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a b s t r a c t

The COVID-19 pandemic, caused by SARS-CoV-2, disproportionately affected certain seg-
ments of society, particularly the elderly population (which suffered the brunt of the
burden of the pandemic in terms of severity of the disease, hospitalization, and death).
This study presents a generalized multigroup model, with m heterogeneous sub-
populations, to assess the population-level impact of age heterogeneity and vaccination
on the transmission dynamics and control of the SARS-CoV-2 pandemic in the United
States. Rigorous analysis of the model for the homogeneous case (i.e., the model with
m ¼ 1) reveal that its disease-free equilibrium is globally-asymptotically stable for two
special cases (with perfect vaccine efficacy or negligible disease-induced mortality)
whenever the associated reproduction number is less than one. The model has a unique
and globally-asymptotically stable endemic equilibrium, for special a case, when the
associated reproduction threshold exceeds one. The homogeneous model was fitted using
the observed cumulative mortality data for the United States during three distinct waves
(Waves A (October 17, 2020 to April 5, 2021), B (July 9, 2021 to November 7, 2021) and C
(January 1, 2022 to May 7, 2022)) chosen to align with time periods when the Alpha, Delta
and Omicron were, respectively, the predominant variants in the United States. The cali-
brated model was used to derive a theoretical expression for achieving vaccine-derived
herd immunity (needed to eliminate the disease in the United States). It was shown
that, using the one-group homogeneous model, vaccine-derived herd immunity is not
attainable during Wave C of the pandemic in the United States, regardless of the coverage
level of the fully-vaccinated individuals. Global sensitivity analysis was carried out to
determine the parameters of the model that have the most influence on the disease dy-
namics and burden. These analyses reveal that control and mitigation strategies that may
be very effective during one wave may not be so very effective during the other wave or
waves. However, strategies that target asymptomatic and pre-symptomatic infectious in-
dividuals are shown to be consistently effective across all waves. To study the impact of the
disproportionate effect of COVID-19 on the elderly population, we considered the het-
erogeneous model for the case where the total population is subdivided into the sub-
populations of individuals under 65 years of age and those that are 65 and older. The
resulting two-group heterogeneous model, which was also fitted using the cumulative
mortality data for wave C, was also rigorously analysed. Unlike for the case of the one-
group model, it was shown, for the two-group model, that vaccine-derived herd immu-
nity can indeed be achieved during Wave C of the pandemic if at least 61% of the populace
is fully vaccinated. Thus, this study shows that adding age heterogeneity into a SARS-CoV-2
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vaccination model with homogeneous mixing significantly reduces the level of vaccination
coverage needed to achieve vaccine-derived herd immunity (specifically, for the hetero-
geneous model, herd-immunity can be attained during Wave C if a moderate proportion of
susceptible individuals are fully vaccinated). The consequence of this result is that vacci-
nation models for SARS-CoV-2 that do not explicitly account for age heterogeneity may be
overestimating the level of vaccine-derived herd immunity threshold needed to eliminate
the SARS-CoV-2 pandemic.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The novel coronavirus that emerged late in 2019 (named COVID-19), caused by SARS-COV-2, became the greatest public
health and socioeconomic challenge of mankind since the 1918 influenza pandemic (Morens & Fauci, 2007; Ngonghala, Iboi,
Eikenberry, et al., 2020; Samuel Faust et al., 2020). As of October 20, 2022, the COVID-19 pandemic accounted for over 623
million confirmed cases and 6.5 million deaths globally (World Health Organization). The control and mitigation strategies
against COVID-19 were mostly limited to the use of nonpharmaceutical interventions (NPIs), such as social-distancing,
community lockdown, the use of face covering (e.g., fabric and N-95 masks), quarantine, isolation and contact-tracing (Bo
et al., 2021; Flaxman et al., 2020; Ngonghala, Iboi, Eikenberry, et al., 2020), until safe and effective anti-COVID vaccines
(notably the Pfizer and Moderna vaccines) received Emergency Use Authorization (EUA) by the United States Food and Drugs
Administration (FDA) in December of 2020 (Pfizer, 2020). Other safe and effective COVID-19 vaccines, such as the Johnson &
Johnson and the Novavax vaccines, also received FDA-EUA during 2021 and 2022, respectively (Oliver et al., 2021; US Food and
Drug Administration, 2022). Some other vaccines, such as the Astrazeneca vaccine, were also developed and used in other
parts of the world (but not in United States, were only the aforementioned FDA-EUA vaccines were or are being used) (FDA,
2022). As of October 21, 2022, at least 12 billion dosages of COVID-19 vaccines have been administered globally (COVID-19
map). Despite the deployment of the aforementioned control and mitigation strategies, COVID-19 cases continued to rise
until the end of 2022, and numerous SARS-COV-2 variants of concern emerged (Katella, 2022; Mancuso et al., 2021;
Ngonghala et al., 2022).

Numerous mathematical models, of varying types, have been developed and used to gain insight into the transmission
dynamics and control of the pandemic. For instance, models that take the form of deterministic systems of nonlinear dif-
ferential equations have been used to assess the impacts of non-pharmaceutical interventions (such as face-masks usage,
social-distancing, quarantine and self-isolation) (Eikenberry et al., 2020; Gumel, Iboi, Ngonghala,& Elbasha, 2021; Ngonghala
et al., 2020a, 2021), pharmaceutical interventions (such as vaccination and the use of antiviral drugs) (Gumel et al., 2021a,
2021b; Iboi et al., 2020a; Ngonghala et al., 2022; Safdar et al., 2022) and human mobility between neighboring countries
(Brozak et al., 2021) on the transmission dynamics and control of the COVID-19 pandemic. Similarly, agents-based (or
individual-based) models have been used to study various aspects of the pandemic, such as the impact of contract tracing
(Almagor & Picascia, 2020; Hinch et al., 2021) and the impact of pharmaceutical and non-pharmaceutical interventions
against COVID-19 (Ferguson et al., 2020a; Hoertel et al., 2020; Kerr et al., 2021). Network models have been used to study the
impact of testing and contact tracing (Karaivanov, 2020) and social-distancing etc. (Calvetti et al., 2020; Huang et al., 2020;
Soures et al., 2020; Xue et al., 2020). Rahimi et al. reviewed various statistical models used to forecast the outbreak of COVID-
19 (Rahimi et al., 2021).

The COVID-19 pandemic has highlighted the importance of heterogeneity in disease transmission process (i.e., not
everyone is equally affected by the disease; some aremore likely to acquire infection, develop severe disease and/or die of the
disease than others). Specifically, heterogeneities arise in numerous forms, such as heterogeneities in mortality (where in-
dividuals with underlying health conditions, such as diabetes and hypertension, aremore likely to die of COVID-19 than those
without those co-morbidities (Callender et al., 2020; Djaharuddin et al., 2021; Omame et al., 2021; Sanyaolu et al., 2020;
Wang et al., 2020)), age (where humans of age 65 and older are more likely to suffer severe COVID-19 infection and mortality,
in comparison to those who are younger (Freed et al., 2021; Powell et al., 2020)), risk (where some humans, such as health
care workers or other essential workers (e.g., grocery workers, law enforcement agents etc.) are more at risk of acquiring
infection than others) (Chen et al., 2021, 2022; Ing et al., 2020; Iyengar et al., 2020; Matz et al., 2022; Mutambudzi et al., 2021)
and adherence to interventions (where some individuals are more likely to adhere to interventions than others) (Haischer
et al., 2020; Kricorian et al., 2022; Neely et al., 2022). Hence, it is paramount that models for the transmission dynamics of
COVID-19 explicitly incorporate the impacts of some of these heterogeneities. The need for heterogeneity in COVID-19
modeling becomes even more apparent as data shows disparity in vaccination coverage by not only age, but also by race
and ethnicity (Kriss et al., 2022). Very few models for the transmission dynamics of COVID-19 explicitly incorporates the
impact of heterogeneities in the modeling process. Age-structured models were developed and used to study the impact of
social-distancing (Singh & Adhikari, 2020) and non-pharmaceutical interventions (Richard et al., 2021) on the spread of
COVID-19. Elbasha and Gumel (Elamin H Elbasha and Abba B Gumel, 2021) used a generalized multigroup vaccination model
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to analyze the impact of heterogeneities on vaccine-induced herd immunity threshold. The current study focuses on
extending the study in (Elamin H Elbasha and Abba B Gumel, 2021) by developing a modeling framework for assessing the
impact of various (generalized) heterogeneities on the transmission dynamics of COVID-19 pandemic in a heterogeneous
population that uses an FDA-EUA COVID-19 vaccine.

The paper is organized as follows. The general heterogeneous model, which stratifies the total population into m sub-
groups, is formulated in Section 2. Themodel incorporates the use of FDA-EUA administered vaccines in the United States. The
basic theoretical results for the generalm � group model are also presented. The corresponding homogeneous version of the
model (i.e., the general model withm¼ 1) is rigorously analysed in Section 3. In addition to fitting the homogeneousmodel to
observed data, detailed global sensitivity analysis, with respect to the parameters of the model, is also carried out in this
section. Another special case of the general heterogeneous model with m ¼ 2 is considered and qualitatively analysed, with
respect to the asymptotic stability of its associated disease-free equilibrium, in Section 4. The main conclusions of the study
are presented in Section 5.

2. Formulation of the heterogeneous model

In the formulation of the COVID-19 transmission model in heterogeneous population (henceforth named heterogeneous
model), the total population is divided into m groups with k ¼ {1, 2, /m} distinct subgroups (with each subgroup k being
homogeneous). Each subgroup k is further subdivided into themutually-exclusive compartments of unvaccinated susceptible
(Sk(t)), fully-vaccinated susceptible (Vk(t)), exposed/latent (Ek(t)), pre-symptomatic infectious (Pk(t)), symptomatic infectious
(Ik(t)), asymptomatically-infectious (Ak(t)), hospitalized (Hk(t)), and recovered (Rk(t)) individuals. Hence, the total number of
individuals in any of the k subgroup at time t, denoted by Nk(t), is given by:

NkðtÞ ¼ SkðtÞ þ VkðtÞ þ EkðtÞ þ PkðtÞ þ Ak þ IkðtÞ þ HkðtÞ þ RkðtÞ:
Thus, the total population (in all k subgroups) at time t, denoted by N(t), is given by:

NðtÞ ¼
Xm
k¼1

NkðtÞ: (2.1)
It is assumed that the population of unvaccinated susceptible individuals in subgroup k(Sk) are fully-vaccinated using an
FDA-EUA vaccine with protective efficacy 3v,k at a per capita rate xv,k. In keeping with the CDC definition of being “fully
vaccinated” (Centers for Disease Control and Prevention (CDC), 2021), individuals in the fully-vaccinated susceptible
compartment, Vk, are those that have received the single dose of the Janssen/Johnson & Johnson COVID-19 vaccine or the
second dose of any of the mRNA SARS-CoV-2 vaccines at least 14 days earlier (Centers for Disease Control and Prevention
(CDC), 2021) (and the vaccine has not waned yet). Additionally, the unvaccinated susceptible population is increased by
the recruitment of individuals into the population (either by birth or by immigration) at a rate Pk, and by the waning of
vaccine-derived protective immunity in fully-vaccinated individuals (at a rate uv,k). Individuals in the Sk class acquire COVID-
19 infection at a rate lk (i.e., the force of infection), given by:

lk ¼
Xm
l¼1

akckl

�PP;lPlðtÞ þ PI;lIlðtÞ þ PA;lAlðtÞ þ PH;lHlðtÞ
NlðtÞ

�
; (2.2)

where ak is the average number of contacts made by individuals in group k during a time period and ckl is the proportion of
contacts that individuals in group k have with individuals in group l (Elamin H Elbasha and Abba B Gumel, 2021). Further-
more, the parameters PP;l, PI;l, PA;l, and PH;l represent the per contact transmission probability of infectious individuals (in
group l) that are pre-symptomatic (Pl), symptomatic (Il), asymptomatic (Al), and hospitalized (Hl), respectively. Mixing should
meet the closure relation akcklNk ¼ alclkNl (Glasser et al., 2012). In other words, the total number of contacts individuals in
group k have with individuals in group l must balance the total number of contacts individuals in group l have with in-
dividuals in group k. Exposed (or latent) individuals in the kth sub-population progress to pre-symptomatic class in the kth
sub-population at a rate sk, and a proportion rk of these individuals progress to the Ik class (at the rate rkjk), while the
remaining proportion, 1 � rk, progress to the Ak class (at the rate (1 � rk)jk). Symptomatic individuals in the kth sub-
population are hospitalized at a rate 4k, recover at a rate gI,k or die due to the disease at a rate dI,k. Asymptomatic infec-
tious individuals recover naturally at a rate gA,k, and recovered individuals are assumed not to acquire reinfectionwhile in the
recovered class. It is assumed that recovered individuals lose their infection-acquired (natural) immunity at a rate un,k.
Furthermore, natural death is assumed to occur in each epidemiological class at a rate mk.

Based on the above derivations and assumptions, the generalm-group heterogeneous model for the spread of COVID-19 in
a population that uses an FDA-EUA vaccine, is given by the following deterministic system of nonlinear differential equations
(where a dot represents differentiation with respect to time t):
830
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8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

_SkðtÞ ¼ Pk þ uv;kVkðtÞ þ un;kRkðtÞ � lkðtÞSkðtÞ � ðxv;k þ mkÞSkðtÞ;
_VkðtÞ ¼ xv;kSkðtÞ � ð1� ev;kÞlkðtÞVkðtÞ � ðuv;k þ mkÞVkðtÞ;
_EkðtÞ ¼ lkðtÞSkðtÞ þ ð1� ev;kÞlkðtÞVkðtÞ � ðsk þ mkÞEkðtÞ;
_PkðtÞ ¼ skEkðtÞ � ðjk þ mkÞPkðtÞ;
_IkðtÞ ¼ rkjkPkðtÞ � ð4k þ gI;k þ mk þ dI;kÞIkðtÞ;
_AkðtÞ ¼ ð1� rkÞjkPkðtÞ � ðgA;k þ mkÞAkðtÞ;
_HkðtÞ ¼ 4kIkðtÞ � ðgH;k þ mk þ dH;kÞHkðtÞ;
_RkðtÞ ¼ gI;kIkðtÞ þ gA;kAkðtÞ þ gH;kHkðtÞ � ðun;k þ mkÞRkðtÞ;

(2.3)

where, lk (the force of infection) is given by Equation (2.2). A flow diagram of the model (2.3) is depicted in Fig. 1 and the state
variables and parameters of the model are described in Tables 1 and 2, respectively.

Some of the main assumptions made in the formulation of the model (2.3) are:

1. Individuals in the vaccinated compartment (Vk) are fully-vaccinated. That is, in linewith the CDC definition of being fully-vaccinated, individuals in the Vk

class are those that have received the single dose of the Janssen/Johnson & Johnson COVID-19 vaccine or the two doses of any of the approved mRNA
COVID-19 vaccines at least 14 days earlier (Centers for Disease Control and Prevention (CDC), 2021).

2. Only unvaccinated susceptible individuals are vaccinated. Although the CDC recommends peoplewith COVID-19 symptoms towait to be vaccinated until
the completion of the isolation period (Centers for Disease Control and Prevention, 2022), this still opens the possibility for exposed (i.e., infected but not
infectious), pre-symptomatic, and asymptomatic individuals receiving the SARS-CoV-2 vaccine. Furthermore, although recovered individuals can choose
to get vaccinated, our model does not allow for this possibility.

The model extends the heterogeneous SkVkEkIkRk model in (Elamin H Elbasha and Abba B Gumel, 2021) by adding com-
partments for pre-symptomatic (Pk), asymptomatic (Ak) and hospitalized (Hk) infectious individuals and also accounting for
the waning of natural immunity (unk). The study also contributes by providing detailed asymptotic stability of the model
(including completed global asymptotic stability analysis of the disease-free and endemic equilibria of the homogeneous
version of the original heterogeneous model).

2.1. Basic qualitative properties

In this section, the basic qualitative property of the m-group model (2.3) will be explored. In particular, the invariance
properties of the solutions of the model will be rigorously analysed.

Consider the following biologically-feasible region for the model (2.3), with k ¼ {1, 2, …, m}:

U ¼

8><
>:
�
Sk;Vk; Ek; Pk; Ik;Ak;Hk;RkÞ2R8m

þ :
Xm
k¼1

ðSk þVk þ Ek þ Pk þ Ik þAk þHk þRkÞ � Nð0Þ

9>=
>;;

where N(0) is the total initial size of the population. We claim the following result:
Fig. 1. The flow diagram describing the m-group heterogeneous model (2.3), with k ¼ {1, 2, …, m} and the infection rate, lk, defined in (2.2).
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Table 1
Description of the state variables of the m-group heterogeneous model (2.3), with k ¼ {1, 2, …, m}.

State variable Description

Sk Number of non-vaccinated susceptible individuals in subgroup k
Vk Number of fully-vaccinated susceptible individuals in subgroup k
Ek Number of exposed (newly-infected but not yet infectious) individuals in subgroup k
Pk Number of pre-symptomatically-infectious individuals in subgroup k
Ik Number of symptomatically-infectious individuals in subgroup k
Ak Number of asymptomatically-infectious individuals in subgroup k
Hk Number of hospitalized individuals in subgroup k
Rk Number of recovered individuals in subgroup k

Table 2
Description of the parameters of the m-group heterogeneous model (2.3), with k ¼ {1, 2, …, m}.

Parameter Description

Pk Recruitment rate into subgroup k
mk Natural death rate for individuals in subgroup k
ak Average number of contacts per unit time made by individuals in subgroup k
ck,l Proportion of contacts individuals in subgroup k have with individuals in subgroup l
PP;kðPI;kÞðPA;kÞðPH;kÞ Transmission probability per contact for individuals in the Pk(Ik)(Ak)(Hk) class
xv,k Rate at which susceptible individuals in subgroup k are fully-vaccinated
3v,k Vaccine efficacy for vaccinated individuals in subgroup k
uv,k Waning rate of vaccine for vaccinated susceptible individuals in subgroup k
un,k Waning rate of natural immunity for recovered individuals in subgroup k
sk Progression rate from Ek to Pk class
rk Proportion of pre-symptomatic individuals in subgroup k who show clinical

symptoms of the disease at the end of the pre-symptomatic period
rkjk Progression rate from the Pk to the Ik class
(1 � rk)jk Progression rate from the Pk to the Ak class
4k Hospitalization rate for symptomatically-infectious individuals in subgroup k
gI,k(gA,k)(gH,k) Recovery rate for individuals in the Ik(Ak)(Hk) class
dI,k(dH,k) Disease-induced mortality rate for individuals in the Ik(Hk) compartment

B. Pant, A.B. Gumel Infectious Disease Modelling 9 (2024) 828e874
Theorem 2.1. The region U is positively-invariant and attracts all solutions of the model (2.3).
Proof. Adding all equations of the heterogeneous model (2.3) gives:

_N ¼
Xm
k¼1

�
Pk � mkNk � dI;kIk � dH;kHk

�
: (2.4)

Pm
It is convenient to define P ¼ k¼1 Pk. Then, Equation (2.4) can be rewritten as:

_N � P�
Xm
k¼1

ðmkNkÞ: (2.5)
Let, mg ¼ min{m1, m2, …, mm}, then it follows from (2.5) (and the definition of N(t) in (2.1)) that:

_N � P� mgNðtÞ: (2.6)

Hence, if N �P/mg, then _N � 0. Furthermore, it follows, by applying a standard comparison theorem (Lakshmikantham et al.,

1989) on (2.6), that:

NðtÞ � Nð0Þe�mgt þ P
mg

�
1� e�mgt

�
: (2.7)
In particular, N(t)�P/mg ifNð0Þ � P
mg
. IfNð0Þ> P

mg
(i.e., if the initial size of the population exceeds the carrying capacity,P/mg,

and the initial solutions are outside the region U), then NðtÞ> P
mg

for all t > 0 but with lim
t/∞

NðtÞ ¼ P
mg

(and this initial solution

trajectory eventually enters the regionU (Gumel et al., 2006)). Thus, every solution of themodel (2.3), with mg¼min{m1, m2,…,
mm} and initial conditions inU, remains in U for all time t > 0, and all initial solutions outside U are eventually attracted into U.
In other words, the region U is positively-invariant and attracts all initial solutions of the model (2.3). ,
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The epidemiological implication of Theorem 2.1 is that the model (2.3) is well-posed mathematically and epidemiology in
the positively-invariant region U (Hethcote, 2000). Hence, it is sufficient to consider the dynamics of the flow generated by
the heterogeneous model in U. Before analysing the heterogeneous model (2.3), it is instructive to study the dynamics of the
model for the casewhere the population is assumed to be homogeneous (i.e., it is instructive to consider, first of all, the model
(2.3) with m ¼ 1). The objective is to determine whether the homogeneous model has certain qualitative features that may
not be present in the full heterogeneous model or vice versa.
3. Model with homogeneous population

