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Abstract

We study the group-fair obnoxious facility location problems
from the mechanism design perspective where agents belong
to different groups and have private location preferences on
the undesirable locations of the facility. Our main goal is to
design strategyproof mechanisms that elicit the true location
preferences from the agents and determine a facility loca-
tion that approximately optimizes several group-fair objec-
tives. We first consider the maximum total and average group
cost (group-fair) objectives. For these objectives, we propose
deterministic mechanisms that achieve 3-approximation ra-
tios and provide matching lower bounds. We then provide
the characterization of 2-candidate strategyproof randomized
mechanisms. Leveraging the characterization, we design ran-
domized mechanisms with improved approximation ratios of
2 for both objectives. We also provide randomized lower
bounds of 5/4 for both objectives. Moreover, we investi-
gate intergroup and intragroup fairness (IIF) objectives, ad-
dressing fairness between groups and within each group. We
present a mechanism that achieves a 4-approximation for the
IIF objectives and provide tight lower bounds.

Introduction
In recent decades, facility location problems have received
considerable attention in operations research, computer sci-
ence, and economic communities due to their applicability to
address real-world challenges and theoretical interests (see,
e.g., (Hakimi 1964; Church and ReVelle 1976; Jain et al.
2003)). In a typical facility location problem, a social plan-
ner is tasked with identifying a suitable geographical loca-
tion for a facility to best serve the targeted agent population
according to a given optimization objective, defined based
on the distances of agents’ locations or preferences to the fa-
cility location (Hakimi 1964). These problems can be used
to address locating a public school to provide education to
students living in the surrounding area, locating a public
park to provide recreational space for local residents, and
locating a hospital to provide health services to citizens in
the communities.

In artificial intelligence and economics, the studies of fa-
cility location problems have largely focused on the mech-
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anism design perspective where the facility location prefer-
ences of the agents are private (Chan et al. 2021). The pri-
mary goal of these studies aims to design (strategyproof )
mechanisms that elicit agent location truthfully and deter-
mine a facility location to (approximately) optimize certain
objectives (Moulin 1980; Procaccia and Tennenholtz 2013).

While the majority of the related mechanism design stud-
ies consider facilities that are pleasant for the agents, a few
studies (Cheng, Yu, and Zhang 2013; Ibara and Nagamochi
2012; Ye, Mei, and Zhang 2015) consider locating obnox-
ious facilities which are undesirable for agents. Indeed, facil-
ities such as nuclear power reactors, landfill sites, and chem-
ical plants are often unpleasant and do not provide service
directly to the agents. For instance, landfill sites are unpleas-
ant for the nearby agents because of the potential exposure
to odors/gases/chemicals (e.g., lead, ammonia, and hydro-
gen sulfide) and other health risks (e.g., cancers and devel-
opmental disabilities). Similarly, exposure to radiation from
nuclear power plants can cause cancer and leukemia. As a
result, agents have preferences on the undesirable locations
of the obnoxious facility. Therefore, existing studies design
mechanisms to locate the facility far away from the agents’
undesirable location preferences.

Group Fairness and Obnoxious Facilities. In real-world
situations, it is well-documented that groups of agents (e.g.,
environmental and community activists) fight to advocate
for the location of an undesirable facility (e.g., a coal ash
landfill, nuclear plant, or petrochemical plant) through pub-
lic and legal channels. Moreover, when locating obnoxious
facilities, unfairness can unexpectedly occur for groups of
agents. For instance, for any obnoxious facility location, we
can create a problem instance that is good for one group of
agents and bad for another group of agents who dislike lo-
cations near the obnoxious facility. Therefore, obnoxious fa-
cility location problems should carefully consider groups of
agents and the potential unfairness incurred by these groups.

While recent studies propose to enforce fairness in facil-
ity location by designing strategyproof mechanisms subject
to group fairness objectives (Zhou, Li, and Chan 2022) or
criteria/constraints (Aziz et al. 2022a,b, 2023), no previous
studies consider group fairness for obnoxious facility loca-
tion problems. Therefore, following the work of Zhou, Li,
and Chan (2022), our focus is to consider natural group-fair
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Objective Deterministic Randomized

mtgc
UB: 3 (Thm. 1) UB: 2 (Thm. 4)
LB: 3 (Thm. 2) LB: 5

4 (Thm. 5)

magc
UB: 3 (Thm. 7) UB: 2 (Thm. 9)
LB: 3 (Thm. 8) LB: 5

4 (Thm. 10)

Mechanism UB (IIF1 & IIF2) LB
BGMV 4 (Thm. 11) 4 (Thm. 12)

Table 1: Summary of the approximation ratios and lower
bounds for group-fair objectives (Section ) and IIF objec-
tives (Section ). UB and LB stand for the upper bound and
lower bound, respectively.

objectives that qualify the unfairness of groups of agents and
design strategyproof mechanisms that approximately opti-
mize the objectives in obnoxious facility location problems.

