Optimal Task Admission Control of Private Cloud
Data Centers With Limited Resources

Wenlong Ni*, Yuhong Zhang', and Wei Li'
*99 ZiYang Ave, JiangXi Normal University, NanChang, CHINA
13100 Cleburne St, Texas Southern University, Houston, USA

Abstract—In this paper, we study a private data center
(PDC) serving both priority and non-priority tasks with limited
resources. To make full use of the DC resources, e.g. virtual
machines (VM), any task request in a non-priority task with a
large computing requirement may exhaust all available VMs that
is not currently used by the priority task. While receiving rewards
for serving non-priority tasks, there is also the cost of holding
and processing the tasks in the system. By balancing rewards
and costs, our goal is to decide whether to accept or reject non-
priority tasks. The first validation of optimization policies for em-
bracing non-priority tasks is control limit policies by translating
the problem into stochastic dynamic planning. The innovation of
this paper is the development of DC related stochastic dynamic
programming and the study of how to get clear optimization
control limit policy results. These developments and studies are
of great practical value for the theoretical analysis and design of
various DC models with optimized reward and system utilization.

Index Terms—Cloud Data Center, Cognitive Network, Optimal
strategy, Cost Efficiency, bandwidth Allocation.

I. INTRODUCTION

Cloud computing (CC) [1]-[6] is a special computing model
that enables dynamic and scalable virtualization resources
to be served over the Internet without requiring users to
understand the technical details behind it. The CC describes
the basic information services infrastructure, including net-
working, computing, storage, and software such as operating
systems, application platforms, and network services. CC uses
the concept of a “cloud” to emphasize the use of these
resources rather than their implementation details. The rapid
development of technology has led to a significant increase in
the demand for data centers (DC).

As shown in Fig.1, virtualization technology enables the
execution of multiple virtual machines (VM) on a single
physical machine (PM), thereby supporting multiple client op-
erating systems. The allocation of physical system resources,
such as processors, memory, hard disks, and networks, can
be controlled and apportioned to VMs in a precise manner.
Each VM is completely isolated from the others, ensuring
that if one or several VMs experience a crash, the other VMs
will not be impacted, and data will not be leaked between

This material is partially based upon work supported by the NSF under
Grant No. 2302469 and 2318662, and by NASA under award number
8ONSSC22KMO0052 to Wei Li; and by JiangXi Education Department under
Grant No. GJJ191688 to Wenlong Ni.

979-8-3503-6013-4/24/$31.00 © 2024 IEEE

them. When a user sends a service request to the DC, one
or more VMs are assigned to handle it. The handling of
tasks can be prioritized based on user privileges, task urgency,
latency, workload, and other factors. The primary concern of
any cloud service provider (CSP) is to ensure quality of service
(QoS) under service level agreement (SLA) constraints while
achieving maximum profitability [7]-[9]. In addition, a novel
DC model of cognitive abilities with online tasks (priority)
were investigated relative to offline batch tasks (non-priority)
[10], which uses as much VM resources as available to serve
both online and offline tasks and the number of VMs can vary
time to time. Two semi-Markov decision process (SMDP)-
based coordinated VM allocation methods were also proposed
to balance the tradeoff between the high cost of providing
services by the remote cloud and the limited computing
capacity of the local fog [11].