Before analyzing the qualitative features of the heterogeneous model (2.3), it is instructive to analyze the dynamics of the
version of the model with a homogeneous population, obtained by setting m ¼ 1 in the heterogeneous model (2.3). Setting
m ¼ 1 in the heterogeneous model gives the following homogeneous model (where P is the recruitment rate into the
population, and all other parameters are as defined in Table 2 with m ¼ 1):

8>>>>>>>>>>>><
>>>>>>>>>>>>:

_SðtÞ ¼ Pþ uvVðtÞ þ unRðtÞ � lSðtÞ � ðxv þ mÞSðtÞ;
_VðtÞ ¼ xvSðtÞ � ð1� evÞlðtÞVðtÞ � ðuv þ mÞVðtÞ;
_EðtÞ ¼ lðtÞSðtÞ þ ð1� evÞlðtÞVðtÞ � ðsþ mÞEðtÞ;
_PðtÞ ¼ sEðtÞ � ðjþ mÞPðtÞ;
_IðtÞ ¼ rjPðtÞ � ð4þ gI þ mþ dIÞIðtÞ;
_AðtÞ ¼ ð1� rÞjPðtÞ � ðgA þ mÞAðtÞ;
_HðtÞ ¼ 4IðtÞ � ðgH þ mþ dHÞHðtÞ;
_RðtÞ ¼ gI IðtÞ þ gAAþ gHH � ðun þ mÞRðtÞ;

(3.1)

where l is the force of infection of the homogeneous model (3.1), given by:
l ¼
�
bPP þ bI I þ bAAþ bHH

N

�
; (3.2)

and bP, bI, bA, and bH are effective contact rates (i.e., the product of number of contacts during a given time period and the

probability of transmission per contact) associated with disease transmission by individuals in the pre-symptomatic (P),
symptomatic (I), asymptomatic (A), and the hospitalized (H) compartment, respectively. Let D(t) represent the total number of
individuals who have died from the disease by time t. Hence, it follows from the homogeneous model (3.1) that the rate of
change of this population is given by:

_DðtÞ ¼ dI I þ dHH: (3.3)

It is convenient to define the following feasible region for the homogeneous model (3.1):

U1 ¼
��

S;V ; E; P; I;A;H;RÞ2R8
þ : NðtÞ � P

m

	
; (3.4)

whereN(t) is the total population at time t. It can be shown (using the approach in Section 2.1) that the regionU1 is positively-

invariant and attracts all solutions of the homogeneous model (3.1). Before analyzing the qualitative dynamics of the ho-
mogeneous model, with respect to the existence and asymptotic stability of its equilibria, we will first discuss the parame-
terization (and fitting) of the model, as below.
3.1. Fixed and estimated parameters of the homogeneous model

The homogeneous model (3.1) contains nineteen parameters. The values of thirteen of these parameters are well-known
from the literature (these known parameters are defined as fixed parameters), while the values of the remaining six pa-
rameters (namely bP, bI, bA, bH, dI, and dH) are unknown, and will be estimated from observed COVID-19 data for the United
States (these unknown parameters to be estimated from data are termed as estimated parameters). For fitting purposes, we
will consider the following three time periods, corresponding to the major three waves of the COVID-19 pandemic in the
United States, namely:

1. Wave A: time period from October 15, 2020 to April 5, 2021 (Alphawas the predominant variant in the United States during most of this period (Darroch,
2021; Paul et al., 2021)).

2. Wave B: time period from July 9, 2021 to November 7, 2021 (Delta was the dominant variant in the United States during this period (Cavazzoni, 2022;
Christensen et al., 2022; Lauring et al., 2022)).

3. Wave C: time period from January 1, 2022 to May 7, 2022 (Omicron was the dominant variant during this period (Cavazzoni, 2022; Christensen et al.,
2022; Lauring et al., 2022)).

The values of the fixed and estimated parameters are described below.
833
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3.1.1. Fixed parameters of the homogeneous model
The derivation of the baseline values of the thirteen known parameters of the homogeneous model (3.1), given in Table 3,

is described as follows: the value of the daily recruitment rate parameter (P) is obtained from using the census data for the
United States, and noting that the total population before the disease was introduced is P/m (where 1/m is the average life-
span). Thus, since the total population of the United States is approximately 331.4 million (Epstein & Lofquist, 2021) and the
average lifespan is 77.8 years (Arias et al., 2020) (so that 1/m ¼ 77.8 years; hence, m ¼ 3.52 � 10�5 per day), it follows that
P¼ 331.4 million� m¼ 11, 670 per day. The values of some of the fixed parameters, notably xv, 3v, s, 4, and gH, vary fromwave
towave. The time duration from initial infection to infectiousness of SARS-CoV-2 is given by 1/sþ 1/j. The estimated duration
of the pre-symptomatic stage associated with Alpha, Delta, and Omicron variants is 3.5 days, 2.91 days, and 1.92 days,
respectively (so that 1/s ¼ 3.5 days, 2.91 days, 1.92 days; hence, s ¼ 1/3.5, per day, 1/2.91 per day, 1.92 per day for Wave A, B,
and C, respectively) (Wu et al., 2022; Xin et al., 2022). Similarly, the estimated duration for pre-symptomatic stage to the
development of clinical symptomatic for Alpha, Delta, and Omicron variants is 2 days, 1.5 days, and 1.5 days, respectively
(hence, 1/j ¼ 2 days, 1.5 days, 1.5 days, so that j ¼ 1/2 per day, 1/1.5 per day, 1/1.5 per day for Wave A, B, and C, respectively)
(Iboi et al., 2020b; Wu et al., 2022; Zhao et al., 2020a). Data from the CDC (Centers for Disease Control and Prevention, 2020)
suggests that about 60% of new SARS-CoV-2 cases will develop clinical symptoms of the disease (and the remaining 40% will
not show clinical symptoms and will remain asymptomatically-infectious). Hence, the parameter r is assigned the value
r ¼ 0.6 (Centers for Disease Control and Prevention, 2020; Iboi et al., 2020b; Ma et al., 2021). Ferguson et al. (Ferguson et al.,
2020b) estimated the duration of recovery for symptomatically-infectious individuals (1/gI) to be 10 days (hence, gI¼ 1/10 per
day). Infectious individuals that are asymptomatic recover within five days (Kissler et al., 2020) (hence, gA ¼ 1/5 per day).
Hospitalized individuals recover at a rate of gH per day. Iuliano et al. estimate the average hospital stay of an infected indi-
vidual duringWave A, B, and C to be 8 days, 7.6 days, and 5.5 days, respectively (therefore, gH¼ 1/8 per day,1/7.6 per day,1/5.5
per day, forWave A, B, and C, respectively) (Danielle Iuliano et al., 2022). The vaccine protective efficacy ( 3v) is assumed to vary
for each wave. Specifically, for Waves A, B, and C, we assume that the protective efficacy of the vaccine is chosen to be the
efficacy of the Pfizer vaccine against the Alpha ( 3v ¼ 0.90), Delta ( 3v ¼ 0.86), and Omicron ( 3v ¼ 0.70) variants, respectively
(Bruxvoort et al., 2021; Nasreen et al., 2022). We calculated the rate at which susceptible individuals become fully-vaccinated
(xv) during each wave using data from the CDC (NCIRD, 2022), and the fixed value of xv for each of the threewaves is tabulated
in Table 3. Following Ngonghala et al. (Ngonghala et al., 2022), it is assumed that the vaccines wane (in fully-vaccinated
individuals) after about 270 days (hence, uv ¼ 1/270 per day). Similarly, it is assumed that natural immunity wanes after
270 days (Ngonghala et al., 2022) (hence, un ¼ 1/270 per day).

3.1.2. Estimated (fitted) parameters of the homogeneous model
The homogeneous model (3.1) was fitted with observed cumulative COVID-19 mortality data for the United States to

obtain the best values of the six unknown parameters of the model, namely the effective contact rates (bP, bI, bA, and bH) and
disease-induced death rates (dI and dH). The model fitting was done using a standard nonlinear least squares approach, which
involved using the inbuilt MATLAB minimization function “lsqcurvefit” to minimize the sum of the squared differences be-
tween each observed cumulative mortality data point (obtained from Johns Hopkins University COVID-19 repository (CSSE at
Johns Hopkins University, 2020)), and the corresponding cumulative mortality projection obtained from the simulation of the
homogeneousmodel (3.1). The result of the fitting forWaves A, B, and C are depicted in Fig. 2a, b, and 2c, respectively (and the
estimated values of these parameters, corresponding to each of the three waves, are tabulated in Table 4). The goodness of fit
(for each of the figures) was assessed by plotting the predicted daily mortality and the predicted 7-day rolling averages
against the observed daily mortality data and the observed 7-day rolling average data, respectively. The 7-day rolling average
of day tn is calculated by dividing the sum of the daily mortality on days tn�6, …, tn by 7.

Table 4 shows that the estimated (fitted) values for the parameters for the transmission rate of pre-symptomatic (bP) and
asymptomatic (bA) individuals are larger than that for the transmission rate of symptomatic individuals (bI), suggesting that
pre-symptomatic and asymptomatic individuals accounted for majority of new cases of the disease during the three waves
considered in this study. The relative contributions of pre-symptomatic, asymptomatic and symptomatic individuals towards
generating new cases is further discussed in Section 3.2.1.1. Table 4 also shows that the estimated value of the parameter for
the disease-induced mortality rate for hospitalized individuals (dH) exceeds that for the disease-induced mortality for
symptomatically-infectious individuals (dI) during each of the three waves. Thus, our study shows that hospitalized in-
dividuals suffered a larger proportion of the COVID-19 mortality, in comparison to symptomatically-infectious individuals.

3.2. Asymptotic stability of disease-free equilibrium of the model (3.1)

In this section, the asymptotic stability property of the disease-free equilibrium (DFE) of the homogeneous model (3.1) is
explored. The disease-free equilibrium of the homogeneous model (3.1) is given by:

E0 : ðS*;V*; E*; P*; I*;A*;H*;R*Þ ¼
�

Pðuv þ mÞ
mðuv þ xv þ mÞ;

Pxv
mðuv þ xv þ mÞ; 0;0; 0;0; 0;0

�
: (3.5)
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Fig. 2. The left figures are time series illustrations of the least squares fit of the homogeneous model (3.1), showing the model's output for the cumulative COVID-
19 mortality compared to the observed cumulative mortality for the United States during the time periods associated with (a) Wave A, (b) Wave B, and (c) Wave
(c). The middle figures are simulation result of the model (3.1), showing the daily COVID-19 mortality cases for the United States as a function of time, using the
fixed (see Table 3) and estimated parameter (see Table 4) associated with (a) Wave A, (b) Wave B, and (c) Wave C. The right figures are a seven-day rolling average
of daily mortality for (a) Wave A, (b) Wave B, and (c) Wave C. Red dots indicate data points, while the solid blue line represents output from the model. The
dashed vertical line in Fig. 2 (a) marks the first day of susceptible individuals (S) entering the fully-vaccinated compartment (V). The initial conditions used to
generate these figures are given in Table A1 of Appendix A.
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Table 3
Baseline values of fixed parameters of the homogeneous model (3.1) for Waves A, B, and C. For Wave A, it should be noted that the rate at which susceptible
(S) enter the fully-vaccinated compartment (V) from October 15, 2020 to January 3, 2021 is 0.

Parameter Baseline value Source

Wave A Wave B Wave C

P 11, 670 day�1 11, 670 day�1 11, 670 day�1 (Arias et al., 2020; Epstein & Lofquist, 2021)
m 1/(77.8 � 365) day�1 1/(77.8 � 365) day�1 1/(77.8 � 365) day�1 Arias et al. (2020)
r 0.6 (dimensionless) 0.6 (dimensionless) 0.6 (dimensionless) (Centers for Disease Control and Prevention, 2020;

Iboi et al., 2020b; Ma et al., 2021)
1 � r 0.4 (dimensionless) 0.4 (dimensionless) 0.4 (dimensionless) (Brozak et al., 2021; Centers for Disease

Control and Prevention, 2020)
4 1/5 day�1 1/5 day�1 1/5 day�1 Ngonghala et al. (2022)
gI 1/10 day�1 1/10 day�1 1/10 day�1 Ferguson et al. (2020b)
gA 1/5 day�1 1/5 day�1 1/5 day�1 Kissler et al. (2020)
uv 1/(9 � 30) day�1 1/(9 � 30) day�1 1/(9 � 30) day�1 Ngonghala et al. (2022)
un 1/(9 � 30) day�1 1/(9 � 30) day�1 1/(9 � 30) day�1 Ngonghala et al. (2022)
xv 2.356 � 10�3 day�1 8.029 � 10�4 day�1 2.702 � 10�4 day�1 NCIRD (2022)
3v 0.90 (dimensionless) 0.86 (dimensionless) 0.70 (dimensionless) (Bruxvoort et al., 2021; Nasreen et al., 2022)
s 1/3.5 day�1 1/2.91 day�1 1/1.92 day�1 (Wu et al., 2022; Xin et al., 2022)
j 1/2 day�1 1/1.5 day�1 1/1.5 day�1 (Iboi et al., 2020b; Wu et al., 2022; Xin et al., 2022;

Zhao et al., 2020a)
gH 1/8 day�1 1/7.6 day�1 1/5.5 day�1 Danielle Iuliano et al. (2022)
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3.2.1. Local asymptotic stability of the DFE of the homogeneous model
The local asymptotic stability of the DFE ðE0Þ of the homogeneous model will be explored using the next generation

operator method (Diekmann et al., 1990; Pauline van den Driessche & Watmough, 2002). Using the notation in (Pauline van
den Driessche & Watmough, 2002), it follows that the associated non-negative matrix of new infection terms (F) and the M-
matrix of all linear transition terms (V) are given, respectively, by

F ¼

2
66666666664

0
bPðS* þ ð1� evÞV*Þ

N*

bIðS* þ ð1� evÞV*Þ
N*

bAðS* þ ð1� evÞV*Þ
N*

bHðS* þ ð1� evÞV*Þ
N*

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
77777777775
; (3.6)

and,

V ¼

2
66664
sþ m 0 0 0 0
�s jþ m 0 0 0
0 �rj 4þ gI þ mþ dI 0 0
0 �ð1� rÞj 0 gA þ m 0
0 0 �4 0 gH þ mþ dH

3
77775: (3.7)

It is also convenient to define the quantity (where r is the spectral radius) (Diekmann et al., 1990; Pauline van den Driessche&
Watmough, 2002):
Table 4
Table of estimated (fitted) parameters of the homogeneous model (3.1) generated by fitting the model with the observed cumulative mortality data for the
United States during Waves A, B, and C.

Parameter Estimated (fitted) Value

Wave A Wave B Wave C

bP 0.201 day�1 0.448 day�1 0.724 day�1

bI 0.110 day�1 0.394 day�1 0.448 day�1

bA 0.363 day�1 0.604 day�1 0.846 day�1

bH 2.468 � 10�8 day�1 8.889 � 10�3 day�1 1.950 � 10�3 day�1

dI 1.998 � 10�4 day�1 1.001 � 10�4 day�1 1.014 � 10�5 day�1

dH 5.472 � 10�4 day�1 3.088 � 10�4 day�1 1.015 � 10�3 day�1
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Rv ¼ rðFV�1Þ ¼ Rv;P þRv;I þRv;A þRv;H; (3.8)

where,

Rv;P ¼ bPð1� evv
*Þ s

ðsþ mÞðjþ mÞ;

Rv;I ¼ bIð1� evv
*Þ srj
ðsþ mÞðjþ mÞð4þ gI þ mþ dIÞ

;

Rv;A ¼ bAð1� evv
*Þ sð1� rÞj
ðsþ mÞðjþ mÞðgA þ mÞ;

Rv;H ¼ bHð1� evv
*Þ srj4
ðsþ mÞðjþ mÞð4þ gI þ mþ dIÞðgH þ mþ dHÞ

;

(3.9)

with v* defined as the proportion of individuals vaccinated at the disease-free equilibrium, given by

v* ¼ V*

N* ¼
xv

uv þ xv þ m
; (3.10)

from which it follows that,

1� evv
* ¼ S* þ ð1� evÞV*

N*
: (3.11)

The quantityRv is the vaccination reproduction number (or the control reproduction number) of themodel (3.1). It measures the
average number of new cases generated by a typical infected individual if introduced into a population almost completely
consisting of susceptible and vaccinated individuals. The quantities Rv;P , Rv;I , Rv;A, and Rv;H are the constituent vaccination
reproduction numbers for the pre-symptomatic, symptomatic, asymptomatic, and hospitalized individuals, respectively.The
result below follows from Theorem 2 of (Pauline van den Driessche & Watmough, 2002).

Theorem 3.1. The disease-free equilibrium ðE0Þ of the homogeneous model (3.1), is locally-asymptotically stable (LAS) ifRv <1,
and unstable if Rv >1.

The epidemiological implication of Theorem 3.1 is that a small influx of COVID-19 cases will not generate a large outbreak
in the community if Rv <1. The community-level transmission of the disease can be controlled if the initial number of
infected individuals is small enough (i.e., if the initial conditions are in the basin of attraction of the disease-free equilibrium)
and the vaccinated reproduction number ðRvÞ can be brought to (and maintained at) a value less than one. It is worth
mentioning that, using the definitions (3.10) and (3.11), the vaccination reproduction number ðRvÞ, given by (3.14), can be re-
written as:

Rv ¼ ð1� evv
*ÞR0; (3.12)
where,

R0 ¼ bP
s

k3k4
þ bI

srj
k3k4k5

þ bA
sð1� rÞj
k3k4k6

þ bH
srj4

k3k4k5k7
; (3.13)

with,
k1 ¼ xv þ m; k2 ¼ uv þ m; k3 ¼ sþ m; k4 ¼ jþ m;
k5 ¼ 4þ gI þ mþ dI ; k6 ¼ gA þ m; k7 ¼ gH þ mþ dH:

(3.14)
The quantityR0 is the basic reproduction number of the homogeneousmodel (3.1) (whichmeasures the average number of
new cases generated by a typical infected individual if introduced into a completely susceptible population). The values of the
vaccination ðRvÞ and basic ðR0Þ reproduction numbers of the homogeneous model corresponding to the three waves are
tabulated in Table 5 (this table shows a more severe epidemic during Waves B and C, in comparison to during Wave A, in line
with the observed data depicted in Fig. 2). This is in agreement with the fact that the Delta and Omicron variants, circulating
during Waves B and C, were more transmissible than the Alpha variant, which was the predominant variant during Wave A
(Duong, 2021; Katella, 2022). The associated effective reproduction number (also known as time-varying control reproduction
number (Gumel, Iboi, Ngonghala,& Elbasha, 2021)) of the homogeneous model (3.1) (denoted byReðtÞ) is derived, for each of
the three waves, in Appendix B, to show the changes, over time, of the reproduction number of the model during each of the
three waves.
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Table 5
Values of the control ðRvÞ and basic ðR0Þ reproduction numbers of the homogeneous model (3.1) for Waves A, B, and C. These values are obtained by
substituting the fixed and estimated (fitted) parameters of the model, tabulated in Tables 3 and 4, respectively, into Equations (3.12) and (3.13), respectively.

Reproduction Numbers Wave A Wave B Wave C

Rv 0.88 2.28 3.50
R0 1.35 2.69 3.68
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3.2.1.1. Epidemiological interpretation of the vaccination reproduction number ðRvÞ. The vaccination reproduction number of the
homogeneous model (3.1), Rv, is the sum of four constituent reproduction numbers for the number of new cases by pre-
symptomatic individuals ðRv;PÞ, symptomatic individuals ðRv;IÞ, asymptomatic individuals ðRv;AÞ and hospitalized in-
dividuals ðRv;HÞ. The constituent reproduction numbers are epidemiologically interpreted as follows.

Interpretation of Rv;P : The term Rv;P is the product of the rate pre-symptomatically infectious individuals transmit in-
fections near the disease-free equilibrium ðbPð1�evv

*ÞÞ, the probability of surviving the exposed class and moving to the pre-

symptomatic class



s
sþm

�
, and the average duration in the pre-symptomatically infectious class



1

jþm

�
.

Interpretation ofRv;I: The termRv;I is the product of the infection rate of symptomatically-infectious individuals near the
disease-free equilibrium ðbIð1�evv

*ÞÞ, the probability of surviving the exposed class andmoving to the pre-symptomatic class

s

sþm

�
, the probability of surviving the pre-symptomatic class and moving to the symptomatic class



rj
jþm

�
, and the average

duration in the symptomatically-infectious class



1
4þgIþmþdI

�
.