Our Contributions
We investigate the group-fair obnoxious facility location
problems where agents are located on a closed interval. We
design strategyproof mechanisms which (approximately)
optimize the maximum total and average group cost (group-
fair) objectives, along with the intergroup and intragroup
fairness (IIF) objectives. Our results are summarized in Ta-
ble 1. More specifically:

• We introduce deterministic mechanisms (LHGV and
BGMV) for minimizing the maximum total group cost
(mtgc) or the maximum average group cost (magc).
These mechanisms achieve 3-approximation ratios. We
also provide tight lower bounds for these objectives.

• We provide a characterization of any (group) strate-
gyproof 2-candidate randomized mechanisms. We de-
fine monotonicity and establish the equivalence between
strategyproofness and group strategyproofness within the
context of a 2-candidate mechanism. Building on this in-
sight, we propose optimal randomized 2-candidate mech-
anisms (PBPM and NPBPM) for both group-fair objec-
tives, effectively improving the approximation ratio to 2.

• Lastly, we investigate two objectives that capture inter-
group and intragroup fairness (IIF), considering group
fairness within and among groups. We show that the
BGMV mechanism achieves a 4-approximation for the
IIF objectives. Additionally, we establish a tight lower
bound that applies to all mechanisms for these objectives.

We note that all the designed mechanisms are group strat-
egyproof. Due to the page limit, we only included some
proof sketches.

Related Work
We discuss related work on facility location problems that
consider fairness or obnoxious facilities from the mecha-
nism design perspective.

Fairness in Facility Location Problems A growing body
of research is exploring fairness from the mechanism de-
sign perspective. Procaccia and Tennenholtz (2013) initiate
the study on approximate mechanism design without money.
They examine the fairness objective of minimizing the maxi-
mum cost among agents for facility location problems. More
recently, various envy-related concepts are investigated, in-
cluding minimax envy (Cai, Filos-Ratsikas, and Tang 2016)
and envy ratio (Ding et al. 2020). These concepts aim to
minimize the maximum normalized cost difference between
any two agents and the maximum ratios of utility for any
pair of agents. A very recent study (Zhou, Li, and Chan
2022) incorporates group fairness into the facility location
problems while adopting the approximate mechanism de-
sign approach. Beyond the objective-centric mechanism de-
sign, Aziz et al. (2022a,b, 2023) investigate mechanism de-
sign for the proportional fairness notions (Individual Fair
Share and Unanimous Fair Share) for both standard and ob-
noxious facility location problems.

Obnoxious Facility Location Problems In certain situa-
tions, agents may express displease towards the presence of
a facility, preferring greater distance from it. These scenar-
ios align with obnoxious facility location problems, where
the objective shifts to maximizing the sum of distances from
agents to the facility (Church and Garfinkel 1978). From the
mechanism design perspective, the first work is by Cheng,
Yu, and Zhang (2013), following Procaccia and Tennen-
holtz’s seminal work (Procaccia and Tennenholtz 2013). In
their context, the distance between agents and the facility is
defined as the utility, and the objective becomes maximiz-
ing social welfare. Later on, Ibara and Nagamochi (2012)
provide characterizations of deterministic 2-candidate strat-
egyproof mechanisms for the obnoxious facility game and
Ye, Mei, and Zhang (2015) study some other objectives
(e.g., the sum of squares of agents’ utility). A recent sur-
vey (Chan et al. 2021) offers a comprehensive overview of
recent progress from the mechanism design perspective.

Preliminaries
In this section, we provide necessary notations, objectives,
and definitions for the group-fair obnoxious facility location
problems and the corresponding mechanism design settings.

Notations
Consider a set of n agents denoted as N = {1, 2, ..., n},
located along the interval I = [0, 1]. Each agent i ∈ N be-
longs to a specific group based on their affiliation (e.g., dif-
ferent groups of activists). Let G = {G1, G2, ..., Gm} rep-
resent the set of mutually exclusive groups of agents, with
|Gj | indicating the number of agents in group Gj .

The profile of each agent i is denoted as ri = (xi, gi),
where xi ∈ I is the location of agent i, and gi ∈
{1, 2, ...,m} corresponds to the group affiliation of agent
i. The full profile r = {r1, r2, ..., rn} represents the lo-
cation and group information for all agents, and x =
{x1, x2, . . . , xn} is the associated location profile. We re-
fer the set xg = {xi : i ∈ Gg} to be the location profiles of
agents within group Gg .

