV-2 pandemic
in the United States at the end of the cross-validation period (i.e., the cumulative
mortality as of June 18, 2020) was 121,131, and the value predicted by the model
(green curve for June 18, 2020) is 115,865 (representing about 4.35% underestimate
of the actual data). Recall that the behavior-epidemiology model (4) underestimated
this data by about 1.54%. It should also be stated that during the fitting period (from
March 1, 2020 to May 29, 2020), the observed cumulative mortality was 106,290.
Since there were 121,132 cumulative deaths at the end of the cross-validation period,
it follows that there were 121,132 — 106,290 = 14,842 additional deaths during the
cross-validation period. Figure 3 predicts an additional 115,866 — 106,290 = 9576
deaths during the cross-validation period, which represents an underestimation of the
observed additional mortality by about 35.49%. It is worth recalling, from Sect. 2.2.4,
that the behavior-epidemiology model (4) only underestimated this data (the additional
mortality during the cross-validation period) by about 12.59%. In other words, the
behavior-epidemiology did far better in predicting the additional mortality during the
cross-validation period than the corresponding behavior-free model.

It can be seen, by comparing Figs.2 and 3, that the behavior-epidemiology model
(4) captures the trend for daily and cumulative SARS-CoV-2 mortality, in compari-
son to the behavior-free model. For example, while the behavior-free model failed to
accurately capture the mortality data during the beginning of the first wave of the pan-
demic in the United States [see bottom left regions of Fig. 3a, b, where the model (blue
curve) overestimates the data (red dots)], the behavior-epidemiology model accurately
captures the mortality trends during the beginning of, and throughout the, pandemic
wave (see Fig.2a, b). The failure of the behavior-free model to accurately capture
the SARS-CoV-2 mortality trends during the early stages of the pandemic wave may
be attributed to not explicitly accounting for positive behavior change (such as wear-
ing a mask, social-distancing etc.) induced by behavior metrics (such as rising levels
of disease-induced mortality, hospitalizations, symptomatic cases in the community).
Furthermore, the behavior-epidemiology model does better in predicting the time when
peak daily mortality is reached, in comparison to the behavior-free model (compare
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Fig.2b with Fig. 3b). Specifically, the data depicted in Figs.2 and 3 show that the peak
mortality occurred on April 14, 2020. The estimated times for the peak daily mortality
generated from the behavior-epidemiology and the behavior-free model were April
18, 2020 and April 26, 2020, respectively (showing that the behavior-epidemiology
model did better in predicting the time when daily mortality peaks).

Furthermore, the SSE computed from fitting the behavior-free model (A.1) [com-

puted using Eq. (15)] with the cumulative mortality during the fitting period (i.e.,
March 1, 2020, to May 29, 2020) and the cross-validation period (i.e., May 30, 2020,
to June 18, 2020), depicted in Fig.3a, was 7.81 x 108 and 1.36 x 108, respectively.
These SSE values are 15.65 and 9.13 times larger than the corresponding SSE values
for the behavior-epidemiology model (given in Sect.2.2.4). Similarly, the SSE value
computed for the daily mortality predicted by the behavior-free model during the fit-
ting and cross-validation periods, depicted in Fig. 3b, are 1.31 x 107 and 3.12 x 10°,
respectively [these SSE values are 2.69 and 3.46 times larger than those obtained
for the behavior-epidemiology model (4), given in Sect.2.2.4)]. Hence, in summary,
these goodness of fit computations show that the behavior-epidemiology model (4)
does far better in fitting the observed cumulative mortality data during the fitting and
cross-validation periods, in addition to providing a more accurate prediction of the
daily mortality observed during these period. It is worth noting (from Sects.2.2.4 and
2.3.1), however, that the SSE values for the cumulative mortality are always larger
than those for the daily mortality predicted by the two models (this is to be expected,
considering the “filing up” effect of cumulative numbers, in relation to daily numbers
(King et al. 2015). Furthermore, as stated earlier, the SSE values for the behavior-
epidemiology model (4) (for both cumulative and daily mortality mortality) is always
lower than the corresponding ones generated using the behavior-free model, emphasiz-
ing the superiority of the behavior-epidemiology model to better capture the observed
trajectory (and burden) of the disease and predicts its future trajectory (and burden).
The SSE values, together with the other statistical metrics for measuring the goodness
of fit for the two models [notably the root mean squared error (RMSE) and root mean
squared logarithmic error (RMSLE)] are tabulated in Table 5 and 6 of Appendix B.
This table shows that the behavior-epidemiology model consistently has lower errors
than the behavior-free model.
Fig. 10 show the correlation between the reported daily mortality and the predicted
daily mortality generated using the behavior-epidemiology (Fig. 10a) and the behavior-
free models (Fig. 10b), from which it can be seen that the correlation coefficients
(R) and the r-squared (R?) (Ratner 2009) associated with the behavior-epidemiology
model (R = 0.96 and R = 0.92) are closer to one than those for the behavior-free
model (R = 0.88 and R* = 0.77), signifying that the behavior-epidemiology model
more accurately captures the daily mortality trend. Hence, it can be concluded, based
on the visual goodness of fit, the difference in projected mortality, and the afore-
mentioned statistical metrics, that the behavior-epidemiology model (4) performed
better in capturing the trend and projecting the trajectory of both cumulative and daily
mortality during the first wave of COVID-19 in the United States compared to the
behavior-free model (A.1).
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2.4 Basic Qualitative Properties of the Behavior-Epidemiology Model
Before analysing the asymptotic properties of the behavior-epidemiology model (4),

it is instructive to analyse its basic qualitative properties first of all. This is done below.
We define the following biologically-feasible region for the model:

I
Q= {(Sl, So, Ev, Ea, Iy, I, A1, As, Ry, Ry) e R N(t) < —, forall 1 > 0}.
"

(16)

Theorem 2.1 Suppose that the initial values S1(0), S2(0), E1(0), E2(0), 1;(0), I5(0),
A1(0), A2(0), R1(0), R2(0) of the model (4) are non-negative. The region Q2 is
positively-invariant and bounded with respect to the model (4).

Proof The equation for the rate of change of the total human population, obtained by
adding all equations in (4), is given by:

N(@) =T — uN — 8.1} — 8 1>. (17)

By the non-negativity of the parameters and state variables of the model (4), it follows
from (17) that

N() <T1— uN. (18)

Hence, if N > ﬂ, then N < 0. Thus, it can be shown using a standard comparison
theorem (Lakshmikantham et al. 1989) on (18) that

I m\ _,
N@) < —+(N(0)——)e ur (19)
iz 2

where N (0) represents the initial population (i.e., the population at time ¢ = 0).

I I
Hence, N(t) < — if N(0) < —. If the initial population exceeds the carrying
7
I
capacity (i.e., N(0) > —> then the solutions are initially outside the region 2 but
nw

I1
the solution trajectory will eventually enter the region €2 since tlim N(t) = —. Thus,
—> 00

every solution of the model (4) with initial conditions in €2 remains in €2 for all time
t > 0, and those outside €2 are eventually attracted into €2. In other words, the region
2 is positively-invariant and attracts all initial solutions of the model (4). O
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2.5 Asymptotic Stability of Disease-Free Equilibria

The model (4) has two disease-free equilibria (DFE), namely a trivial adherents-free
DFE (denoted by [E1) and a non-trivial adherents-present DFE (denoted by ), given,
respectively, by:

E, = (S}, S5, Ef, E5, I}, I}, A}, A5, R{, R}) = (N*,0,0,0,0,0,0,0,0,0,0) and
Es = (S}, 8%, B}, B3, If, I3, A, A, R, RY) = (S§, N* — §7,0,0,0,0,0,0,0,0,0),
(20)

where (for a5,q5, # 0 and ro # 1),

N* (il + vy + 1) n
S§ = — and N* = —, 1)
0521‘]21(”0 -1 1%

a() Cc

with ro = ?—qlf (for a5,g5, # 0). It follows from (21) that the DFE [, exists if and
@149

only if rp > 1. This result is summarized below.

Theorem 2.2 The behavior-epidemiology model (4) has a trivial disease-free equilib-
rium (Eq, which always exists) and a non-trivial disease-free equilibrium (I8, ), which
exists whenever ro > 1.

