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Abstract—The development of integrated satellite-terrestrial
networks has gained significant attention from both industry and
academia in recent years, owing to their potential for delivering
low latency, high dependability, strong resilience, ubiquitous
connectivity and global broadband coverage services. However,
due to the ever-changing nature of satellite topology and the com-
plexity of diverse integrated satellite-terrestrial networks, routing
requests is challenging. In this paper, the vehicle movement
is uncertain introducing the intermittent connectivity related
to vehicles. Therefore, we propose a distributionally robust
optimization (DRO) model to minimize, under uncertain latency
probability distributions, the expected worst-case overall task
routing delay from source to target user equipment through
satellite constellation. The model addresses undetermined up-
loading and downloading latency between automobiles, satellites,
and user equipment by employing the Wasserstein ambiguity
set, allowing for unpredictable vehicle mobility and intermittent
connections. By reformulating the problem into a tractable form,
we determine the optimal routing path for task uploading,
satellite constellation, and task downloading. Ultimately, the
performance of the proposed DRO model demonstrates the
model’s ability to address the challenges of integrated satellite-
terrestrial network routing.

Index Terms—distributionally robust optimization, decision-
making under uncertainty, ambiguity set, integrated satellite-
terrestrial networks, LEO satellites, routing, mobility manage-
ment

NOMENCLATURE

A. Sets
K Set of user equipment in the source city.
A Set of automobiles in the source city.
B Set of buildings in the source city.
K′ Set of user equipment in the destination city.
A′ Set of automobiles in the destination city.
B′ Set of buildings in the destination city.
L Set of LEO satellites.
T Set of timeslots.
Aϵηk,l

(Q↑
N ) Offloading Wasserstein ambiguity set.

Aϵηk,l
(Q↑

N ) Downloading Wasserstein ambiguity set
B. Parameters
K Number of user equipment in the source city.
A Number of automobiles in the source city.
B Number of buildings in the source city.
K ′ Number of user equipment in the destination

city.
A′ Number of automobiles in the destination city.
B′ Number of buildings in the destination city.

L Number of satellites in the space segment.
T Number of time slots during observation.
H Observation time.
τ Duration of each time slot.
wk,η Request size generated by user equipment k at

time slot η.
tHHO Horizontal handoff latency.
tV HO Vertical handoff latency.
∆t

i,j Distance between objects i and j at time slot
t.

ci,j Propagation speed from objects i to j.
ri,j Transmission rate from objects i to j.
κη,t
k,l,p Deterministic offloading delay for the request

generated by user equipment k at time slot t
and offloaded to satellite l via path p at time
slot t.

κη,t
l,dk,p

Deterministic downloading delay for the re-
quest generated by user equipment k at time
slot t and downloaded from satellite i to the
target user equipment dk via path p at time
slot t.

ξη,tk,l,p Uncertain offloading delay for the request gen-
erated by user equipment k at time slot t and
offloaded to satellite l via path p at time slot t.

ξη,tl,dk,p
Uncertain downloading delay for the request
generated by user equipment k at time slot t
and downloaded from satellite l to the target
user equipment dk via path p at time slot t.

ξη,tk,l Random vector for offloading latency.
ξη,tl,dk

Random vector for downloading latency.
Q↑

N Empirical distribution of the offloading latency.
Q↓

N Empirical distribution of the downloading la-
tency.

Q↑ Possible probability distribution in the offload-
ing latency ambiguity set.

Q↓ Possible probability distribution in the down-
loading latency ambiguity set.

C. Decision Variables
xt,η
k,l,p Binary variable to indicate whether the request

generated by user equipment k at time slot η
is forwarded to the satellite l via deterministic
path p at time slot t or not.

[xt,η
k,l ]p Binary variable to indicate whether the request

generated by user equipment k at time slot η is
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forwarded to the satellite l via uncertain path
p at time slot t or not.

xt,η
l,dk,p

Binary variable to indicate whether the request
generated by user equipment k at time slot η
is downloaded from the satellite l to the target
user equipment dk via deterministic path p at
time slot t or not.

[xt,η
l,dk

]p Binary variable to indicate whether the request
generated by user equipment k at time slot η
is downloaded from the satellite l to the target
user equipment dk via uncertain path p at time
slot t or not.

xt,k,η
l,v Binary variable to indicate whether the request

generated by user equipment k at time slot η
is forwarded from the satellite l to satellite v
at time slot t or not.

yt,k,ηl Binary variable to indicate whether the request
generated by user equipment k at time slot η
should stay at satellite at time slot t or not.

yt,k,ηdk
Binary variable to indicate whether the request
generated by user equipment k at time slot η
should stay at target user equipment dk at time
slot t or not.

D. Index
k Index of user equipment in the source city.
a Index of automobile in the source city.
b Index of building in the source city.
dk Index of target user equipment of the corre-

sponding user equipment k in the destination
city.

a′ Index of automobile in the destination city.
b′ Index of building in the destination city.
l, v Index of satellite.
t Index of time slot.
η Index of request generated time slot.
p Index of path.

I. INTRODUCTION

Owing to high global communication coverage, wide band-
width and seamless service, satellite network has pervaded
a broad spectrum of sectors, ranging from global mobile
communication, long-haul telecommunications, disaster res-
cue, position, to maritime and aerial navigation. The growing
dependence on satellite networks highlights their critical role
in today’s society. Furthermore, the combination of satellite
networks and burgeoning terrestrial networks has obtained
attraction from both academic circles and industries. This is
primarily because its potential to serve forthcoming surge in
data flows, which is becoming more urgent as global data
requirements continue to grow exponentially. These demands
are anticipated to escalate by over a factor of 10, 000 within
the ensuing 20 million year [1]. However, the management of
the integrated satellite-terrestrial network is not simple, as it is
confronted with fundamental obstacles, such as variable net-
work topology, multi-layer communications, and intermittent
connectivity.

There are typically three categories of satellite networks:
those in geostationary earth orbit (GEO), medium earth orbit

(MEO), and low earth orbit (LEO). The progressive develop-
ment of satellite technology, specifically the development of
LEO satellites, has completely altered our methods of global
communication and data transmission. GEO satellites have
been widely utilized for broadcasting, weather monitoring, and
telecommunications due to their nearly stationary movement
from the ground at the height of approximately 36, 000 kilome-
ters, making them suitable for providing consistent coverage
over large areas. MEO satellites are ideal for global navigation
systems such as the Global Positioning System (GPS) due
to their reduced latency in comparison to GEO satellites
and wider coverage in comparison to LEO satellites. LEO
satellite constellation, such as One Web [2], Project Kuiper
by Amazon, Starlink by SpaceX [3], [4], offers greater data
speeds and extremely low latency as compared to GEO and
MEO satellite networks. Their deployment marks a significant
step towards in addressing the increasing demand for high-
speed, low-latency global communication. Furthermore, the
LEO satellite network has offered an different strategy for
extending terrestrial network coverage and backhaul connec-
tivity. In particular, T-mobile and SpaceX recently announced
a partnership to provide truly global coverage through the
Starlink satellite constellation and established wireless terres-
trial networks. Consequently, LEO satellites are the optimal
candidates for satellite-terrestrial networks.

Recent research on satellite-terrestrial integrated networks
has focused on resource allocation [5]–[9], task offloading
[10]–[12], computation offloading [13]–[15], gateway place-
ment [16], [17], and routing [9], [16], [18]–[22]. Despite
the advancements in the integrated satellite-terrestrial network
research, current methods struggle with the dynamic and
complex integrated systems. Our research fills this gap by
developing a more flexible and robust routing method for the
integrated networks. Due to the dynamic and adaptable nature
of satellite topology, it is challenging to use IP protocols rout-
ing techniques designed for traditional ground-network in the
integrated communication system. For the integrated satellite-
terrestrial network, it is crucial to research and develop an
innovative routing mechanism. Therefore, the primary concern
of this paper is routing issues in integrated satellite-terrestrial
networks.