A private cloud DC (PDC) provides enterprises with cloud-
based IT management, increasing data sharing capabilities
between business departments, improving resource utilization
rates, reducing operational costs, and enabling automated
operation and management compliance of systems. A PDC
is usually with a limited number of hard wares. Based on the
fact that the DC utilization rate is low [12] and the scientific
computing demand is large [5], this paper proposes a new
resource allocation scheme to use the VM resources in the
PDC. The scheme regards the daily work of the PDC as a
priority and the tasks that require a lot of computation as a
non-priority. Without interfering with the routine work of the
PDC, some features of the program include (1) there are two
types of tasks: priority and non-priority tasks in the system;
more specifically non-priority tasks are scientific computing
tasks which need a lot of VMs to process and are willing to pay
a price for the computing resources [7], [13]; (2) Priority tasks
are time-sensitive tasks which need service as soon as possible;
Non-priority tasks are computing tasks that can be processed
in a parallel way; (3) Instead of waking/sleeping/moving VMs,
it is better to make full usage of VM resources. To do this, all
VMs that do not serve the priority tasks will be used to handle
non-priority tasks.; (4) VMs that serve non-priority tasks can
be preempted by new priority task; (5) If all the VMs are busy
serving priority tasks, a new arrival priority task will be queued
for future service; similarly for an arrival of non-priority task,
it will also be queued if all VMs are busy.

In our recent work [14], we discuss the general case of the

SM VM MY o \
o[ape ([ape | [ape [1if app || aee ”T:: arp || arp || App |1
N o co | (St i i
EC VMM)ii(VMM)E'i(VMM ji
! PM:):I PM: 1 PMy !
K i i :
~ v ~ ~

Data Center

Fig. 1. PMs and VMs in a DC.

absence of cognitive function where the DC has the ability
to determine the cost of utilizing the resource, while the
cloud service users have the willingness to bear the resource
cost. One of the major differences between the model in this
published work and the current model in the submission is
on the way of handling the process priority of different types
of tasks in the system. Furthermore, the focus of our current
paper is on optimizing PDC revenue by providing services
for non-priority tasks. Our major contributions in this paper
include:

1) The reward of serving non-priority tasks and the holding
costs related to keeping both types of tasks in the
system are studied. To achieve the optimal policy for
determining when to admit or reject non-priority tasks,
a stochastic dynamic programming model known as
Continuous Time Markov Decision Process (CTMDP)
[15], [16] is established to maximize the total expected
discounted reward of the CSP.

2) To optimize the utilization of VM resources in the DC
and maximize benefits, all unused VMs not occupied
by priority tasks will be allocated to non-priority tasks.
These non-priority tasks are computationally intensive
and can be processed concurrently using multiple VMs.
This research builds upon our previous work [14], ex-
tending it to address the added complexity of treating
tasks equally in a regular DC and prioritizing tasks in a
cloud DC.

3) In the proposed model, there is a buffer for both prior-
ity and non-priority tasks. The non-priority tasks may
be preempted by incoming priority tasks. Through a
systematic probability analysis, it has been verified that
the optimal policy for admitting or rejecting non-priority
tasks is a state-related control limit (threshold) policy.

The remainder of this paper is organized as follows. In

Section II, the system model of the DC is introduced. The
structure of optimal policy to maximize total expected discount
reward, the verification process that it is a control limit policy
and an boundary analysis of the threshold value is described
in Section III. In Section IV, we present a numerical analysis
with table and diagram that validate the theoretical results.
Finally, Section V offers concluding remarks.

II. MODEL DESCRIPTION AND ANALYSIS

CTMDP can be used to model a dynamic stochastic process.
In this section, we first introduce the system model of a

DC with the assumptions of all needed parameters; then
we show the establishment of important components in the
corresponding CTMDP model.

A. The System Model

The detailed assumptions for the DC are given as follows:

1) There is a number of VMs, denoted by C, in the PDC.
There are two types of tasks in the system, the priority
task is simplified as type-1 (1%) task and non-priority
task as type-2 (1%) task. To save energy, the idle VMs
can go to sleep or wake up if needed. The number of
VMs in a DC serving both types of the tasks is C', which
changes dynamiclly depending on the number of tasks
in the system.

2) 1T is a priority (time-sensitive) task and needs a number
of VMs for service; T, is a non-priority (parallel com-
puting) task and can be processed with any number of
VMs. For simplicity in this paper we assume the DC
will provide a fixed number say b (here b is a given
non-zero positive integer) VMs for each incoming 7}
task.