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9833



A deterministic mechanism is defined as a function f
that maps a profile r to a facility location y ∈ I . Al-
ternatively, a randomized mechanism is a function f that
assigns a profile r to a probability distribution Y over I ,
where the facility location y is a potential realization of
Y . The distance between two points a, b ∈ I is calculated
as d(a, b) = |a − b|. Given a deterministic (or random-
ized) mechanism f and a profile r, the utility of an agent
i ∈ N is represented as u(f(r), xi) = d(f(r), xi) (or the
expected distance Ey∼Y [d(y, xi)]). The cost for agent i is
subsequently defined as c(f(r), xi) = 1 − u(f(r), xi). In
the context of this obnoxious facility location problem, each
agent aims to increase their distance from the facility to en-
hance their utility and reduce their cost.

As each agent is aware of the mechanism, they may be in-
centivized to falsely report their location in an attempt to ma-
nipulate the outcome to benefit themselves. The challenge is
to design mechanisms that promote truthful reporting while
(approximately) optimizing a specific cost objective.

In our setting, we assume an agent can only misreport
their location. The group information is known publicly.

Definition 1 (Strategyproofness). A mechanism f is strat-
egyproof (SP) if no agent can gain an advantage by mis-
reporting their location, regardless of the locations re-
ported by other agents. Formally, given any profile r =
{r1, r2, ..., rn}, let r−i denote the profile excluding agent
i. Then, for every i ∈ N , let r′i = (x′

i, gi) be another
profile with arbitrary x′

i ∈ I , it holds that c(f(r), xi) ≤
c(f(r′i, r−i), xi).

Definition 2 (Group Strategyproofness). A mechanism f
is group strategyproof (GSP) if, for any group of agents,
at least one agent cannot benefit from false reporting. For-
mally, given any profile r = {r1, r2, ..., rn}, for any S ⊆ N
and for any x′

S ∈ IS , let r−S be the profile excluding the set
of agents S, and r′S = (x′

i, gi)i∈S . Then, at least one agent
i ∈ S must satisfy c(f(r), xi) ≤ c(f(r′S , r−S), xi).

Given fixed group sizes |G1|, . . . , |Gm|, a deterministic
mechanism f : (I, [m])n → I is classified as a p-candidate
mechanism if there is a set Cf ∈ Ip, such that for every r,
f(r) is an element of Cf . Likewise, a randomized mecha-
nism f : (I, [m])n → I is a p-candidate mechanism if there
is a set Cf ∈ Ip, such that for every r, f(r) is a distribution
over Cf , i.e., the outcome of f(r) is always within the set
Cf .

Optimization Objectives
We adopt two group-fair objectives proposed by Zhou, Li,
and Chan (2022). The first objective considers total group
cost, which is the cumulative cost of all members of a group.
Our goal is to prevent any group from bearing a high total
cost. Hence, the first group-fair objective is to minimize the
maximum total group cost (mtgc). Formally, the maximum
total group cost (mtgc) of a facility location y with respect
to the profile r is defined as:

mtgc(y, r) = max
1≤j≤m

{ ∑
i∈Gj

c(y, xi)

}
;

Type Mechanism Approx. Ratio LB

Deterministic MV Ω(m) 3LHGV 3

Randomized PBPM 2 5
4

Table 2: Summary of the approximation ratios and lower
bounds for deterministic and randomized mechanisms
(mtgc).

the maximum total group cost of a distribution Y with re-
spect to r is mtgc(Y, r) = Ey∼Y [mtgc(y, r)].

The second group-fair objective aims to minimize the
maximum average group cost (magc). This objective aims
to alleviate the impact of group size and normalize each total
group cost by their group size. It is defined as follows:

magc(y, r) = max
1≤j≤m

{∑
i∈Gj

c(y, xi)

|Gj |

}
;

the maximum average group cost of a distribution Y is
magc(Y, r) = Ey∼Y [magc(y, r)].

Let y∗ ∈ argmin
y

mtgc(y, r) denote the optimal loca-

tion for minimizing the objective mtgc. We measure the
performance of a mechanism f by comparing the objec-
tive achieved by f and the optimal solution. Specifically,
f is an α-approximation if for any profile r, it holds that
mtgc(f(r), r) ≤ α·mtgc(y∗, r). The approximation perfor-
mance of a mechanism for magc can be defined similarly.

Group-Fair Cost Objectives
In this section, we develop both deterministic and random-
ized strategyproof mechanisms that approximately optimize
the group-fair objectives defined in Section . Additionally,
we provide lower bounds applicable to all strategyproof
mechanisms.

The Maximum Total Group Cost
In this subsection, we focus on minimizing the maximum
total group cost (mtgc). Table 2 summarizes our results.