Existing literatures have studied the satellite-terrestrial net-
work routing problem with advanced integer programming
techniques and algorithms. For example, [9] formulated a
mixed integer nonlinear programming problem to jointly op-
timizing the routing and various resource allocation with
minimum power consumption of satellites. [16] proposed a
mixed integer programming model to reduce the end-to-end
latency in the routing problem. [20] developed a hybrid routing
mechanism to ensure uninterrupted integration of satellite
network with terrestrial networks. [18] improved the IP routing
scheme for the integrated satellite-terrestrial network in an
effort to reduce routing table size and routing expense. This
was accomplished by implementing global geographical IP
subnet division, address aggregation, and efficient control over
the number of anomalous users. The study by Guo et al. [19]
incorporated latency, capacity, wavelength fragmentation, and
load balancing to develop a heuristic service-oriented path
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computation algorithm with the objective of lowering the end-
to-end routing delay in the satellite and terrestrial integrated
networks. In artificial intelligence, [22] proposed using a
combination of conventional neural network (CNN) and fuzzy
logic to optimize multi-task routing in the integrated satellite-
terrestrial network to guarantee the quality of experience for
users. In the respect of security, [21] set up the characteristic
matrices and estimated the entropy of each matrix to protect
the trusted routing path.

Most previous studied the integrated satellite-terrestrial rout-
ing under a deterministic environment. However, the com-
munication environment is dynamically change and impacted
by many factors. How to address these uncertainty is an im-
portant challenge for integrated sattellite-terrestrial networks.
Stochastic programming (SP) and robust optimization (RO)
are two classical approaches to address the uncertainty in
the decision-making process [23]–[25]. It is presupposed that
the decision maker in SP has comprehensive knowledge of
the uncertainty through an established probability distribu-
tion and minimizes the objective function with randomness.
The probability distribution of uncertain parameters can be
deduced from expert opinions, prior beliefs, and prediction
errors according to historical data. Conversely, RO assumes
that the decision maker lacks probability distribution of the
uncertain parameters and takes actions based on its support set,
seeking to minimize the worst-case cost by taking into account
an uncertainty set. However, it is not possible to precisely
derive the true probability distribution in SP based on the
estimated empirical data, and the worst-case value provided
by RO is not realistic. Therefore, the distributionally robust
optimization (DRO) is introduced [26], [27], seeking to find
the worst-case expected objective value under a set built up
by limitless variety of probability distributions, commonly
referred to as the “ambiguity set”, enabling DRO to hedge
against the imprecision of probability distributions.

Since DRO utilizes data while optimizing the expected value
without assuming the true uncertain probability distribution
as the SP method does, and can avoid overly conservative
solutions by taking partial stochastic information into account,
it is appropriate to use DRO to model uncertainty in the opti-
mal decision problem. Numerous researchers have employed
DRO for energy management [28], [29], process planning
and scheduling [30], [31], healthcare Internet of Things [32],
communication [33]–[35], computation offloading [36], [37],
sensor placement [38]. In addition to SP, RO, and DRO,
other approaches such as scenario-based optimization [39] and
fuzzy optimization [40], [41] can also address the routing
problem with uncertainty. In this paper, we consider various
probability distribution scenarios and emphasizes solutions
under extreme conditions. Consequently, we propose the DRO
routing approach to forward the task generated by the user
equipment at the source city to the target user equipment at
another city via the LEO-based small base station and the
LEO satellite constellation. This work substantially expands
on our initial research outlined in [42], by introducing a novel
issue formulation and conducting a comprehensive simulation
analysis. These efforts yield deeper insights into the work-
ings of the DRO-based integrated satellite-terrestrial network

system, enhancing our understanding of its capabilities and
performance. The main contribution of this paper can be listed
as follows:

• We propose a strategy for task offloading in integrated
satellite-terrestrial networks, specifically designed for ar-
eas without cellular connectivity, relying on LEO satel-
lites for data transmission between cities. User equipment
and TST on buildings and vehicles can upload tasks to
the satellite constellation. To our knowledge, there is little
research addressing the crucial aspects of task uploading
and downloading by vehicles in this context.

• We design a DRO model for the satellite-terrestrial rout-
ing problem to predict the worst-case routing delay due
to vehicle mobility. The DRO model can make optimal
robust decisions under unclear vehicle offloading and
downloading delays. Moreover, the proposed satellite-
terrestrial DRO model becomes more resilient to un-
predictable events such as the vehicle moving out the
range of the user equipment. This ensures the network’s
operational status in various circumstances, demonstrat-
ing the system’s ability to maintain network reliability
and uninterrupted service in dynamic and unpredictable
environments.

• The problem is not necessarily convex, NP-hard and pure
binary integer programming, which is known for its NP-
hardness, complexity, and challenging nature when it
comes to direct solution methods. However, to address
these challenges, the DRO model is restructured as a
Lagrangian dual problem, effectively transforming it into
a more manageable convex optimization problem.

• In comprehensive experiments, the performance of the
proposed method is demonstrated by the total routing
latency under various ambiguity set sizes, number of tasks
serving one user equipment, number of user equipment,
and traffic load levels in the system model. In addition, we
also observe the ratio of tasks delivered via the uncertain
delay paths.

The rest of the paper is organized as follows. The sys-
tem model is presented in Section II. In Section III, the
establishment of the offloading, downloading ambiguity sets,
problem formulation, and the proposed distributionally robust
integrated satellite-terrestrial method is provided to obatin the
robust solution. Section IV corroborates our method with nu-
merical evaluations. Finally, conclusions are drawn in Section
V.

II. SYSTEM MODEL

In this section, the LEO-based integrated satellite-terrestrial
network will be introduced first in Section II-A. Then, the
channel models of the ground, uplink, downlink and inter-
satellite link are specified, respectively, in Section II-B.

A. Integrated Satellite-Terrestrial Network Model

Consider a LEO-based integrated satellite-terrestrial net-
work, such as the one depicted in Fig. 1, consisting a user
equipment set K = {1, 2, · · · ,K}, an automobiles set A =
{1, 2, · · · , A}, and a building set B = {1, 2, · · · , B} at the
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source city, and a user equipment set K′ = {1, 2, · · · ,K ′},
an automobiles set A′ = {1, 2, · · · , A′}, and a building
set B′ = {1, 2, · · · , B′} at the destination city, and a LEO
satellites set L = {1, 2, · · · , L} in the space network layer. In
a time-slotted system, the observation time H is split up into
T time slots that are spaced out in a row, with each slot being
indexed by the number t ∈ T = {1, 2, · · · , T}. The duration
of each time slot is denoted by τ , which can be calculated as
τ = H/T .

Suppose that communication between two cities is sup-
ported by the satellite constellation. The conventional small
cell base station can be rendered obsolete by a new termi-
nal known as a terrestrial-satellite terminal (TST), which is
equipped with steerable antennas and can be mounted on
vehicles and the rooftops of buildings. Consequently, once a
user equipment in the source city with the time slot η has data
such as text messages, images, or videos with a size of wk,η ,
it attempts to transmit that data to another user equipment
dk ∈ K′ in the destination city. The data can be transferred to
vehicle a ∈ A or building b ∈ B via 5 GHz-band, and then
to LEO satellite l ∈ L by the Ka-band, or immediately to
the LEO satellite over the Ka-band. Afterwards, the data will
be sent out and then stored in the satellite constellation until
it reaches the satellite that encompasses the destination city
where the target user equipment dk ∈ K′ is located. The data
will be sent to the destination user equipment straightaway,
or it will be transmitted through the TST installed on the
automobile a′ ∈ A′ or the building b′ ∈ B′ ultimately.