3) The arriving process for tasks 77 and 75 are Poisson
processes [17] with rates A1 and Ao, respectively. The
task processing time for these tasks in one VM follows
a negative exponential distribution with rates p; and po,
respectively. If a T3 (7%) task is processed with x,x > 1
VMs, the service rate would be zu(zp2) for that task.

The processing rules of 77 and 75 tasks is listed as below:

1) When a 75 task comes to the system, let ni(ng) be
the number of 77 (7%) tasks currently in the system; the
pseudo code of what actions CSP will take is listed in
the following algorithm 1:

Algorithm 1: Pseudo code for T, arrival processing
rules
Parameters: C, b;
Initialization: N1 = %,nl,nQ;
if n1 < N7 and ny = 0 then
Process the new T5 task using C' — bny VMs
ng =ng + 1

else
if ACCEPT then
Save the 15 task in the buffer
No =nNg + 1
else
| T> task is Rejected and will leave the system

2) When a T3 task comes to the system, let n; be the
number of 77 tasks currently in the system; the pseudo
code of what actions CSP will take is listed in the
following algorithm 2 :

The system is primarily designed to handle 77 tasks, with
C = bN; where NV represents a positive integer. Since the T}
task is always accepted, our focus is on the admission control
of the T» task. Serving a 75 task results in a reward of R

Algorithm 2: Pseudo code for 7} arrival processing
rules
Parameters: C, b;
Initialization: N1 = %, ni;
if n1 < N7 then
| Process T} task with b VMs

else
| Save the T task in the buffer

n1:n1+1

units being awarded to the CSP. However, if a VM serving a
T, task is preempted by a higher priority 77 task, there is a
cost associated with that interruption, labeled as r(r > 0). To
maintain tasks within the system, the CSP must pay a holding
price at a rate f(n1,n9) to manage the VMs in the DCs when
there are n; 77 tasks and ng T tasks in the system. It should
be noted that some notation used above, including 73, 75,
A1, A2, 1 and po, follow the conventions established in [14]
to facilitate ease of connection with our recent works in this
area. All major given parameters are summarized in Table I
for reference.

TABLE I
A LIST OF MAJOR GIVEN PARAMETERS

C Number of VMs in the DC
a Discount factor
b
r

Arrival rate of T; (1 = 1,2)
Service rate of T; (2 = 1,2)
Number of VMs needed to process a 77 task
Cost of a VM serving 7% interrupted by a 77 task
R Reward of serving a T»
f(ni,n2) Holding cost rate at state (ni,n2)

S

A
I

S

B. CTMDP Model and its Components Analysis

Based on the system assumptions, we can now establish a

following CTMDP model:

1) State Space: In the CTMDP model, our focus is solely
on the decision state, which comprises both traditional
states and events at the time of decision-making. The
first component of the decision state, known as the
traditional state, is defined as the number of ongoing
task types in the data center. This is expressed as
S ={s:s = (ni,n2),n1 > 0,ng > 0}, where ny
and no are two non-negative integers, representing the
number of 77 and 75 tasks, respectively. C' signifies the
number of virtual machines. The second component of
the decision state, the event, is represented as e. The
event space is defined by e € E = {D;, Dy, Ay, Ao},
where D; (¢ = 1,2) indicates the completion and
departure of T; (i = 1,2), and A; (¢ = 1,2) signifies
the arrival of a T; (i = 1, 2) task.

Therefore, a decision-making state can be formulated as
§ = (s,e) = ((n1,n2),e). The state space is the set of
all the available decision-making states, represented as

S =258 xE={35={((n1,n2),e€)}.

2)

3)

Action Space: The controller will not make any deci-
sions when the service is complete. We define ac as
an fictitious action of a service completion (departure),
where e € {Dy, Dy} is any departure event. Therefore
we have

A((nl,ng),D,-) = {ac},ni > 0, (Z = 1,2).