The quantity r is the ratio of the contact-mediated capacity of non-adherent individ-
uals to become adherents (at the rate o{,47,) to that of adherent individuals becoming
non-adherents (at the rate a3,¢5,). In other words, ry > 1 implies that non-adherent
individuals adhere to interventions and move to the adherents group at a rate faster
than that at which adherent individuals become non-adherent and move to the non-
adherent group (i.e., ro > 1 means the overall rate of transition from group 1 to group
2 exceeds that for group 2 to group 1). The trivial disease-free equilibrium (E) is not
epidemiologically realistic, since it does not have any individuals in group 2 (hence,
it will not be considered or analysed in this study).

2.5.1 Local Asymptotic Stability of the Non-trivial DFE of the Behavior-Epidemiology
Model

In this section, the next generation operator method (van den Driessche and Watmough
2002; Diekmann et al. 1990) will be used to analyse the local asymptotic stability
property of the non-trivial disease-free equilibrium (E;) of the behavior-epidemiology
model (4). The implementation of the next generation operator method requires the
computation of two matrices, one that keeps track of new infection terms (denoted by
F) and the other that tracks the linear transition terms (denoted by V). It can be shown,
using the notation in van den Driessche and Watmough (2002), that the matrices F
and V, corresponding to the behavior-epidemiology model (4), are given, respectively,
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by:
- S h St ST
00 ﬂm ﬁ(l—Sm)m ﬂnum ,Bna(l_gm)m
S5 255 53 25
00— Em)m Bl —&p) N Bna(l — Em)m Bna(l — &m) N
F=100 0 0 0 0 ;
00 0 0 0 0
00 0 0 0 0
00 o0 0 0 0 |
(22)
and,
WHo+pu —U 0 0 0 0
W U+o+4p 0 0 0 0
y_|-=ne 0 Waytu+sn 0 0 0
= 0  —(-no —W Vi + 1+ 8 0 0
—ro 0 0 0 Wy, +n1 -U
0 —ro 0 0 -W Uy, +n
(23)
where,
c ¢ ST ns _ns f c ¢ S;
U =395 N+ +ay1q1 + 3 and W= 12912 3 (24)

It is convenient to define the following quantity (where p is the spectral radius):
Re = p(FVhH. (25)

The result below follows from Theorem 2 of van den Driessche and Watmough (2002)
(note that closed form expression for R¢ is not readily available, due to the high
dimensionality of the associated next generation matrices, and has to be computed
numerically).

Theorem 2.3 The non-trivial disease-free equilibrium of the behavior-epidemiology
model (4) (which exists only if ro > 1) is locally-asymptotically stable if Rc < 1, and
unstable whenever R¢c > 1.

The quantity R¢ is the control reproduction number of the behavior-epidemiology
model (4). It measures the average number of new cases generated by a typical infec-
tious individuals if introduced in a population where some public health intervention
measures (notably nonpharmaceutical interventions, such as the use of face mask
in public) are implemented. The epidemiological implication of Theorem 2.3 is that
a small influx of infected individuals into the community will not generate a large
outbreak in the community if the control interventions can bring (and maintain) the
threshold quantity R¢ to a value less than one. Using the baseline values of the fixed
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and estimated parameters in Tables 3 and 4 in Eq. (25) shows that the value of R ¢ dur-
ing the first wave of the SARS-CoV-2 pandemic in the United States was R¢ ~ 2.42
(showing that the non-trivial equilibrium is unstable, and suggesting significant out-
break of the disease). It is worth stating that the value of the control reproduction
number associated with the behavior-free model (A.1), denoted by R ¢ and computed
by substituting the parameters in Table 3 and the estimated parameters for the behavior-
free model (namely B = 0.132 per day, n, = 5.349 and § = 1.611 x 10~* per day)
into the corresponding expression for its associated control reproduction number, is
ﬁc = 1.81. Most modeling studies have suggested a control reproduction number
for the first wave of SARS-CoV-2 in the United States in the range [2-4] (Gumel
et al. 2021; Mallela et al. 2022). Thus, the behavior-free model, unlike the behavior-
epidemiology model, may have under-estimated the burden (or severity) of the first
wave in the United States.

The epidemiological implication of local asymptotic stability result given in The-
orem 2.3 is that the disease can be effectively controlled (when Rc < 1) if the initial
sizes of the sub-populations of the behavior-epidemiology model (4) lie within the
basin of attraction of the non-trivial disease-free equilibrium. However, this disease-
free equilibrium may not be globally-asymptotically stable due to the possible presence
of backward bifurcation (a dynamic phenomenon characterized by the co-existence of
multiple stable attractors, including the disease-free equilibrium and a stable endemic
equilibrium, when the associated reproduction number of the model is less than one)
(Gumel et al. 2021). As demonstrated in Gumel (Gumel 2012), models that account
for differential susceptibility, such as the behavior-epidemiology model (4) (which
has two susceptible classes, with varying infection rates), could undergo backward
bifurcation. Other epidemiological factors that could cause backward bifurcations in
disease transmission models include the use of an imperfect vaccine (Gumel 2012;
Safi and Gumel 2011; Glaubitz and Fu 2023), re-infection (Gumel 2012; Sharomi
and Gumel 2009, 2011) and vaccine-derived immunity waning at a slower rate than
natural immunity (Gumel 2012). Global asymptotic stability of the disease-free equi-
librium of these models can generally be established if the conditions that cause the
backward bifurcation are relaxed. For instance, the global-asymptotic stability of the
disease-free equilibrium of the behavior-free model (A.1) is established in Theorem
A.1 of Appendix A).

3 Numerical Simulations of Behavior-Epidemiology Model

The behavior-epidemiology model (4) will now be simulated, using the baseline val-
ues of the fixed and estimated parameters of the model tabulated in Tables 3 and 4,
to assess the impacts of disease-related metrics (namely, contacts with individuals
from another group, level of disease-induced mortality, level of symptomatic trans-
mission, proportion of non-symptomatic individuals and intervention fatigue in the
community) on inducing behavior change (as measured in terms of the back-and-forth
transitions between the two behavior groups considered in this study) during the first
wave of the SARS-CoV-2 pandemic in the United States. Simulations will also be
carried to assess the impact of the various behavior change functions and changes in
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the value of parameter that accounts for the proportion of exposed individuals who
become asymptomatically-infectious at the end of the exposed period (r) on disease
burden (specifically, cumulative mortality) during the first wave. It should be empha-
sized that the aforementioned proportion r (of asymptomatic individuals) can change
over time due to numerous factors, such as increases in population-wide immunity
due to reinfection or the emergence of a new variant (a systematic review by Yu
et al. 2022) showed that the proportion of individuals infected with the Omicron vari-
ant that were asymptomatically-infectious was much higher, in comparison to those
infected with the Delta variant). Hence, it is crucial to assess (through numerical sim-
ulation) the impact of changes in the proportion of exposed individuals who become
asymptomatically-infectious at the end of exposed period (r) on the disease trajectory,
burden and human behavior with respect to adherence, or lack thereof, to public health
interventions. These simulations are described below.