B. Channel Model

1) Terrestrial Channel Model: The 5 GHz-band is used for
the data transmission via the channel that connects mobile
users k, k′ with TSTs that have been mounted on automobiles
a, a′, and buildings b, b′. In every time slot, denoted by t, a
representation of the channel coefficient can be constructed as
follows:

ht
i,j = gi,j(d

t
i,j)

−α, (1)

where gi,j corresponds to small scale Rayleigh fading pursuing
a complex Gaussian random variable distribution, i.e., gi,j ∼
N (0, 1), α signifies the pathloss exponent, and dti,j represents
the real-time distance between the user equipment i = k, and
TST integrated on automobile j = a or building j = b for
uplink and between TST equipped on automobile i = a′ or
building i = b′ and target user equipment j = k′ for downlink.
Consequently, the maximum data rate that may be achieved in
bits per second (bps) on the uplink from user equipment k to
the TST during time slot t and on the downlink from the TST
to user equipment k′ is, accordingly, represented as follows:

rtk,i = Bk,i log2

(
1 +

Pkh
t
k,i

σ2 +
∑

n∈J ,n̸=i Pkht
k,n

)
, (2)

rtj,k′ = Bk′,j log2

(
1 +

Pjh
t
j,k′

σ2 +
∑

n∈K′,n̸=k′ Pjht
j,n

)
,(3)

where Bk,i and Bk′,j indicate the allocated bandwidth, Pk

represents the transmission power of user equipment k, Pj

signifies the transmission power of TST on automobile j = a′

Fig. 1: LEO-based integrated terrestrial-satellite network sys-
tem model. The source city is depicted on the left side of
the illustration with user equipment and embedded TSTs on
the buildings and automobiles. While the destination with
the target user equipment is shown in the right side of the
illustration. The center section consists of the satellite con-
stellation. The red arrow indicates a potential routing path for
data transmission from the source to the target user equipment.

or building j = b′, and σ2 represents the noise variance. The
set J = A occurs when user equipment k offloads the task
to satellites via TST embedded on automobiles. On the other
hand, if the task is uploaded to satellites through TST installed
on building, then J = B.

2) Inter-Satellite Laser Link Channel Model: The achiev-
able maximum data rate in bps between satellite l and one
of its neighboring satellites v ∈ nblt during time slot t is
calculated as follows

rtl,v = Bl,v log2

(
1 +

PlGtxl
Grxv

Lt
l,v

kTsBl,v

)
, (4)

where Pl is the satellite l’s transmission power in W , Gtxl

is the transmitting antenna gain, and Grxv
is the receiving

antenna gain. The constant of Boltzmann in JK−1 is denoted
by k. Ts represents the noise temperature of the entire system
in K, Bl,v is the allocated bandwidth between two satellites
l and v. The parameter

Lt
l,v =

(
c

4πdtl,vf

)2

(5)

indicates the free space loss with light speed c in km/s,
communications center frequency f in Hz of inter-satellite
links, and the slant range dtl,v between two satellites l and v
at time slot t in km.

3) Satellite-Terrestrial Channel Model: It is crucial to
determine the signal-to-noise ratio (SNR) initially in order to
compute the feasible data rate of the satellite-terrestrial uplink
and downlink. The SNR of both the uplink and the downlink
at time slot t are provided as [43]

γt
i,l =

PtxiG
i
txG

l
rxL

t
i,lL

t
r

σ2
, (6)

γt
l,j =

Ptxl
Gl

txG
j
rxL

t
l,jL

t
r

σ2
, (7)

where i = k, a, b indicates the user equipment k, TST mounted
on automobile a, and building b at the source city, respectively,
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and j = k′, a′, b′ at the destination city. In the satellite-
terrestrial uplink SNR, Ptxi is the transmission power to
satellite l from device i, Gi

tx is device i’s transmission antenna
gain, Gl

rx is satellite l’s receiving antenna gain, Lt
i,l is the free

space loss between device i and satellite l, which can also be
expressed as (5). The physical meaning of the parameters used
in satellite-terrestrial downlink SNR are the same as those used
in uplink SNR; the only difference is that they are employed
in the other direction.

According to ITU-R P.618-12 [44], the rain attenuation Lt
r

at time slot t predominantly affected by rainfall intensity,
frequency, height above sea level, and elevation angle can be
given as

Lt
r = Ls · ρtR, (8)

where Ls is the slant-path length between the satellite and
devices, which is a constant due to the fixed relative position,
and ρtR is the attenuation per kilometer (dB/km) at time slot
t.

As a consequence, the feasible data rate ri,l from ground
device i at the source city to satellite l, and rl,j from satellite
l to ground device j at the destination city can be described
by the following:

rti,l = Bi,l log2 (1 + γi,l) , (9)

rtl,j = Bl,j log2 (1 + γl,j) , (10)

where Bi,l and Bl,j are the allocated bandwidth from ground
device i to satellite l , and from satellite l to ground device j,
separately.

III. PROBLEM FORMULATION AND PROPOSED
DISTRIBUTIONALLY ROBUST OPTIMIZATION METHOD

The DRO problem and the conception of ambiguity sets
will be explained in Section III-A, paving the way for the
formulation of the network routing problem in the integrated
satellite-terrestrial network in Section III-B. Subsection III-C
will show the proposed DRO model, which aims to handle the
routing problem in the integrated satellite-terrestrial network
with uncertain vehicle movement.

A. Introduction of Distributionally Robust Optimization

As stated in Section II, the unpredictable vehicle mobility
induces uncertain issues in the integrated satellite-terrestrial
network. Therefore, we address it as an optimization problem
incorporating uncertainty to effectively model the situation.
Since it is difficult to obtain precise knowledge of the proba-
bility distribution of uncertain parameters in SP and too con-
servative to make a decision without considering distribution in
RO, we use DRO to model the uncertain optimization problem.
The objective function of the DRO is given as

min
x

max
P∈D

EP{v(x, ξ)}, (11)

which optimizes the worse-case expectation of the random
utility function v(x, ξ) with the decision variables x and
length N random vector ξ = [ξ1, ξ2, · · · , ξN ]T displaying the
uncertain parameters under all potential distributions P in the
ambiguity set D.

The ambiguity set is a group of probability distributions
that depicts the uncertainty in the data-generating process
underpinning the optimization. The properties of the ambiguity
are described below.

• It is simple to construct an ambiguity set D with historical
data.

• The size of the ambiguity set D should be sufficient to
contain the real data-generating distribution with a high
degree of certainty.

• The size of ambiguity set D should be limited enough
to rule out pathological distribution in order to pre-
vent, which would incentivize excessively conservative
decision-making.

• Typically, it is assumed that the ambiguity set D is
convex such that it is feasible to generate a tractable
reformulation for distributionally robust optimization.

Multiple approaches can be employed to set up the am-
biguity set. In general, the ambiguity set can be classified
into two main categories: moment-based and discrepancy-
based ambiguity sets. Moment-based ambiguity sets encom-
pass distributions particular moment properties namely mean
and covariance matrix [45] [46], which are usually simpler
and more manageable but they may not reflect the full scope
of the problem’s uncertainty. On the other hand, discrepancy-
based ambiguity set consists of any probability distributions
whose discrepancy or dissimilarity to the nominal distribution
remains adequately small. To be specific, discrepancy-based
ambiguity set includes all moment characteristics instead of
just of few as moment-based ambiguity set, which is more
comprehensive. The commonly used discrepancy metrics con-
tains ϕ-divergence [47] [48], and Wasserstein distance [49]
[50]. In addition, the well-known Kullback–Leibler divergence
[51] is one of the ϕ-divergence family’s probability measures,
used only when two probability distributions are similar.
While Wasserstein metric does not require both measures on
the same probability space, are more expressive but more
difficult to solve computationally, we concentrate solely on
the Wasserstein ambiguity set in this paper.

Using Wasserstein distance (i.e., Earth Mover’s distance),
the Wasserstein ambiguity set evaluates the dissimilarity be-
tween two probability distributions. Physically, the Wasserstein
distance quantifies the minimal cost of moving mass between
two distributions and can be expressed as

dW (P1,P2) = inf
Π∈M(Γ2)

{∫
Γ2

∥ξ1 − ξ2∥Π(dξ1, dξ2)

}
.