We begin by examining the mechanism proposed by
Cheng, Yu, and Zhang (2013), which investigates the clas-
sical obnoxious facility location problems. This mechanism
aims to maximize social welfare (the sum of each agent’s
utility) without considering any group-fair objective.

Mechanism 1 (Majority Vote (MV)). Given a location pro-
file x on I , let n1 be the number of agents located on [0, 1

2 ]

and n2 be the number of agents on ( 12 , 1]. If n1 ≤ n2, the
mechanism returns the left endpoint 0; otherwise, it returns
the right endpoint 1.

Since Mechanism 1 does not leverage the group informa-
tion, the strategyproofness still holds in our model. However,
for the mtgc objective, it may perform poorly, as demon-
strated in the following example.
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Example 1. There are (2m− 3) agents from m groups. For
1 ≤ j ≤ m − 1, group Gj only contains one agent located
at 0, while all other (m−2) agents belong to group Gm and
are located at 1. In this case, the optimal solution places
the facility at 1

m−1 with a total group cost of m−2
m−1 in each

group. However, Mechanism 1 outputs 1 with a total group
cost of (m − 2) in group Gm, which implies an (m − 1)-
approximation for the objective mtgc.

We propose the following deterministic mechanism,
which incorporates the group information.
Mechanism 2. (Largest Half-Group Vote (LHGV)) For each
group Gj , let nj,1 and nj,2 be the number of agents on [0, 1

2 ]

and ( 12 , 1], respectively. We further denote the larger one of
nj,1 or nj,2 by nj . Let g ∈ argmax

1≤j≤m
nj , which represents

the group containing the most agents on half of the interval
among all groups (break ties by choosing the smallest in-
dex). The mechanism places the facility y at 1 if ng,1 > ng,2.
Otherwise, it places the facility at 0.

Notice that Mechanism 2 first selects a group and then
performs Mechanism 1 on this subset of agents. We summa-
rize this as a two-step mechanism design model which will
be frequently used later:

1. Select a group Gg .
2. Design a mechanism for xg . Recall that xg is the location

profile of agents in Gg .

The following proposition and theorem show that Mecha-
nism 2 is GSP and has a good constant approximation ratio.
Proposition 1. Mechanism 2 is group strategyproof.
Theorem 1. Mechanism 2 is a 3-approximation for the ob-
jective mtgc.

Proof Sketch. For any profile r, let ALG and OPT denote
the maximum total group cost given by LHGV and the op-
timal solution, respectively. Recall that in Mechanism 2, Gg

represents the group with the largest half-group.
Without loss of generality, we assume that LHGV places

the facility at 1. When y∗ ∈ ( 12 , 1], y
∗ is closer to 1, we

prove that a slight movement from y∗ to 1 will not make
a big difference between OPT and ALG as the cost of an
agent can be reduced by at most |1− y∗|. When y∗ ∈ [0, 1

2 ],
we prove that OPT ≥ 1

2ng,1 and ALG ≤ 3
2ng,1.

Next, we provide a tight lower bound to complement our
upper bound result.
Theorem 2. Any deterministic strategyproof mechanism has
an approximation ratio of at least 3 for the object mtgc.

Before the proof, we introduce a lemma based on Ibara
and Nagamochi (2012)’s result.
Lemma 1. Any deterministic strategyproof mechanism is a
2-candidate mechanism.

Ibara and Nagamochi prove Lemma 1 for the classical ob-
noxious facility problem (single-group case), and the idea
can be extended to the multiple-group case, which is used
to prove two later theorems (Theorem 12 and 13). Based on
Lemma 1, we provide the following proof for the theorem.

Proof of Theorem 2. In the proof, we always consider the
profiles with two agents from a single group. Hence, we use
the location profile to represent the agent profile since the
agent’s group identity is always 1.

For the profile (0, 0) (two agents located at 0), the max-
imum total group cost is 0 when the facility is placed at 1.
Hence, the mechanism must place the facility at 1 to ensure
a finite approximation ratio. Similarly, for the profile (1, 1),
the mechanism must place the facility at 0. Therefore, the
candidate set Cf = {0, 1} and there is no space to include
other candidates due to Lemma 1.

Next, we show any deterministic mechanism with Cf =
{0, 1} has an approximation ratio of at least 3. We start with
the profile (0, 1). Without loss of generality, we assume that
the output is 0. Then, for the profile (0, 1

2 + ϵ) with suffi-
ciently small ϵ > 0, the facility needs to stay at 0 with a
total group cost of 3

2 − ϵ. Otherwise, the agent at 1
2 + ϵ can

deviate to 1 to obtain a lower cost. However, the optimal so-
lution places the facility at 1 with a total group cost of 1

2 + ϵ.
This leads to an approximation ratio of 3 as ϵ goes to 0.