3.1 Relative Influence of Disease Metrics on Inducing Behavior Change in the
Community

In this study, behavior change is measured in terms of the transition from the adherent
(non-adherent) to the non-adherent (adherent) group. These transitions, or associated
behavior change functions (v;;; i, j = {1, 2}; i # j), are influenced by the following
disease metrics: contacts with individuals from another group (captured by the func-
tions wf2, wzc 15 given by Eqgs. (8), (9), respectively), the level of disease transmission
by symptomatic individuals [represented by 1p{2, given by (10)], the level of non-
symptomatic individuals in the community [represented by 5}, given by (11)], the
level of disease-induced mortality []5, given by (12)] and the level of intervention

fatigue [Wéfl , defined in (13)] in the community. The behavior change functions (¥7,,

Vs 1//{2, ¥y, vl and wzfl) are depicted in Fig. 4, from which it follows that behavior
change (as measured in terms of transition from group 1 to group 2 or vice versa) is
most influenced by two disease metrics: the level of disease-induced mortality in the
community (red curve in Fig.4a) followed by the level of symptomatic transmission
(blue curve in Fig.4a). As shown in Fig. 4b), behavior change from group 2 to group 1
due to contact is more influential during the very early stage of the first wave (brown
curve in Fig.4b). As the outbreak progresses, however, this mechanism of behavior
change loses influence to, for example, behavior change due to contact with individuals
in group 2 (light blue curve in Fig. 4b). Additionally, it is also observed that behavior
change due to the presence of non-symptomatic individuals in the community (gold
curve in Fig.4b) is slightly lower when the number of symptomatic cases significantly
increase but otherwise remains nearly constant throughout the first wave). Behavior
change due to intervention fatigue was of very marginal (or no) influence during the
first wave (dark blue curve in Fig.4b). In summary, the simulations in Fig.4 show
that the level of disease-induced mortality and disease transmission by symptomatic
individuals were the main drivers for positive behavior change from group 1 (non-
adherent) to group 2 (adherent) during the first wave of the SARS-CoV-2 pandemic
in the United States. The disease metric related to contact and the proportion of non-
symptomatic individuals in the community were largely of marginal impact while the
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Fig.4 Simulations of the behavior-epidemiology model (4) assessing the impact of disease-related metric
on behavior change during the first wave of COVID-19 in the United States. The rate of behavior change a
due to infection (Wiz) and mortality (Wi’%) and b due to contact with individuals in group 2 (wfz), contact
with individuals in group 1 (¥5,), presence of non-symptomatic individuals in the community (77) and

fatigue (szl) plotted as a function of time. The figure is generated using baseline parameter values from
Tables 3 and 4 (Color figure online)

metric related to fatigue being inconsequential in inducing significant behavior change
during the first wave of COVID-19 in the United States.

3.2 Effect of Behavior Change on Mortality

In this section, the behavior-epidemiology model (4) is simulated to assess the impact
of the five behavior change metrics (namely metrics with respect to contacts with
members of the other group, level of mortality, symptomatic transmission, propor-
tion of non-symptomatic individuals and intervention fatigue level in the community)
on disease burden (specifically, cumulative mortality). The results obtained for the
cumulative mortality are depicted in Fig.5. For these simulations, the product of the
respective maximum behavior change rate («;;) and the associated probability of
influence in individuals in group j to move to group i (g;;) are multiplied by 2-fold
(magenta curve), 5-fold (green curve) and 10-fold (red curve) and are compared with
the baseline scenario (blue curve).

Fig.5 shows that behavior change in favor of transition from the non-adherent group
(group 1) to the adherent group (group 2) due to contact individuals in group 1 have
with those in group 2 (as measured by af,g{,) reduces cumulative mortality (albeit
marginally) with increasing levels of the overall transition rate («{,¢{,), in compar-
ison to the baseline scenario (Fig.5a). On the other hand, transition from group 2 to
group 1 due to contacts individuals in group 2 have with those in group 1 (as measured
by the product (a5, g5,) increases cumulative mortality (albeit marginally), in relation
to the baseline (Fig. 5b). Far more significant reductions in cumulative mortality are
recorded for the behavior change transitions from group 1 to group 2 due to the level of
symptomatic transmission (Fig. 5c) and disease-induced mortality (Fig. Se) in the com-
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munity, with the latter resulting in far more significant reduction. Furthermore, while
the behavior change transition from group 2 to group 1 due to the size of the propor-
tion of non-symptomatic individuals also (marginally) increases cumulative mortality
(Fig. 5d), behavior change due to the level of intervention fatigue has essentially no
effect on cumulative mortality in the community during the first wave (Fig. 5f). These
simulations show that the behavior change metric that increases cumulative mortality
the most is the change that induces transition from group 2 to group 1 due to the size
of non-symptomatic individuals in the community (Fig. 5d), followed by the behavior
change from group 2 to group 1 due to contact (Fig. 5b). Thus, individuals in group 2
could let their guard down (and transition to group 1) based on the rising levels of non-
symptomatic individuals in the community and/or contacts they have with individuals
in group 1, the thereby causing more infections and mortality. On the other hand,
behavior change from group 1 to group 2 due to mortality has the highest impact in
reducing cumulative mortality (Fig. 5e), followed by corresponding behavior change
due to level of symptomatic transmission (Fig.5c). In summary, the simulations in
Fig.5 show that (positive) behavior change due to level of disease-induced mortality
and symptomatic transmission greatly reduces cumulative mortality during the first
wave of the SARS-CoV-2 pandemic in the United States, while (negative) behavior
change due to level of non-symptomatic individuals or contact with individuals in
group 1 increases cumulative mortality during the first wave of the pandemic in the
United States.

3.3 Impact of size of proportion of exposed individuals who become
asymptomatically-infectious at the end of exposed period (r)

Asymptomatic infectious individuals were shown, in Sect.2.2.4, to account for a siz-
able proportion of new SARS-CoV-2 cases during the first wave in the United States
(Huff and Singh 2020; Nikolai et al. 2020; Ngonghala et al. 2020a). In this section,
the impact of the parameter accounting for the proportion of exposed individuals that
become asymptomatic after the exposed period (r) on disease burden and inducing
behavior change will be assessed.

3.3.1 Impact of the Proportion of Exposed Individuals Who Become
Asymptomatically-Infectious at the End of Exposed Period (r) on Control
Reproduction Nnumber (R¢)

The objective here is to quantify the impact of changes in the proportion of exposed
individuals who become asymptomatic at the end of the exposed period (7) on disease
burden [as measured in terms of the value of the control reproduction number, R¢ of
the behavior-epidemiology model (4)], [given by Eq. (25)]. Figure 6a depicts a profile
of R, as a function of r, generated by using the baseline values of the parameters in
Tables 3 and 4, from which it follows that the control reproduction number (hence,
disease burden) increases with increasing values of the proportion of exposed indi-
viduals who become asymptomatically-infectious at the end of the exposed period
(r). This is intuitive, since asymptomatic infectious individuals are expected to have
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Fig.5 Simulations of the behavior-epidemiology model (4) assessing the impact of behavior change metrics
on the cumulative mortality as a function of time. The impact on cumulative mortality is shown by increasing
the product of the maximum rate of behavior change (; ) and its associated parameter of influence (¢; ;) by
2-fold, 5-fold and 10-fold and comparing the obtained cumulative mortality with that of the baseline scenario.
The impact on cumulative mortality is assessed by amplifying the above-mentioned parameters related to
behavior change due to a contact with individuals in group 2 (a{,¢{,), b contact with individuals in group
1 (aglqgl), ¢ level of symptomatic transmission (aliZin)’ d proportion of non-symptomatic individuals
in the community («5{¢57), e disease-induced mortality (e5¢{3) and f fatigue to intervention (a'zf | q'zf D
by 2-fold, 5-fold and 10-fold from their baseline values. The baseline figure (i.e., cumulative mortality
generated using parameter values from Tables 3 and 4) is depicted with a blue curve while magenta, green,
and red curves project cumulative mortality when the respective behavior change parameters are amplified
by 2-fold, 5-fold and 10-fold, respectively, with remaining parameter held at their baseline values (Color
figure online)

more contacts in the community, thereby generating more new cases (in comparison to
symptomatic individuals, who may be bed-ridden or in self-isolation; thereby having
limited or no contact with the public). However, when the value of the parameter for
the relative infectiousness of asymptomatic individuals, in relation to symptomatic
infectious individuals (7, ) is reduced from its estimated baseline value of n, = 2.275
to n, = 0.85, for example, while all other parameters are kept at their baseline val-
ues in Tables 3 and 4, the result obtained show that the control reproduction number
(Rc) decreases with increasing values of r (Fig.6b). Hence, this result shows that
if the relative infectiousness of asymptomatic infectious individuals is lower than
that of symptomatic individuals (for example if asymptomatic individuals have lower
contacts or lower viral load and transmission capacity, in comparison to symptomatic
individuals), then an increase in the proportion of exposed individuals who are asymp-
tomatic can reduce disease burden. In other words, this study shows that the size of
asymptomatic infectious individuals (as measured by the parameter r) could lead to
an increase or a decrease in disease burden in the community, depending on whether
or not the relative infectiousness of asymptomatic infectious individuals is larger or
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Fig.6 Simulations of the behavior-epidemiology model (4) assessing the impact of change of the proportion
of exposed individuals who become asymptomatic at the end of the exposed period (r) on the control
reproduction number (R ). An increase in r can a increase or b decrease R ¢. a Generated by calculating
Rc, given by Eq. (25), for varying values of » between 0 and 1, with remaining parameter values as in
Tables 3 and 4. b is similarly generated by varying r between 0 and 1, n, = 0.8 and remaining parameter
values as in Tables 3 and 4

lower than the relative infectiousness of symptomatic infectious individuals (i.e., this
depends on whether r > 1 or r < 1). Similar threshold dynamics for the proportion
of symptomatic individuals were theoretically observed in Pant and Gumel (2024).