(12)
The notation Π stands for a joint distribution of ξ1 and ξ2
for all distributions P1,P2 ∈ M (Γ), where ∥·∥ can be any
arbitrary norm. Within the scope of this research, we will
concentrate on the first norm. The Wasserstein ambiguity set
is defined as

U(P2) = {P1 ∈ M(Γ)|dW (P1,P2) ≤ ϵ}, (13)

which indicates that a ball consisting of all probability distri-
butions P1 and the corresponding Wasserstein distance to the
empirical distributions P2 does not exceed a threshold radius
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ϵ. In addition, the empirical distribution P2 is derived from
the N historical data and can be given as

P2 =
1

N

N∑
i=1

δξi
2
, (14)

where ξi2 denotes to the Diract distribution focusing on unit
mass at realization ξi2.

B. Problem Formulation

In this paper, the primary objective is to minimize the max-
imum expected total network delay by optimizing the routing
path for requests generating from source user equipment and
destined for target user equipment, while taking into account
mobility management across devices, vehicles, and buildings.

1) Latency for Terrestrial-Satellite Uplink Path: The uplink
path can be split into two parts based on whether the requests
is transmitted through the automobile to satellites or not. The
first part of the direct uplink path, denoted as the “first path,”
is that the request originated by the user equipment k at time
slot η is routed to satellite l via the TST mounted on building
b. The corresponding routing delay is expressed as:

κη,t
k,l,1 =

(
∆t

k,b

ck,b
+

wk,η

rtk,b

)
+

(
∆t

b,l

cb,l
+

wk,η

rtb,l

)
. (15)

Each hop of the routing delay includes propagation and trans-
mission delay. Given our assumption of low traffic volumes,
the network operates below its capacity threshold. Therefore,
the queueing delay is negligible. In addition, due to the
long distances in the integrated satellite-terrestrial network,
propagation and transmission delays are significantly more
impactful than processing delays. The processing delays, being
comparatively minor, can also be omitted from the routing
latency calculations.

Alternatively, if the request is promptly routed to the satel-
lite, denoted as the second direct uplink path, the routing delay
is given as

κη,t
k,l,2 =

(
∆t

k,l

ck,l
+

wk,η

rtk,l

)
. (16)

Given the ambiguous movement of the automobile, there
is a possibility that the path from the user equipment to the
satellite via the automobile will incur handoff costs. If a user
equipment k must transmit a request to a satellite l through a
vehicle, the delay of this unpredictable uplink path is written
as: (

∆t
k,a

ck,a
+

wk,η

rtk,a

)
+

(
∆t

a,l

ca,l
+

wk,η

rta,l

)
⩽ ξη,tk,l,1

⩽

(
∆t

k,a

ck,a
+

w′
k,η

rtk,a

)
+ tV HO +

(
∆t

k,l

ck,l
+

wk,η

rtk,l

)
, (17)

where w′
k,η ⩽ wk,η represents the partially transferred data

size from the user equipment to automobile, and tV HO is the
vertical handoff latency. The vertical handoff occurs between
two different access points [52]. Besides, tV HO is the required
time during the process of switching the user equipment’s

network connection from TST installed on vehicles to satellite
communication.

If the vehicle is in motion when transmitting the task from
the user equipment to the vehicle, an alternative approach to
redeliver the task to the satellite is through the TST installed
on the building. The latency for the third undetermined uplink
path is calculated as follows:(

∆t
k,a

ck,a
+

wk,η

rtk,a

)
+

(
∆t

a,l

ca,l
+

wk,η

rta,l

)
⩽ ξη,tk,l,2

⩽

(
∆t

k,a

ck,a
+

w′
k,η

rtk,a

)
+ tHHO

+

(
∆t

k,b

ck,b
+

wk,η

rtk,b

)
+

(
∆t

b,l

cb,l
+

wk,η

rtb,l

)
. (18)

The parameter tHHO is the horizontal handoff latency. Unlike
tV HO, tHHO is the latency incurred when the user equipment
switches its connection from the access point of TST on
vehicle to the TST on building within the same type of
network.

2) Latency for Terrestrial-Satellite Downlink Path: Like-
wise to the uplink path, the latency of the downlink path can
also be classified into the direct and undetermined paths. If the
assignment is routed to the target user equipment via the TST
embedded on the building, the latency of the direct downlink
path one is expressed as

κη,t
l,dk,1

=

(
∆t

l,b′

cl,b′
+

wk,η

rtl,b′

)
+

(
∆t

b′,dk

cb′,dk

+
wk,η

rtb′,dk

)
. (19)

If the task is sent from the satellite l to the target user
equipment dk directly, the latency of the direct downlink path
two is determined by

κη,t
l,dk,2

=

(
∆t

l,dk

cl,dk

+
wk,η

rtl,dk

)
. (20)

It is important, however, to consider the possibility of
incurred handoff costs while relaying the task to the target user
equipment through automobile. The first uncertain downlink
path shows that the task, theoretically, is supposed to be
forwarded to the targeted user equipment. However, if the au-
tomobile is in motion, the task will be delivered directly from
satellite l to the destination user equipment. The associated
latency is as follows:(

∆t
l,a′

cl,a′
+

wk,η

rtl,a′

)
+

(
∆t

a′,dk

ca′,dk

+
wk,η

rta′,dk

)
⩽ ξη,tl,dk,1

⩽

(
∆t

l,a′

cl,a′
+

w′
k,η

rtl,a′

)
+ tV HO +

(
∆t

a′,dk

ca′,dk

+
wk,η

rta′,dk

)
. (21)

If the automobile is in motion, the task sent back to the
destination user equipment is defined as the undetermined
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downlink path two and the corresponding latency is given as:(
∆t

l,a′

cl,a′
+

wk,η

rtl,a′

)
+

(
∆t

a′,dk

ca′,dk

+
wk,η

rta′,dk

)
⩽ ξη,tl,dk,2

⩽

(
∆t

l,a′

cl,a′
+

w′
k,η

rta′,dk

)
+ tHHO

+

(
∆t

l,b′

cl,b′
+

wk,η

rtl,b′

)
+

(
∆t

b′,dk

cb′,dk

+
wk,η

rtb′,dk

)
. (22)

As a consequence, the delay for offloading data gener-
ated at time slot η from user equipment k to satellite l
through vehicle can be characterized by the random vector
ξη,tk,l = (ξη,tk,l,1, ξ

η,t
k,l,2)

T ∈ Γ↑. In contrary, the delay for
downloading data from satellite l to destination user equip-
ment dk through a vehicle is specified as the random vector
ξη,tl,dk

= (ξη,tl,dk,1
, ξη,tl,dk,2

)T ∈ Γ↓.
With the vehicle’s unpredictable movement, it is chal-

lenging to pinpoint the exact offloading and downloading
latency. Consequently, we then model the uncertain de-
lay using the Wasserstein DRO technique and create data-
driven decisions that perform well within a predetermined
Wasserstein distance from a nominal distribution derived from
historical samples. To approach the true distribution, we
must first design an empirical distribution using historical
data. Assume Γ̂↑ = {ξ̂η,t,1k,l , ξ̂η,t,2k,l , · · · , ξ̂η,t,Nk,l } and Γ̂↓ =

{ξ̂η,t,1l,dk
, ξ̂η,t,2l,dk

, · · · , ξ̂η,t,Nl,dk
} be two separate sets of observa-

tions of ξη,tk,l and ξη,tl,dk
, accordingly. The empirical distribution

of the offloading and downloading latency can be described
as:

Q↑
N =

1

N

N∑
i=1

δξ̂η,t,i
k,l

, (23)

Q↓
N =

1

N

N∑
i=1

δξ̂η,t,i
l,dk

, (24)

where δξ̂η,t,i
k,l

and δξ̂η,t,i
l,dk

represent the Dirac point measure

at ξ̂η,t,ik,l and ξ̂η,t,il,dk
, respectively. Assume that the empirical

distribution and the actual distribution are not exactly the same
but are quite comparable to one another. In this scenario, we
are able to describe the latency of offloading and downloading
as the Wasserstein ambiguity set:

Aϵηk,l
(Q↑

N ) = {Q↑ ∈ M(Γ↑)|dW (Q↑,Q↑
N ) ≤ ϵηk,l}, (25)

Aϵηl,dk
(Q↓

N ) = {Q↓ ∈ M(Γ↓)|dW (Q↓,Q↓
N ) ≤ ϵηl,dk

}, (26)

where dW (Q↑,Q↑
N ) and dW (Q↓,Q↓

N ) represent the Wasser-
stein distance between two probability distributions.