Interpretation of Rv;A: The quantity Rv;A is the product of the infection rate of asymptomatically-infectious individuals

near the disease-free equilibrium ðbAð1�evv
*ÞÞ, the probability of surviving the exposed class and moving to the pre-

symptomatic class



s
sþm

�
, the probability of surviving the pre-symptomatic class and moving to the asymptomatic class
ð1�rÞj

jþm

�
, and the average time spent in the asymptomatically-infectious class



1

gAþm

�
.

Interpretation ofRv;H: The termRv;H is the product of the transmission rate of hospitalized individuals near the disease-

free equilibrium ðbHð1�evv
*ÞÞ, the probability of surviving the exposed class and moving to the pre-symptomatic class



s

sþm

�
,

the probability of surviving the pre-symptomatic class and moving to the symptomatic class



rj
jþm

�
, the probability of sur-

viving the symptomatic class and moving to the hospitalized class



4

4þgIþmþdI

�
, and the average duration spent in the hos-

pitalized class



1
gHþmþdH

�
.The sum of Rv;P , Rv;I , Rv;A, and Rv;H gives Rv.

The relative contributions of infectious individuals in the pre-symptomatic, symptomatic, asymptomatic and hospitalized
compartments in the generation of new SARS-CoV-2 cases in the community are compared by computing the percent ratios
of their associated constituent vaccination reproduction numbers,

�Rv;j=Rv

�� 100% (with j ¼ {P, I, A, H}) during each of the
three waves. The percent contributions computed for the four infectious classes during each of the three waves are tabulated
in Table 6, from which it follows that the main drivers of the pandemic (for all three waves) are the pre-symptomatic and
asymptomatic individuals (accounting for a combined total of approximately 84% of all new cases during Wave A, 70% of all
new cases during Wave B, and 76% of all new cases during Wave C). This result is in line with those reported in (Huff & Singh,
2020; Ngonghala, Iboi, & Gumel, 2020; Nikolai et al., 2020), which also showed that the main drivers of the COVID-19
pandemic (during the time periods considered in their study) were the pre-symptomatic and asymptomatic individuals. It
is worth noting from Table 6 that the relative contribution of new cases generated by hospitalized infectious individuals is
very low across the threewaves (i.e., the vast majority of new SARS-CoV-2 cases were generated in the community, and not in
the hospital setting).
Table 6
Percentage of new SARS-CoV-2 cases generated by infectious individuals in the pre-symptomatic (P), symptomatic (I), asymptomatic (A), and hospitalized
(H) compartments duringWaves A-C of the SARS-CoV-2 pandemic in the United States. The percentages presented in this table are calculated by considering
the relative contribution of the constituent vaccination reproduction numbers for the pre-symptomatic, symptomatic, asymptomatic, and hospitalized
individuals, given respectively by Rv;P , Rv;I , Rv;A , and Rv;H , and defined in (3.9), on Rv , during Waves A-C.

Transmission Source Percent Contribution for New Cases

Wave A Wave B Wave C

Pre-symptomatic ðRv;PÞ 29.82% 24.94% 29.53%
Symptomatic ðRv;IÞ 16.31% 29.23% 24.36%
Asymptomatic ðRv;AÞ 53.86% 44.82% 46%
Hospitalized ðRv;HÞ 0% 1% 0.12%
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3.2.2. Global asymptotic stability of DFE of the homogeneous model: special case
The local asymptotic stability result established in Theorem 3.1 implies that the effective control of the disease when the

vaccination reproduction number of the homogeneous model (3.1) is less than one depends on the initial sizes of the sub-
populations of the model (i.e., the initial sizes of the sub-populations must lie within the basin of attraction of the
disease-free equilibrium). For such effective control to be independent of the initial sizes of the sub-populations of the model,
it is necessary that the disease-free equilibrium is proved to be globally-asymptotically stable when the vaccination repro-
duction number is less than one. This is explored for a special case below. Consider a special case of the homogeneous model
with perfect protective efficacy of the vaccine (i.e., consider the homogeneous model (3.1) with 3v ¼ 1). It is convenient to
define ~Rv ¼ Rvjev¼1. We claim the following result:

Theorem 3.2. The disease-free equilibrium of the special case of the homogeneous model (3.1) with perfect vaccine protective

efficacy (i.e., 3v ¼ 1) is globally-asymptotically stable in U1 if ~Rv � s* <1, where s* ¼ S*=N* ¼ uvþm
uvþxvþm<1.

The proof of Theorem 3.2, based on using Lyapunov function theory and LaSalle's Invariance Principle (Hale, 1969), is given
in Appendix C. The epidemiological implication of Theorem 3.2 is that, for the special case of the homogeneous model with
perfect vaccine-derived protection against acquisition of infection (i.e., 3v ¼ 1), the disease will be eliminated if ~Rv can be
brought down to (and maintained at) a value less than s* < 1. In other words, for the special case of the homogeneous model
with 3v ¼ 1, the requirement ~Rv � s* <1 is necessary and sufficient for the effective control or elimination of the SARS-CoV-2
pandemic. The results of Theorem 3.2 are numerically illustrated in Fig. 3, where all initial conditions converged to the
disease-free equilibrium when the associated reproduction number ð ~RvÞ is less than s*.

The global asymptotic stability of the DFE of the homogeneous model can also be established for another special case as
follows. Consider a special case of the homogeneous model (3.1) with negligible disease-induced mortality (i.e., consider the
model (3.1) with dI ¼ dH ¼ 0). Setting dI ¼ dH ¼ 0 in the model (3.1), and adding all the equations, gives the following equation
for the rate of change of the total population:

_N ¼ P� mN; (3.15)

from which it follows that NðtÞ/P
m as t / ∞. Thus, P

m is an upper bound of N(t) provided that Nð0Þ � P
m . Furthermore, if

Nð0Þ>P
m , then N(t) will decrease to this value asymptotically. Consequently, we can replace N(t) with its limiting value, Pm .

Substituting P
m for N(t) in the expression for the force of infection (3.2) shows that l reduces to:

l⋄ ¼ b⋄PP þ b⋄I I þ b⋄AAþ b⋄HH; (3.16)

where,

b⋄j ¼ bjm

P
; with j ¼ fP; I;A;Hg: (3.17)

Then, it follows from Equations (3.1), (3.5) and (3.16) that:
Fig. 3. Simulations of a special case of the homogeneous model (3.1) with 3v ¼ 1, showing convergence of initial solutions to the disease-free equilibrium when
~Rv <1. Parameter values used in these simulations are those for Wave C, given in Tables 3 and 4, with 3v ¼ 1, bP ¼ bI ¼ bA ¼ 0.1 (so that, ~Rv ¼ 0:55< s* ¼ 0:93<
1).
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_S ¼ Pþ uvV � l⋄S� ðxv þ mÞS
� Pþ uvV � ðxv þ mÞS

� Pþ uvðP=m� S� E � P � I � A� H � RÞ � ðxv þ mÞS

� ðuv þ mÞP
m

� ðuv þ xv þ mÞS

¼ ðuv þ xv þ mÞðS* � SÞ;

from which it follows that if S > S*, then _S<0. Hence, S � S* provided that S(0) � S*. Similarly, it follows from the second
equation of (3.1) that _V � � ðuv þ mÞV þ xvS ¼ ðuv þ mÞðV* � VÞ. If V > V*, then _V <0. Thus, V � V* provided V(0) � V*. It
follows from these bounds that the region

U⋄ ¼ fðS;V ; E; P; I;A;H;RÞ2U1 : S� S*;V �V*g;

is also positively invariant with respect to the flowgenerated by the homogeneousmodel (3.1), and attracts all solutions of the
model in U1.

It is convenient to define R⋄
v ¼ RvjdI¼dH¼0, the reproduction number of the special case of the homogeneous model with

dI ¼ dH ¼ 0. It follows from the definition of Rv in (3.12), with (3.13), that:

R⋄
v ¼ ð1� evv

*Þ
�
bP

s

k3k4
þ bI

srj
k3k4k

⋄
5
þ bA

sð1� rÞj
k3k4k6

þ bH
srj4

k3k4k
⋄
5k

⋄
7

�
; (3.18)

where k⋄5 ¼ 4þ gI þ m and k⋄7 ¼ gH þ m (and k3 and k4 are as defined in Equation (3.14)). We claim the following result.
Theorem 3.3. Consider the homogeneous model (3.1) with negligible disease-induced mortality in the host population (i.e.,

dI¼ dH¼ 0). The disease-free equilibrium of this special case of the homogeneous model (3.1) is globally-asymptotically stable inU⋄

whenever R⋄
v <1.

The proof of Theorem 3.3, based on using a comparison theorem (Lakshmikantham et al., 1989), is given in Appendix D.
The results of Theorem 3.3 are numerically illustrated in Fig. 4, where all initial conditions converged to the disease-free
equilibrium when the associated reproduction number ðR⋄

v Þ is less than one. Thus, based on the analyses above for the
two special cases of the homogeneous model, we have identified two main mechanisms that could lead to the elimination of
the pandemic (this is associated with bringing and maintaining the associated reproduction numbers of the homogeneous
model to a value less than one). First, using highly efficacious vaccines, such that the vaccine protective efficacy ( 3v) ap-
proaches 100% could lead to SARS-CoV-2 elimination under the baseline parameter scenario (Theorem 3.2). Similarly,
implementing effective therapeutic and other hospitalization measures that significantly reduce the disease-induced mor-
tality for symptomatic and hospitalized individuals (e.g., the early detection and hospitalization of symptomatic individuals;
use of highly effective drug therapies and ventilation systems etc.) can lead to the elimination of the pandemic (Theorem 3.3).
Fig. 4. Simulations of a special case of the homogeneous model (3.1) with dI ¼ dH ¼ 0, showing convergence of initial solutions to the disease-free equilibrium
when R⋄

v <1. Parameter values used are that of Wave C, given in Tables 3 and 4, with dI ¼ dH ¼ 0 and bP ¼ bI ¼ bA ¼ 0.1 (so that R⋄
v ¼ 0:53< 1).
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3.3. Existence and asymptotic stability of endemic equilibria of the homogeneous model

In this section, conditions for the existence of endemic equilibria of the homogeneous model (i.e., equilibria where each of
the state variable is nonzero) will be explored. Let (S**, V**, E**, P**, I**, A**, H**, R**) represent any arbitrary endemic
equilibrium of the homogeneous model. It can be seen from (3.2) that the force of infection (l) of the homogeneous model at
an endemic equilibrium (denoted by l**) is given by:

l** ¼
�
bPP** þ bI I** þ bAA** þ bHH**

N**

�
: (3.19)

Setting the right-hand sides of the equations of the homogeneous model (3.1) to zero and solving gives the following ex-
pressions for the state variables of the model at an endemic steady-state (in terms of l**):

S** ¼ P½ð1� evÞl** þ k2�
½ð1� evÞl** þ k2�ðlþ k1 þ unthÞ � uvxv

; V** ¼ xv

ð1� evÞl** þ k2
S**;

E** ¼ hS**; P** ¼ s

k4
hS**; I** ¼ rjs

k4k5
hS**; A** ¼ ð1� rÞjs

k4k6
hS**;

H** ¼ 4rjs
k4k5k7

hS**; R** ¼ thS**;

(3.20)

where h ¼ l
** ½ð1�evÞl**þk2þð1�evÞxv�

k3½ð1�evÞl**þk2 �
and t ¼ gI

unþm
rjs
k4k5

þ gA
unþm

ð1�rÞjs
k4k6

þ gH
unþm

4rjs
k4k5k7

. Substituting the expressions in (3.20) into (3.19)

shows that the endemic equilibria of the homogeneous model satisfy the following quadratic equation (in terms of l**):

a2ðl**Þ2 þ a1l
** þ a0 ¼ 0; (3.21)

where,

a0 ¼ k3ðk2 þ xvÞð1�RvÞ;
a1 ¼ ½k2 þ ð1� evÞxv�r� k3ð1� evÞðR0 � 1Þ;
a2 ¼ ð1� evÞr;

(3.22)

with r ¼ 1þ s
k4
þ


1þ gI

mþun

�
rjs
k4k5

þ


1þ gA

mþun

� ð1�rÞjs
k4k6

þ


1þ gH

mþun

�
4rjs
k4k5k7

>0. The components of an endemic equilibrium of the

homogeneousmodel can be obtained by solving for for l** in the quadratic equation (3.21) and substituting the result into the
expressions in (3.22). Furthermore, it can be seen from (3.22) that the coefficient a0 is positive (negative)wheneverRv < ð> Þ1.
Similarly, the coefficient a2 is always positive (since 0 < 3v < 1). The result below follows from the quadratic (3.21) with (3.22).

Theorem 3.4. The homogeneous model (3.1) has:

(i) a unique endemic equilibrium if a0 <0 ⟺ Rv > 1;
(ii) a unique endemic equilibrium if a1 < 0 and a0 ¼ 0 or a21 � 4a0a2 ¼ 0;
(iii) two endemic equilibria if a2 > 0, a1 < 0, and a21 � 4a0a2 >0;
(iv) no endemic equilibrium otherwise.

While Case (i) of Theorem 3.4 implies the presence of a unique endemic equilibrium for the homogeneous model (3.1)
whenever Rv >1, Case (iii) suggests the possibility of a backward bifurcation, a dynamic phenomenon characterized by the
coexistence of the stable disease-free equilibrium (DFE) and a stable endemic equilibrium, when the associated vaccination
reproduction number of the homogeneous model ðRvÞ is less than one (see (Gumel, 2012) for further details about the causes
and consequences of backward bifurcation in the transmission dynamics of infectious diseases).

It should be noted that in the case of a perfect vaccine ( 3v ¼ 1), a2 ¼ 0, a1 > 0 and the quadratic equation becomes linear in
l** (with l**¼�a0/a1). In this case, the homogeneous model (3.1) has a unique endemic equilibrium if and only if a0 > 0 (i.e.,
Rv >1), ruling out backward bifurcation in this case (this is consistent with the result in Theorem 3.2, where it was shown that
the disease-free equilibrium of the special case of the homogeneous model with 3v ¼ 1 is globally-asymptotically stable when
the associated reproduction number is less than s* < 1). It can be shown, following the approach in Section 3.3, that the
special case of the homogeneous model (3.1) with dI ¼ dH ¼ 0 has a unique endemic equilibriumwheneverR⋄

v >1. That is, the
result below holds.

Theorem 3.5. The special case of the homogeneous model (3.1) with dI ¼ dH ¼ 0 has a unique positive endemic equilibrium
whenever R⋄

v >1.Furthermore, let R̂v ¼ RvjdI¼dH¼uv¼un¼0; e¼1. We claim the following result.
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Theorem 3.6. Consider the special case of the homogeneous model (3.1) with negligible disease-induced mortality (i.e.,
dI¼ dH¼ 0), perfect vaccine ( 3v¼ 1), and nowaning (uv¼un¼ 0). The associated unique endemic equilibrium of this special case of
the homogeneous model is locally-asymptotically stable if R̂v >1.

The proof of Theorem 3.6, based on using a Krasnoselskii sub-linearity argument (see (Hethcote& Thieme, 1985; Horst, 1985),
and also (Esteva et al., 2009; Esteva & Vargas, 2000)), is given in Appendix E. The epidemiological implication of Theorem 3.6 is
that the disease will persist in the population whenever R̂v >1. The local asymptotic stability result for the unique endemic
equilibrium of the homogeneous model will be extended to global asymptotic stability as follows. It is, first of all, convenient to
define the following region (the stable manifold of the disease-free equilibrium of the homogeneous model):

U0 ¼ fðS;V ; E; P; I;A;H;RÞ2U1 : E ¼ P ¼ I ¼ A ¼ H ¼ R ¼ 0g.We claim the following result.
Theorem 3.7. Consider the special case of the homogeneous model (3.1) with negligible disease-induced mortality (i.e.,

dI ¼ dH ¼ 0), perfect vaccine ( 3v ¼ 1), and no waning (uv ¼ un ¼ 0). The unique endemic equilibrium of this special case of the
homogeneous model is globally-asymptotically stable in U1 yU0 whenever R̂v >1.

The proof of Theorem 3.7, based on using a nonlinear Lyapunov function of Goh-Volterra type, is given in Appendix F. The
epidemiological implication of this result is that the disease will persist in the population whenever the associated reproduction
threshold ðR̂vÞ exceeds unity. The results of Theorem 3.7 are numerically illustrated in Fig. 5,where all initial conditions converged
to the unique endemic equilibrium when the associated reproduction number ðR̂vÞ exceeds one. Although the global asymptotic
stability property of the endemic equilibrium of the homogeneous model was only established for a special case, extensive nu-
merical simulations suggest that the endemic equilibrium of the full model is indeed globally-asymptotically stable whenever the
reproduction number of the full model ðRvÞ is greater than one. This suggests the following conjecture.

Conjecture 1. The homogeneous model (3.1) has a unique and globally-asymptotically stable endemic equilibrium in U1 yU0
whenever Rv >1.
3.3.1. Computation of vaccine-derived herd immunity threshold for the homogeneous model
Herd immunity, also known asmass immunity, is a form of indirect protection from an infectious disease that occurs when a

minimum percentage of the population is immune to the disease. The twomainways of achieving herd immunity are through
vaccination and natural immunity developed through recovery from previous infection. Vaccination is the safest and fastest
way to achieve herd immunity (Anderson & May 1985; Khalife & VanGennep, 2021; Roy, 1992). As noted in (Gumel, Iboi,
Ngonghala, & Elbasha, 2021; Iboi et al., 2020b), “for vaccine-preventable diseases, such as COVID-19, not every susceptible
member of the community can be vaccinated. For instance people with underlying health conditions, or females who are
pregnant or people who opt out of vaccination for various reasons (traditional or other reasons) may not be vaccinated”.
Hence, it is critical to determine the minimum proportion of susceptible individuals in the community that need to be
vaccinated in order to protect the ones that cannot be vaccinated (i.e., achieve herd immunity). To obtain the herd immunity
threshold, we set the vaccination reproduction number ðRvÞ, given by Equation (3.12), to one and solve for the proportion of
individuals fully-vaccinated at steady-state (v*) (Gumel, Iboi, Ngonghala, & Elbasha, 2021; Iboi et al., 2020a). Doing so gives
(for R0 >1 and 0 < 3v � 1):
Fig. 5. Simulations of a special case of the homogeneous model (3.1) with dI ¼ dH ¼ uv ¼ 0 and 3v ¼ 1, showing convergence of initial solutions to the unique endemic
equilibrium when R̂v >1. Parameter values used are that of Wave B given in Tables 3 and 4, with 3v ¼ 1, dI ¼ dH ¼ uv ¼ un ¼ 0, and bP ¼ bI ¼ bA ¼ 2 (so that R̂v ¼
1:27>1).
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v* ¼ 1
ev

�
1� 1

R0

�
¼ v*c : (3.23)

It follows from (3.12) and (3.23) that Rv < ð> Þ1 if v* > ð< Þv*c . Further, Rv ¼ 1 whenever v* ¼ v*c. Hence, the result of Theorem
3.1 can be re-written in terms of the herd immunity threshold as follows:

Theorem 3.8. The disease-free equilibrium ðE0Þ of the homogeneous model (3.1) is locally-asymptotically stable if v* > v*c
ðRv <1Þ, and unstable if v* < v*c ðRv >1Þ.The global asymptotic stability results for the disease-free equilibrium (given in
Theorems 3.2 and 3.3) can be similarly re-written in terms of the above herd immunity threshold.

Fig. 6 depicts a contour plot of the vaccination reproduction number ðRvÞ, as a function of coverage of fully-vaccinated
susceptible individuals at steady-state (v*) and vaccine efficacy ( 3v), during the three waves considered in this study.This
figure shows that using the two-dose Pfizer vaccine (with an estimated protective efficacy of 90% (Bruxvoort et al., 2021;
Nasreen et al., 2022)) duringWave A could lead to the effective control of the pandemic if at least 29% of the populace is fully-
vaccinated (Fig. 6(a)). The vaccine coverage required to achieve such effective control during Wave B (Fig. 6(b)), using the
same two-dose Pfizer vaccine (with an estimated efficacy of 85% duringWave B (Bruxvoort et al., 2021; Nasreen et al., 2022)),
is 74%. However, these simulations show that using the same two-dose Pfizer vaccine during Wave C (with an estimated
protective efficacy of 70% during this wave (Bruxvoort et al., 2021; Nasreen et al., 2022)) could not reduce the control
reproduction number to a value below one (which is needed for achieving the vaccine-derived herd immunity, and conse-
quently, eliminating the disease) even if every unvaccinated susceptible individual is fully vaccinated (Fig. 6(c)). This result
can be attributed to themodest efficacy of the Pfizer vaccine (70% duringWave C (Bruxvoort et al., 2021; Nasreen et al., 2022))
and a higher basic reproduction number ðR0 ¼ 3:68Þ, in comparison to the reproduction numbers forWave A ðR0 ¼ 1:35Þ and
Wave B ðR0 ¼ 2:69Þ.