3.3.2 Impact of the Proportion of Exposed Individuals Who Become
Asymptomatically-Infectious at the End of Exposed Period (r) on Mortality

The objective here is to quantify the impact of changes in the proportion of exposed
individuals who become asymptomatic at the end of the exposed period (r) on SARS-
CoV-2 mortality during the first wave in the United States. Here, too, the behavior-
epidemiology model (4) is simulated using the baseline parameter values given in
Tables 3 and 4, with varying values of r. The results obtained are depicted in Fig. 7.
The profile of the cumulative SARS-CoV-2 mortality in the United States during the
first wave, as a function of r is depicted in Fig. 7a. This figure show that the cumulative
mortality increases with increasing values of r until a peak is reached (at about r =
0.46), above which the cumulative mortality decreases, reaching zero at r = 1 (this
is intuitive since r = 1 corresponds to the case that all exposed individuals become
asymptomatic at the end of the exposed period, and, in the formulation of the behavior-
epidemiology model, it was assumed that asymptomatic infectious individuals do not
suffer disease-induced mortality). Thus, this study shows the existence of a critical
threshold for the proportion of exposed individuals who become asymptomatic at
the end of the exposed period that maximizes the cumulative SARS-CoV-2 mortality
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during the first wave in the United States. Specifically, if » = 0.46 (i.e., 46% of exposed
individuals do not show clinical symptoms of SARS-CoV-2 at the end of the exposed
period, while the remaining 54% do so), cumulative SARS-CoV-2 mortality in the
United States is maximized. Above this threshold value, the cumulative SARS-CoV-2
mortality significantly decreases (reaching zero when all exposed individuals do not
show symptoms of the disease at the end of the exposed period). This result shows
that a strategy that significantly increases the proportion of exposed individuals who
become asymptomatic at the end of the exposed period (e.g., rapid testing, detection
and treatment of exposed (i.e., newly-infected but not yet infectious) individuals) will
significantly reduce the cumulative mortality of SARS-CoV-2 during the first wave in
the United States. Furthermore, the behavior-epidemiology model is further simulated
using the baseline parameter values in Tables 3 and 4 to generate the profile of the
maximum daily SARS-CoV-2 mortality during the first wave of the pandemic in the
United States, as a function of the proportion of exposed individuals who become
asymptomatic at the end of the exposed period (r). The results obtained, depicted
in Fig.7b, also show an increase in the maximum daily mortality with increasing
values of r until a peak is reached at »r = 0.64, and the maximum daily mortality
decreases thereafter (in other words, simulating the behavior-epidemiology model
with r = 0.64, and all other parameters as given in Tables 3 and 4, resulted in the
highest peak in the daily SARS-CoV-2 mortality during the first wave). Thus, based
on the parameter values used in the simulations in this section, the current study
identifies two distinct threshold values of the parameter r (for the proportion of exposed
individuals that become asymptomatic at the end of the exposed period) that maximize
cumulative and daily mortality, respectively. While the daily SARS-CoV-2 mortality
is maximized during the first wave when the proportion of exposed individuals who
become asymptomatic at the end of the exposed period is 64% (this is equivalent to
maximizing the mortality burden on the healthcare system if measured on a daily basis),
the cumulative mortality is maximized when the proportion is 46% (this is equivalent to
maximizing the overall mortality burden on the healthcare burden from the beginning
of the pandemic until the end of the first wave). The profiles of the cumulative and
daily SARS-CoV-2 mortality, as functions of time, for the two threshold values of r
(i.e., r = 0.46 and r = 0.64) are depicted in Fig. 11 (in Appendix C).

3.3.3 Impact of the Proportion of Exposed Individuals Who Become
Asymptomatically-Infectious at the End of Exposed Period (r) on Human
Behavior

Finally, the behavior-epidemiology model (4) is simulated to assess the impact of the
change in the level of the proportion of exposed individuals who become asymptomatic
at the end of the exposed period () on inducing human behavior changes during the
first wave of the pandemic in the United States. Specifically, this is assessed by gen-
erating the profiles of the number of susceptible individuals in the adherent group
(i.e., S»(t)) for various values of r between 0 and 1. Furthermore, these simulations
are carried out for various values of the modification parameter for the infectiousness
of asymptomatically-infectious individuals, in relation to the infectiousness of symp-
tomatic individuals (n,) to assess whether or not the infectiousness of asymptomatic
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Fig.7 Simulations of the behavior-epidemiology model (4) assessing the impact of change in the proportion
of exposed individuals who become asymptomatic at the end of the exposed period (r) on mortality. The
change in a cumulative mortality and b maximum daily death is displayed for varying values of r. The
vertical dashed line in a depicts the value of r that maximizes cumulative mortality while in b it depicts a
value of r that maximizes daily mortality. The figures are generated by varying the value of r between 0
and 1 in the behavior-epidemiology model (4) while taking the remaining parameter values from Tables 3
and 4

individuals also affects the impact of » on inducing the changes in behavior during the
first wave. The results obtained, for the dynamics of the number of susceptible adherent
individuals (S2), as a function of » and for various values of 7,, are depicted in Fig. 8.
This figure shows, first of all, that the profile of S> decreases with increasing values of
r (i.e., as the proportion of exposed individuals who become asymptomatic at the end
of the exposed period increases, the impact of behavior change to induce transition
from the non-adherent susceptible group, Si, to the adherent susceptible group, Sz,
decreases; hence, the number of individuals in the S, class decreases). Furthermore, for
decreasing values of r € [0, 0.8], the population of adherent susceptible individuals
($2) increases from near zero, rises to a peak and essentially reaches a stable positive
equilibrium value for all values of n, used in the simulations. Similarly, while the peak
and positive equilibrium values of S, corresponding to the case where r was chosen to
be below its baseline value of r = 0.4 (i.e., r = 0 or r = 0.2) are always above those
corresponding to the baseline scenario (compare the green and gold curves in Fig. 8
with the blue curves for the baseline scenario with » = 0.4). Conversely, for cases
where r exceeds the baseline value of r = 0.4 (i.e., r = 0.6 and r = 0.8), the peak
and positive equilibrium values of $> are consistently lower than the baseline profile
compare the magenta and black curves in Fig. 8 with the blue curve). The profile of
S is the highest when r = 0, regardless of the value of 1,. In other words, behavior
change that induces the transition from the non-adherent susceptible group (S7) to
the corresponding adherent susceptible group (S>) is the highest when all exposed
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individuals become symptomatic at the end of the exposed period (this is intuitive
since the presence of a large number of symptomatic individuals in the community is
highly likely to induce behavior change from the non-adherent susceptible class, Sy,
to the adherent susceptible class, S>). It should also be mentioned that the increase or
decrease in the values of S at the peak and at the end of the first wave, in relation to
the corresponding values for the baseline scenario (value of r = 0.4), become more
pronounced as the value of 1, increases from values below one to values through and
above one. For instance, for the case with r = n, = 0.8, the values of S, at the peak
and at the end of the first wave were 2.56 x 10® and 2.44 x 108, respectively. These
values correspond to a 12.62% and 12.86% decrease from the corresponding values
obtained for the baseline value of r = 0.4, respectively (compare the black and the blue
curves in Fig. 8a). On the other hand, the values of S, at the peak and at the end of the
first wave corresponding to the case with r = 0.8 and 1, = 2.275 were 1.91 x 10% and
5.98 x 107, which correspond to a reduction of 30.04% and 64.40% from the respec-
tive baseline values (compare the black and blue curves in Fig. 8d). It is also worth
noting from Fig. 8 that the profile of S> becomes negligible whenever r = 1 (see red
curves in Fig. 8), regardless of the value of 1, . For instance, it can be seen from the red
curve in Fig. 8d, for the case where n, = 2.275 and r = 1 (i.e., all exposed individuals
become asymptomatic at the end of the exposed period), that the equilibrium value of
S7 is about 2550. In other words, behavior change that induces transition from the non-
adherent susceptible group (S7) to the adherent susceptible group (S2) is minimized
when all exposed individuals become asymptomatic at the end of the exposed period
(this is also intuitive considering the fact that when all exposed individuals remain
asymptomatic at the end of the exposed period, non-adherent susceptible individuals
are highly unlikely to change their behavior and become adherent because they do not
see people with symptoms of the SARS-CoV-2 pandemic in the community).