Since we consider the first norm Wasserstein distance, the
offloading and downloading latency ambiguity set outlines all
of the potential delay distributions that fall within the ξηk,l-
Wasserstein and ξηl,dk

-Wasserstein distances from the empirical
distribution Q↑

N and Q↓
N , separately.

In light of the fact that the unpredictable movement of the
vehicle causes a variable amount of latency for both offloading
requests from the ground to space and downloading requests

from the opposite side, the DRO model can be mathematically
formulated as follows:

min
X,Y

max
Q↑∈Aϵ

η
k,l

,Q↓∈Aϵ
η
l,k

EQ↑,Q↓

 K∑
k=1

∑
η∈T

Dk,η


s.t. C1 : xt,η

k,l,p ∈ {0, 1}, ∀k, l, t, η, p ∈ P↑,

C2 : [xt,η
k,l ]p ∈ {0, 1}, ∀k, l, t, η, p ∈ P ξ

↑ ,

C3 : xt,η
l,dk,p

∈ {0, 1}, ∀l, k, t, η, p ∈ P↓,

C4 : [xt,η
l,dk

]p ∈ {0, 1}, ∀k, l, t, η, p ∈ P ξ
↓ ,

C5 : xt,k,η
l,v ∈ {0, 1}, ∀l, v, t, k, η,

C6 : yt,k,ηl ∈ {0, 1}, ∀l, t, k, η,
C7 : yt,k,ηdk

∈ {0, 1}, ∀t, k, η,

C8 :
∑L

l=1

(∑
p∈P ξ

↑
[xt,η

k,l ]p +
∑

p∈P↑
xt,η
k,l,p

)
= 1,

∀k, η, t = η,

C9 :
∑L

l=1

(
yt,k,ηl +

∑
v∈nblt

xt,k,η
l,v

)
+
∑L

l=1

(∑
p∈P ξ

↑
[xt,η

l,dk
]p +

∑
p∈P↓

xt,η
l,dk,p

)
+yt,k,ηdk

= 1, ∀k, η, t = η + 1, · · · , T ,

C10 :
∑T

t=η

∑L

l=1

(∑
p∈P ξ

↑
[xt,η

k,l ]p +
∑

p∈P↑
xt,η
k,l,p

)
= 1, ∀k, η,

C11 :
∑T

t=η+1

∑L

l=1

(∑
p∈P ξ

↓
[xt,η

l,dk
]p

+
∑

p∈P↓
xt,η
l,dk,p

)
= 1, ∀k, η,

C12 : yt−1,k,η
l +

∑
v∈nblt−1

xt−1,k,η
l,v = yt,k,ηl

+
∑

v∈nblt
xt,k,η
l,v +

∑
p∈P ξ

↓
[xt,η

l,dk
]p

+
∑

p∈P↓
xt,η
l,dk,p

, ∀k, η, l, t = η + 2, · · · , T ,

C13 : yt,k,ηdk
= yt−1,k,η

dk
+
∑

l∈nbtdk

(∑
p∈P ξ

↓
[xt,η

l,dk
]p

+
∑

p∈P↓
xt,η
l,dk,p

)
, ∀k, η, t = η + 1, · · · , T,

C14 : yt,k,ηl + yt,k,ηdk
= yt−1,k,η

l + yt−1,k,η
dk

+
∑

p∈P ξ
↑
[xt−1,η

k,l ]p +
∑

p∈P↑
xt−1,η
k,l,p

+
∑

v∈nblt
xt−1,k,η
v,l −

∑
v∈nblt

xt,k,η
l,v

−
∑

p∈P ξ
↓
[xt,η

l,dk
]p −

∑
p∈P↓

xt,η
l,dk,p

+
∑

l∈nbtdk

(∑
p∈P ξ

↓
[xt,η

l,dk
]p +

∑
p∈P↓

xt,η
l,dk,p

)
,

∀k, η, l, t = η + 1, · · · , T,

C15 :
∑K

k=1

∑L

l=1
xt,η
k,l,p=0 ≤ α, ∀η, t = η,

(27)
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where Dk,η is the latency for task k and can be expressed as

Dk,η =
T∑

t=η

{
L∑

l=1

xt,η
k,lξ

η,t
k,l +

∑
p∈P↑

xt,η
k,l,pκ

η
k,l,p

+
L∑

l=1

L−1∑
v=1

[
yt,k,ηl τ + xt,k,η

l,v

(
∆l,v

cl,v
+

wk,η

rl,v

)]

+
L∑

l=1

xt,η
l,dk

ξη,tl,dk
+
∑
p∈P↓

xt,η
l,dk,p

κη
l,dk,p

}
. (28)

Equation (28) can be used to describe the offloading delay
from the source user equipment k to satellite l in the first line,
the routing latency in the satellite constellation in the second
line, and the downloading delay from satellite l to the target
user equipment dk in the last line of the equation.

The aim of the objective function described in (27) is to
reduce as much as possible the amount of time that must be
spent traveling from the source mobile users to the destination
mobile users through the TSTs and the satellite constellation
to complete each of the tasks. The first two decision variables
xt,η
k,l,p and [xt,η

k,l ]p specify whether to forward the task from the
source user equipment k, generated at timeslot η, to satellite
l via the direct uplink path p ∈ P↑ and undetermined uplink
path p ∈ P ξ

↑ , respectively. The constraint functions C3 and
C4, which define the binary indicators for the downlink path,
are identical to the first two constraints; the only difference is
that they are executed in the other direction. The following two
decision variables, xt,k,η

l,v and yt,k,ηl , denote whether or not to
transmit the task through the satellite v and whether or not to
store the task at the current satellite l at timeslot t, accordingly.
The task has arrived at the destination user equipment dk
and will remain there until the end of the observation time is
represented by the decision variable yt,k,ηdk

= 1 in the seventh
constraint function.

At the task generation time t = η, C8 ensures that the task
will only be offloaded via a single pathway from the source
user equipment to the satellite constellation. After the task
has been sent to the satellites, it will only carry out a single
action during each time period in the ninth constraint. Both
the outflow and the inflow conservation criteria can be satisfied
utilizing constraint functions C10 and C11, separately. C12
provides satellite routing continuity by ensuring that the task
beginning location at timeslot t is identical to the next-hop
choice at timeslot t− 1. In C13, once the assignment reaches
the destination user equipment dk, it is guaranteed that it will
remain there eternally. The flow conservation at the destination
user equipment dk during the timeslot t is satisfied by the
constraint function C14. The last constraint C15 specifies that
the number of tasks offloaded to the satellite constellation
through building, i.e. the direct uplink path one in (15), is
restricted by α. The building’s communication infrastructure
plays a dual role: it acts as a relay to the satellite and provides
network connectivity for user equipment. In order to prevent
network congestion and maintain optimal network perfor-
mance, it is necessary to restrict the volume of tasks offloaded
to the satellite via the building. The congestion will impact
the building’s satellite offloading pathway and communication

services. In addition, sufficient bandwidth for task offloading
can ensure a high quality-of-service (QoS) level, which is
crucial for time-critical communication applications. Typically,
the optimization variables are indicated as X and Y , where
X = {xt,η

k,l,p, [x
t,η
k,l ]p, x

t,η
l,dk,p

, [xt,η
l,dk

]p, x
t,k,η
l,v , ∀k, l, p, v, t, η}

and Y = {yt,k,ηl , yt,k,ηdk
, ∀k, l, t, η}.

C. Proposed Distributionally Robust Optimization Method

Given the complexity of directly solving the formulated
problem (27), this subsection will detail the process of convert-
ing the proposed DRO problem into a tractable, finite convex
programming problem.