Fig. 6 also shows that if, on the other hand, a vaccine with moderate protective efficacy, such as the two-dose of Astra-
Zeneca (with estimated protective efficacy of 67% (Lopez Bernal, Andrews, Gower, Gallagher, et al., 2021) during Wave B) is
prioritized, the coverage needed to achieve herd immunity (and, consequently, disease elimination) duringWave B (Fig. 6(b))
is 94%. Likewise, the use of such a vaccine (with an estimated reduced efficacy of 49% during Wave C (Andrews et al., 2022))
will also fail to reduce the control reproduction number below one even if the coverage in its usage is 100% during Wave C
(Fig. 6(c)).

3.4. Global sensitivity analysis for the homogeneous model

Global sensitivity analysis will be carried, using Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients
(PRCCs) (Blower & Dowlatabadi, 1994; Marino et al., 2008; McLeod et al., 2006), on the homogeneous model (3.1) to
determine the parameters that have the highest influence on the transmission dynamics of the disease (as measured by their
impact on a chosen response function) during each of the three pandemic waves considered in this study. Specifically, the
vaccination reproduction number ðRvÞ is chosen as the response function. The application of this method entails using the
baseline value of the 16 parameters in the expression for the vaccination reproduction number (given by (3.8)), corresponding
to each of the three pandemic waves, listed in Tables 4 and 3 The parameters are assumed to obey the uniform distribution,
and the range of each parameter in the response function is chosen to be 40% to the left and 40% to the right of its respective
baseline value (Gao et al., 2023). The range of each parameter is sub-divided into 1, 000 equal sub-intervals. Since the
parameter set is drawn from this set without replacement, this leads to 1, 000 � 18 parameter matrix (or hypercube) (Gao
et al., 2023). A parameter with a negative (positive) PRCC value is said to be negatively (positively) correlated with the
response function (typically, PRCC values in the range (0.5,1) in absolute value are considered to be correlated (Boloye
Gomero, 2012), with values closer to �1 (þ1) signifying a much higher negative (positive) correlation). The results
Fig. 6. Contour plot of the vaccine reproduction number ðRvÞ of the homogeneous model (3.1), as a function of vaccine coverage at steady-state (v*) and vaccine
efficacy ( 3v), for the United States during (a) Wave A, (b) Wave B, and (c) Wave C. Parameter values used to generate the contour plots for each wave are given by
their respective values in Tables 3 and 4
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obtained for the PRCC values, depicted in Fig. 7 (see also Table 7), show that the correlated parameters (i.e., parameters with
PRCC values higher than 0.5 in magnitude) during wave A of the pandemic are (Fig. 7 (a)):

(a) The proportion of pre-symptomatic individuals that become symptomatic at the end of the pre-symptomatic period (r; with PRCC value �0.85).
(b) The efficacy of the vaccine ( 3v; with PRCC value �0.82).
(c) The recovery rate of asymptomatically-infectious individuals (gA; with PRCC value �0.81).
(d) The transmission rate of asymptomatically infectious individuals (bA; with PRCC value þ 0.80).
(e) The waning rate of the vaccine (uv; with PRCC value þ 0.65).
(f) The rate at which susceptible individuals become fully-vaccinated (xv; with PRCC value �0.65).
(g) The rate at which pre-symptomatic individuals become symptomatic or asymptomatic (j; with PRCC value �0.64).
(h) The transmission rate of pre-symptomatic individuals (bP; with PRCC value þ 0.62).

Thus, these results show that the implementation of control and mitigation strategies that focus on reducing the parameters
bA, bP and uv and increasing r, gA, j, 3v and xv will be effective in reducing the burden of the pandemic during Wave A in the
United States. The parameter bA and bP can be reduced by, for instance, the rapid detection of asymptomatic individuals,
through measures such as mass random SARS-CoV-2 testing, isolation and contact tracing of symptomatic cases, and the use
of high quality masks. Increasing 3v entails designing and deploying a highly efficacious anti-SARS-CoV-2 vaccine. Similarly, uv

can be reduced by using an effective vaccine that induces long-term vaccine-derived immunity. The parameter xv can be
increased by increasing the vaccine coverage in the community (this can be achieved by implementing effective public health
campaign promoting the wide-scale use of the available vaccines). The recovery rate parameter for asymptomatic infectious
individuals, gA, can be increased by using effective antiviral drugs, such as remdesivir (NIH) (although this may be challenging
in practice due to the fact that this strategy requires large-scale random COVID-19 testing to detect asymptomatic infectious
individuals and having a large number of such individuals to adhere to the prescribed antiviral treatment regimen. These
Fig. 7. Simulations of the homogeneous model (3.1), showing the partial rank correlation coefficients (PRCCs) values of the parameters in the chosen response
function ðRvÞ for (a): Wave A; (b): Wave B; and (c): Wave C. Parameter values used in the simulations are as given by the baseline values in Tables 3 and 4, and
their ranges are taken to be 40% to the left and 40% to the right of the respective baseline value. All parameters are assumed to follow a uniform distribution.
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Table 7
PRCC values of the parameters of the homogeneous model (3.1) using the vaccination reproduction number ðRvÞ as the response function for the three
waves considered in this study. The baseline values used are the parameter values listed in Tables 3 and 4, and their ranges are taken to be 40% to the left and
40% to the right of the respective baseline value. The PRCC value of 0.5 or higher in magnitude is highlighted in bold face.

Parameter PRCC Value

Wave A Wave B Wave C

xv ¡0.65 �0.43 �0.16
3v ¡0.82 �0.50 �0.16
uv þ0.65 þ0.43 þ0.16
gI �0.16 �0.30 �0.27
gA ¡0.81 ¡0.81 ¡0.83
gH �0.007 �0.17 �0.002
bP þ0.62 þ0.63 þ0.71
bA þ0.80 þ0.81 þ0.82
bI þ0.40 þ0.68 þ0.62
bH þ0.007 þ0.012 þ0.018
dI �0.001 �0.016 �0.011
dH �0.005 �0.0001 �0.001
j ¡0.64 ¡0.63 ¡0.72
4 �0.28 ¡0.54 �0.49
r ¡0.85 ¡0.75 ¡0.82
s þ0.005 þ0.003 þ0.012

Table 8
Values of the fixed parameters of the two-group model (4.1) for Waves C.

Parameter (k ¼ {1, 2}) Value Source

Group 1 (age 0 to 64) Group 2 (age 65 and above)

Pk 9, 622 day�1 2, 048 day�1 (The United States Census Bureau)
mk 1/(64 � 365) day�1 1/(18.4 � 365) day�1 [65, 116]
rk 0.56 (dimensionless) 0.803 (dimensionless) [68, 70, 71, 118]
1 � rk 0.44 (dimensionless) 0.197 (dimensionless) [21, 70, 118]
4k 1/6.69 day�1 1/3.78 day�1 Faes et al. (2020)
gI,i 1/10 day�1 1/10 day�1 Ferguson et al. (2020b)
gA,k 1/5 day�1 1/5 day�1 Kissler et al. (2020)
uv,k 1/(9 � 30) day�1 1/(9 � 30) day�1 Ngonghala et al. (2022)
un,k 1/(9 � 30) day�1 1/(9 � 30) day�1 Ngonghala et al. (2022)
xv,k 0.000418 day�1 0.000102 day�1 NCIRD (2022)
3v,k 0.70 (dimensionless) 0.70 (dimensionless) [75, 76]
sk 1/1.92 day�1 1/1.92 day�1 [66, 67]
jk 1/1.5 day�1 1/1.5 day�1 (Iboi et al., 2020b; Wu et al., 2022; Xin et al., 2022; Zhao et al., 2020a)
gH,k 1/3.9 day�1 1/6.2 day�1 Danielle Iuliano et al. (2022)
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proved challenging during the COVID-19 pandemic in the United States (Peeling et al., 2021)). However, SARS-COV-2 vaccines
are known to reduce the duration of infection in vaccinated individuals who acquired breakthrough infection (CDC, 2021;
Emilia Paladino et al., 2021). Hence, it is plausible that increasing vaccination uptake may increase the recovery rate for
asymptomatic infected individuals (i.e., vaccination can increase gA). Similarly, although increasing r decreasesRv, it is not an
ideal strategy since such an increase could also cause more disease-related hospitalizations and deaths. Although the results
of our sensitivity analysis suggest that increasing j decreasesRv, it is not a feasible strategy since it increases individuals with
symptoms who may develop severe disease and potentially die of the disease.

Similarly, the correlated parameters during wave B of the pandemic are (Fig. 7(b)):

(i) The transmission rate of asymptomatically-infectious individuals (bA; with PRCC value þ 0.81).
(ii) The recovery rate of asymptomatically-infectious individuals (gA; with PRCC value �0.81).
(iii) The proportion of pre-symptomatic individuals that become symptomatic at the end of the pre-symptomatic period (r; with PRCC value �0.75).
(iv) The transmission rate of symptomatically-infectious individuals (bI; with PRCC value þ 0.68).
(v) The rate at which pre-symptomatic individuals become symptomatic or asymptomatic (j; with PRCC value þ 0.63).
(vi) The transmission rate of pre-symptomatic individuals (bP; with PRCC value �0.63).
(vii) The hospitalization rate of symptomatic individuals (4; with PRCC value �0.54).

Hence, these results show that the implementation of control and mitigation strategies that focus on reducing the pa-
rameters bA, bI and bP, and increasing gA, r, 4 and jwill be effective in reducing the burden of the pandemic during Wave C in
the United States. It should be noted, first of all, that, while the correlated parameters bA, gA, r, bP and j for this wave are also
correlated with the response function Rv in Wave A (so that the strategies associated with these parameters will also be
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effective duringWave B), the correlated parameters bI and 4 are not correlatedwith the response function duringWave A. The
parameter bI can be reduced by implementing effective non-pharmaceutical interventions (with enough coverage), such as
the quarantine of suspected cases, the isolation of confirmed/symptomatic cases (at home or in hospital), the use of high
efficacy facemask in public and social distancing. The parameter 4 can be increased by the rapid detection and hospitalization
(and/or self-isolation) of symptomatic individuals. It is worth mentioning that the effectiveness of this strategy depends on
whether or not the risk of disease transmission while in isolation (at home or in hospital) is greatly reduced or (better still)
eliminated. In summary, these simulations show that the effective control of the pandemic during Wave B requires the
implementation of strategies (targeting bI and 4) that were not emphasized (or shown to be crucially-needed) duringWave A.
In other words, these simulations show that the anti-SARS-CoV-2 intervention and mitigation strategies to be prioritized and
implemented depends on the wave of the pandemic.

Finally, the correlated parameters during wave C of the pandemic are (Fig. 7(c)):

(a) The recovery rate of asymptomatically-infectious individuals (gA; with PRCC value �0.83).
(b) The proportion of pre-symptomatic individuals that become symptomatic at the end of the pre-symptomatic period (r; with PRCC value �0.82).
(c) The transmission rate of asymptomatically-infectious individuals (bA; with PRCC value þ 0.82).
(d) The rate at which pre-symptomatic individuals become symptomatic or asymptomatic (j; with PRCC value �0.72).
(e) The transmission rate of pre-symptomatic individuals (bP; with PRCC value þ 0.71).
(f) The transmission rate of symptomatically-infectious individuals (bI; with PRCC value þ 0.62).

Here, too, five parameters (bA, r, gA, bP, and j) are also highly correlated (like in the cases of Waves A and B). Furthermore,
like in the case of wave B, the parameter bI is also highly correlated during wave C. Thus, these simulations show that
strategies that focus on reducing the parameters bP, bA and bI and increasing r and gAwill be effective in reducing the burden
of the pandemic during wave C in the United States. It should be noted that all six correlated parameters inWave C also appear
in Wave B (thus, all strategies that are effective to combat the pandemic during Wave C will also be effective during Wave B).

The discussion above (along with Fig. 7 and Table 7) shows that, while the vaccine coverage rate (xv), efficacy ( 3v) and
waning rate (uv) are correlated with the response function duringWave A, the relative influence of these parameters changes
with the pandemic waves. For example, while 3v has a PRCC value of �0.82 during Wave A, its PRCC value decreased to �0.43
and �0.16, respectively, during Wave B and Wave C. Although this result can be attributed to a decrease in vaccine coverage
(xv) and the decrease in vaccine-derived efficacy during subsequent waves, the result also underscores the fact that a control
strategy that proved to be highly effective during one wave may not retain its high level of effectiveness during subsequent
waves (suggesting that the optimal control strategies to be implemented will depend on the prevailing wave of the
pandemic). Similarly, it has been observed that while the transmission rate of symptomatic individuals (bI) during Waves B
and C was correlated with the response function, this parameter was not correlated with the response function during Wave
A. This suggests an increased adherence to non-pharmaceutical intervention by symptomatic individuals would have
significantly helped reduce the spread of COVID-19 during Wave B and C. Finally, as stated above, the following three pa-
rameters are correlated with the response function during each of the three waves of the pandemic:

(a) The proportion of pre-symptomatic individuals that become symptomatic at the end of the pre-symptomatic period (r).
(b) The transmission rate of asymptomatically-infectious individuals (bA).
(c) The recovery rate of asymptomatically-infectious individuals (gA).
(d) The rate at which pre-symptomatic individuals become symptomatic or asymptomatic (j).
(e) The transmission rate of pre-symptomatic individuals (bP).

Hence, it follows that two parameters related to disease transmission dynamics by asymptomatically-infectious in-
dividuals (namely, bA and gA) and two parameters related to disease transmission dynamics by pre-symptomatically-
infectious individuals (namely, bP and j) are highly correlated with the response function ðRvÞ during each of the three
waves of the pandemic. Consequently, this study shows that intervention strategies that target pre-symptomatic and
asymptomatically-infectious individuals, such as contact tracing and mass random testing (implemented with the required
coverage and level of effectiveness), will consistently be very effective in combating andmitigating the SARS-CoV-2 pandemic
in the United States.

It is worth stating that, although the simulations carried out in this section shows that the proportion of individuals who
become symptomatic at the end of the pre-symptomatic period (r) is highly (and negatively) correlated with the response
function (i.e., an increase in rwill result in a decrease in the response function) during each of the three waves, a strategy that
focuses on increasing the value of r may not be realistic from public health standpoint (since such a strategy will result in an
increase in SARS-CoV-2-related hospitalizations and, consequently, deaths) (Pant et al., 2024). Similarly, the parameters j and
4 can negatively or positively affect the response function, Rv (depending on the choice of parameter values). Theoretical
thresholds for the positive (negative) correlation of these parameters on the response function are derived in Appendix G.
Finally, it is essential to emphasize the fact that SARS-CoV-2 vaccines can impact several parameters of the model (3.1). For
example, these vaccines have been shown to reduce the duration of infection (CDC, 2021; Emilia Paladino et al., 2021) (i.e.,
increase gI, gA, and gH), thereby contributing to reductions in new transmission and overall burden (severity of disease,
hospitalization and deaths).
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4. Two-group heterogeneous model

In Section 3, them-group heterogeneous model (2.3) was fitted and rigorously analysed for the (homogeneous) case with
m ¼ 1. In this section, the heterogeneous model (2.3) will be used to assess the impact of age heterogeneity and variable
mixing patterns on the dynamics and burden of the SARS-CoV-2 pandemic. The SARS-CoV-2 pandemic is well known to
disproportionately affect the elderly population (in terms of severity of disease, hospitalization and death) (CDCa; CDCb). In
particular, although the population of people 65 years and older represents less than 20% of the total population of the United
States (The United States Census Bureau), this population suffers the brunt of COVID-19mortality (60.92%) and hospitalization
(47.10%) in the United States (see Fig. 8(a) and (b)). Specifically, it can be seen from Fig. 8(a) that COVID-19-induced mortality
per 100,000 people in this age group is 7.32 times higher than in the age group 0 � 64. Similarly, Fig. 8(b) shows that hos-
pitalization per 100,000 in the age group 65 and older is 4.18 times that of the age group 0� 64. It is alsowell known thatmost
COVID-19 cases occur among younger individuals (Bosman & Mervosh, 2020; Lisa Lockerd Maragakis, 2020). For example,
data from the California Department of Public Health showed that, byMay 9, 2023, 89.1% of the total reported cases of COVID-
19 in California were among people 64 years of age or under (CDPH. and COVID-19 age). This disproportionate effect of SARS-
CoV-2 by age suggests the need to explicitly incorporate age structure (and the variable mixing patterns of the age groups
considered) into mathematical models for the transmission dynamics and control of SARS-CoV-2 in a population. For this
reason, we consider the heterogeneous model (2.3) for the case with two groups (m¼ 2) based on age. That is, we stratify the
total population of the United States into those under 65 years of age (Group 1) and those 65 years and older (Group 2).
Individuals in the two age groups also have variable mixing patterns with individuals in their age group, as well as with
individuals in the other age group, and these variable mixing patterns need to also be incorporated into the model.

The main objective of this section is to determine whether or not adding these heterogeneities (age heterogeneity and the
variable mixing patterns by age) significantly affects the level of the vaccine-derived herd immunity threshold needed to
effectively control and mitigate the burden of the pandemic in the United States (i.e., we seek to compare the level of herd
immunity threshold generated using the heterogeneous model of two groups (2.3) with the value obtained from the ho-
mogeneous model 3). Let Nk(t), with k ¼ {1, 2}, be the total number of individuals in Group k at time t. This population is split
into the sub-populations of susceptible (Sk(t)), vaccinated (Vk(t)), exposed (Ek(t)), pre-symptomatic (Pk(t)), symptomatic (Ik(t)),
asymptomatic (Ak(t)), hospitalized (Hk(t)) and recovered (Rk(t)) individuals, so that:

NkðtÞ ¼ SkðtÞ þ VkðtÞ þ EkðtÞ þ PkðtÞ þ IkðtÞ þ AkðtÞ þ HkðtÞ þ RkðtÞ; k ¼ f1;2g:
The two-group age-structured model for the transmission dynamics of SARS-CoV-2 in the United States (obtained by
setting m ¼ 2 in (2.3)) is given by the following system of nonlinear differential equations:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

_S1ðtÞ ¼ P1 þ uv;1V1ðtÞ þ un;1R1ðtÞ � l1ðtÞS1ðtÞ � ðxv;1 þ m1ÞS1ðtÞ;
_S2ðtÞ ¼ P2 þ uv;2V2ðtÞ þ un;2R2ðtÞ � l2ðtÞS2ðtÞ � ðxv;2 þ m2ÞS2ðtÞ;
_V1ðtÞ ¼ xv;1S1ðtÞ � ð1� ev;1Þl1ðtÞV1ðtÞ � ðuv;1 þ m1ÞV1ðtÞ;
_V2ðtÞ ¼ xv;2S2ðtÞ � ð1� ev;2Þl2ðtÞV2ðtÞ � ðuv;2 þ m2ÞV2ðtÞ;
_E1ðtÞ ¼ l1ðtÞS1ðtÞ þ ð1� ev;1Þl1ðtÞV1ðtÞ � ðs1 þ m1ÞE1ðtÞ;
_E2ðtÞ ¼ l2ðtÞS2ðtÞ þ ð1� ev;2Þl2ðtÞV2ðtÞ � ðs2 þ m2ÞE2ðtÞ;
_P1ðtÞ ¼ s1E1ðtÞ � ðj1 þ m1ÞP1ðtÞ;
_P2ðtÞ ¼ s2E2ðtÞ � ðj2 þ m2ÞP2ðtÞ;
_I1ðtÞ ¼ r1j1P1ðtÞ � ð41 þ gI;1 þ m1 þ d1ÞI1ðtÞ;
_I2ðtÞ ¼ r2j2P2ðtÞ � ð42 þ gI;2 þ m2 þ d2ÞI2ðtÞ;
_A1ðtÞ ¼ ð1� r1Þj1P1ðtÞ � ðgA;1 þ m1ÞA1ðtÞ;
_A2ðtÞ ¼ ð1� r2Þj2P2ðtÞ � ðgA;2 þ m2ÞA2ðtÞ;
_H1ðtÞ ¼ 41I1ðtÞ � ðgH;1 þ m1 þ dH;1ÞH1ðtÞ;
_H2ðtÞ ¼ 42I2ðtÞ � ðgH;2 þ m2 þ dH;2ÞH2ðtÞ;
_R1ðtÞ ¼ gI;1I1ðtÞ þ gA;1A1ðtÞ þ gH;1H1ðtÞ � ðun;1 þ m1ÞR1ðtÞ;
_R2ðtÞ ¼ gI;2I2ðtÞ þ gA;2A2ðtÞ þ gH;2H2ðtÞ � ðun;2 þ m2ÞR2ðtÞ;

(4.1)

where lk is the force of infection for group k, and is given by (the parameters in the model (4.1) and the expression 4.2 are as

defined in Table 2 with k ¼ {1, 2}):

lk ¼
X2
l¼1

akckl

�
bP;lPlðtÞ þ bI;lIlðtÞ þ bA;lAlðtÞ þ bH;lHlðtÞ

NlðtÞ
�
; k ¼ f1;2g: (4.2)

It can be shown (using the approach in Section 3.2.2) that the region:
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Fig. 8. Heterogeneity of COVID-19 burden by age groups, for individuals 0 � 64 years of age and those that are 65 years of age and older, in the United States until
August 26, 2023. (a) Cumulative COVID-19 mortality (cumulative deaths shown in red, while cumulative deaths per 100,000 shown in blue) and (b) cumulative
COVID-19 hospitalization (cumulative hospitalization shown in magenta, while cumulative hospitalization per 100,000 is shown in cyan color). The mortality data
(CDCa) used to generate this figure started in the first week of 2020, whereas the hospitalization data (CDCb) begins in the tenth week of 2020.
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U2 ¼
��

S1; S2;V1;V2; E1; E2; P1; P2; I1; I2;A1;A2;H1;H2;R1;R2Þ2R16
þ : N1ðtÞ �

P1

m2
;N2ðtÞ �

P2

m2

	
; (4.3)

is positively-invariant and attracting with respect to the two-group model (4.1). Thus, it is sufficient to study the dynamics of
the model in U (where it is well-posed mathematically and epidemiologically).
2
4.1. Contact matrix and parameterization for the two-group model

Before analyzing the qualitative dynamics of the two-group model, with respect to the existence and asymptotic stability
of its equilibria, we will first discuss the derivation of the associated contact matrix as well as the values of the fixed and
estimated parameters of the model, as follows.