Next, we study whether randomized mechanisms can help
improve the approximation ratio. We define the following
monotonicity property.
Definition 3 (2-candidate Monotonicity). Let Cf =
{c1, c2} ∈ I2 be the candidate set of a randomized mech-
anism f . Without loss of generality, we assume c1 < c2. Let
α be the probability of placing the facility at c1, and then the
probability to place the facility at c2 is 1−α. f is monotone
if
• α is a function with respect to n = (nj,1, nj,2, nj,3)

m
j=1,

where nj,1, nj,2, nj,3 are numbers of agents in Gj lo-
cated in [0, c1+c2

2 ), at c1+c2
2 , and in ( c1+c2

2 , 1], respec-
tively.

• Let n−j be the input except group Gj’s information. We
have that

α(n) ≤ α((nj,1 − 1, nj,2, nj,3 + 1),n−j) (1)

and

α((nj,1, nj,2 + 1, nj,3 − 1),n−j)

≤α(n) ≤ α((nj,1 − 1, nj,2 + 1, nj,3),n−j) (2)

hold.
Inequality (1) relates to the case where an agent misre-

ports either from [0, c1+c2
2 ) to ( c1+c2

2 , 1] or from ( c1+c2
2 , 1]

to [0, c1+c2
2 ). Inequality (2) relates to the case where an

agent misreports from either the left or right half-interval
to the midpoint at c1+c2

2 .
Theorem 3. For any randomized 2-candidate mechanism f
with Cf = {c1, c2}, the following statements are equivalent:
(1) f is strategyproof. (2) f is group strategyproof. (3) f is
monotone.

Proof Sketch. We prove the equivalence using Fig. 1.
From SP to Monotonicity. By SP, the outcome does not

change when agents within [0, c1+c2
2 ) or [ c1+c2

2 , 1] misre-
port to any location within their respective intervals. Hence,
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(1) SP (3) Monontonicity

(2) GSP

Figure 1: Proving the equivalence of statements about 2-
candidate mechanisms.

we can prove that α depends solely on n. Then, consider any
profile r, we prove the validity of Inequality (1) and (2) us-
ing strategyproofness for the case that an agent misreports
across the midpoint c1+c2

2 .
From Monotonicity to GSP. Let S be the set of agents

that misreport their locations. If every agent in set S is lo-
cated within the interval [0, c1,c2

2 ), or alternatively, if they
all reside within the interval ( c1+c2

2 , 1], we inductively use
Inequality (1) and (2) to prove they will not benefit from de-
viating. Otherwise, let i and j be two agents in S such that
xi ≤ c1+c2

2 and xj ≥ c1+c2
2 . We can prove either agent i or

j will not benefit from deviating.
From GSP to SP. Consider a single individual as a group

of size 1, the agent cannot benefit by misreporting their lo-
cation due to group strategyproofness. This implies strate-
gyproofness.

To facilitate our mechanism design, we define the simpli-
fied monotonicity property using a simple tie-breaking rule
for agents at c1+c2

2 inspired by the above characterization.

Definition 4 (Simplified Monotonicity). f is simplified
monotone if

• α, the probability of placing the facility at c1, is a func-
tion with respect to n = (nj,1, nj,2)

m
j=1, where nj,1, nj,2

are numbers of agents in Gj and located in [0, c1+c2
2 ] and

in ( c1+c2
2 , 1], respectively.

• Let n−j be the input excluding group Gj’s information.
α(n) ≤ α((nj,1 − 1, nj,2 + 1),n−j) holds true.

Corollary 1. Any simplified monontone mechanism is GSP.

Simplified monotonicity is a stronger concept than mono-
tonicity, although the inequality constraint becomes simpler.
Consider the “toy” mechanism that takes a single agent’s lo-
cation, denoted by x, as input. If x ∈ [0, 1

2 ) or x ∈ ( 12 , 1],
the facility is placed at 1 or 0 with probability 1, respec-
tively. Otherwise, the facility is placed at 0 or 1 with equal
probability. While this mechanism adheres to monotonicity,
it does not satisfy simplified monotonicity.

Theorem 3 and Corollary 1 indicate how to better uti-
lize the group information. We propose the following 2-
candidate mechanism.

Mechanism 3 (Probabilistic Balanced Placement Mecha-
nism (PBPM)). Let Cf = {0, 1}. Given an input profile
r, the mechanism counts the numbers of agents in [0, 1

2 ]

and ( 12 , 1] for each group Gj , denoted by a count tuple
n = (nj,1, nj,2)

m
j=1.