When the priority task 77 arrives, the only action is
to admit (accept) it, meanwhile we can either admit or
reject the arrival of non-priority task 75. If we define
a4 as an admission action and ap as a rejected request
action, then:

A((nhnz),Az) = {aRvaA};
A((nl,nz)w‘h) = {aa}.

Thus, the action space is the set of all possible actions,
defined as follows:

A={aa,ar,ac}.

Decision Epoch: The decision time point refers to the
moment when a task reaches or departs from the system,
or when an event occurs. Based on our hypothesis, the
time duration between these decision points follows an
exponential distribution, with a rate parameter 3($, a).
The specific formula is given by:

F(t|3,a) =1 — e P ¢ >0,

Moreover, § = {((n1,n2)),e). When the number of
T; tasks is mq, the number of T5 tasks is ny , Vi(nq)
indicates the number of VMs occupied by the 77 task,
Va(n1,n2) indicates the number of VMs occupied by T5
tasks, V3(n1,ns) represents the number of VMs serving
T tasks that will be preempted if a 7T} task is admitted.
These definitions are sometimes simplified as V7, V5 and
V3 in this paper.

_ 07 ni 2 va
Vl(nl) o { bnl, ny < N1,
C -V , >0,
‘/Z(nth) = { 0 1(”1) Zz ~ 0

ny < Ni,n9 >0,

b,
Vs(n1,n2) { 0, otherwise.

Denote by s = (n1,n2) and So(s) = A1+ Ao+ Vipr +
Voo, which means that the average time, the system
changes from the state s to any other state, is 1/8¢(s).
Specifically, we will have, By(s) =

Cpi 4+ A1+ Ao,
bnipy + A+ A,
bnipn + (C —bng)pa + A + Az,

Given the definition of 3(8,a) and 5y(s), if s, denotes
the next state after taking action a from the current
decision-making state 8, it is evident that

B(éaa) = ﬁO(sn)'

ny Z Nla
ny < Nl,ng =0,
ny < Ni,n9 > 0,

4)

5)

Transition Probability: Given the decision-making state
5 and action a at the current decision epoch, let
q(j]8,a) represent the probability that the system oc-
cupies decision-making state j in the next epoch. For
departure events, such as a departure event of D
when (n; > 0), with (§,a) = (((n1,n2),D1),ac),
if denote by sq;, = (n; — 1,ng), then we have
q(j‘<(n1an2)7D1>’aC) as

)‘1/60(5111)3 .] = <Sd1aA1>7
Vi(ny — 1)p1/Bo(sd,), J = (8a,, D1),
A2/50(5d1)ﬂ] = <Sd1aA2>v
Vao(ny — 1,n2)pe/Bo(sa,), J = (Sa,,D2).

Similar equations can be derived for (3,a) =
({((n1,n2),D2),ac) when (ng > 0). If we denote
the resulting state after the departure event by sq, =
(n1,n2 — 1), then we have ¢(j|((n1,n2), D2),ac) as

)‘1/50(‘9@)7 Jj= <Sd2, >’
Vl(nl)/‘l/ﬁo(sd2>7 Jj= <Sd2’D1>7
)\2/6O(Sd2)a .] - <5d27A2>7
Va(ni,ne — 1 pa/Bo(Say), J = (8dz, D2)-

For arrival events of A; and A, since admitting an
incoming task immediately migrates the system state
(by adding one task), if we denote the resulting state

after the arrival events by s,, = (n1 + 1,n2) and
Say = (n1,n2 + 1), we obtain ¢(j|$,a) as
)‘1/60(3@1)7 J= <5a1’A1>a
Vl(n1+1):u’1/ﬂo(5a1)a J = <Sa1aD1>7
)‘Q/BO(Sal)a] = <5a17A2>a
Vv2('nl + 17”2)”2/50(8a1)1 Jj= <Sa17D2>
And, for action ay related to A, we have
q(j‘<(n1’n2)?A2>7aA) is
)\1/50(5112);] - <5a2,A1>,
Vi(na)pa/Bo(Say)s J = (Sag, D1),
)‘Q/BO(S(LQ)a J = <Sa27A2>a