4.1.1. Contact matrix
Using a large cross-sectional survey in eight European countries from 2005 to 2006 (as part of the EU-funded POLYMOD

project (Improving public health policy in)), Mossong et al. (Mossong et al., 2008) showed that “contact patterns were highly
assortative with age” (specifically, “schoolchildren and young adults, in particular, tended to mix with people of the same
age”). Prem et al. (Prem et al., 2017) used the data from (Mossong et al., 2008), together with a Bayesian hierarchical model
(using Markov chain Monte Carlo simulation), to estimate the age-and-location-specific contact patterns in 144 other
countries across the globe, including the United States. Furthermore, the Prem et al. (Prem et al., 2017) study provided a
16 � 16 contact matrix that accounts for the general mixing patterns between sixteen age groups in the United States. Since
our study considers two age-groups only (under 65 and 65 and older), we will use the data in the 16 � 16 contact matrix
(given in Prem et al. (Prem et al., 2017)) and adapt it to the 2 � 2 contact matrix for the variable mixing patterns between our
two age groups. Specifically, In order to accomplish this reduction, the total population of each of the 16 age groups will be
used as a “weight”, and weighted averages of the number of contacts made by individuals in this age group are computed and
used to generate the entries of the reduced 2 � 2 contact matrix. This process is briefly described below.

Let Q¼ denote the 16� 16 contact matrix given in the Prem et al. (Prem et al., 2017) study, with the entries qij(i, j¼ {1, 2,…,
16}) representing the number of contacts an individual in the age group imadewith individuals in the age group j per day. The
first 13 rows and columns of the matrix Q are related to age groups below 65 years of age (that is, individuals in the age range
0e64), while the last three rows and columns are related to age groups 65 years and older. Let Pi be the total size of the
population of individuals in the age group i. Let

N1 ¼
X13
k¼1

Pk; and N2 ¼
X16
k¼14

Pk;

represent, respectively, the total population of individuals under 65 years of age and the total population of individuals 65
years of age and older.

Hence, it follows that, the number of contacts per day made by an individual in group iwith individuals under 65 years of
age and those 65 years of age and older is given, respectively, by:

ci;u ¼
X13
l¼1

qi;l and ci;o ¼
X16
l¼14

qi;l:
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Let the desired 2 � 2 matrix describing the number of contacts within and between the two age groups be given by E, where
the entries eij, with is j, represents the number of contacts per day an individual in age group imake with individuals in age
group j, while eii(i¼ {1, 2}) represents the number of contacts per day an individual in age group imakewith individuals in the
same age group):

E ¼
�
e11 e12
e21 e22:

�
(4.4)

Using a weighted average, the number of contacts per day made by an individual under 65 years of age with other people
under 65 years of age is given by:

e11 ¼

P13
k¼1

�
ck;uPk

�
N1

: (4.5)

The number of contacts an individual 65 years of age and older makes with individuals under 65 years of age per day is given
by:

e21 ¼

P16
k¼14

�
ck;uPk

�
N2

: (4.6)

Since the total number of contacts made by all individuals under 65 years of age with those 65 years of age and older per day
must equal the total number of contacts made by individuals 65 years of age and older with individuals under 65 years of age,
the following conservation law of contacts must hold:

e12N1 ¼ e21N2: (4.7)

It follows from (4.7) that the number of contacts made by an individual under 65 with individuals 65 and older (e12) is given
by:

e12 ¼ e21
N2

N1
: (4.8)

Finally, the number of contacts between individuals 65 years of age and older with other individuals in the same age group is
given by:

e22 ¼

P16
k¼14

�
ck;oPk

�
N2

: (4.9)

Thus, the four entries of the contact matrix E, given by 4.4, are given by the expressions in Equations (4.5), (4.6) and (4.8) and
(4.9) (the matrix E is depicted in Fig. 9). It is evident from this matrix that individuals under 65 tend to mix with themselves
more than with individuals 65 and older. Furthermore, individuals above 65 and older tend to mix more with individuals
under 65 than themselves.

Finally, it is worth noting that the contact-related term akck,l in the equation for the force of infection, l, given by (4.2) (with
ak and ck,l as defined in Table 2) can be expressed in terms of the entries of the contact matrix E as:

akckl ¼ ekl; k; l ¼ f1;2g: (4.10)

Hence, Equation (4.10) allows for the computation of the force of infection, l, using the entries of the age-stratified mixing
matrix, E (4.4).

4.1.2. Estimated (fitted) and fixed parameters
In this section, the derivation of the values of the estimated (fitted) and fixed parameters of the two-groupmodel (4.1) will

be discussed.

(I) : Estimated (fitted) parameters of the two-group model

For convenience, we only fit the two-group model with the cumulative mortality data corresponding to wave C of the
SARS-CoV-2 pandemic in the United States (and not data during previous waves A and B; we choose wave C for illustrative
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Fig. 9. Contact matrix accounting for the number of contacts made by individuals in Group 1 (age group 0e64 years of age) and Group 2 (age group 65 years of
age and older) per day.
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purposes). It should be recalled from Section 3.1 that we fitted six parameters for the homogeneous model (3.1), namely the
disease-inducedmortality rates (dI and dH) and the effective contact rates (bP, bI, bA and bH). For the two-groupmodel (4.1), we
will also fit the parameters related to the disease-induced mortality (i.e., dI,1, dI,2, dH,1, and dH,2) and those related to the
effective contact rates. Since the effective contact rate parameters for the two-group model (4.1) are defined in terms of the
product of the inter- and extra-group contact rates of individuals in the two age groups per day (a1c11, a1c12, a2c21 and a2c22)
and the probability of transmission per contact for the infectious compartments (PP;1,PP;2,PI;1,PI;2, PA;1,PA;2, PH;1 andPH;2),
and the contact rates are known from the contact matrix E (Fig. 9), we only need to fit the aforementioned transmission
probabilities. Furthermore, since it is reasonable to assume that no significant SARS-CoV-2 transmission (if at all) occurs in
hospitals during wave C of the pandemic in the United States, the transmission probabilities PH;1 and PH;2 can be set to zero
(it is worth recalling that the estimated value of the effective contact rate for SARS-CoV-2 transmission in hospital for the
homogeneous model, given in Table 4, was very low. This justifies the assumption to set the transmission probabilities for
SARS-CoV-2 in the hospital to zero for the two-group model). Furthermore, we make the simplifying assumption that the
probability of transmission for pre-symptomatic and asymptomatic individuals, for both age groups, per contact is the same.
That is, we assume ~P :¼ PP;1 ¼ PP;2 ¼ PA;1 ¼ PA;2 (hence, we only need to fit three transmission probabilities). Thus, in

summary, we are fitting seven parameters of the two-group model (namely, dI;1; dI;2; dH;1; dH;2; ~P; PI;1, and PI;2).
The two-group model (4.1) is used to fit the cumulative mortality of COVID-19 in the United States during wave C. The

same data source (CSSE at Johns Hopkins University, 2020) and fitting procedure used for the homogeneous model (see
Section 3.1.2 for details on the fitting of the homogeneousmodel to the data) are used here as well. Fig. 10(a) depicts the result
obtained for fitting the two-group model with the cumulative mortality data for SARS-CoV-2 during wave C in the United
States, and the estimated values of the seven fitted parameters are tabulated in Table 9. The goodness of fit of Fig. 10(a) is
assessed by plotting the predicted daily mortality and the predicted 7-day rolling averages, against the observed daily SARS-
CoV-2 mortality data and the observed 7-day rolling average data (shown in Fig. 10(b) and (c), respectively), showing a
reasonably good fit, particularly the 7-day rolling average Fig. 10(c). In other words, Fig. 2 (b) and (c) and Fig. 10 (b) and (c)
show, respectively, that the calibrated homogeneous and heterogeneous models predicted or captured the observed data
(including the peaks) for the 7-day averages of the daily mortality better than that for the daily mortality (i.e., compare the
blue curves and the data (red dots) in Figs. 2 and 10). The inability to accurately predict or capture the dailymortality datamay
be due to the prevailing delay in reporting of SARS-CoV-2 mortality over the weekend, during Wave C, in numerous juris-
dictions across the United States (Bergman et al., 2020) (in fact, Bergman et al. (Bergman et al., 2020) noted that the process of
adding previously unaccountedmortality data fromweekends into theweekdaymortality data can result in an increase in the
reportedmortality data during theweekdays). The values of the remaining parameters of the two-groupmodel (known as the
fixed parameters) will be obtained from the published literature and demographic (census) data, as described below.

(II) : Fixed parameters of the two-group model

It should also be mentioned that necessary adjustments in the values of the fixed parameters will be made to account for
age-related heterogeneities (since the disease affects members of the two age groups differently). Data from the Census
850
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Fig. 10. (a) Time series illustrations of the least squares fit of the two-group model (4.1), showing the model's output for the cumulative COVID-19 mortality
compared to the observed cumulative mortality for the United States during the time periods associated with Wave C. (b) The simulation result of the model (4.1),
showing the daily COVID-19 mortality cases for the United States as a function of time, using the fixed (see Table 8) and estimated parameter (see Table 9)
associated with Wave C. (c) The simulation result displaying seven-day rolling average of daily mortality for Wave C. Red dots indicate data points, while the solid
blue line represents output from the model. The initial conditions used to generate this figure are given in Appendix A.
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Bureau (The United States Census Bureau) for the year 2019 estimated the population of individuals in Group 1 (under 65) and
Group 2 (65 and older) in the United States to be 257, 473, 015 (representing 82.45% of the total U.S. population) and 54, 792,
026 (which represents 17.55% of the U.S. population), respectively. It should be recalled that, for the homogeneous model
(3.1), the recruitment rate in the populationwasP ¼ 11, 670 per day. Hence, in order to be consistent with the homogeneous
model, the recruitment rate of individuals into Group 1 (P1) and Group 2 (P2) is given by P1 ¼ 0.8245 � P ¼ 9, 622 per day
andP2 ¼ 0.1755�P¼ 2, 048 per day. Current demographic data show that the average life expectancy of an individual in the
United States is 78.8 years (Arias et al., 2020). Thus, it is reasonable to assume that, on average, individuals in Group 1 will live
to be at least 64 years of age. Hence, the natural mortality rate of individuals in Group 1 (m1) is set to be m1 ¼1/(64 � 365) per
day. On the other hand, data from the CDC shows that life expectancy at the age of 65 is 18.4 years (Kenneth et al., 2019).
Consequently, the natural mortality rate for individuals in Group 2 (m2) is set at m2 ¼ 1/(18.4 � 365) per day.

The average duration from symptom onset to hospitalization (41 and 42 for Group 1 and Group 2, respectively) can be
estimated by computing the weighted average of the time delay reported between symptom onset to hospitalization for
various age groups given in Table A2 of (Faes et al., 2020). For people under 65 years of age, the average duration is estimated
to be 6.69 days (Faes et al., 2020). Consequently, the parameter 41 is set to 41 ¼1/6.69 per day. Furthermore, the data in Table
A2 of (Faes et al., 2020) show that the duration from the onset of symptoms to hospitalization for people 65 years of age or
older is 3.78 days. Hence, the parameter 42 is set at 42 ¼ 1/3.78 per day. Similarly, it follows from Table 2 of (Danielle Iuliano
et al., 2022) that individuals under 65 stay in hospital for an average of 3.9 days. Thus, gH,1 ¼1/3.9 per day. Furthermore, these
data show that people 65 and older stay in the hospital for approximately 6.2 days. Therefore, gH,2 ¼ 1/6.2 per day. Sah et al.
(Sah et al., 2021) estimated that only 19.7% of infected individuals 60 years of age and older were asymptomatic. Conse-
quently, we set the proportion of pre-symptomatic individuals in Group 2 who become asymptomatic at the end of the pre-
symptomatic period (r2) as r2 z 1 � 0.197 ¼ 0.803. Given that 60% of the population of infected individuals is symptomatic
(recall that r ¼ 0.6 in the homogeneous model (3.1)) and approximately 80% of the individuals in Group 2 are symptomatic
(Sah et al., 2021), the proportion of pre-symptomatic individuals in Group 1 who become symptomatic at the end of the pre-
symptomatic period (r1) can be obtained from the relation:

r ¼ r1 �
total population of Group 1

total population of the United States
þ r2 �

total population of Group 2
total population of the United States

;

so that:
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Table 9
Table of estimated (fitted) parameters of the two-group heterogeneous model (4.1) generated by fitting the model with the observed cumulative mortality
data for the United States during Waves C.

Parameter Value

PP;1, PP;2, PA;1, PA;2 0.092 (dimensionless)
PI;1 0.062 (dimensionless)
PI;2 0.054 (dimensionless)
dI,1 2.806 � 10�4 day�1

dI,2 2.836 � 10�4 day�1

dH,1 4.015 � 10�4 day�1

dH,2 5.281 � 10�4 day�1
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r1 ¼
�
r � r2 �

total population of Group 2
total population of the United States

��
total population of the United States

total population of Group 1

�
: (4.11)
Substituting the values of the parameters and populations in Equation (4.11) gives r1 ¼ 0.56. The data (from the CDC
(NCIRD, 2022)) used to estimate the complete vaccination rate (xv) for the homogeneous model (3.1) are also used here to
estimate the vaccination rates for the two-group model (xv,1 and xv,2). Using this data set and the approach in Section 3.1.1, it
follows that xv,1 ¼ 0.000418 per day and xv,1 ¼ 0.000102 per day. The remaining fixed parameters of the two-group model (gI,
gA,uv,un, 3v, s, and j) are given the same values as in the homogeneousmodel (3.1) (see Section 3.1.1 for a detailed description
of the fixed parameters of the homogeneous model and Table 8 for the values of the fixed parameters of the homogeneous
model). The values of each of the fixed parameters for the two-group model (4.1) are given in Table 8.

4.2. Asymptotic stability of the DFE of the two-group model

The two-group model (4.1) has a unique disease-free equilibrium given by:

ðS*1; S*2;V*
1;V

*
2; E

*
1; E

*
2; P

*
1; P

*
2;A

*
1;A

*
2; I

*
1; I

*
2;H

*
1;H

*
2;R

*
1;R

*
2Þ ¼ ðS*1; S*2;V*

1;V
*
2;0;0;0;0;0;0;0;0;0;0;0;0Þ; (4.12)
where,

S*k ¼
Pkðuv;k þ mkÞ

mkðuv;k þ mk þ xv;kÞ
and V*

k ¼ Pkxv;k
mkðuv;k þ mk þ xv;kÞ

; with k ¼ f1;2g:
The asymptotic stability of the DFE will be explored using the next generation operator method (Diekmann et al., 1990;
Pauline van den Driessche&Watmough, 2002)(as in Section 3.2). Following Elbasha and Gumel (Elamin H Elbasha and Abba B
Gumel, 2021), we make the simplifying assumption that the population in each of the two groups (Nk, with k ¼ {1, 2}) has
reached an equilibrium state. That is, we assume that:

N*
k ¼ Nkð0Þ ¼

Pk

mk
; k ¼ f1;2g:
Furthermore, following Elbasha and Gumel (Elamin H Elbasha and Abba B Gumel, 2021), it is convenient to express the
proportion of vaccinated individuals in group k (with respect to the total population), denoted by v*k. That is,

v*k ¼
V*
k

N*
1 þ N*

2
¼ N*

k

N*
1 þ N*

2
� V*

k

N*
k

¼ n*k �
xv;k

uv;k þ mk þ xv;k
; k ¼ f1; 2g (4.13)

where,

n*k ¼
N*
k

N*
1 þ N*

2
(4.14)

is the fraction of individuals in group k.

The derivation of the vaccination reproduction number of the two-group model (denoted by Ry
v), using the next gener-

ation operatormethod, is presented in Appendix H. It follows from Equation H.1 that the vaccination reproduction number for
the two-group model (4.1) is given by
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Ry
v ¼

1
2

�
D1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
1 � 4D2

q �
; (4.15)

where,

D1 ¼ ð1� v*1ev;1ÞRy
11 þ ð1� v*2ev;2ÞRy

22;

D2 ¼ ð1� v*1ev;1Þð1� v*2ev;2ÞðRy
12R

y
21 �Ry

11R
y
22Þ;

(4.16)

with Ry
11, R

y
12, R

y
21, and Ry

22 defined by

Ry
kl ¼ Ry

kl;P þRy
kl;I þRy

kl;A þRy
kl;H; k; l ¼ f1;2g; (4.17)

where,

Ry
kl;P ¼ akcklbk;P

sl
ðsl þ mlÞðjl þ mlÞ

;

Ry
kl;I ¼ akcklbk;I

slrljl
ðsl þ mlÞðjl þ mlÞð4l þ gl;I þ dl;I þ mlÞ

;

Ry
kl;A ¼ akcklbk;A

slð1� rlÞjl
ðsl þ mlÞðjl þ mlÞðgA þ mÞ;

Ry
kl;H ¼ akcklbk;H

slrjl4l
ðsl þ mlÞðjl þ mlÞð4l þ gl;I þ dl;I þ mlÞðgl;H þ dl;H þ mlÞ

:

(4.18)

The quantityRy
kl, defined in (4.17), is the constituent reproduction number associated with disease transmission by individuals

in group k to those in group l, while the quantities Ry
kl;P ;R

y
kl;I ;R

y
kl;A, and Ry

kl;H , given in (4.18), represent the constituent

reproduction numbers associated with disease transmission between groups k and l by infectious individuals in the P, I, A and
H compartments.

The result below follows from Theorem 2 of (Pauline van den Driessche & Watmough, 2002).
Theorem 4.1. The disease-free equilibrium, given by (4.12), of the two-group model (4.1) is locally-asymptotically stable (LAS)

in U2 whenever Ry
v <1, and unstable if Ry

v >1.
Using Equation (4.15), the vaccination reproduction number for the two-group model (4.1) during Wave C is calculated to

be 3.72.
It should be mentioned that the basic reproduction number ðR0Þ associated with the two-group model (4.1) can be ob-

tained by setting the vaccination-related parameters in Equation (4.15) to zero (i.e., v*1 ¼ v*2 ¼ 0) (Elamin H Elbasha and Abba
B Gumel, 2021):

Ry
0 ¼ 1

2

�
Ry

11 þRy
22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRy

11 þRy
22Þ

2 � 4Ry
12R

y
21

r �
: (4.19)
The local asymptotic stability result (Theorem 4.1) can be extended to global asymptotic stability for a special case of the
two-group model, as follows. Consider a special case of the two-group model (4.1) with negligible disease-induced mortality
(i.e., set dI,1 ¼ dI,2 ¼ dH,1 ¼ dH,2 ¼ 0). Using the approach in Section 3.2.2, it can be shown that the feasible region is positively-
invariant with respect to the flow generated by the two-group model (4.1), and attracts all solutions of the model that reside

in the region U2. It is convenient to define RD
v ¼ Ry

vjdI;k¼dH;k¼0 (with k ¼ {1, 2}), the reproduction number of the special case of

the two-group model (4.1) with dI,k ¼ dH,k ¼ 0 (with k ¼ {1, 2}). We claim the following result.