It should be noted from Fig. 8§ that for the case where all exposed individuals become
asymptomatically-infectious at the end of the exposed period (i.e., » = 0), the profile
of S, is independent of the value of the parameter n, (for the relative infectiousness
of asymptomatically-infectious, in comparison to symptomatic infectious individuals;
that is, the profile of S», shown by the green curves in Fig. 8, are all the same). This
result is intuitive considering the fact that, for the case r = 0, all exposed individuals
become symptomatic (hence, there is no asymptomatic transmission in the community,
thereby negating the impact of 1,, a parameter associated with the transmissibility of
asymptomatic infectious individuals). It can also be seen from Fig. 8 that, for values
of r chosen in the range r € [0.2, 0.8], an increase in the value of the parameter 7,
causes the corresponding S> profile to peak sooner (by shifting the curves to the left),
in addition to decreasing the size of the peak attained and decreasing the equilibrium
value of S, (for example, compare the black curves in all four subplots of Fig. 8 with
increasing 7, value). This phenomenon is observed because an increase in the 7,
corresponds to an increase in the relative contribution of asymptomatic infectious
individuals in spreading the disease and, thus, an increase in the control reproduction
number (R¢)forr € (0, 1]. For example, for the baseline value of r = 0.4 (depicted by
the blue curves in all four subplots of Fig. 8) and n, setat 0.8, 1, 1.5 and 2.275 (while the
remaining parameters of the behavior-epidemiology are kept at their baseline values
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in Tables 4 and 3), the control reproduction number (R ¢) of the model is computed
to be 1.45, 1.60, 1.90 and 2.42, respectively.

Similar dynamics were observed for the profiles of S; for various values of r and n,, as
depicted in Fig. 9. Here, the profiles of S; plotted for the case of all infected individuals
being symptomatic (i.e., r = 0) are identical. When asymptomatically-infectious
individuals transmit at a rate lower than symptomatically-infectious individuals (i.e.,
when n, < 1, such as the case with n, = 0.8 < 1, as depicted in Fig. 9a), an increase
in the proportion of exposed individuals who become asymptomatically-infectious at
the end of the exposed period (r) decreases the control reproduction number (hence,
decreases the disease incidence). In other words, an increase in r for n, < 1 leads to
a slower decrease in S7. On the other hand, if n, > 1 (as observed in Fig.9c, d), the
control reproduction number increases with increasing values of r (and this causes
a sharper decrease in the profile of §; as the value of r increases). For instance, for
the baseline value of n, = 2.275 and r chosen to be 0, 0.2, 0.4, 0.6, 0.8 and 1 (as
depicted in Fig.9d), the control reproduction number of the behavior-epidemiology
model takes the value 1.58, 2.00, 2.42, 2.84, 3.26 and 3.68, respectively. A contour
plot of the control reproduction number (R¢) of the behavior-epidemiology model,
as a function of r and ,, is depicted in Fig. 12 of Appendix C. This figure shows that
the control reproduction number increases (decreases) with increasing value of r if
na > 1 (n, < 1). For the case of r = 0, this figure shows a control reproduction of
1.58 for any value of 7.

4 Discussion and Conclusion

This study presents a novel mathematical model for the transmission dynamics and
control of the SARS-CoV-2 pandemic in the United States that explicitly incorporates
the impacts of changing human behavior. Specifically, the model was formulated by
stratifying the total population into two groups based on their adherence or lack thereof
to public health interventions, and considered five metrics for human behavior, namely
behavior change due to: (a) information received by members of one group from
members of the other group (b) the level of symptomatic transmission in the community
(c) the size of the proportion of non-symptomatic individuals in the community, (d)
the level of disease-induced mortality in the community and (e) the degree of fatigue
to adherence to intervention and mitigation measures (such as wearing a face mask in
public, observing social distancing and community lockdowns etc).

The resulting two-group behavior-epidemiology model, which takes the form of a
relatively large deterministic system of nonlinear differential equations, was parame-
terized using observed cumulative SARS-CoV-2 mortality data, at the national level,
for the United States during the first wave of the pandemic (March to June, 2020).
The model was then rigorously analysed to gain qualitative insights into its dynam-
ical features. Such analyses revealed that the disease-free equilibrium of the model
is locally-asymptotically stable whenever a certain epidemiological quantity (known
as the control reproduction number, denoted by R¢) is less than one, and unstable
when the quantity exceeds one. The epidemiological consequence of this result is that
the disease can be effectively controlled in the community (when R¢ < 1) if the
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Fig.8 Simulations of the behavior-epidemiology model (4) assessing the impact of change in the proportion
of exposed individuals who become asymptomatic at the end of the exposed period (r) on human behavior.
The impact of r on human behavior is assessed by plotting the number of susceptible individuals in group
2 (8p) for several values of r (specifically, r = 0,r = 0.2,r = 0.4,r = 0.6,r = 0.8 and r = 1) for
an, =08, bn, =1,¢n, = 1.5and n, = 2.275. d (corresponding to n, = 2.275) shows that the
equilibrium of S curve when r = 1 is minute (approximately 2549 people) but non-zero. The figures
are generated using the behavior-epidemiology model (4) with aforementioned values of r and n, while
keeping the remaining parameter values as in Tables 3 and 4 (Color figure online)

initial number of infected individuals introduced into the community is small enough.
In other words, significant outbreaks will not occur if the intervention and mitigation
measures implemented can bring (and maintain) this threshold quantity to a value less
than one. The model was then simulated to quantify the impact of behavior changes
on the trajectory and burden of the disease, in addition to assessing the population-
level impact of public health intervention and mitigation measures (specifically, basic
nonpharmaceutical interventions, such as the use of face mask by individuals in the
adherent group).

As stated above, the two-group behavior-epidemiology model was fitted and cross-
validated using the observed cumulative mortality data for the United States during
the first wave of the SARS-CoV-2 pandemic (which corresponds to the period from
March 1, 2020, to June 18, 2020; we used the segment of the data from March 1,
2020 to May 29, 2020 for fitting the model, and the data for the remaining seg-
ment, from May 30, 2020 to June 20, 2020, for cross-validation). We showed very
good fit for the cumulative mortality data (and we used the estimated parameters,
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Fig.9 Simulations of the behavior-epidemiology model (4) assessing the impact of change in the proportion
of exposed individuals who become asymptomatic at the end of the exposed period (r) on human behavior.
The impact of r on human behavior is assessed by plotting the number of susceptible individuals in group
1 (S7) for several values of r (specifically, r = 0,r = 0.2,r = 0.4,r = 0.6,r = 0.8 and r = 1) for
an, =08 bn, =1, ¢n, = 1.5and d n, = 2.275. The figures are generated using the behavior-
epidemiology model (4) with aforementioned values of r and 71, while keeping the remaining parameter
values as in Tables 3 and 4 (Color figure online)

together with the fixed parameters of the behavior-epidemiology model, to predict the
observed daily mortality for the SARS-CoV-2 pandemic during the first wave in the
United States, showing a very good prediction). We showed that, unlike for the case
of the behavior-epidemiology, the behavior-free analog of the behavior-epidemiology
model (i.e., the two-group model without human behavior changes explicitly incorpo-
rated into the model) did not do as well in correctly capturing the observed trajectory
and burden of the pandemic during the first wave. Specifically, while the behavior-
epidemiology model projected the daily mortality trend better during the fitting and
cross-validation periods, the behavior-free model did not capture the correct trajectory
(particularly during the early stages) of the pandemic and underestimated the observed
additional mortality that occurred during the cross-validation period by about 35.49%
(the behavior-epidemiology model underestimated this metric by only 12.59%). We
compared the goodness of fit of the two models using various error metrics, such as
sum of squared error (SSE), and showed, in all of these metrics, that the behavior-
epidemiology model did far better in fitting the observed data (i.e., capturing the correct
trajectory of the pandemic during the first wave) and in predicting the observed daily
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mortality (for the first wave), in comparison to the behavior-free model. In other words,
this study clearly shows that explicitly incorporating human behavior into epidemio-
logical models enhances their ability to correctly capture observed trends/trajectory
of the pandemic, as well as enhancing their capability to make accurate prediction
of the future course and burden of the pandemic. This is, perhaps, one of the earlier
studies to clearly show (and quantify) the importance of explicitly including elements
of human behavior into epidemiological models for the transmission dynamics and
control of infectious diseases of major public health significance (such as the SARS-
CoV-2 pandemic).