In order to tackle the DRO problem in (27), we must first
process the inner maximum problem with regard to the two
Wasserstein ambiguity sets Aϵηk,l

(Q↑
N ) and Aϵηl,dk

(Q↓
N ) below

max
Q↑∈Aϵ

η
k,l

,Q↓∈Aϵ
η
l,dk

EQ↑,Q↓

 K∑
k=1

∑
η∈T

Dk,η


s.t.

{
Q↑ ∈ Aϵηk,l

(Q↑
N )

Q↓ ∈ Aϵηl,dk
(Q↓

N ).
(29)

The objective function in (29) reflects the largest average
latency for all tasks transferred from the source to the target
user equipment in ISTN, considering the unknown offloading
and downloading latency caused by TST placed on vehicles
and buildings. For this stage, we only take into account the
ambiguity sets for offloading and downloading delay as the
constraint functions, except those from C8 to C15.

Given the feasible distributions Q↑,Q↓ ∈ M (Γ), after we
apply the expectation to the objective function and consolidate
the terms related to the random vector, (29) can be rewritten
as a conic linear programming

max
Π(dξηk,l

,ξ
η,i
k,l)⩾0

Π

(
dξ

η
l,dk

,ξ
η,i
l,dk

)
⩾0

∫
Γ

N∑
i=1

K∑
k=1

∑
η∈T

T∑
t=η

L∑
l=1

(xt,η
k,l)

⊤
ξ̂η
k,lΠ(dξ

η
k,l,ξ̂

η,i
k,l)

+

∫
Γ

N∑
i=1

K∑
k=1

∑
η∈T

T∑
t=η

L∑
l=1

(
xt,η
l,dk

)⊤
ξ̂ηl,dk

Π
(
dξηl,dk

, ξ̂η,il,dk

)

+
K∑

k=1

∑
η∈T

T∑
t=η

L∑
l=1

∑
p∈P↑

xt,η
k,l,pκ

η
k,l,p +

∑
p∈P↓

xt,η
l,dk,p

κη
l,dk,p

+
L−1∑
v=1

[
yt,k,ηl τ + xt,k,η

l,v

(
∆l,v

cl,v
+

wk,η

rl,v

)]}

s.t.



∫
Γ
Π
(
dξηk,l,p, ξ̂

i
k,l

)
= 1

N , i = 1, · · · , N, ∀k, l, η,∫
Γ
Π
(
dξηl,dk

, ξ̂il,dk

)
= 1

N , i = 1, · · · , N, ∀k, l, η,∫
Γ

∑N
i=1

∥∥∥ξηk,l − ξ̂η,ik,l

∥∥∥Π(dξηk,l, ξ̂η,ik,l

)
≤ εηk,l, ∀k, l, η,∫

Γ

∑N
i=1

∥∥∥ξηl,dk
− ξ̂η,il,dk

∥∥∥Π(dξηl,dk
, ξ̂η,il,dk

)
≤ εηl,dk

,

∀k, l, η.
(30)

In the objective function of (30), the first and second terms rep-
resent the tasks’ offloading and downloading delay transmitted
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by the vehicle and building path, respectively. In the third
term, the first sub-term is the deterministic offloading delay,
the second sub-term is the deterministic downloading delay,
and the last sub-term represents the tasks’ routing delay in the
satellite constellation. The first and third constraint functions
indicate the Wasserstein offloading latency ambiguity set.
The remaining constraint functions represent the Wasserstein
ambiguity set associated with the uncertain downloading delay.

Using the duality theorem to solve (30) and drawing in-
spiration from the method described in [53], we first find the
Lagrangian function as demonstrated below

L(ξηk,l, ξ
η
l,dk

,νη,i
k,l ,ν

η,i
l,dk

, λη
k,l, λ

η
l,dk

) =∫
Γ

N∑
i=1

K∑
k=1

∑
η∈T

L∑
l=1

(
−

T∑
t=η

(
xt,η
k,l

)⊤
ξηk,l + νη,i

k,l

+λη
k,l

∥∥∥ξηk,l − ξη,ik,l

∥∥∥)Π(dξηk,l, ξ̂η,ik,l

)
+

∫
Γ

N∑
i=1

K∑
k=1

∑
η∈T

L∑
l=1

(
−

T∑
t=η

(
xt,η
l,dk

)⊤
ξηl,dk

+ νη,i
l,dk

+λη
l,dk

∥∥∥ξηl,dk
− ξη,il,dk

∥∥∥)Π(dξηl,dk
, ξ̂η,il,dk

)
−

N∑
i=1

K∑
k=1

L∑
l=1

∑
η∈T

1

N

(
νη,i
k,l + νη,i

l,dk

)

−
K∑

k=1

L∑
l=1

∑
η∈T

λη
k,lε

η
k,l + λη

l,dk
εηl,dk

−
K∑

k=1

L∑
l=1

∑
η∈T

T∑
t=η

{ ∑
p∈P↑

xt,η
k,l,pκ

η
k,l,p +

∑
p∈P↓

xt,η
l,dk,p

κt,η
l,dk,p

+
L−1∑
v=1

[
yt,k,ηl τ + xt,k,η

l,v

(
∆l,v

cl,v
+

wk,η

rl,v

)]}
, (31)

where νη,i
k,l ,ν

η,i
l,dk

∈ RN refer to the Lagrange multiplier
associated with the inequality constraints and λη

k,l, λ
η
l,dk

≤ 0
represent the Lagrange multiplier associated with the equality
constraints. With the Lagrangian function in (31), we then can
derive the dual problem of (30) as

min
νη,i
k,l ,ν

η,i
l,dk

,λη
k,l,λ

η
l,dk

U(i, k, l, η)

s.t.



νη,i
k,l + λη

k,l

∥∥∥ξηk,l − ξ̂η,ik,l

∥∥∥ ≥
T∑

t=η

(
xt,η
k,l

)⊤
ξηk,l,

∀k, l, η, i = 1, · · · , N, ξηk,l ∈ Γ

νη,i
l,dk

+ λη
l,dk

∥∥∥ξηl,dk
− ξ̂η,il,dk

∥∥∥ ≥
T∑

t=η

(
xt,η
l,dk

)⊤
ξηl,dk

,

∀k, l, η, i = 1, · · · , N, ξηl,dk
∈ Γ

λη
k,l, λ

η
l,dk

≥ 0,

(32)

where the objective function in (32) is

U(i, k, l, η) =
N∑
i=1

K∑
k=1

L∑
l=1

∑
η∈T

1

N

(
νη,i
k,l + νη,i

l,dk

)
(33)

+
K∑

k=1

L∑
l=1

∑
η∈T

(
λη
k,lε

η
k,l + λη,i

l,dk
εηl,dk

)

−
K∑

k=1

L∑
l=1

∑
η∈T

T∑
t=η

{ ∑
p∈P↑

xt,η
k,l,pκ

η
k,l,p +

∑
p∈P↓

xt,η
l,dk,p

κt,η
l,dk,p

+
L−1∑
v=1

[
yt,k,ηl τ + xt,k,η

l,v

(
∆l,v

cl,v
+

wk,η

rl,v

)]}
.