UD
2 ¼

n

S1; S2;V1;V2; E1; E2; P1; P2; I1; I2;A1;A2;H1;H2;R1;R2Þ2R16

þ : S1 < S*1; S2 < S*2;V1 <V*
1;V2 <V*

2

o
;

Theorem 4.2. The disease-free equilibrium of the special case of the two-group model (4.1) with negligible disease-induced

mortality (i.e., dI,k ¼ dH,k ¼ 0, with k ¼ {1, 2}), given by (4.12), is globally-asymptotically stable in UD
2 whenever RD

v <1.
The proof of Theorem 3.3, based on using a comparison theorem (Lakshmikantham et al., 1989), is given in Appendix I. Like

in the case of Theorem 3.3 for the special case of the homogeneous model without disease-induced mortality, the epide-
miological implication of Theorem 4.2 is that, for the special case of the two-group model without disease-induced mortality,
bringing (and maintaining) the reproduction threshold ðRD

v Þ to a value less than one is necessary and sufficient for the
elimination of the pandemic in the population. Therefore, this result shows that the implementation of a vaccination program
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that can bring (and maintain) the reproduction threshold, RD
v , to a value below one will lead to the elimination of the

pandemic in the United States.
Owing to the assortative mixing pattern shown by the data used to generate Fig. 9, it can be seen, using the expressions for

the constituent reproduction numbers (4.17), that the transmission of COVID-19 occursmore due tomixingwithin each group
than mixing between groups. That is, the following inequality holds (as a natural consequence of the assortative mixing in
favor of within-group mixing):

Ry
11R

y
22 >Ry

12R
y
21:

It should also be noted from Equations (4.17) and (4.18) that themixing terms (ak and ckl) determine the sign of the expression

of Ry
11R

y
22 � Ry

12R
y
21. Specifically, as shown by Elbasha and Gumel (Elamin H Elbasha and Abba B Gumel, 2021),

sign
�Ry

11R
y
22 �Ry

12R
y
21

� ¼ signða1c11a2c22 � a1c12a2c21Þ; (4.20)

from which, using (4.10), it follows that

sign
�Ry

11R
y
22 �Ry

12R
y
21

� ¼ signðe11e12 � e12e21Þ: (4.21)

Thus, the entries of the mixing matrix (Fig. 9) determine the biased assortative nature of the mixing patterns (in favor of
within-group mixing) in the population.
4.3. Vaccine-derived herd immunity threshold for the two-group model

In this section, the result of Theorem 4.2 will be used to compute an expression for the vaccine-derived herd immunity
threshold (HIT) needed to eliminate the pandemic using the two-group model. The objective is to determine whether the
level of vaccine-derived HIT obtained using the two-group model differs from the HIT value obtained for the homogeneous
model (given in Section 3.3.1). The approach here follows closely the approach introduced by Elbasha and Gumel (Elamin H
Elbasha and Abba B Gumel, 2021). Specifically, in order to compute the HIT for the two-group model, it is convenient to re-
write the proportion of vaccinated individuals at steady-state as (Elamin H Elbasha and Abba B Gumel, 2021):

V*
1 þ V*

2

N*
1 þ N*

2
¼
�

N*
1

N*
1 þ N*

2

�
V*
1

N*
1
þ
�

N*
2

N*
1 þ N*

2

�
V*
2

N*
2
¼ n*1v

*
1 þ n*2v

*
2; (4.22)

where n*k and v*k are defined by Equations (4.14) and (4.13), respectively. Hence, following Elbasha and Gumel (Elamin H
Elbasha and Abba B Gumel, 2021), the computation of the vaccine-derived HIT for the two-group model (4.1) entails solv-
ing the following optimization problem (Elamin H Elbasha and Abba B Gumel, 2021):

minimizeðn*1v*1 þn*2v
*
2Þ subject to; 0 � v*1; v

*
2 � 1;Ry

v � 1: (4.23)

Since individuals in each of the two age groups continued to receive SARS-CoV-2 vaccines in the United States during wave C
of the pandemic (i.e., 0 � v*1;v

*
2 � 1), and considering the fact that contact matrix 9 produces biased assortative mixing (i.e.,

Ry
11R

y
22 >Ry

12R
y
21), the HIT for Wave C is given by (the derivation of this expression is given in (Elamin H Elbasha and Abba B

Gumel, 2021), and not repeated here):

n*1v
*
1 þ n*2v

*
2 ¼

e1n*2ðRy
11 þRy

12R
y
21 �Ry

22R
y
11Þ þ e2n*1ðRy

22 þRy
12R

y
21 �Ry

22R
y
11Þ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1n*2e2n

*
1R

y
12R

y
21

q
e1e2ðRy

12R
y
21 �Ry

11R
y
22Þ

: (4.24)

Substituting the values of constituent reproduction numbers (Ry
11, R

y
12, R

y
21 and Ry

22), vaccine efficacy ( 31 and 32) and the

fraction of the total population that belongs to a group (n*1 and n*2) into the right-hand side of Equation (4.24) shows that the

value of HIT for the two-groupmodel is n*1v
*
1 þ n*2v

*
2 ¼ 0:61. That is, the computation in this section shows that, using the two-

groupmodel (4.1), vaccine-derived herd immunity can be achieved in the United States if at least 61% of the population is fully
vaccinated. It should be recalled that, for the homogeneous model (3.1), it was shown that vaccine-derived herd immunity
could not be achieved during Wave C even if all unvaccinated susceptible individuals were fully vaccinated during that wave.
Thus, this study shows that adding age-related heterogeneity into a homogeneous model for SARS-CoV-2 pandemic that
includes a vaccination significantly reduces the vaccination coverage needed to eliminate the disease. This result is consistent
with (Elamin H Elbasha and Abba B Gumel, 2021) where it was theoretically shown that the value of the herd immunity
threshold obtained using the (two-group) heterogeneous model was smaller than that obtained using the (one-group) ho-
mogeneous model.
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5. Discussion and conclusions

The novel pneumonia-like illness that emerged late in December 2019 (COVID-19, caused by SARS-CoV-2) became the
most devastating public health and socio-economic challenge humans have faced since the 1918 influenza pandemic (Morens
& Fauci, 2007; Ngonghala, Iboi, Eikenberry, et al., 2020; Samuel Faust et al., 2020). The SARS-CoV-2 pandemic, which caused
over 700 million confirmed cases and nearly 7 million deaths globally (World Health Organization), affected different seg-
ments of society differently. For example, healthcare professionals, grocery store workers, public transport workers, law
enforcement and other emergency public service providers, retail workers, the elderly, residential care residents andworkers,
were more vulnerable to acquire SARS-CoV-2 infection than other members of the public (Chen et al., 2021, 2022; Ing et al.,
2020; Iyengar et al., 2020; Matz et al., 2022; Mutambudzi et al., 2021). Furthermore, individuals with underlying health
conditions (such as diabetes and hypertension), in comparison to individuals without such co-morbidities, are more
vulnerable against SARS-CoV-2 (Callender et al., 2020; Djaharuddin et al., 2021; Omame et al., 2021; Sanyaolu et al., 2020;
Wang et al., 2020). Although the elderly population (i.e., people 65 years of age and older) had higher vaccine acceptance
(Jeffrey et al., 2021), they suffered the brunt of the SARS-CoV-2 burden (for instance, despite representing less than 20% of the
total population, the elderly accounted for 47.10% of hospitalizations and 60.92% of deaths in the United States (CDCa; CDCb)).
This study is based on using mathematical modeling approaches, together with data analytics and computation, to unravel
the combined population-level impacts of the disproportionate effect of the SARS-CoV-2 pandemic on the elderly (i.e., age
heterogeneity and associated mixing patterns), which represents the highest risk group (Applegate & Ouslander, 2020), and
vaccination on the transmission dynamics and control of the SARS-CoV-2 pandemic in the United States.

The objective of this study was achieved via the design of a generalized multigroup mathematical model, which takes the
form of a deterministic system of nonlinear differential equations for the temporal dynamics of the disease within a popu-
lationwithm heterogeneous subgroups (them heterogeneous sub-populations could represent various heterogeneities, such
as heterogeneities with respect to age, risk of acquiring infection, mixing patterns, socioeconomic status etc.). The m-group
model was shown to be well-posed mathematically and epidemiologically, by rigorously establishing the non-negativity,
boundedness and invariance of its solutions. A special case of the model with homogeneous mixing (i.e., the model with
m ¼ 1) was considered first of all. The disease-free equilibrium of this (homogeneous) model was shown to be locally-
asymptotically stable whenever a certain epidemiological threshold, known as the vaccination reproduction number, is less
than one. The implication of this result is that the vaccination program implemented in the United States could lead to the
elimination of the pandemic if the reproduction number could be brought to (and maintained at) a value less than one,
provided the initial number of infected individuals is small enough. This result was extended to the global asymptotic stability
of the disease-free equilibrium for two special cases (one where the vaccines used offer perfect protection against the
acquisition of SARS-CoV-2 infection, and another where the disease-induced mortality is negligible). The epidemiological
implication of this global asymptotic stability of the disease-free equilibrium is that bringing the vaccination reproduction
number less than the proportion of wholly-susceptible individuals at the disease-free steady-state (which is less than one) is
necessary and sufficient for the elimination of the pandemic, regardless of the initial sizes of the sub-populations of the
model. This result is in line with the results presented in models for SARS-CoV-2 pandemic that incorporate an imperfect
vaccine, such as those in (Gumel, 2012; Gumel, Iboi, Ngonghala, & Elbasha, 2021). For the case where the vaccination
reproduction number exceeds the value one, the homogeneous model has a unique endemic equilibrium which was shown,
using a Krasnasolskii sub-linearity approach, to be locally-asymptotically stable when it exists. This equilibriumwas shown to
be globally-asymptotically stable, using a nonlinear Lyapunov function of Goh-Volterra type. The implication of these results
is that, for the case where the vaccination reproduction number exceeds one, the vaccination program implemented (despite
its ability to decrease disease burden) will fail to lead to the elimination of the pandemic. In such a case, the vaccination
program needs to be supplemented with other control and mitigation programs, such as mask usage and social-distancing.

The homogeneousmodel was fitted using the observed cumulativemortality data for the United States during threewaves
of the pandemic. The three waves (denotedWave A, B and C) correspond to the time periods when the pandemic was mostly
dominated by the Alpha, Delta and Omicron variants, respectively. The calibrated model was used to estimate the unknown
parameters of the homogeneous model and to compute the level of vaccine-derived herd immunity threshold needed to
eliminate the pandemic. Our simulations showed that, for the one-group homogeneous model, vaccine-derived herd im-
munity cannot be achieved during Wave C even if all the unvaccinated susceptible individuals in the population are fully
vaccinated during Wave C. We conducted a detailed global sensitivity analysis to determine the parameters of the model that
have the highest impact on the vaccination reproduction number (hence, the burden of the pandemic). A number of pa-
rameters (such as parameters related to asymptomatically-infectious individuals) were identified as the most influential in
driving the disease dynamics during the three waves considered in this study. We used these parameters to suggest the most
effective control and mitigation interventions to be implemented during each of the three waves of the pandemic. Our study
shows that some interventions that may be very effective during one of the three waves may not always be as effective during
the other wave or waves. However, we showed that interventions related to targeting asymptomatic infectious individuals is
always very effective across the three waves. Therefore, another novel finding in this study is that strategies that focus on
rapidly detecting and isolating asymptomatic infectious individuals (such as wide-scale random testing, rapid detection, and
contact tracing of contacts of identified asymptomatic individuals) will be very effective in controlling and mitigating the
spread of respiratory pathogens, such as SARS-CoV-2, where asymptomatic transmission is a major feature of its transmission
dynamics.
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To account for the disproportionate effect of SARS-CoV-2 on the elderly, we considered another special case of the
generalized m-group model where the total population of the United States is stratified into two sub-groups of individuals
under 65 years of age (Group 1) and those that are 65 and older (Group 2). The resulting two-group model (i.e., the het-
erogeneous model with m ¼ 2) was rigorously analysed and fitted with the cumulative mortality data for Wave C (as in the
case of the aforementioned homogeneous model). The main objective is to determine whether age heterogeneity (together
with the associated variability in mixing patterns by age) affects the size of the vaccination coverage needed to achieve
vaccine-derived herd immunity in the United States (in comparison to the case where the model assumes a homogeneous
population). Our results showed that, for the two-groupmodel, vaccine-derived herd immunity can be achieved in the United
States during wave C of the pandemic (for example) if at least 61% of the population is fully vaccinated. Thus, this study shows
that adding age heterogeneity to a vaccination model for SARS-CoV-2 that assumes a homogeneous population dramatically
decreases the size of the herd immunity threshold needed to eliminate the pandemic (it should be recalled that, for the case
where the homogeneous model was used, such vaccine-derived herd immunity was not attainable during Wave C even if all
unvaccinated susceptible members of the community are fully vaccinated). Thus, adding the realism of the well-known
heterogeneities associated with the SARS-CoV-2 pandemic makes the likelihood of its elimination using a vaccine more
realistically achievable (because it requires vaccination coverage that can perhaps be readily and realistically achieved). This
finding strongly supports the study by Britton et al. (Britton et al., 2020) (which shows, via numerical simulations, that the
herd immunity threshold obtained through a heterogeneous model is “substantially less” than one obtained through a ho-
mogeneous model) and the theoretical study by Elbasha and Gumel (Elamin H Elbasha and Abba B Gumel, 2021) (which used
a geometric approach to rigorously show that the herd immunity threshold of a vaccination model for an infectious disease
that uses heterogeneous populations is lower than that of an equivalent model with a homogeneous population).

This study has some limitations. For instance, one of the main assumptions made in the formulation of the k � group
heterogeneous model is that only unvaccinated susceptible individuals are vaccinated (i.e., recovered and asymptomatic
infected individuals are not vaccinated). Furthermore, the SARS-CoV-2 vaccines considered in this study are assumed to only
offer preventive efficacy against the acquisition infection and offer no therapeutic benefits with regards to slowing disease
progression, severity, hospitalization and mortality (the SARS-CoV-2 vaccines have been shown to reduce the duration of
infection (CDC, 2021; Emilia Paladino et al., 2021), the likelihood of hospitalization (Lopez Bernal, Andrews, Gower, Robertson,
et al., 2021; Moline et al., 2021; Rahmani et al., 2022) and disease-induced mortality (Lopez Bernal, Andrews, Gower,
Robertson, et al., 2021; Rahmani et al., 2022)).

In summary, in addition to highlighting the importance of adding heterogeneities to mathematical models for the
transmission dynamics and control of diseases such as SARS-CoV-2 and showing that control and mitigation strategies that
are very effective during onewavemay not always be very effective during other waves, this study shows that the prospect for
the elimination of SARS-CoV-2 using a vaccination program is highly promising, provided the coverage level is high enough to
achieve herd immunity (adding heterogeneity reduces the coverage level of the herd immunity threshold needed to achieve
herd immunity; hence, makes the elimination of the pandemic more likely).
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Appendix. A Initial Conditions for the Models

A.1Homogeneous Model

The initial conditions for the state variables of the homogeneous model (3.1), corresponding toWaves A, B and C, are given
in Table A1.
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A.2 Two-group Model (During Wave C)

For the two-group model (4.1), the initial conditions for the state variables for individuals in Group 1 (i.e., individuals 64
years and younger) during Wave C is denoted by X01, where:

X01 ¼ ðS01;V01; P01; I01;A01;H01;R01Þ; (A.1)

with,
S01 ¼ 54;168;536;V01 ¼ 76;784;154; E01 ¼ 73;596; P01 ¼ 366;386;
I01 ¼ 4;126;977;A01 ¼ 3;558;881;H01 ¼ 42;140 and R01 ¼ 118;643;401: (A.2)
Similarly, the initial conditions for the state variables for individuals in Group 2 (i.e., individuals 65 and older), denoted by
X02, are computed from the relation:

X02 ¼ X0 � X01; where Xi ¼ fSi;Vi; Ei; Pi; Ii;Ai;Hi;Rig; with i ¼ f0;01g; (A.3)
where X0 is the vector of the initial conditions for the state variables of the homogeneousmodel (given in Table A1) and X01
is the set of the initial conditions for the state variables of the individuals in Group 1 (as given in (A.1)).

Table A.1
The initial conditions of the state variables of the homogeneous model (3.1) used to generate Fig. 2 (obtained by fitting the homogeneous model with the
observed cumulative mortality data for the United States during Waves A, B, and C). The initial value of the susceptible population (S0) was obtained by
subtracting the initial values of remaining state variables of the homogeneous model (V0, E0, P0, I0, A0, H0 and R0) and the observed cumulative mortality
(recorded at the beginning of each of the three waves) from the total population of the United States (331.69million (The United States Census Bureau)). The
initial conditions for the hospitalized individuals and the cumulative mortality (at the beginning of each of the three waves) are obtained from data (CSSE at
Johns Hopkins University, 2020; NCIRD, 2022).
Initial Condition
 Value
Wave A
857
Wave B
 Wave C
S0
 327,433,290
 155,108,886
 73,443,709

V0
 0
 54,250,695
 100,070,766

E0
 800, 109
 300, 105
 97, 860

P0
 800, 032
 400, 302
 388, 859

I0
 1, 091, 821
 1, 293, 500
 4, 169, 424

A0
 311, 949
 748, 501
 3, 586, 032

H0
 32, 604
 14, 085
 84, 281

R0
 1, 009, 051
 118, 974, 149
 149, 030, 355
A.3 Profiles of Susceptible and Recovered Individuals for Model (3.1)

Fig. 11 depicts the time-series profile of the susceptible and recovered individuals generated using the homogeneous
model (3.1) during Waves A, B and C of the SARS-CoV-2 in the United States. The figure was generated by simulating the
homogeneousmodel (3.1) with the baseline values of the parameters in Tables 3 and 4 and the initial conditions given in Table
A1.

Fig. 11. Time-series of populations of susceptible (green curve) and recovered (blue curve) individuals during Waves A, B, and C, as functions of time, generated
by simulating the homogeneous model (3.1) using the baseline values of the parameters in Tables 3 and 4 and the initial conditions given in Table A1. (a) Wave A,
(b) Wave B and (c) Wave C.

mailto:Image of Fig. 11|tif
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B Effective Reproduction Number For the Homogeneous Model During Each Wave

The effective reproduction number (also known as time-varying reproduction number (Gumel, Iboi, Ngonghala, & Elbasha,
2021)), denoted byReðtÞ, is the average number of new infections generated by a typical infected individual at any given time
t. In the absence of vaccination, the effective reproduction number for the homogeneous model (3.1), denoted by Re0ðtÞ, is
given by (Ngonghala, Iboi, Eikenberry, et al., 2020; Nishiura & Chowell, 2009):

Re0ðtÞ ¼ ðR0Þ
�
SðtÞ
NðtÞ

�
; (B.1)
where R0 is defined by (3.14). Similarly, in the presence of vaccination, it follows, from (Kim et al., 2022; Zhao, Musa, et al.,
2020) and Equations (3.11) and (3.12), that the effective reproduction number, denoted byRevðtÞ, for the homogeneousmodel
(3.1) is given by (where the basic reproduction number, R0, is given by (3.14)):

RevðtÞ ¼ ðR0Þ
�
SðtÞ þ ð1� evÞVðtÞ

NðtÞ
�
: (B.2)
The time profile of the effective reproduction number and the prevalence of the disease during Waves A, B, and C is
depicted in Fig. 12. Sustained SARS-CoV-2 transmission occurs when the effective reproduction number (Re0ðtÞ or RevðtÞ)
exceeds one, and declines when the effective reproduction number is less than one. Additionally, disease prevalence peaks,
for each of the three waves, when the effective reproduction equals one.

ForWave A, which runs fromOctober 15, 2020, to April 5, 2021, it should be noted that there are no individuals in the fully-
vaccinated compartment until January 3, 2021. Hence, the effective reproduction number ðReðtÞÞ for Fig. 12(a) is given by the
following piece-wise function (depicted by the blue curve in Fig. 12(a)):

ReðtÞ ¼
�Re0ðtÞ for t2½October 15; 2020 to January 3; 2021�;
RevðtÞ for t2½January 4; 2021 to April 5; 2021�: (B.3)
Fig. 12(b) and (c) are generated using the effective reproduction number RevðtÞ.

Fig. 12. Profiles of the effective reproduction numbers (Re0ðtÞ or RevðtÞ) of the homogeneous model (blue curve) and disease prevalence (red curve). Panels (a),
(b) and (c) depict the profiles for Waves A, B, and C, respectively. The effective reproduction number associated with Wave A is represented as a piece-wise
function, given by Equation (B.3), to account for the fact that vaccination against SARS-CoV-2 did not start until middle to late December 2020; hence there
were no fully vaccinated individuals at the beginning of Wave A. The effective reproduction for Wave A was computed using Re0ðtÞ during the period from
October 15, 2020 to January 3, 2021, and usingRevðtÞ for the period from January 4, 2021 until the end of Wave A. In other words, Fig. 12(a) was obtained by using
Equation (B.1) for the period from October 15, 2020 to January 3, 2021 (shown by the left lower-right segment to the left of the vertical dashed lines), and
Equation (B.2) for the remaining period from January 4, 2021 to the end of the first wave, as well as for Waves B and C (shown in Figures (b) and (c). The dashed
vertical black line represents the day peak prevalence is attained. Dashed horizontal green line depicts when the effective reproduction number (Re0ðtÞ or RevðtÞ
equals one).