Let α solve

α+ (1− α)
maxmj=1{ 1

2nj,1 + nj,2}
maxmj=1{ 1

2nj,1}

= (1− α) + α
maxmj=1{ 1

2nj,2 + nj,1}
maxmj=1{ 1

2nj,2}
. (3)

Specially, set α = 1 when maxmj=1{nj,1} = 0, and set
α = 0 when maxmj=1{nj,2} = 0. The mechanism places
the facility at 0 (resp. 1) with probability α (resp. 1− α).
Proposition 2. Mechanism 3 is group strategyproof.

The idea behind Mechanism 3 is based on minimizing the
worst ratio among profiles where the optimal solution places
the facility at one endpoint. Specifically, when the optimal
facility location is at 0, placing the facility at 1 results in a

ratio of at most
maxm

j=1{ 1
2nj,1+nj,2}

maxm
j=1{

1
2nj,1}

. Conversely, if the opti-

mal facility location is at 1, placing the facility at 0 incurs a

ratio of at most
maxm

j=1{ 1
2nj,1+nj,2}

maxm
j=1{

1
2nj,1}

. Mechanism 3 identifies

the best value of α that achieves a balance in both cases.
The next theorem shows that Mechanism 3 improves the

approximation ratio of the earlier mechanism even for pro-
files where the optimal location is not at 0 and 1.
Theorem 4. Mechanism 3 is a 2-approximation for the ob-
jective mtgc.

Proof Sketch. For any profile r, let ALG and OPT denote
the expected maximum total group cost given by PBPM and
the optimal solution, respectively. Let c0 and c1 be the max-
imum total group cost when the facility is placed at 0 or 1,
respectively. By definition, ALG = α · c0 + (1 − α) · c1.
Without loss of generality, we assume that y∗ ∈ [0, 1

2 ].
We can prove that c0 ≤ 2 · OPT . Thus, we can further

assume that c1 ≥ 2 · OPT . Otherwise, the approximation
ratio is at most 2. We notice that α, c0 and c1 are determined
by a constant number of groups. We aim to construct a suc-
cinct profile r′ with the property that c′0 ≥ c0, c

′
1 ≥ c1 and

α′ ≤ α. Then, the approximation ratio of r′ is greater than
or equal to that of r as ALG ≤ ALG′ and OPT ≥ OPT ′.

The construction of r′ depends on the range of y∗. For
example, when y∗ ∈ [ 14 ,

1
2 ], the construction is as follows:

• In profile r, there is a group that achieves the highest total
group cost at location 1. Within this group, we relocate
agents on [2y∗ − 1

2 ,
1
2 ] to the position 1

2 and agents on
( 12 , 1] to 1. We denote this group by Gg . We introduce
group 1 in r′, which contains n′

1,1 agents located at 1
2

and n′
1,2 agents located at 1, where n′

1,2 is the same as the
number of agents in Gg on ( 12 , 1], and n′

1,1 is determined
by the equation:

n′
1,1 · (1− |1

2
− y∗|)︸ ︷︷ ︸

cost at y∗ incurred by agents at 1
2 in the new group 1

=
∑

j∈Gg∧xj≤ 1
2

(1− |y∗ − xj |)

︸ ︷︷ ︸
cost at y∗ incurred by agents in Gg on [0, 1

2 ] after relocation

.
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Type Mechanism Approx. Ratio LB

Deterministic
MV 4

3LHGV 4
BGMV 3

Randomized NPBPM 2 5
4

Table 3: Summary of the approximation ratios and lower
bounds for deterministic and randomized mechanisms
(magc).

• Group 2 in profile r′ consists of OPT
1−y∗ agents located at

0.
• In profile r, there exists a group Gg that achieves
maxmj=1{nj,1 +

1
2nj,2}. We introduce group 3 in profile

r′, where the number of agents in the intervals [0, 1
2 ] and

( 12 , 1] match the number of agents in Gg within the inter-
vals [0, 1

2 ] and ( 12 , 1], respectively. Moreover, all agents
in the newly created group are located at 0 or 1.

We notice that r′ only contains agents located at 0, 1
2 and 1.

We can prove that for such succinct profile r′, the approxi-
mation ratio is at most 2.

The following theorem establishes a lower bound for ran-
domized strategyproof mechanisms in general.
Theorem 5. Any randomized strategyproof mechanism has
an approximation ratio of at least 5

4 for the objective mtgc.

Proof Sketch. Let Y and Y ′ be the output distributions for
profiles ( 13 ,

2
3 ) and ( 13 , 1) (two agents, single group), respec-

tively. We use Y to find a constraint on Y ′. We notice that
EY (|y− 1

3 |)+EY (|y− 2
3 |) ≤ 1 holds for the profile ( 13 ,

2
3 ).