A major feature of the SARS-CoV-2 pandemic is the role asymptomatic infectious
individuals play in generating new infections. Numerous modeling studies showed
that this cohort of infectious individuals account for a sizable proportion of new cases
of SARS-CoV-2 in the community, estimated to be in the range between 50 and 70%
(Subramanian et al. 2021; Moghadas et al. 2020; Tindale et al. 2020; Sah et al. 2021,
Han et al. 2020; Johansson et al. 2021). Our simulations of the behavior-epidemiology
and behavior-free model showed that, while the former estimated the proportion of
new cases generated by asymptomatic infectious individuals to be about 70%, the latter
model estimated this proportion to be about 84% (suggesting that the behavior-free
model may have over-estimated the role of asymptomatic infectious individuals to
generate new cases). In other words, the behavior-epidemiology model appears to do
better than the behavior-free model even under this metric (of correctly quantifying
the role of asymptomatic infectious individuals in generating new infections in the
community).

We carried out extensive numerical simulations of the behavior-epidemiology models
to determine which of the five behavior metrics considered in this study were more
influential in inducing positive behavior changes (to minimize risk of acquisition
and/or transmission of infection) during the first wave of the SARS-CoV-2 pandemic
in the United States. The results obtained showed that the behavior change metric that
induces the greatest positive behavior change (as measured in terms of the transition
from the non-adherent group to the adherent group) is the behavior change due to the
level of disease-induced mortality in the community, followed by behavior change due
to the level of symptomatic individuals in the community (in other words, our study
shows that, during the first wave, people are more likely to change behavior, and begin
to strictly adhere to public health intervention and mitigation measures implemented, if
they see a significant increase in mortality due to the disease in addition to a significant
increase in the number of people with symptoms of the disease in the community).
Our simulations also showed that behavior change induced by fatigue to interventions
(i.e., wearing a mask, in this case) had only a very marginal (or essentially no) effect in
inducing a negative behavior change (from adherent to non-adherent group) during the
first wave of the pandemic in the United States. In other words, our study showed that
the overwhelming proportion of individuals in the adherent group did not experience
significant level of fatigue to intervention during the first wave of COVID-19 pandemic
in the United States.

Extensive numerical simulations were also carried out to assess the impact of the the
proportion of exposed individuals who become asymptomatically-infectious at the end
of the exposed period (denoted by the parameter ») on the burden of the SARS-CoV-2
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pandemic, in addition to inducing behavior change to interventions, during the first
wave in the United States. We showed that, using the baseline values of the param-
eters of the behavior-epidemiology model in the simulations (where asymptomatic
infectious individuals were at least twice more infectious than symptomatic infectious
individuals), the control reproduction number (R¢) of the behavior-epidemiology
model increases with increasing values of r. Thus, in this case, an increase in the pro-
portion of exposed individuals who eventually become asymptomatically-infectious
resulted in an increase in the burden of the pandemic (since an increase in R ¢ implies
increase in average number of new cases and, potentially, increase in number of hos-
pitalizations and deaths). On the other hand, if asymptomatic infectious were not
as infectious as symptomatic infectious individuals (i.e., if the parameter 7, for the
relative infectiousness of asymptomatic individuals is less than one), while all other
parameters of the model are kept at their baseline values, the control reproduction num-
ber decreases with increasing values of r. In other words, our study showed that the
ability of asymptomatic infectious individuals to significantly increase the burden of
the pandemic depends on the relative infectiousness of asymptomatic infectious indi-
viduals, in comparison to the infectiousness of symptomatic individuals. Nonetheless,
this result highlights the importance of reducing the level of asymptomatic trans-
mission in the community (through strategies such as widespread testing and rapid
isolation and treatment of asymptomatic individuals).

Simulations of the behavior-epidemiology model further showed the existence of two
critical threshold values of the proportion r, of exposed individuals who become
asymptomatic infectious at the end of the exposed period, namely one that maximizes
cumulative SARS-CoV-2 mortality and another that maximizes the daily SARS-CoV-
2 mortality during the first wave of the pandemic in the United States. Specifically, we
showed, based on the parameter values used in the simulations, the cumulative mortal-
ity is maximized if the proportion of exposed individuals who become asymptomatic
at the end of the exposed period is 46%. Similarly, daily SARS-CoV-2 mortality (i.e.,
the peak of daily mortality during the first wave) is maximized if the proportion r is
64%. In summary, these results show that there is a threshold value of r (estimated to
be 46% in our study) that maximizes the overall burden of the disease on the healthcare
system during the entire duration of the first wave, and another (estimated to be 64%)
that maximizes a single-day mortality burden on the healthcare system.

Finally, simulations were carried out to assess the impact of the parameter r (for the
proportion of exposed individuals who become asymptomatic) on inducing behavior
changes during the first wave of the pandemic. Specifically, simulations are car-
ried out for various values of the modification parameter for the infectiousness of
asymptomatically-infectious individuals, in relation to the infectiousness of symp-
tomatic individuals (n,) to assess whether or not the infectiousness of asymptomatic
individuals also affects the impact of r on inducing the changes in behavior dur-
ing the first wave. It was shown that, regardless of the value of the parameter 7,
used in the simulations (we considered n, < 1,7, = 1 and n, > 1), the pro-
file of susceptible individuals in the community who strictly adhere to public health
interventions (S3) is maximized (measured in terms of the peak and equilibrium val-
ues of S> curve) when all infectious individuals are symptomatic (i.e., r = 0). As
r increases (and exposed individuals begin to become asymptomatically-infectious
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at the end of the exposed period), the rate at which susceptible non-adherent indi-
viduals (i.e., individuals in the S; class) change their behavior to strictly adhere to
interventions (i.e., move to the S, class) decreases (i.e., the peak and equilibrium
values of the S, curves decrease under the scenario with increasing values of r from
0). When all infectious individuals are asymptomatic (i.e., r = 1), the profile of the
adherent susceptible population (S) is minimized (with a relatively small number
of individuals in the S, class at equilibrium). Thus, this study showed that, as the
number of exposed individuals who become asymptomatically-infectious at the end
of the exposed period (r) increases, the level or likelihood of positive behavior change
by non-adherent susceptible individuals (to become adherent susceptible individuals)
decreases. Thus, it can be concluded from this result that the likelihood or level of pos-
itive behavior change to public health interventions reduces for a disease where a large
proportion of exposed individuals become asymptomatically-infectious at the end of
the exposed period (this could be due to high level of community-wide immunity
against the disease or the emergence of new variants where most infected individuals
are asymptomatic, etc). Furthermore, although high values of r (i.e., high propor-
tion of exposed individuals who become asymptomatically-infectious at the end of
the exposed period) can increase R¢ (hence, increase disease incidence, particularly
if the effective contact rate of asymptomatically-infectious individuals exceed that
of symptomatically-infectious individuals), it can also decrease the level of positive
behavior change (from non-adherent to adherent) as well as reduce disease severity,
hospitalization and disease-induced mortality in the community. Thus, as more new
infected individuals become asymptomatically-infectious, the level of positive behav-
ior change, as well as disease severity, hospitalization and disease-induced mortality
in the community can be expected to significantly decrease (while new cases may
rise, particularly if asymptomatic-infectious individuals have higher contact rate, in
comparison to symptomatic infectious individuals).