‘/2(77,1,712 + 1)/1,2/ﬂ0(8a2), Jj= <Sa27D2>

Since action ap rejects the arrival task, there is no
change to the system, we have q(j|{(n1,n2), A2),ar)
is

A1/Bo(s), = (s, A1),
Vi(ni)p/Bo(s), = (s, Dy),
A2/Bo(s), J = (s, Ag),

Va(ni,n2)pa/Bo(s), J = (s, Da).

Reward Function: The system will be rewarded based
on system states and the corresponding actions. The
reward function is determined by the reward (income)
k(8,a) received from users and the system cost at rate
¢(8,a). The total expected discount reward between
epochs satisfies

r(8,a) =

(D

0, e = As,a = ag,

R, e=Az,a=ayu,

07 €:{D1,D2},a:ac7
—Vsr, e=A1,a=ay.

Upon acceptance of a T, task, the reward is received
upon completion of the service, which is equivalent to
engaging in the accepted action. Furthermore, ¢(§,a)
represents the holding cost rate at state (nj,ns) subse-
quent to the execution of action a. Let f(s),s = (ni,ns)
denote the cost rate when the system is in state s. Then,
¢(8,a) can be expressed as

—f(m +1,n2), e= A,
—f(ni,na+1), e=As,a=ay,
c(8,a) = —f(n1—1,n2), e=Di,ng >0,
—f(ni,n2 — 1), e= Dg,ng >0,
—f(ny,m2), e=As,a=ag.

At each decision epoch, the policy clearly specifies the deci-
sion rules based on the current state (the action to be taken).
For each policy 7, vZ(8§) represents the sum of the expected
infinite-horizon discounted reward when the process is in state
5, where « is the discount factor. Based on the five components
of CTMDP model described above, if §,, represents the state
at decision epoch n, t,, is the time point of decision epoch, a,
be the action to take at state §,,, and 7(§,, a,,) for the reward
obtained during the decision epoch (from time ¢,, to ¢,, 1) after
action a,, is selected. Our goal is to find an optimal policy 7
that can bring the maximum total expected discounted reward
v (8) for every initial state $.

tn
[/ e r(8,,a,)dt|.
0

III. OPTIMAL STATIONARY STATE-RELATED CONTROL
LiMIT PoLICY

vh(8) = lim E;

n— oo

2

In a policy, if there is a threshold for receiving tasks, then
the policy is called a control limit policy (or a threshold
policy). In this study, we mainly focused on the acceptance of
the 75 task. When nq T3 tasks exist, a threshold T'(nq) > 0 is
set in the system. As long as the number of the 75 task in the
system is less than T'(nq), the system will accept the newly
arrived T5 task, otherwise it will be rejected. This means that
the decision rule for the 75 task is as follows:

ng < T'(ny),
d(n17n27A2) = { nz ; Tgnig

aa,
an. 3)
It is clear that the threshold policy provides a simple decision
basis for the decision maker (CSP).

According to the above equation, for a departure event of

Dy, it is straightforward to have

U(<(n1 + 1a n2)7D1>)

= ;[—f(m, 7’L2) +)\11}(((77/1, n2)a A1>)

a+ Bo(n,n2)
+nipv(((n1,n2), D1)) + A2v({(n1,n2), A2))

—|—n2u2v(<(n1,n2),D2>)}. (4)