C Proof of Theorem 3.2

Proof. Consider the homogeneous model (3.1) with a perfect vaccine (i.e., 3v ¼ 1). Let ~Rv � s* <1 (where s* ¼ S*= N* ¼
uvþm

uvþxvþm
). Further, consider the following linear Lyapunov function:

L ¼ a0E þ a1P þ a2I þ a3Aþ a4H;
where,
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a0 ¼ 1
sþ m

; a1 ¼ a0bP þ rja2 þ ð1� rÞja3
ðjþ mÞ ; a2 ¼ a0bI þ 4a4

4þ gI þ dI þ m
;

a3 ¼ a0
bA

gA þ m
and a4 ¼ a0

bH
gH þ dH þ m

:

The Lyapunov derivative is given by (where a dot represents differentiation with respect to time t):

_L ¼ a0 _E þ a1 _P þ a2 _I þ a3
_Aþ a4 _H;
which can be simplified to

_L ¼
�
a0bP

S
N
� a1ðjþ mÞ þ a2rjþ a3ð1� rÞj

�
P þ

�
a0bA

S
N
� a3ðgA þ mÞ

�
A

þ
�
a0bI

S
N
� a2ð4þ gI þ dI þ mÞ þ a44

�
I þ
�
a0bH

S
N
� a4ðgH þ dH þ mÞ

�
H

þ½ � a0ðsþ mÞ þ a1s�E;
so that (noting S(t) � N(t) for all t in U1),

_L �
�

s

sþ m

�
bP

jþ m
þ rjbI
ðjþ mÞð4þ gI þ dI þ mÞ þ

rj4bH
ðgH þ dH þ mÞð4þ gI þ dI þ mÞ þ

ð1� rÞjbA
ðjþ mÞðgA þ mÞ

	
� 1

�
E;

_L � ðR0 � 1ÞE;

_L �
��

1� v*

1� v*

�
R0 � 1

�
E;

_L ¼
 

~Rv

1� v*
� 1

!
E:
Thus, _L �

 ~Rv

s* � 1
�
E, where s* ¼ 1 � v* (with v* defined in Equation (3.11)). That is, the Lyapunov derivative _L � 0 if

~Rv � s* <1, and _L ¼ 0 if and only if E(t) ¼ 0. Thus, L is a Lyapunov function in U1 and it follows from LaSalle's Invariance
Principle (Hale, 1969) that every solution to the model (3.1) (with 3v ¼ 1 and initial conditions in U1) converges to DFE as t/
∞. That is, (S(t), V(t), E(t), P(t), I(t), A(t), H(t), R(t)) / (S*, V*, 0, 0, 0, 0, 0, 0) as t / ∞ for ~Rv � s*. Hence, the DFE is globally-
asymptotically stable in U1 if ~Rv � s* for the special case of the model (3.1) with 3v ¼ 1. This completes the proof. ,

D Proof of Theorem 3.3

Proof. Consider a special case of the homogeneous model (3.1) with negligible disease-induced mortality (i.e., consider the
model (3.1) with dI ¼ dH ¼ 0). Furthermore, let R⋄

v <1. The proof is based on using a comparison theorem (Lakshmikantham
et al., 1989).

It is convenient to define:

W ¼ Sþ ð1� evÞV
P=m

and W* ¼ S* þ ð1� evÞV*

N*
: (D.1)
The equations for the infected compartments of this special case of the model (3.1) can be re-written in terms of the next
generation matrices F and V⋄ ¼ V jdI¼dH¼0 (with F and V matrices given in Section 3.2.1) as:

d
dt

2
66664
EðtÞ
PðtÞ
IðtÞ
AðtÞ
HðtÞ

3
77775 ¼ ðF �V⋄Þ

2
66664
EðtÞ
PðtÞ
IðtÞ
AðtÞ
HðtÞ

3
77775�M⋄

2
66664
EðtÞ
PðtÞ
IðtÞ
AðtÞ
HðtÞ

3
77775; (D.2)
where,
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F � V⋄ ¼

2
66664
�ðsþ mÞ bPW

* bIW
* bAW

* bHW
*

s �ðjþ mÞ 0 0 0
0 rj �ð4þ gI þ mÞ 0 0
0 ð1� rÞj 0 �ðgA þ mÞ 0
0 0 4 0 �ðgH þ mÞ

3
77775; (D.3)
and,

M⋄ ¼

2
66664
0 bPðW* �WÞ bIðW* �WÞ bAðW* �WÞ bHðW* �WÞ
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
77775: (D.4)
Since S*� S and V*� V inU⋄ (so thatW* >W) andN*¼P/m, it follows that thematrixM⋄, defined in (D.4), is non-negative.
Thus, Equation (D.2) can be re-written as the following inequality:

d
dt

2
66664
EðtÞ
PðtÞ
IðtÞ
AðtÞ
HðtÞ

3
77775 � ðF �V⋄Þ

2
66664
EðtÞ
PðtÞ
IðtÞ
AðtÞ
HðtÞ

3
77775: (D.5)
If R⋄
v <1, then rðFV⋄�1Þ<1 (see Section 3.2.1), which is equivalent to all eigenvalues of F � V⋄ matrix being negative

(Pauline van den Driessche &Watmough, 2002). Hence, the linearized differential inequality (D.5) is stable wheneverR⋄
v <1,

so (E(t), P(t), I(t), A(t), H(t)) / (0, 0, 0, 0, 0) as t / ∞ for this linear ODE system. It follows, using a standard comparison
theorem (Lakshmikantham et al., 1989), that: (E(t), P(t), I(t), A(t), H(t)) / (0, 0, 0, 0, 0). Substituting
E(t) ¼ P(t) ¼ I(t) ¼ A(t) ¼ H(t) ¼ 0, into the equations for _S, _V , and _R of the homogeneous model (3.1) gives:

SðtÞ/S*;VðtÞ/V* and RðtÞ/0; as t/∞:
Hence, the disease-free equilibrium of the special case of the model (3.1) with negligible disease-induced mortality (i.e.,
model (3.1) with dI ¼ dH ¼ 0) is globally-asymptomatically stable in U⋄, whenever R⋄

v <1. ,

E Proof of Theorem 3.6

Proof. Consider the special case of the homogeneous model (3.1) with negligible disease-induced mortality (i.e.,
dI ¼ dH ¼ 0), perfect vaccine ( 3v ¼ 1), and no waning of immunity (uv ¼ un ¼ 0). The proof of Theorem 3.6 is based on using a
Krasnoselskii sub-linearity trick (see (Hethcote & Thieme, 1985; Horst, 1985), and also (Esteva et al., 2009; Esteva & Vargas,
2000)). The substitution S]N*� V� E� P� I� A�H� R (along with (3.14)) is used to rewrite this special case of model (3.1)
as:

_VðtÞ ¼ xvðN* � V � E � P � I � A� H � RÞ � k2V ;
_EðtÞ ¼ l⋄ðN* � V � E � P � I � A� H � RÞ � k3E;
_PðtÞ ¼ sE � k4P;
_IðtÞ ¼ rjP � k⋄5I;
_AðtÞ ¼ ð1� rÞjP � k6A;
_HðtÞ ¼ 4I � k⋄7H;
_RðtÞ ¼ gI I þ gAAþ gHH � mR;

(E.1)

where k⋄5 ¼ 4þ gI þ m, k⋄7 ¼ gH þ m, and l⋄, the force of infection obtained by substituting N]N* in (3.2), is given by

l⋄ ¼ bPP þ bI I þ bAAþ bHH
N* : (E.2)

Linearizing the system (E.1) around the endemic equilibrium, E⋄1, gives
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_VðtÞ ¼ �xvðV þ E þ P þ I þ Aþ H þ RÞ � k2V ;
_EðtÞ ¼ �a0V � ða0 þ k3ÞE þ ða1 � a0ÞP þ ða2 � a0ÞI þ ða3 � a0ÞAþ ða4 � a0ÞH � a0R;
_PðtÞ ¼ sE � k4P;
_IðtÞ ¼ rjP � k⋄5I;
_AðtÞ ¼ ð1� rÞjP � k6A;
_HðtÞ ¼ 4I � k⋄7H;
_RðtÞ ¼ gI I þ gAAþ gHH � mR;

(E.3)

where, a0 ¼ bPP**þbI I**þbAA**þbHH**

N* , a1 ¼ bP
S**
N* , a2 ¼ bI

S**
N* , a3 ¼ bA

S**
N* , and a4 ¼ bH

S**
N* .

It follows that the Jacobian of the system (E.3), evaluated at E⋄1, is given by

JðE⋄1Þ ¼

0
BBBBBBBBBBBBBBB@

�xv � k2 �xv �xv �xv �xv �xv �xv
�a0 �a0 � k3 a1 � a0 a2 � a0 a3 � a0 a4 � a0 �a0
0 s �k4 0 0 0 0
0 0 rj �k⋄5 0 0 0
0 0 ð1� rÞj 0 �k6 0 0
0 0 0 4 0 �k⋄7 0
0 0 0 gI gA gH �m

1
CCCCCCCCCCCCCCCA

:

Assume that the linearized system (E.3) has a solution of the form

ZðtÞ ¼ Z0e
ut ; (E.4)
with Z0 ¼ (Z1, Z2, Z3, Z4, Z5, Z6, Z7), u, Zi2C (i ¼ {1, 2, …, 7}). Substituting the solution of the form (E.4) into the linearized
system (E.3) gives

uZ1 ¼ �xvðZ1 þ Z2 þ Z3 þ Z4 þ Z5 þ Z6 þ Z7Þ � k2Z1;

uZ2 ¼ �a0Z1 � ða0 þ k3ÞZ2 þ ða1 � a0ÞZ3 þ ða2 � a0ÞZ4 þ ða3 � a0ÞZ5 þ ða4 � a0ÞZ6 � a0Z7;

uZ3 ¼ sZ2 � k4Z3;

uZ4 ¼ rjZ3 � k⋄5Z4;

uZ5 ¼ ð1� rÞjZ3 � k6Z5;

uZ6 ¼ 4Z4 � k⋄7Z6;

uZ7 ¼ gIZ4 þ gAZ5 þ gHZ6 � mZ7:

(E.5)
The third to the seventh equation in system (E.5) can be rewritten bymoving negative terms to their respective left-hand side
as �

1þ u

k4

�
Z3 ¼ s

k4
Z2;�

1þ u

k⋄5

�
Z4 ¼ rj

k⋄5
Z3;

�
1þ u

k6

�
Z5 ¼ ð1� rÞj

k6
Z3;�

1þ u

k⋄7

�
Z6 ¼ 4

k⋄7
Z4;

�
1þ u

m

�
Z7 ¼ gI

m
Z4 þ

gA
m
Z5 þ

gH
m
Z6:

(E.6)
To get a similar expression from first and second equations in system (E.5), we first rewrite all equations in system (E.6) in
terms of Z2 as
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Z3 ¼ s

uþ k4
Z2 ¼ A1Z2;

Z4 ¼ rjs
ðuþ k4Þðuþ k⋄5Þ

Z2 ¼ A2Z2;

Z5 ¼ sð1� rÞj
ðuþ k4Þðuþ k6Þ

¼ A3Z2;

Z6 ¼ 4rjs
ðuþ k4Þðuþ k6Þðuþ k⋄7Þ

Z2 ¼ A4Z2;

Z7 ¼ 1
m
ðgIA4 þ gAA5 þ gHA6ÞZ2 ¼ A5Z2:

(E.7)
Then, using the first two equations of (E.5) and expressions in (E.7), we obtain�
1þ uþ xv

k2

�
Z1 þ

�
1þ uþ a0

k3
þ xv
k2

þ
�
xv
k2

þ a0
k3

�
ðA3 þ A4 þ A5 þ A6 þ A7Þ�Z2

¼ a1
k3

Z3 þ
a2
k3

Z4 þ
a3
k3

Z5 þ
a4
k3

Z6:
(E.8)
System (E.6) along with (E.8) can be rewritten as

½1þ F1ðuÞ�Z1 þ ½1þ F2ðuÞ�Z2 ¼ a1
k3

Z3 þ
a2
k3

Z4 þ
a3
k3

Z5 þ
a4
k3

Z6;

½ð1þ F3ðuÞ�Z3 ¼ s

k4
Z2 ¼ ðMZÞ3;

½1þ F4ðuÞ�Z4 ¼ rj
k⋄5

Z3 ¼ ðMZÞ5;

½1þ F5ðuÞ�Z5 ¼ ð1� rÞj
k6

Z3 ¼ ðMZÞ5;

½1þ F6ðuÞ�Z6 ¼ 4

k⋄7
Z4 ¼ ðMZÞ6;

½1þ F7ðuÞ�Z7 ¼ gI
m
Z4 þ

gA
m
Z5 þ

gH
m
Z6 ¼ ðMZÞ7;

(E.9)
where,

F1ðuÞ ¼ uþ xv
k2

þ a0
k3

;

F2ðuÞ ¼ uþ a0
k3

þ xv
k2

þ
�
xv
k2

þ a0
k3

��
A1 þ A2 þ A3 þ A4 þ A5Þ;

F3ðuÞ ¼ u

k4
; F4ðuÞ ¼

u

k⋄5
; F5ðuÞ ¼

u

k6
; F6ðuÞ ¼

u

k⋄7
; and F7ðuÞ ¼

u

m
;

(E.10)
with,
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M ¼

0
BBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0
a1
k3

a2
k3

a3
k3

a4
k4

0

0
s

k4
0 0 0 0 0

0 0
rj
k⋄5

0 0 0 0

0 0
ð1� rÞj

k6
0 0 0 0

0 0 0
4

k⋄7
0 0 0

0 0 0
gI
m

gA
m

gH
m

0

1
CCCCCCCCCCCCCCCCCCCCCCCCA

:

In the above expressions, the notation (MZ)i (with i ¼ 1, …, 7) denotes the ith coordinate of the vector MZ. Furthermore,
note that thematrixM has non-negative entries and the endemic equilibrium E⋄1 satisfies E

⋄
1 ¼ME⋄1. Hence, if Z is a solution of

(E.9), then it is possible to find a minimal positive real number b such that (Esteva et al., 2009; Esteva & Vargas, 2000)

kZk� bE⋄1; (E.11)

where, kZk ¼ (kZ1k, kZ2k, kZ3k, kZ4k, kZ5k, kZ6k, kZ7k) with lexicographic order, and k.k is a norm in C. Now it is sufficient to
show that Re(u) < 0. Assume the contrary (i.e., Re(u) � 0) and consider the following two cases.

Case 1: u ¼ 0.
In this case, (E.5) is the homogeneous linear system in the variables Zi (with i ¼ 1,…, 7). The determinant of this system is

given by

D ¼ �Aþ
�
S**

R̂v

N*
� 1

�
mðxv þ k2Þk3k4k⋄5k6k⋄7; (E.12)

where,
A ¼ msk2k
⋄
5k6k

⋄
7 þ mk2k4k

⋄
5k6k

⋄
7 þ rms4jk2k6 þ rmsjk2k6k

⋄
7 þ ð1� rÞmsjk2k⋄5k⋄7

þrsjgIk2k6k
⋄
7 þ ð1� rÞsjgAk2k⋄5k⋄7 þ rs4jgHk2k

⋄
5 >0:

^
To determine the sign of D it is enough to determine that of S** Rv

N* . To do this, we first solve the system (E.1) at the endemic
steady-state ðE⋄1Þ as

S**

N* ¼ k3E**

bPP þ bI I** þ bAA** þ bHH**; (E.13)

** s ** ** rjs ** ** ð1� rÞjs ** ** rjs4 **
P ¼
k4
E ; I ¼

k⋄5
E ; A ¼

k4k6
E ; H ¼

k4k5k
⋄
7
E : (E.14)

Then, we observe that
bPP
** þ bI I

** þ bAA
** þ bHH

** ¼
�
bP

s

k4
þ bI

rjs
k4k

⋄
5
þ bA

ð1� rÞjs
k4k6

þ bH
rjs4
k4k

⋄
5k

⋄
7

�
E** ¼ k3R⋄

vE
**; (E.15)

and substitute the expression from equation (E.15) into (E.13) to get
S**

N*
¼ 1

R̂v

: (E.16)

^
This implies that S** Rv

N* � 1 ¼ 0, which means (E.12) can be simplified as

D ¼ �A<0: (E.17)
Since the determinant D is negative, it follows that the system (E.5) has a unique solution, given by Z ¼ 0 (which cor-
responds to the DFE ðE0Þ).
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Case 2: u s 0.
In this case, since by assumption Re(u) > 0, so |1 þ Fi(u)| > 1 for all i ¼ 1, …, 7. Define F(u) ¼ min|1 þ Fi(u)| for i ¼ 1, …, 7.

Then, F(u) > 1, and b
FðuÞ< b. Since b is a minimal positive real number such that kZk� bE⋄1, then (Safi & Gumel, 2010)

kZk >
b

FðuÞE
⋄
1: (E.18)
On the other hand, by taking the norm of both sides of the second equation in (E.9) and noting that M is a non-negative
matrix, we have (Safi & Gumel, 2010)

FðuÞkZ2k� j1þ F2ðuÞkZ2k¼kðMZÞ2k�MkZ2k� bMðE⋄1Þ2 ¼ bðE⋄1Þ2 ¼ bI**: (E.19)
It follows from (E.19) that kZ2k� b
FðuÞI

**, which contradicts (E.18). Hence, Re(u) < 0. Thus, all eigenvalues of the charac-

teristic equation associated with the linearized system (E.3) will have a negative real part, so that the unique endemic
equilibrium, E⋄1, is LAS whenever R̂v >1. This completes the proof. ,

F Proof of Theorem 3.7

Proof. Consider a special case of the homogeneous model (3.1) with negligible disease-induced mortality (i.e., dI ¼ dH ¼ 0),
perfect vaccine ( 3v ¼ 1) and no waning of immunity (uv ¼ un ¼ 0). For this special case of the model, the fully-vaccinated (V)
and recovered (R) terms are not featured in the remaining equations of model (3.1), so it is enough to consider the following
non-linear Lyapunov function (non-linear functions of this type have been used in ecology and epidemiology literature, such
as in (Freedman & So, 1985; Gumel, 2009; Guo & Yi Li, 2006)):

F ¼ S� S** � S**ln
�

S
S**

�
þ E � E** � E**ln

�
E
E**

�
þ a1

�
P � P** � P**ln

�
S
S**

��

þa2

�
I � I** � I**ln

�
I
I**

��
þ a3

�
A� A** � A**ln

�
A
A**

��
þ a4

�
H � H** � H**ln

�
H
H**

��
;

(F.1)
where,

a1 ¼ k3
s
; a2 ¼ bIk7 þ bH4

k5k7
S**; a3 ¼ bA

k6
S**; a4 ¼ bH

k7
S**: (F.2)
Taking the time derivative of (F.1) gives

_F ¼ _S� S**

S
_Sþ _E � E*

E
_E þ a1

�
_P � P**

P
_P
�
þ a2

�
_I � I**

I
_I
�
þ a3

�
_A� A**

A
_A
�
þ a4

�
_H � H**

H
_H
�

¼ P� k1S�
S**

S
½P� ðbP þ bI I þ bAAþ bHHÞS� k1S� � k3E � E**

E
½ðbPP þ bI I þ bAAþ bHHÞS� k3E�

þ a1

�
sE � k4P � P**

P
ðsE � k4PÞ

�
þ a2

�
rjP � k5I �

I**

I
ðrjP � k5IÞ

�

þ a3

��
1� rÞjP � k6A� A**

A
ðð1� rÞjP � k6A

�
þ a4

�
4I � k7H � H**

H
ð4I � k7HÞ

�
:

(F.3)
It can be shown from this special case of the model (3.1) that, at endemic steady-state,

P ¼ ðbPP** þ bI I
** þ bAA

** þ bHH
**ÞS** � k1S

**;

a2s ¼ k3k4P**

sE**
; a3rj ¼ bIS*S*

P*
þ bH

S*H*

P*
;

a4ð1� rÞj ¼ bAS**A**

P**
; a54 ¼ bHS**H**

I**
:

(F.4)
Plugging in the first equation from (F.4) into (F.3) and simplifying, gives
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_F ¼ k1S
**
�
2� S**

S
� S
S**

�
þ ðbPP** þ bI I

** þ bAA
** þ bHH

**ÞS** þ k3E
** þ a1k4P

** þ a2k5I
**

þa3k6A
** þ a4k7H

** � ðbPP** þ bI I
** þ bAA

** þ bHH
**Þ S

**2

S
� ðbPP þ bI I þ bAAþ bHHÞ

SE**

E

�a1s
EP**

P
� a3rj

PI**

I
� a4ð1� rÞj PA**

A
� a54

IH**

H
:

(F.5)

Then, making use of the remaining equations in (F.4), the equation (F.5) can be re-written as
_F ¼ k1S
**
�
2� S**

S
� S
S**

�
þ 4ðbPP** þ bI I

** þ bAA
** þ bHH

**ÞS**

�ðbPP** þ bI I
** þ bAA

** þ bHH
**Þ S

**2

S
� ðbPP þ bI I þ bAAþ bHHÞ

SE**

E

�ðbPP** þ b**I þ bAA
** þ bHH

**Þ S
**EP**

E**P
� bI

S**I**
2
P

IP**
� bH

S**PI**H**

P**I

�bA
S**A**2P
AP**

� bH
S**IH**2

I**H
;

_F ¼ k1S
**
�
2� S**

S
� S
S**

�
þ bPS

**P**
�
3� S**

S
� SPE**

S**P**E
� EP**

E**P

�

þbIS
**I**

�
4� S**

S
� SIE**

S**I**E
� EP**

E**P
� I**P

IP**

�
þ bAS

**A**
�
4� S**

S
� SAE**

S**A**E
� EP**

E**P
� A**P
AP**

�

þbHS
**H**

�
5� S**

S
� SHE**

S**H**E
� EP**

E**P
� PI**

P**I
� IH**

I**H

�
:

(F.6)

Since the arithmetic mean exceed the geometric mean, it implies that
k1S
**
�
2� S**

S
� S
S**

�
� 0;

bPS
**P**

�
3� S**

S
� SPE**

S**P**E
� EP**

E**P

�
� 0;

bIS
**I**

�
4� S**

S
� SIE**

S**I**E
� EP**

E**P
� I**P

IP**

�
� 0;

bAS
**A**

�
4� S**

S
� SAE**

S**A**E
� EP**

E**P
� A**P
AP**

�
� 0;

bHS
**H**

�
5� S**

S
� SHE**

S**H**E
� EP**

E**P
� PI**

P**I
� IH**

I**H
:

�
� 0

(F.7)
Thus _F � 0 for R̂v >1. Hence, F is a Lyapunov function for the aforementioned special case of the model (3.1) on U1/U0.
Therefore, it follows, by LaSalle's Invariance Principle (Hale, 1969), that

lim
x/∞

SðxÞ ¼ S**; lim
x/∞

EðxÞ ¼ E**; lim
x/∞

PðxÞ ¼ P**;

lim
x/∞

IðxÞ ¼ I**; lim
x/∞

AðxÞ ¼ A**; lim
x/∞

HðxÞ ¼ H**:
Thus, lim inf
t/∞

S ¼ lim sup
t/∞

S ¼ S**. Since, lim sup
t/∞

S ¼ S**, it follows that, for sufficiently small z > 0, there exists a T1 > 0

such that lim sup
t/∞

S � S** þ z for all t > T1. It follows from (3.14) and the _V equation of the special case of the model (3.1) that,

for t > T1,

_V � xvðS** þ zÞ � k2V :

So, by comparison theorem (Lakshmikantham et al., 1989),
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V∞ ¼ lim sup
t/∞

V � xvðS** þ zÞ
k2

/
xvS**

k2
as z/0: (F.8)
Similarly, by using lim inf
t/∞

S ¼ S**, we can show that

V∞ ¼ lim inf
t/∞

V � xvðS** þ zÞ
k2

/
xvS**

k2
as z/0: (F.9)
Then, it follows from (F.8) and (F.9) that

V∞ � xvS**

k2
� V∞: (F.10)
Hence, lim
t/∞

V ¼ xvS**

k2
¼ V**. Similarly, it can be shown that lim

t/∞
R ¼ R**. Thus, for R̂v >1, every solution of the system (3.1),

with initial conditions in U1/U0, approaches the unique endemic equilibrium for t / ∞. ,

G Threshold Analysis of Reproduction Number for Model (3.1)

Consider the homogeneous model (3.1). The effect or sensitivity of parameters of the model on the vaccination repro-
duction number (i.e., the response function),Rv (given by (3.8)), can also bemeasured from the sign of the partial derivative of
the response function with respect to each of the chosen model parameters (where a positive (negative) sign of the partial
derivative with respect to a parameter shows that an increase in that parameter will increase (decrease) the response
function, which correspondingly lead to an increase (decrease) in disease burden). It can be shown, for instance, that the
partial derivative ofRv with respect to the parameters bP, bI, bA, bH, and uv is always positive. Hence, an increase in the values
of any of these parameters will correspondingly lead to an increase in the value of the reproduction number (hence, increase
the burden of the pandemic). Similarly, the sign of the partial derivative ofRv with respect to the parameters 3v, xv, gI, gA, gH, dI,
and dH is always negative. Hence, an increase in the values of these parameters will lead to a corresponding decrease in the
response function (and, consequently, a decrease in disease burden). However, the sign of the partial derivative of Rv with
respect to the parameters r, 4 and j, can be positive or negative. In other words, depending on the values of the parameters of
the model (3.1), these three parameters can have a positive or negative impact on the response function, Rv. We explore the
impact of these three parameters in detail below.

The partial derivative of the control reproduction number, Rv, with respect to the parameter for the proportion of pre-
symptomatic individuals who become symptomatic at the end of pre-symptomatic period (r) of the homogeneous model
is given by (where ki (i ¼ 3, …7) are as defined in Equation (3.14)):

vRv

vr
¼ ð1� evv

*Þ sj

k3k4

�
k6bI
k5

þ k64bH
k5k7

� bA

�
; (G.1)

from which it follows that,

vRv

vr
>0ð<0Þ if and only if bA <bcAð> bcAÞ;

where,

bcA ¼ k6
k5
bI þ

k64
k5k7

bH:

The result below follows from the derivations above.
Lemma G.1. Increasing the value of the proportion of pre-symptomatic individuals who become symptomatic at the end of the

pre-symptomatic period (r) will decrease (increase) the vaccination reproduction number ðRvÞ if bA > ð< ÞbcA.
Lemma G.1 implies that if the transmission rate of symptomatic (bI) and hospitalized (bH) individuals reaches a certain

threshold (given by bcA), then any further increase in the proportion of pre-symptomatic individuals who become symp-
tomatic at the end of the pre-symptomatic period (r) will lead to an increase in the reproduction number Rv (and, conse-
quently, an increase in the burden of the disease). Similar threshold dynamics for the proportion of asymptomatic individuals
was numerically observed in (Pant et al., 2024).

The partial derivative of Rv with respect to the parameter for the rate at which symptomatic individuals are hospitalized
(4) is given by:
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vRv

v4
¼ ð1� evv

*Þ srj

k3k4k
2
5

�
gI þ dI þ m

gH þ dH þ m
bH � bI

�
; (G.2)

from which it follows that,

vRv

vj
>0ð<0Þ if and only if bH >bcHð< bcHÞ;

where,

bcH ¼ gH þ mþ dH
gI þ mþ dI

bI ;

suggesting the following result.
Lemma G.2. An increase in the hospitalization rate of symptomatic individuals (4) will decrease (increase) Rv if bH < ð> ÞbcH .
Lemma G.2 implies that if the transmission rate of hospitalized individuals (bH) is “large enough”, then an increase in the

hospitalization rate (4) will increase Rv (and, consequently, increase disease burden). In other words, if the rate at which
hospitalized individuals transmits the infection (bH) reaches and exceeds a certain threshold (given by bcH; which may arise
due to poor implementation of safety protocols such as hand washing, sanitation and masking at a hospital), any further
increase in the hospitalization rate of symptomatic individuals (4) will Rv (i.e., under this scenario hospitalization of
symptomatically-infectious individuals make things worse).

Finally, partial derivative of Rv with respect to the parameter for the rate at which pre-symptomatic individuals become
symptomatic or asymptomatic (j) is given by:

vRv

vj
¼ ð1� evv

*Þ s

k3k
2
4

�
rm
k5

�
bI þ

4

k7
bH

�
þ mð1� rÞ

k6
bA � bP

�
; (G.3)

from which it follows that,

vRv

vj
>0ð<0Þ if and only if bP < bcPð> bcPÞ;

where,

bcP ¼ rm
k5

�
bI þ

4

k7
bH

�
þ mð1� rÞ

k6
bA;

suggesting the following result.
Lemma G.3. Increase in the rate at which pre-symptomatic individuals become symptomatic or asymptomatic (j)will decrease

(increase) vaccination reproduction number ðRvÞ if bP > ð< ÞbcP .
Lemma G.3 implies that the impact of the rate at which pre-symptomatic individuals become symptomatic or asymp-

tomatic (j) onRv largely depends on the transmission rate of pre-symptomatic individuals, in comparison to asymptomatic,
symptomatic and hospitalized infectious individuals. If the transmission rate of a pre-symptomatic individual reaches the
threshold ðbcPÞ, then an increase in j decreases Rv (hence, decrease disease burden). In summary, this study identifies three
parameters of the model that exhibits key threshold dynamics with respect to increasing or decreasing disease burden.
Intervention strategies should target these parameters to enhance the likelihood of effective control or elimination of the
pandemic.
H Computation of Reproduction Number of the Two-group Model (4.1)

Using the next generation operator method (Diekmann et al., 1990; Pauline van den Driessche&Watmough, 2002), the non-
negative matrix of new infection terms (F2) and M-Matrix (V2) of linear transition term in the infected compartments cor-
responding to two-group heterogeneous model (4.1) are given, respectively, by:
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F2 ¼

2
666666666666664

0 0 f1;3 f1;4 f1;5 f1;6 f1;7 f1;8 f1;9 f1;10
0 0 f2;3 f2;4 f2;5 f2;6 f2;7 f2;8 f2;9 f2;10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

3
777777777777775

;

and

V2 ¼

2
666666666666664

s1 þ m1 0 0 0 0 0 0 0 0 0
0 s2 þ m2 0 0 0 0 0 0 0 0

�s1 0 j1 þ m1 0 0 0 0 0 0 0
0 �s2 0 j2 þ m2 0 0 0 0 0 0
0 0 �r1j1 0 41 þ gI;1 þ d1 þ m1 0 0 0 0 0
0 0 0 �r2j2 0 42 þ gI;2 þ d2 þ m2 0 0 0 0
0 0 �ð1� r1Þj1 0 0 0 gA;1 þ m1 0 0 0
0 0 0 �ð1� r2Þj2 0 0 0 gA;2 þ m2 0 0
0 0 0 0 �41 0 0 0 gH;1 þ dH;1 þ m1 0
0 0 0 0 0 �42 0 0 0 gH;2 þ dH;2 þ m2

3
777777777777775

;

where,

f1;3 ¼ a1c11PP;1
S*1 þ ð1� evÞV*

1

N*
1

; f1;4 ¼ a1c12PP;2
S*1 þ ð1� evÞV*

1

N*
2

;

f1;5 ¼ a1c11PI;1
S*1 þ ð1� evÞV*

1

N*
1

; f1;6 ¼ a1c12PI;2
S*1 þ ð1� evÞV*

1

N*
2

;

f1;7 ¼ a1c11PA;1
S*1 þ ð1� evÞV*

1

N*
1

; f1;8 ¼ a1c12PA;2
S*1 þ ð1� evÞV*

1

N*
2

;

f1;9 ¼ a1c11PH;1
S*1 þ ð1� evÞV*

1

N*
1

; f1;10 ¼ a1c12PH;2
S*1 þ ð1� evÞV*

1

N*
2

;

f2;3 ¼ a2c21PP;1
S*2 þ ð1� evÞV*

2

N*
1

; f2;4 ¼ a2c22PP;2
S*2 þ ð1� evÞV*

2

N*
2

;

f2;5 ¼ a2c21PI;1
S*2 þ ð1� evÞV*

2

N*
1

; f2;6 ¼ a2c22PI;2
S*2 þ ð1� evÞV*

2

N*
2

;

f2;7 ¼ a2c21PA;1
S*2 þ ð1� evÞV*

2

N*
1

; f2;8 ¼ a2c22PA;2
S*2 þ ð1� evÞV*

2

N*
2

;

f2;9 ¼ a2c21PH;1
S*2 þ ð1� evÞV*

2

N*
1

; f2;10 ¼ a2c22PH;2
S*2 þ ð1� evÞV*

2

N*
2

:

Hence, it follows from (Elamin H Elbasha and Abba B Gumel, 2021) that the vaccination reproduction number for the two-
group model (4.1) is given by (Diekmann et al., 1990; Pauline van den Driessche & Watmough, 2002):

Ry
v ¼ rðF2V�1

2 Þ (H.1)
I Proof of Theorem 4.2

Proof. Consider a special case of the two-group model (4.1) with negligible disease-induced mortality (i.e., dI,k ¼ dH,k ¼ 0).
Let k, l ¼ {1, 2} and RD

v <1. Adding all the equations with indices k in (2.3) gives

_Nk ¼ Pk � mkNk � dI;kIk � dH;kHk:
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In the absence of disease-includedmortality (i.e., we set dk,I¼ dk,H¼ 0 into themodel), it can be seen that Nk/
Pk
mk

as t/∞,

and Pk
mk

is an upper bound of Nk(t) provided that Nkð0Þ � Pk
mk
. If Nkð0Þ>Pk

mk
, then Nk will decrease to that level. Hence, in U2,

Nk � Pk
mk
. Then, it follows from first equation in (2.3) and (2.2) that

_Sk ¼ Pk þ uv;kVk � lkSk � ðxv;k þ mkÞSk
� Pk þ uv;kVk � ðxv;k þ mkÞSk

� Pk þ uv;kðPk=mk � Sk � Ek � Pk � Ik � Ak � Hk � RkÞ � ðxv;k þ mkÞSk

� ðuv;k þ mkÞPk

mk
� ðuv;k þ xv;k þ mkÞSk ¼ ðuv;k þ xv;k þ mkÞðS*k � SkÞ:
So, if Sk > S*k, then _Sk <0; hence Sk � S*k given Skð0Þ � S*k is true. Following a similar argument, one can show that _Vk � �
ðuv;k þ mkÞVk þ xv;kSk ¼ ðuv;k þ mkÞðV*

k � VkÞ. If Vk >V*
k then _Vk <0; hence Vk � V*

k given Vkð0Þ � V*
k is true.

It follows from these bounds that the region

~U
D
2 ¼ 
�S1; S2;V1;V2; E1; E2; P1; P2; I1; I2;A1;A2;H1;H2;R1;R2Þ2U2 : Sk � S*k;Vk � V*

k
�
;

is also positively invariant and attracts all solutions in U2. It is convenient to define the following

a
 
k ¼ sk þ mk; b

 

k ¼ jk þ mk; c
 
k ¼ jk þ gI;k þ mk þ dI;k;

d
 

k ¼ gA;k þ mk; e
 
k ¼ gH;k þ mk þ dH;k;

Wkl ¼ Sk þ ð1� ev;kÞVk

Pl=ml
; W*

kl ¼
S*k þ ð1� ev;kÞV*

k

N*
l

;

(I.1)
Since S*k � Sk, V
*
k � Vk, observe that

W*
kl � Wkl: (I.2)
The equations of the infected component of this special case of the model (4.1) can be re-written in terms of the next

generation matrices F2 and VD
2 ¼ V2jdI;k¼dH;k¼0, given in Appendix H as:

d
dt

0
BBBBBBBBBBBBBB@

E1ðtÞ
E2ðtÞ
P1ðtÞ
P2ðtÞ
I1ðtÞ
I2ðtÞ
A1ðtÞ
A2ðtÞ
H1ðtÞ
H2ðtÞ

1
CCCCCCCCCCCCCCA

¼ ðF2 �VD
2 Þ

0
BBBBBBBBBBBBBB@

E1ðtÞ
E2ðtÞ
P1ðtÞ
P2ðtÞ
I1ðtÞ
I2ðtÞ
A1ðtÞ
A2ðtÞ
H1ðtÞ
H2ðtÞ

1
CCCCCCCCCCCCCCA

� J2

0
BBBBBBBBBBBBBB@

E1ðtÞ
E2ðtÞ
P1ðtÞ
P2ðtÞ
I1ðtÞ
I2ðtÞ
A1ðtÞ
A2ðtÞ
HðtÞ
H2ðtÞ

1
CCCCCCCCCCCCCCA

; (I.3)
where,
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F2 � VD
2 ¼

2
66666666666666664

�a
 
1 0 f1;3 f1;4 f1;5 f1;6 f1;7 f1;8 f1;9 f1;10

0 �a
 
2 f2;3 f2;4 f2;5 f2;6 f2;7 f2;8 f2;9 f2;10

s1 0 �b
 

1 0 0 0 0 0 0 0

0 s2 0 �b
 

2 0 0 0 0 0 0

0 0 r1j1 0 �c
 
1 0 0 0 0 0

0 0 0 r2j2 0 �c
 
2 0 0 0 0

0 0 ð1� r1Þj1 0 0 0 �d
 

1 0 0 0

0 0 0 ð1� r2Þj2 0 0 0 �d
 

2 0 0

0 0 0 0 41 0 0 0 �e
 
1 0

0 0 0 0 0 42 0 0 0 �e
 
2

3
77777777777777775

; (I.4)

and,
J2 ¼

0
BBBBBBBBBBBBBB@

0 0 J1;3 J1;4 J1;5 J1;6 J1;7 J1;8 J1;9 J1;10
0 0 J2;3 J2;4 J2;5 J2;6 J2;7 J2;8 J2;9 J2;10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCA

; (I.5)

with
J1;3 ¼ a1c11PP;1ðW*
11 �W11Þ; J1;4 ¼ a1c12PP;2ðW*

12 �W12Þ;
J1;5 ¼ a1c11PI;1ðW*

11 �W11Þ; J1;6 ¼ a1c12PI;2ðW*
12 �W12Þ;

J1;7 ¼ a1c11PA;1ðW*
11 �W11Þ; J1;8 ¼ a1c12PA;2ðW*

12 �W12Þ;
J1;9 ¼ a1c11PH;1ðW*

11 �W11Þ; J1;10 ¼ a1c12PH;2ðW*
12 �W12Þ;

J2;3 ¼ a2c21PP;1ðW*
21 �W21Þ; J2;4 ¼ a2c22PP;2ðW*

22 �W22Þ;
J2;5 ¼ a2c21PI;1ðW*

21 �W21Þ; J2;6 ¼ a2c22PI;2ðW*
22 �W22Þ;

J2;7 ¼ a2c21PA;1ðW*
21 �W21Þ; J2;8 ¼ a2c22PA;2ðW*

22 �W22Þ;
J2;9 ¼ a2c21PH;1ðW*

21 �W21Þ; J2;10 ¼ a2c22PH;2ðW*
22 �W22Þ:

(I.6)
Since (I.2) holds, J2 is a non-negative matrix. Thus, Equation (I.3) can be re-written as the following inequality:

d
dt

0
BBBBBBBBBBBBBB@

E1ðtÞ
E2ðtÞ
P1ðtÞ
P2ðtÞ
I1ðtÞ
I2ðtÞ
A1ðtÞ
A2ðtÞ
H1ðtÞ
H2ðtÞ

1
CCCCCCCCCCCCCCA

� ðF �VÞ

0
BBBBBBBBBBBBBB@

E1ðtÞ
E2ðtÞ
P1ðtÞ
P2ðtÞ
I1ðtÞ
I2ðtÞ
A1ðtÞ
A2ðtÞ
H1ðtÞ
H2ðtÞ

1
CCCCCCCCCCCCCCA

: (I.7)

IfRD
v <1, then rðF2VD

2
�1Þ<1, which is equivalent to all eigenvalues of F� V⋄matrix being negative (Pauline van den Driessche

& Watmough, 2002). Hence, the linearized differential inequality (D.5) is stable whenever R⋄
v <1, so

(E1(t), E2(t), P1(t), P2(t), I1(t), I2(t), A1(t), A2(t), H1(t), H2(t))/ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) as t/∞ for this linear ODE system. It
follows, using a standard comparison theorem (Lakshmikantham et al., 1989), that:

(E1(t), E2(t), P1(t), P2(t), I1(t), I2(t), A1(t), A2(t), H1(t), H2(t)) / (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Substituting
Ek(t) ¼ Pk(t) ¼ Ik(t) ¼ Ak(t) ¼ Hk(t) ¼ 0, into the equations for _S, _V , and _R of the homogeneous model (3.1) gives:
870
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SkðtÞ/S*k;VkðtÞ/V*
k and RkðtÞ/0; as t/∞:
Hence, the disease-free equilibrium of the special case of the two-group model (4.1) with negligible disease-induced

mortality (i.e, (4.1) with dI ¼ dH ¼ 0) is globally-asymptomatically stable in UD
2 , whenever RD

v <1. ,
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