Some of the limitations of this modeling study include: the behavior-epidemiology
model assumes that behavior change from one group to the other occurs only due
to the five metrics we enumerated (i.e., contact with individuals from a different
group, the level of symptomatic transmission in the community, the proportion of
non-symptomatic individuals in the community, the level of reported disease-induced
mortality in the community, and the level of intervention fatigue in the community).
However, there may be various other metrics that could induce behavior change during
apandemic like COVID-19 (for example, adherence could be forced upon a community
by the government). Moreover, the model does not explicitly account for individuals
who will never adhere to intervention due to socio-economic reasons [e.g., the case
of some meat factory workers during the SARS-CoV-2 pandemic (Chang et al. 2024,
Stewart et al. 2020)] or political polarization of the community (where some individ-
uals within segments of the community will simply deny the existence of the disease,
let alone adhere to intervention measures against it, due to their political or other lean-
ings). The latter limitation could be addressed by extending the two-group model to
a three-group model, where the additional group is for individuals in the community
who never change their non-adherent status.

Future work should explore fitting the proposed model to other time periods and finer
spatial resolutions, such as state and city levels. In addition, we envision that data from
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surveys, where participants are queried in different time periods of the pandemic about
their daily habits regarding contacts with other individuals outside their household (i.e.,
people within their social network), going to the office or places of worship, using face
masks, or their commuting choices (e.g., taking public transport), could help generate
data that can be used to improve the estimate of some of the parameters in the behavior
metrics introduced in this paper (Lazer et al. 2021).

Appendix A: Equations for the Behavior-Free Model

The behavior-free model, discussed in Sect.2.3 and obtained by setting behavior-
related parameters of the model (4) to zero (i.e., consider the model (4) with p =

Vi, = ¥5 = ‘Hz =Yy =y = wzfl = 0), is given by the following system of
nonlinear differential equations:

Si1(t) =TT — AS; — Sy,

So(t) = —(1 — em)AS2 — uSa.

Ei(t) = AS) — (0 + wE;,

Ey(t) = (1 —em)AS2 — (0 + W) Ea,
L)y =(0—=r0cE — (i + 1+ 8D,
L(t)=(1=r0cEy— (i + n+8) D,
A(t) =roE1 — (va + A1,

As(t) =roEy — (va + 1) Az,

Ri(t) = yili + yaA1 — 1Ry,

Ra(t) = vilh + yaAs — 1Ry,

(A1)

where the force of infection, A, for the behavior-free model (A.1) is as given by Eq. (3).
The state variables and parameters of the behavior-free model are also described in
Tables 1 and 2, respectively. Unlike the behavior-epidemiology model (which has two
disease-free equilibria), the behavior-free model only has the trivial adherent-free dis-
ease free equilibrium (denoted by E), given by Eq. (20). The associated reproduction
number of the behavior-free model (A.1), denoted by Rcx, can be obtained by setting
S5 and all the behavior-related parameters in the expression of the control reproduc-
tion number of the behavior-epidemiology model (4), R¢ given by (25), to zero. That
is,

B (1—-r)o Nal' o
R = R %k c c C [ ns ns = .
Cx C|52:0‘1'2‘112:°‘21‘121:0‘21‘121 :szlzo o+pu\yi+u+ S1 + Ya + 1

(A2)
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Using the next generation operator method described in Sect.?2.5, the following local
asymptotic stability result for the trivial adherent-free equilibrium of the behavior-free
model can be established.

Theorem A.1 The disease-free equilibrium K| of the behavior-free model (A.1) is
locally-asymptotically stable if Rcx < 1, and unstable whenever Rcy > 1.

As discussed in Theorem 2.3 [for the behavior-epidemiology model (4)], the epi-
demiological implication of Theorem A.1 is that the disease can be controlled (when
Rcx < 1) if the initial sizes of the sub-populations of the behavior-free model (A.1)
lie within the basin of attraction of the disease-free equilibrium. For such control to
be independent of the initial sizes of the sub-populations of the behavior-free model, a
global asymptotic stability result must be established for the disease-free equilibrium.
This is done below. We claim the following result.

Theorem A.2 The disease-free equilibrium | of the behavior-free model (A.1), given
by Eq. (20), is globally-asymptotically stable in Q whenever Rcy < 1.

Proof Consider the behavior-free model (A.1) with R¢, < 1. It follows, by solving
for S,, from the second equation in (A.1) that (where S>(0) is the initial size of the
adherent susceptible population):

t
$2(1) = $2(0) exp [—/0 (k+ (= e )ds],

from which it follows that
S>(t) - 0ast — oo.

Substituting S>(¢) = 0 into the equations for Ej, I», A and R in Eq. (A.1) shows
that:

(Ex (1), Ir(1), Ax(t), Ry(t)) — (0, 0, 0, 0) as t — oo.
Thus,
(S2(1), Ea(t), (1), A2(t), Ra(2)) — (0, 0, 0, 0, 0) as r — oo. (A3)

Substituting (S2(¢), E2(t), (1), Aa2(t), R2(1)) = (0, 0, 0, 0, 0) into the behavior-
free model (A.1) shows that the behavior-free model (A.1) reduces to the following
adherent-free sub-model:

S1(6) = T = 2uS1 — pSi,

Ei(1) =81 — (0 + WEi,

L) =0 =roEi - (yi +p+801, (A.4)
A1) =roEy — (va + A,

Ri(t) = yvili + yaA1 — Ry,
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I +naAr | . .
where now A, = (B) N with N representing the total population of non-
1

adherent individuals. It is convenient to define the following feasible region (which
can be shown to be positively-invariant using similar approach for proving Theorem
2.1) for the adherent-free sub-model (A.4):

I1
Q= {(Sl, E, 11, Ay, Rl) eRi CN1(t) < E} ,

for all ¥ > 0. The disease-free equilibrium of the adherent-free sub-model is given
by:

IT
]E* = (Sl*a El*a Il*a A1*9 Rl*) - (;7 07 05 07 O) . (AS)

The associated next generation matrices, F, and V, for the new infection and linear
transition terms (van den Driessche and Watmough 2002; Diekmann et al. 1990),
respectively, for the adherent-free sub-model are given, respectively, by:

S S
Oﬁ;*ﬂm;* o+Lu 0 0
Fi=|g o o] ad Vi=|-(U=-noyi+tu+d 0
0 0 0 —ro 0 Ya + 1

(A.6)

Thus, the basic reproduction number of this adherent-free sub-model is given by van
den Driessche and Watmough (2002), Diekmann et al. (1990):

Row = p(FV, ) =

B ( (1-r)o N Nal'o > (A7)

otpu\vitu+d vatp

It should be noted that R, is the same as Rcx [given by Eq. (A.2)]. We claim the
following result. O

Lemma A.1 The disease-free equilibrium E, of the adherent-free sub-model (A.4),
given by Eq. (A.S), is globally-asymptotically stable in Q. whenever Ro, < 1.