When considering results similar to the above departure events, For any two-dimensional integer function g(ni,ns) (ny; >
we can consider an arrival event for the T task and produce 0,72 = 0), we introduce the following definitions for n; and
the following results: na, respectively:

v(((n1,n2) A2> A) A(nzg(nhnz) = g(ni,n2 +1) — g(ni,nz). 7
A g(ni,na) = Apyg(na,na+1) = Apyg(na,na). (8)
- R + |: f ni, N2 —+ 1)
@t 30(711, n2 +1 From the observation in equation (6), we will have
+Av(((n1,n2 + 1), A >)+nlulv<<(nlan2+1)le>)
+X2v({(n1,ne + 1), A2)) (a—|—ﬁ0(n1,n2+1))An2X(n1,n2)
+(n2 + Dpov({(n1,n2 + 1), D2>)}, = -4y, f(n,n2)
+A1 A, 0(((n1,n2), A1) + Ao Ap,v(((n1,n2), A2))
and +Cl (nl)ulAan(nl — 1, 77,2)
v(((n1,m2), A2), ar) +(C = C)pa Ay X (n1,n9 — 1). 9)
1

= T { = f(n1,n2) + Ao({(n1,n2), A1) By a similar implementation on equation (9) and by using the

o+ Bolna, n2) results in equations (6) , we have
+nopov({(n1,n2), D2)) + Agv(((n1,n2), A2)) ’

+n1prv(((n, ne), D1>)] : (a JZ)Bo(nl, ns +2)) AP X (n1,ns)
= —AP f(ny,no)

For the 77 tasks, as the system always accepts them, there
AMAL v(((n1,n2), A1) + A AL o(((n1,n2), As))

is interruption cost if a VM serving 75 task is preempted by

T1, we have Based on the above equations, it can be observed +C1(n1),u1A)X(nl —1,n9)

that the value of v(§) is primarily influenced by the values of +(C = C)pa A2 X(ni,ns —1). (10)
n1 and ng after performing the corresponding actions for the n2 ’

incoming event. Therefore, we can introduce a new function We can now use Value Iteration Method with three steps to
X(s) with s = (n1,n2) defined as follows: show that for all states X (n1,7n2) is concave and nonincreas-
X(n1,m5) = v({(n1, na + 1), DaY) = v({(m1 + 1,n2), D1)) ;r;gbz?é‘:.onnegative integer function on ng for any given n;

After analyzing these equations, it can be verified that, con- Step 1: Set XV(n,ny) = 0, we know

sidering only the accept/reject actions for 75 arrivals, the v@(((n1,n2), A2)) = R and

following equation holds: “br. < N
U(O)(<(n1,n2),A1>) = { 0 ’ ' _ Nh

v({(n1,n2), A2)) = max R+X(n1,n2+1),X(n17n2):| o mE A

Substitute these three results into equations, we will have
For T} tasks, as the system always accepts them, there may

be interruption costs if a VM serving 75 task is preempted by @ —fne) M ()l
))

T1. In such cases, we have: X (n1,n2) = — f(n1 1) L0+ A0 R
T a— ny = Nl.

v({(n1,n2), A1) = —Var + X(n1 + 1,ns9).
({(n1, m2), A1) ° (1 2) Therefore, for any n;, X(l)(nhng) is concave and nonin-

Theorem 1: If f(nq,nz) is convex and increasing function ~creasing on ng.
on ny for any given nj, the optimal policy is then a control Step 2: With these results in mind, and using the results in
limit policy. That means, for any state (n1,n2), there must equations (9) and (10), we will know that

exist an integer, say N», such that decision
AMX(Q) (n1,n2) <0, and A%ZQ)X@)(nl,ng) <0.
aap, if no S N27

A((n1,n2),A2) = { aR, if ng > Ns. (5)

These two inequalities justify that for any n1, X) (ny,ny) is
) nonincreasing and concave on ns.