Without loss of generality, we assume EY (|y − 2
3 |) ≤

1
2 . It

follows that EY ′(|y′ − 2
3 |) ≤

1
2 for the profile ( 13 , 1). Mean-

while, the optimal location for the profile ( 13 , 1) is 0. We
prove the lower bound using this small misalignment.

The Maximum Average Group Cost
In this subsection, we focus on minimizing the maximum
average group cost (magc). Table 3 summarizes our find-
ings.

Some mechanisms for the mtgc objective already achieve
a constant approximation ratio for the magc objective.
Theorem 6. Mechanism 1 (MV) and 2 (LHGV) have an ap-
proximation ratio of 4 for the objective magc.

Using the two-step model (as discussed in Section ), we
present the following deterministic mechanism.
Mechanism 4 (Biased Group Majority Vote (BGMV)). For
each group Gj , let nj,1 and nj,2 be the number of agents on
[0, 1

2 ] and ( 12 , 1], respectively. We further denote the larger
one of nj,1

|Gj | or nj,2

|Gj | by pj , which is the larger proportion
of the number of agents on the half interval to the number
of agents on the whole interval. Let g ∈ argmax

1≤j≤m
pj , the

most biased groups in proportion (break ties by choosing

the smallest index). The mechanism places the facility y at 1
if ng,1 > ng,2. Otherwise it places the facility at 0.

We notice that compared with Mechanism 2, we change
the first step – the group selection step in Mechanism 4. We
will show that such a change can improve the approximation
ratio from 4 to 3 in Theorem 7.
Proposition 3. Mechanism 4 is group strategyproof.
Theorem 7. Mechanism 4 is a 3-approximation for the ob-
jective magc.

Using the same profiles constructed in Theorem 2, we
have the following lower bound.
Theorem 8. Any deterministic strategyproof mechanism for
the objective magc has an approximation ratio of at least 3.

Next, we study whether randomized mechanisms can en-
hance the approximation ratio. We propose the following
randomized mechanism based on simplified monotonicity.
Mechanism 5 (Normalized Probabilistic Balanced Place-
ment Mechanism, NPBPM). Let Cf = {0, 1}. Given
an input profile r, the mechanism counts the numbers of
agents in [0, 1

2 ] and ( 12 , 1] for each group Gj , denoted
by (nj,1, nj,2)

m
j=1. Let pj,1 (resp. pj,2) be nj,1

nj,1+nj,2
(resp.

nj,2

nj,1+nj,2
) for j = 1, 2, . . . ,m.

Let α solve

α+ (1− α)
maxmj=1{ 1

2pj,1 + pj,2}
maxmj=1{ 1

2pj,1}

=(1− α) + α
maxmj=1{ 1

2pj,2 + pj,1}
maxmj=1{ 1

2pj,2}
. (4)

Specially, set α = 1 when maxmj=1{pj,1} = 0, and set α = 0
when maxmj=1{pj,2} = 0. The mechanism puts the facility at
0 (resp. 1) with probability α (resp. 1− α).

Using a similar method as that employed to prove the
strategyproofness of Mechanism 3, we can show that Mech-
anism 5 is GSP.
Proposition 4. Mechanism 5 is group strategyproof.

Next, we explore the relationship between PBPM and
NPBPM, showing that the approximation ratio of NPBPM
is at most equivalent to that of PBPM.
Theorem 9. Mechanism 5 is a 2-approximation for the ob-
jective magc.

We begin the proof by focusing on the “duplication” prop-
erty. This property is defined as duplicating a group, denoted
by Gg , l(l ≥ 0) times, if we generate l additional agents at
the same position for each agent that belongs to Gg .
Lemma 2. Duplicating any group an arbitrary number of
times does not affect:
• The value of the magc objective at any point y ∈ I .
• The optimal solution y∗ and magc(y∗, r).
• The output or approximation ratio of Mechanism 5.

Lemma 3. PBPM and NPBPM have the same output and
approximation ratio if all groups have an equal number of
agents.
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Now we prove Theorem 9 based on the lemmas above.

Proof of Theorem 9. Consider r as any feasible profile. We
duplicate each group Gj exactly

∏
k ̸=j |Gk| times, resulting

in a new profile, r′. In this new profile r′, each group con-
tains an equal number of agents, and it maintains the same
approximation ratio as r due to Lemma 2.

PBPM and NPBPM yield the same approximation ratio
on r′ (Lemma 3), which is at most 2 due to Theorem 4. Con-
sequently, the approximation ratio for the input profile r is
also at most 2.

The proof of Theorem 5 uses profiles consisting only of
agents from a single group. In such scenarios, the approx-
imation ratios of mtgc and magc are identical. Hence, the
magc objective maintains the lower bound result.