After sorting the terms related to random parameters ξηk,l
and ξηk,l in the constraint functions, (32) can be expressed by

min
νη,i
k,l ,ν

η,i
l,dk

,λη
k,l,λ

η
l,dk

U(i, k, l, η)

s.t.



max
ξη
k,l∈Γ

( T∑
t=η

(
xt,η
k,l

)⊤
ξηk,l − λη

k,l

∥∥∥ξηk,l − ξη,ik,l

∥∥∥) ≤ νη,i
k,l ,

∀k, l, η, i = 1, · · · , N

max
ξη
l,dk

∈Γ

( T∑
t=η

(
xt,η
l,dk

)⊤
ξηl,dk

− λη
l,dk

∥∥∥ξηl,dk
− ξη,il,dk

∥∥∥)
≤ νη,i

l,dk
, ∀k, l, η, i = 1, · · · , N,

λη
k,l, λ

η
l,dk

≥ 0,

(34)

The presence of the maximum term in two constraint functions
arises because M (Γ) consists of all the Dirac distributions
supported on Γ. By transforming and applying dual norm
operation into the constraint functions, (34) can be rewritten
as

min
νη,i
k,l ,ν

η,i
l,dk

,λη
k,l,λ

η
l,dk

U(i, k, l, η)

s.t.



min
∥zη,i

k,l∥∗
≤λη

k,l

max
ξη
k,l∈Γ

( T∑
t=η

(
xt,η
k,l

)⊤
ξηk,l

−
(
zη,ik,l

)⊤ (
ξηk,l − ξ̂η,ik,l

))
≤ νη,i

k,l , ∀k, l, η,

i = 1, · · · , N,

min∥∥∥zη,i
l,dk

∥∥∥
∗
≤λη

l,dk

max
ξη
l,dk

∈Γ

( T∑
t=η

(
xt,η
l,dk

)⊤
ξηl,dk

−
(
zη,il,dk

)⊤ (
ξηl,dk

− ξ̂η,il,dk

))
≤ νη,i

l,dk
, ∀k, l, η,

i = 1, · · · , N,
λη
l,dk

, λη
l,dk

≥ 0

(35)

In addition, we can obtain the reformulated problem below
by considering zη,ik,l and zη,il,dk

with i = 1, · · · , N as the
decision variables, organizing the random vectors ξηk,l, ξη,ik,l

and ξηl,dk
, ξη,il,dk

in the first and two constraint functions in
(35), respectively.

min
νη,i
k,l ,ν

η,i
l,dk

,λη
k,l,λ

η
l,dk

U(i, k, l, η)
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s.t.



max
ξη
k,l∈Γ

{(
ξηk,l
)⊤[ T∑

t=η

xt,η
k,l − zη,ik,l

]}
+
(
ξ̂η,ik,l

)⊤
zη,ik,l

≤ νη,i
k,l , ∀k, l, η, i = 1, · · · , N

max
ξη
l,dk

∈Γ

{(
ξηl,dk

)⊤[ T∑
t=η

xt,η
l,dk

− zη,il,dk

]}
+
(
ξ̂η,il,dk

)⊤
zη,il,dk

≤ νη,i
l,dk

, ∀k, l, η, i = 1, · · · , N∥∥∥zη,ik,l

∥∥∥
∗
≤ λη

k,l, ∀k, l, η, i = 1, · · · , N∥∥∥zη,il,dk

∥∥∥
∗
≤ λη

l,dk
, ∀k, l, η, i = 1, · · · , N

(36)

Assuming zη,ik,l =
∑T

t=η x
t,η
k,l and zη,il,dk

=
∑T

t=η x
t,δ
l,dk

, we can
eliminate the maximization term in the first two constraint
functions in (36). Then, the problem can be reduced to

min
νη,i
k,l ,ν

η,i
l,dk

,λη
k,l,λ

η
l,dk

U(i, k, l, η)

s.t.



(
ξ̂ηk,l
)⊤( T∑

t=η

xt,η
k,l

)
≤ νη,i

k,l , ∀k, l, η, i = 1, · · · , N

(
ξ̂ηl,dk

)⊤( T∑
t=η

xt,η
l,dk

)
≤ νη,i

l,dk
, ∀k, l, η, i = 1, · · · , N∥∥∥zη,ik,l

∥∥∥
∗
≤ λη

k,l, ∀k, l, η, i = 1, · · · , N∥∥∥zη,il,dk

∥∥∥
∗
≤ λη

l,dk
, ∀k, l, η, i = 1, · · · , N

(37)

Since the optimal solution exists only when the first

2N constraints functions fulfill
(
ξ̂ηk,l
)⊤(∑T

t=η x
t,η
k,l

)
=

νη,i
k,l , ∀k, l, η, i = 1, · · · , N and

(
ξ̂ηl,dk

)⊤(∑T
t=η x

t,η
l,dk

)
=

νη,i
l,dk

, ∀k, l, η, i = 1, · · · , N , it is for sure to place νη,i
k,l and

νη,i
l,dk

back in the objective function.
By implementing the duality theorem operation above [53],

it is feasible to reduce the original inner maximum problem
in (29) as

min
λη
k,l,λ

η
l,dk

Z(i, k, l, η)

s.t.


∥∥∥∑T

t=η x
t,η
k,l

∥∥∥
∗
⩽ λη

k,l, ∀k, l, η∥∥∥∑T
t=η x

t,η
l,dk

∥∥∥
∗
⩽ λη

l,dk
, ∀k, l, η,

(38)

where the objective function is

Z(i, k, l, η) =
1

N

{(
ξ̂η,ik,l

)⊤( T∑
t=η

xt,η
k,l

)
(39)

+
(
ξ̂η,il,dk

)⊤( T∑
t=η

xt,η
l,dk

)}
+

K∑
k=1

L∑
l=1

∑
η∈T

λδ
k,lη

δ
k,l + λδ

l,dk
ηδl,dk

+
K∑

k=1

∑
η∈T

T∑
t=η

L∑
l=1

∑
p∈P↑

xt,η
k,l,pκ

η
k,l,p +

∑
p∈P↓

xt,η
l,dk,p

κη
l,dk,p

+
L−1∑
v=1

[
yt,k,ηl τ + xt,k,η

l,v

(
∆l,v

cl,v
+

wk,η

rl,v

)]}
.

Fig. 2: The integrated satellite-terrestrial network consists of
30 satellites distributed across 6 orbital planes.

Now, the worst-case expectation problem (29) is transformed
into the optimal value of the finite convex programming prob-
lem. By substituting (38) for (27) yields the final reformulated
problem as

min
X,Y,λη

k,l,λ
η
l,dk

Z(i, k, l, η)

s.t.



∥∥∥∥∥
T∑

t=η

xt,η
k,l

∥∥∥∥∥
∗

⩽ λη
k,l, ∀k, l, η∥∥∥∥∥

T∑
t=η

xt,η
l,dk

∥∥∥∥∥
∗

⩽ λη
l,dk

, ∀k, l, η

C1− C15.

(40)

Compared to the original DRO model formulation (27), the
reformulation introduces more decision variables and con-
straints. However, it transforms the problem from a min-
max format to a direct minimization format, which simplifies
the computational complexity and improves tractability. This
process effectively addresses expectations and ambiguity sets,
further refining the problem to a more manageable form.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the robustness and effectiveness
of the proposed DRO model in comparison to SP and RO.

A. Simulation Framework

TABLE I: Parameter Setting in the Simulation

Parameters Value
Number of satellites 30

Noise spectral density −174dBm/Hz
Satellite antenna gain 43.3dBi

Center carrier frequency of Ka-band 30GHz
Transmit power of user equipment 1.25W

Transmit power of TST 2W
Transmit power of LEO satellite 5W

The infrastructure that connects Australia and South Africa
is not as reliable or quick. A satellite system between them
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Fig. 3: Latency vs. amplification factor θ for adjusting the
the ambiguity set size. Each bar shows the total latency for
routing the tasks generated by four source user equipment to
the corresponding destination user equipment.

can significantly improve it. In order to evaluate the effect of
the LEO satellite network on the operation of ground user
equipment, it is essential to choose locations separated by
considerable distances. Therefore, in this paper, the simula-
tions of the integrated satellite-terrestrial network are run on
a scenario that includes the source city located in Sydney,
Australia, the destination city located in Cape Town, South
Africa, and the 30-satellite constellation distributing in 6
orbital planes. Each orbital plane is equipped with 5 satellites
that are distributed uniformly as shown in Fig. 2. Particularly,
the satellites information are generated by the Systems Tool
Kit (STK). The altitude and inclination of each satellite are
880 km and 45 degree, respectively. The average transmission
power of each user equipment, TST, and LEO satellite is 1.25
W, 2 W, and 5 W, separately. The average size of a request
is 1 MB. The bandwidth of 5 GHz-band communications is
20 MHz, while Ka-band communications have a bandwidth of
250 MHz. Besides, the center carrier frequency of the Ka-band
is considered as 30 GHz. The noise density for terrestrial and
satellite-terrestrial communications is 174 dB/Hz. The gain of
the satellite antenna is 43.3 dBi. The duration of each time slot
is 2 seconds, and the total observation period is 1200 seconds.
The DRO framework incorporates 50 samples. Besides, α = 3
in the fifteenth constraint in (27). The system parameters are
summarized in Table I.