Proof: If all VMs are busy when an SU arrives at state ggory 3. Finally, by noting the Theorem 11.3.2 of [15] that
(121, 72), we know that €' (n1) +n2 2> C and then the optimality equation has the unique solution, we know the

Co(ny,n2) = C — Cy(ny). value iteration X (™ (ny,ny) will uniquely converges. There-
fore, as the iteration continues, with n goes to oo, with the
Therefore property of nonincreasing and concave on ns for X (ny,ns), it
is straight forward to know that the optimal policy is a control
Bo(n1,n2 +2) = Bo(n1,n2 + 1) = Bo(n1, n2) limit policy as stated in the Theory.

= A+ A+ Ci(n)u + (C — Ci(ny))pe, (6) The proof is now completed.

IV. NUMERICAL ANALYSIS

We have conducted a theoretical verification to demonstrate
that the optimal policy for maximizing the total expected
discount reward, expressed in equation (2), is a control limit
policy or a threshold policy for accepting 7, arrivals. The
parameter values as listed in Table II, which are comparable
to those reported in reference [18]. With this parameter setting,

TABLE 11
PARAMETERS SET
C 20
« 0.5
i AM=1A=2
i p1 =06, ug =8
b 5
r 3
R 5
f(ni,n2) n? + 3n3

by using value iteration method we can derive both the
X (n1,n2) Values and the corresponding optimal policy, which
are listed in the following tables.

TABLE III
ACTIONS FOR 7% TASK OF OPTIMAL POLICY

0 ng — 5

0 111]1 1 1 1
111]1 1 1 1

nid | 1|1]1 1 1 1
111]1 1 1 1

4 111]1 1 1 1
6 no — 11

0 11 1]1 1 1 0
111]1 1 0| 0

nid | 1|1]1 0 0| 0
11110 0 0| 0

4 11010 0 0| 0

According to Table III, the action code ”’1” indicates the
acceptance, and the code ”0” indicates that the system will
refuse. Since the reward R is far beyond the holding cost and
rejection cost, it can be seen from the table that the system
will still accept the 75 task to the buffer even if some 75 task
is waiting in the buffer, or if there is 7} task is waiting in the
buffer. As shown in Table IV, the value of function X (n1,n2)
decreases in the no direction, which is consistent with our
theoretical results.

V. CONCLUSION AND DISCUSSION

In order to make better use of the limited VM resources in
private DCs, this paper proposes a new scheme: priority tasks
have high priority and can interrupt non-priority tasks; non-
priority tasks are scientific computing tasks and can occupy
all the unused VM resources of the priority tasks. Serving
for non-priority tasks is rewarded, and holding and disrupting
these tasks is costly. To obtain the best total expected discount
reward, the problem is formulated as a CTMDP model and
verifies that the optimal policy for accepting non-priority tasks
is a state-dependent control limit (threshold) policy.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

TABLE IV
X (n1,n2) VALUES WITH OPTIMAL POLICY
0 ny — 5
0 1.05 0.82 0.47 -0.08 -0.90 -2.07
1.00 0.64 0.15 -0.59 -1.69 -3.22
ni | 0.93 0.51 -0.15 -1.16 -2.63 -4.65
0.77 0.29 -0.54 -1.83 -3.67 -6.17
4 0.49 -0.06 -1.05 -2.61 -4.83 -7.81
6 ny — 11
0 -3.67 -5.79 -8.49 | -11.85 -15.96 -20.88
-5.29 -7.96 | -11.32 | -15.44 | -20.39 -26.24
nyd | -729 | -10.65 | -14.80 | -19.79 | -25.71 -32.62
-9.41 -13.45 | -18.37 | -24.23 -31.11 -39.09
4 -11.62 | -16.33 | -21.99 | -28.70 | -36.53 -45.56
12 ng — 17
0 -26.66 | -33.40 | -41.17 | -50.04 | -60.09 -71.39
-33.06 | -40.94 | -49.95 | -60.16 | -71.65 -84.51
ny) | -40.62 | -49.76 | -60.14 | -71.83 -84.90 -99.43
-48.25 | -58.67 | -70.42 | -83.58 -98.23 | -114.44
4 -55.88 | -67.55 | -80.65 | -95.26 | -111.45 | -129.31
REFERENCES

C. Kotas, T. Naughton, and N. Imam, “A comparison of amazon web
services and microsoft azure cloud platforms for high performance
computing,” in 2018 IEEE International Conference on Consumer
Electronics (ICCE), Jan 2018, pp. 1-4.