Proof Consider the adherent-free sub-model (A.4) with R, < 1. The proof is based
on using a comparison theorem (Lakshmikantham et al. 1989). The equations for the
rates of change of the infected compartments of the sub-model (A.4) can be written
as follows [where the next generation matrices F and V, are as defined in Eq. (A.6),
respectively]:

E (1) Eq(t) E(t)
T L) | ==V | @) | =J| @) |, (A.8)
Aq(t) A1(t) A1)
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where,
S 0174
J:ﬂ(l——) 000 |. (A9)
1 000
) : S1(1) . L .
Since, in Q., < 1 for all ¢, it follows that the matrix J is automatically non-

1
negative. Hence, the Eq. (A.8) can be written in terms of the following inequality:

Ei(t) Ei(1)
| ho | <FE-va | ho | (A.10)
A Ai(0)

If Rox < 1, then p(F V**]) < 1, which is equivalent to all eigenvalues of F, — V,
matrix being negative (Lakshmikantham et al. 1989). Hence, the linearized differential
inequality (A.10) is stable whenever R, < 1,s0 (E1(¢), I1(¢), A1(¢)) — (0,0, 0) as
t — oo for this system of linear ordinary differential equations. It follows, using a stan-
dard comparison theorem (Lakshmikantham et al. 1989), that: (E(¢), I1(¢), A1(t)) —
(0, 0, 0). Substituting E1(¢) = I1(t) = A1(t) = 0, into the differential equations for
the rate of change of the S; and R; compartments of the sub-model (A.4) gives:

I1
S1(t) > Six = — and R;(t) —> 0, as t — oo.
7

Hence, the disease-free equilibrium (E,.) of the sub-model (A.4) is globally-
asymptomatically stable in €2, whenever R, < 1.
That is,

S1(®), E1(t), L1 (), A1(t), R1(¢)) = (S1%, 0,0, 0, 0) ast — oco. (A.11)

]

Therefore, it follows, from Eqs. (A.3) and (A.11), that the disease-free equilibrium (E;)
of the behavior-free model (A.1) is globally-asymptomatically stable in €2 whenever
Rcsx < 1. This concludes the proof of Theorem A.2. O
The results of Theorem A.2 shows that, for the behavior-free model (4), bringing (and
maintaining) the associated reproduction threshold, Rc [defined in Eq. (A.2)], to a
value less than one is necessary and sufficient for the elimination of the pandemic in
the United States. Furthermore, this result rules out the presence of backward bifurca-
tion in the behavior-free model since no endemic equilibria exist when the associated
reproduction number, R ¢, is less than one [existence of endemic equilibria when the
associated reproduction number is less than one is a necessary condition for back-
ward bifurcation to occur at Rcx = 1 (Gumel 2012)]. It can also be shown that the
behavior-free model has at least one endemic equilibrium when R¢c, > 1. Hence,
the result in Theorem A.1 suggests that the model undergoes a transcritical bifurca-
tion at Rcx = 1 (where the globally-asymptotically stable disease-free equilibrium
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loses its stability to a stable endemic equilibrium when R ¢ in the neighborhood of
Rcx > 1). Itis noteworthy that even though the behavior-free model does have differ-
ential susceptibility (i.e., it has the two heterogeneous susceptible populations, S and
S>), such heterogeneity in susceptibility does not induce backward bifurcation [unlike
in other epidemiological models with differential susceptibility, such as those in Safi
and Gumel (2011), Glaubitz and Fu (2023), Nadim and Chattopadhyay (2020)]. This
may be attributed to the absence of recruitment or inflow of adherent individuals into
the population (i.e., recruitment into the S> compartment of the behavior-free model),
resulting in the depletion of the S, population over time. Recruitment into the S»
population could occur in at least the following three mechanisms: (a) direct inflow
(into S7) of a proportion of individuals newly recruited into the community, (b) tran-
sition from S; to S due to positive behavior change or (c) loss of infection-acquired
immunity by individuals in the R» class (it should be noted that both the behavior-free
and the behavior-epidemiology model assume that all individuals recruited into the
community (at the rate IT) are non-adherent initially). This result (about the absence
of backward bifurcation if one of the susceptible population is depleted asymptot-
ically) highlights the importance of recruitment into (i.e., continuous replenishment
of) each of the heterogeneous susceptible populations (or compartments) in sustaining
backward bifurcations in epidemiological models with differential susceptibility.

Appendix B: Statistical Metrics for Goodness of Fit for the Models: SSE,
RMSE, RMSLE and Correlation Coefficients

The comparison of goodness of fit of the behavior-epidemiology (4) and behavior-
free (A.1) models during the fitting period (i.e., March 1, 2020, to May 29, 2020) and
during the cross-validation period (i.e., May 30, 2020, to June 18, 2020) was made
in Sect.2.3.1 using SSE. It was observed that the behavior-epidemiology (4) has an
overall lower SSE. In this Appendix, we provide some additional metrics to compare
the goodness of fit of the two models.

Root mean squared error (RMSE) provides an average difference between observed
and model-predicted values. The RMSE can be expressed as a square root of the mean
of SSE (known as MSE) (Chai and Draxler 2014; Hodson 2022):

E
RMSE = MSE = |55 , (B.1)
n

where SSE is as defined in (15) and » is the total number of observations. Since the
observation (especially cumulative mortality) is large, it is also reasonable to consider
root mean squared logarithmic error (RMSLE), which involves taking the logarithm
of predicted and observed values. Specifically, the RMSLE is expressed as Kolozsvari
et al. (2021)

1” .

RMSLE = | =Y (log(¥; + 1) — log(¥; + 1))*, (B.2)
n
i=k
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Table5 The sum squared error (SSE), root mean squared error (RMSE) and root mean squared logarithmic
error (RMSLE) on observed cumulative and daily mortality data with respective projection from behavior-
epidemiology model (4) and behavior-free model (A.1) during data fitting period (March 1, 2020-May 29,
2020)

Behavior-epidemiology model Behavior-free model
SSE on cumulative mortality 4.99 x 107 7.81 x 108
SSE on daily mortality 4.87 x 100 1.31 x 107
RMSE on cumulative mortality 7.45 x 102 2.95 x 103
RMSE on daily mortality 2.33 x 102 3.81 x 102
RMSLE on cumulative mortality 0.28 1.53
RMSLE on daily mortality 0.34 1.42

Table6 The sum squared error (SSE), root mean squared error (RMSE) and root mean squared logarithmic
error (RMSLE) on observed cumulative and daily mortality data with respective projection from behavior-
epidemiology model (4) and behavior-free model (A.1) during data cross-validation period (May 30, 2020—
June 18, 2020)

Behavior-epidemiology model Behavior-free model
SSE on cumulative mortality 1.49 x 107 1.36 x 108
SSE on daily mortality 9.02 x 10° 3.12 x 100
RMSE on cumulative mortality 8.64 x 102 2.60 x 10°
RMSE on daily mortality 2.12 x 102 3.95 x 102
RMSLE on cumulative mortality 0.007 0.022
RMSLE on daily mortality 0.33 0.80

where Y; be the observed data on day i, Y; is the model’s output data on day i, k is the
starting point of the sum and 7 is the total number of the given or available (observed)
data points. We note that, similar to SSE, models with smaller values of RMSE and
RMSLE may be preferable. In particular, when these metrics yield a value of zero, it
indicates no discrepancy between the observed and predicted data -signifying a perfect
prediction by the model. The SSE, RMSE, and RMSLE values for both the behavior-
epidemiology and behavior-free models during the data fitting period are presented in
Table 5, while those during the cross-validation period are given in Table 6.

In Fig. 10, the reported daily mortality is plotted with predicted daily mortal-
ity obtained from the behavior-epidemiology model (4) (Fig. 10a) and behavior-free
model (12) (Fig. 10b) for the entire duration of the simulation. It is observed that
the correlation coefficients (R) and r-squared (R?) (Ratner 2009) associated with the
behavior-epidemiology model (R = 0.96 and R*> = 0.92) are closer to one than that
from the behavior-free model (R = 0.88 and R> = 0.77), thus signifying that the
behavior-epidemiology model more accurately captures the daily mortality trend.
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Fig. 10 Correlation between reported daily mortality and predicted daily mortality with a behavior-
epidemiology model (4) and b behavior-free model (12). The data points are given by blue circles while the
black line represents the best linear fit to the data. The correlation coefficient (R) for behavior-epidemiology
and behavior-free models are 0.96 and 0.88, respectively (Color figure online)

Appendix C: Miscellaneous Figures

See Figs. 11 and 12.
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Fig. 11 Simulation of the behavior-epidemiology model (4) depicting the impact of two specific values
of the proportion of newly infected individuals who become asymptomatically-infectious at the end of the
exposed period () on mortality. The a cumulative mortality and b daily mortality figures are generated for
values of » = 0.46 and r = 0.64 with remaining parameters as in Tables 3 and 4 (Color figure online)
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Fig. 12 Contour plot generated using the behavior-epidemiology model (4) depicting the impact of of the
proportion of exposed individuals who become asymptomatic at the end of the exposed period (r) and the
modification parameter for the infectiousness of asymptomatic individuals (7, ) on the control reproduction
number (R¢) (Color figure online)
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