B. Experimental Results

Fig. 3 depicts the objective total latency under the proposed
DRO model along with the ambiguity set size. The actual
radius of the offloading and downloading ambiguity set is
configured as the minimum delay of the uplink path and
downlink path via TST embedded in vehicles by multiplying
the amplification factor θ shown on the x-axis of Fig. 3. To
be specific, the factor θ controls how large the ambiguity set
and adjusts the range of the uncertain latency via building
and vehicle routing path. Here, we assume K = 4 user
equipment and 5 tasks to be delivered by each user equipment.
We can observe that as the size of the Wasserstein ambiguity
set increases, the amount of uncertainty in predicting vehicle
movement increases, resulting in an increase in latency. The
size of an ambiguity set can significantly differ based on the
particular circumstances and the type of uncertainty present.
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Fig. 4: Latency vs. number of requests. Each line shows
the total latency for routing the different number of requests
generated by four source user equipment to the corresponding
destination user equipment.
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Fig. 5: Latency vs. number of user equipment. Each line shows
the total latency for routing one task generated by different
number of source user equipment to the corresponding desti-
nation user equipment.

In this paper, we utilize the different sizes of the latency
ambiguity set to represent varying degrees of uncertainty in
vehicle movement directions. By adjusting the ambiguity set,
we can evaluate the influence of uncertainty on prediction
latency via vehicle path.

Fig.4 illustrates the total required latency for delivering
requests with varying volumes generated by four user equip-
ment. Since SP uses the true latency probability distribution of
the uplink and downlink path involving automobiles, it has the
lowest latency of the three approaches. For the RO scheme,
only the range of the uncertain offloading and downloading
latency through vehicles is known, resulting in the largest
delay. Moreover, DRO is an extension of both SP and RO.
Thus, the resulting latency is situated between SP and RO. SP
focuses on the average result, potentially overlooking extreme
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Fig. 6: Latency vs. traffic load. Each bar shows the total latency
for routing the one task generated by the 10 source user
equipment to the corresponding destination user equipment,
but with different information sizes.

or unforeseen conditions. RO is designed to guard against the
worst possible scenarios within a predefined uncertainty set,
usually leading to over-conservative decision-making. DRO
provides a balanced approach between both and is a trade-
off in decision-making under uncertainty. It is more robust
than SP, including extreme and unforeseen conditions, and less
conservative than RO, avoiding over-conservative decision-
making. This balance makes DRO an effective strategy for
managing the uncertainties during offloading and download-
ing routing in our integrated satellite-terrestrial networks. In
addition, the required routing delay increases as the number
of forwarded requests increases.

In Fig. 5, we present the network latency for different
user equipment with the same number of tasks in the source
city. As more user equipment transmit tasks, additional time
is required to complete the assignment. The proposed DRO
method possesses the advantages of the SP and RO method,
which finds the worst-case expected latency under an uncertain
probability distribution with unknown random variables. In
addition, we compare the routing response time under two
distinct ambiguity set sizes. We set two different amplification
factors θ1 and θ2 to represent the degree of uncertainty in the
proposed DRO model, where θ2 > θ1. Since the reduced size
of the ambiguity set brings the possible latency probability
distributions closer to or even equal to the known latency
probability distribution, the delay for the DRO method with
the amplification factor θ1 will be comparable to that of
the SP scheme. Alternately, as the size of the ambiguity set
increases, it contains a greater number of potential probability
distributions. When the size is sufficiently large, there appears
to be no trend in the probability distribution. In this case,
the latency outcome for transmitting tasks from source user
equipment to respective target user equipment approaches the
RO mechanism.

In addition, Fig. 6 illustrates the total routing latency of each
method under light, medium, and heavy traffic load conditions.
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Fig. 7: Ratio vs. Alpha. Each bar shows the total latency for
routing three tasks generated by four source user equipment
to the corresponding destination user equipment.

For medium and heavy traffic loads, the average data size is
3 MB and 5 MB, correspondingly. The larger the delivered
requests, the greater the required latency. Again, DRO perfor-
mance falls between that of SP and RO. The ambiguity set,
controlled by parameter θ1, is considered smaller than the one
controlled by parameter θ2. Even with medium and high traffic
loads, the resultant latency for θ1 and θ2 is close to SP and
RO, separately.

To further discuss the effect of α, which indicates the
maximum number of tasks routed through a building during
each time slot, we carry out a simulation to figure out the
proportion of tasks delivered through uncertain delay paths via
vehicles in the case of four user equipment, each with three
tasks, as shown in Fig. 7. Due to the fact that the SP method
is aware of the true uncertain latency probability distribution,
all tasks are transmitted through automobiles with the smallest
possible delay. From a different perspective, SP can also be
regarded as the DRO method with an extremely small radius
of the ambiguity set. Assume that the size amplification factor
θ1 < θ2. Except for α = 4, all tasks are routed through
vehicles for the DRO approach with θ1 due to the smaller
ambiguity set size. The routing decision is affected not only by
the scenario setting, i.e. setting of α, but also by the ambiguity
set size itself. When the size of the Wasserstein ambiguity
set increases, there is a greater likelihood that the uncertain
routing latency via vehicles will increase. As a consequence,
the model prefers to select the direct uplink path via buildings.
As α increases, it is apparent that the ratio of the DRO method
with θ2 and the RO approach decreases. Furthermore, when
α = 4 and 5, both methods determine to deliver requests via
direct paths.

In Fig. 8, we extend our simulation model from a single
source-destination city pair (Sydney, Australia to Cape Town,
South Africa) to include two additional pairs: Tokyo, Japan
to Cape Town, South Africa, and Tokyo, Japan to Sydney,
Australia. The user equipment is distributed across the three
source cities, and requests are required to be transmitted to
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Fig. 8: Latency vs. number of user equipment. Each line shows
the total latency for routing one task generated by different
number of source user equipment to the corresponding destina-
tion user equipment. The three source-destination pairs include
from Sydney, Australia to Cape Town, South Africa, from
Tokyo, Japan to Cape Town, South Africa and from Tokyo,
Japan to Sydney, Australia.

the corresponding target user equipment in the destination
cities. By conducting the simulation, we demonstrate that our
proposed DRO model can route requests to user equipment
located in multiple cities. Again, the simulation findings
indicate that the DRO model estimates a total routing latency
that falls between the values predicted by the SP and RO
models. This highlights the effectiveness of DRO in balancing
the trade-offs between risk and performance. DRO provides a
well-rounded solution by reducing the inflexibility of RO while
simultaneously tackling the shortcomings associated with SP’s
distributional assumptions.

V. CONCLUSIONS

In this paper, we proposed a DRO-integrated satellite-
terrestrial network routing model for delivering requests from
the source to the destination user equipment via the LEO
satellite constellation with the shortest possible worst-case
latency. Due to the unpredictable vehicle movement, there is
an intermittent transmission connection between user equip-
ment, automobiles, and satellites during task offloading, and
downloading. As a result, the offloading and downloading
latency associated with automobiles are uncertain, which can
be represented by Wasserstein ambiguity sets. Since the orig-
inal DRO formulation is difficult to solve directly, we use
the duality property to rewrite the inner expectation problem
as a finite convex problem in order to derive the tractable
optimization formulation. The numerical results demonstrate
that the proposed DRO method can route tasks in satellite-
terrestrial networks. In addition, the estimated latency varies
as the size of the ambiguity set is adjusted. The proposed strat-
egy outperforms the conservative RO approach but performs
comparably to the SP strategy with actual true probability
distribution.
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