P. Prukkantragorn and K. Tientanopajai, “Price efficiency in high
performance computing on amazon elastic compute cloud provider in
compute optimize packages,” in 2016 International Computer Science
and Engineering Conference (ICSEC), Dec 2016, pp. 1-6.

H. Artail, M. A. R. Saghir, M. Sharafeddin, H. Hajj, A. Kaitoua,
R. Morcel, and H. Akkary, “Speedy cloud: Cloud computing with
support for hardware acceleration services,” IEEE Transactions on Cloud
Computing, vol. 7, no. 3, pp. 850-865, 2019.

X. Hu, L. Wang, K. Wong, M. Tao, Y. Zhang, and Z. Zheng, “Edge and
central cloud computing: A perfect pairing for high energy efficiency and
low-latency,” IEEE Transactions on Wireless Communications, vol. 19,
no. 2, pp. 1070-1083, 2020.

A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “Performance analysis of cloud computing services for
many-tasks scientific computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 6, pp. 931-945, 2011.

T. S. Toland, “C2cloud: A cloud computing framework,” in 2017 IEEE
7th Annual Computing and Communication Workshop and Conference
(CCWC), Jan 2017, pp. 1-7.

J. Mei, K. Li, and K. Li, “Customer-satisfaction-aware optimal multi-
server configuration for profit maximization in cloud computing,” IEEE
Transactions on Sustainable Computing, vol. 2, no. 1, pp. 17-29, 2017.
S. Tayeb, M. Mirnabibaboli, L. Chato, and S. Latifi, “Minimizing energy
consumption of smart grid data centers using cloud computing,” in
2017 IEEE 7th Annual Computing and Communication Workshop and
Conference (CCWC), Jan 2017, pp. 1-5.

Y. Shi, K. Suo, J. Hodge, D. P. Mohandoss, and S. Kemp, “Towards
optimizing task scheduling process in cloud environment,” in 2021 IEEE
11th Annual Computing and Communication Workshop and Conference
(CCWC), Jan 2021, pp. 0081-0087.

W. Ni, Y. Zhang, and W. Li, “Task admission control and boundary
analysis of cognitive cloud data centers,” 2020. [Online]. Available:
https://arxiv.org/abs/2010.02457

Q. Li, L. Zhao, J. Gao, H. Liang, L. Zhao, and X. Tang, “Smdp-
based coordinated virtual machine allocations in cloud-fog computing
systems,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1977-1988,
June 2018.

L. A. Barroso, J. Clidaras, and U. Hoelzle, The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines.
Morgan & Claypool, 2013.

S. Sharif, P. Watson, J. Taheri, S. Nepal, and A. Y. Zomaya, “Privacy-
aware scheduling saas in high performance computing environments,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 4,
pp. 1176-1188, 2017.

[14] W. Ni, Y. Zhang, and W. W. Li, “An optimal strategy for resource cesses. Wiley Encyclopedia of Operations Research and Management

utilization in cloud data centers,” IEEE Access, vol. 7, pp. 158095— Science, 2011.
158 112, Oct 2019. [17] S. Ross, Stochastic Processes, Jan 1995,

[15] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic ~ [18] H. Khazaei, J. Misic, and V. B. Misic, “A fine-grained performance
Programming, Mar 2005. model of cloud computing centers,” IEEE Transactions on Parallel and

[16] O. Alagoz and M. Ayvaci, Uniformization in Markov Decision Pro- Distributed Systems, vol. 24, no. 11, pp. 2138-2147, 2013.