Theorem 10. Any randomized strategyproof mechanism has
an approximation ratio of at least 5

4 for the objective magc.

Intergroup and Intragroup Fairness
In this section, we investigate Intergroup and Intragroup
Fairness (IIF) proposed by Zhou, Li, and Chan (2022),
which captures not only the fairness between groups but also
fairness within groups.

To facilitate our discussion, given profile r, group Gg ,
and facility location y, let avgc(r, g, y), maxc(r, g, y) and
minc(r, g, y) be the average cost, maximum cost and min-
imum cost among agents in group Gg , respectively. We de-
fine below our group-fair IIF objectives which measure both
intergroup and intragroup fairness:

IIF1(y, r) = max
1≤j≤m

{avgc(r, j, y)}

+ max
1≤j≤m

{maxc(r, j, y)−minc(r, j, y)},

IIF2(y, r) = max
1≤j≤m

{avgc(r, j, y)

+maxc(r, j, y)−minc(r, j, y)}.

Our goal is to minimize IIF1 or IIF2. Here, the
avgc(r, j, y) term is to measure the intergroup fairness, and
the (maxc(r, j, y)−minc(r, j, y)) term is to measure the in-
tragroup fairness. Surprisingly, a mechanism we introduced
in Section performs well for the two objectives.

Theorem 11. Mechanism 4 is a 4-approximation for mini-
mizing both IIF1 and IIF2.

Proof Sketch. Let lm(x) (resp. rm(x)) be the leftmost
(resp. rightmost) location of a location profile x. Let y be
the solution given by BGMV. We discuss two cases based
on the optimal location y∗ to build the facility.

Suppose y∗ is outside of all groups. In this case, we can
prove that y∗ is at either 0 or 1. Comparing y with y∗,
the intergroup fairness term of each group (maxc(r, j, y)−
minc(r, j, y)) remains unchanged. Recall that BGMV
achieves a 3-approximation ratio for minimizing magc, we
have max

1≤j≤m
{avgc(r, j, y)} ≤ 3 max

1≤j≤m
{avgc(r, j, y∗)}. We

can combine these two facts to show the approximation ratio
for both IIF1 and IIF2 is 4.

Otherwise, there is a group g, such that lm(xg) ≤ y∗ ≤
rm(xg). We can prove avgc(r, g, y∗) + maxc(r, g, y∗) −
minc(r, g, y∗) ≥ 1

2 , and hence IIF1(y, r) ≥ IIF2(y, r) ≥
1
2 . We notice that IIF2(y, r) ≤ IIF1(y, r) ≤ 2 always
holds. Therefore, the approximation ratio is at most 4.

Next, we establish lower bounds for the IIF objectives.
Theorem 12. Any deterministic strategyproof mechanism
has an approximation ratio of at least 4 for minimizing ei-
ther IIF1 or IIF2.

Discussion and Future Work
In this section, we discuss interesting future directions.

Alternative Group-Fair Objectives
One could alternatively consider the minimum total group
utility as a measure of fairness amongst groups. This would
translate into group-fair objectives aiming to maximize ei-
ther the minimum total or average group utility (mtgu or
magu). However, when more than one group is present,
achieving a finite approximation ratio becomes impossible.
Theorem 13. Any deterministic strategyproof mechanism
cannot achieve a finite approximation ratio for maximizing
the minimum total or average group utility.

Following a similar approach to that of (Fong et al. 2018),
we define the cost of an agent as one minus their utility,
which then shifts the focus towards minimizing the maxi-
mum total or average group cost. However, the randomized
strategyproof mechanism design for both mtgu and magu
still remains open.

Beyond 2-Candidate Randomized Mechanisms
This work focuses on 2-candidate randomized mechanisms.
By confining the mechanism’s output to a 2-candidate set,
PBPM and NPBPM deliver the optimal approximation ratio
for the mtgc and magc objectives, respectively.
Theorem 14. Any randomized 2-candidate strategyproof
mechanism has an approximation ratio of at least 2 for min-
imizing either mtgc or magc.

The domain of mechanisms involving more candidates re-
mains largely unexplored. The existence of a strategyproof
mechanism involving more than two candidates with a con-
stant approximation ratio is an interesting direction.

Conclusion
We study group-fair obnoxious facility location problems.
We developed several (group) strategyproof mechanisms
that minimize costs among different groups measured by the
mtgc and magc objectives. For the objectives, the designed
deterministic and 2-candidate randomized mechanisms ob-
tain approximation ratios of 3 and 2, respectively. We also
designed mechanisms for two objectives capturing both in-
tergroup and intragroup fairness that obtain 4-approximation
ratios. Finally, we provide lower bounds for these objectives
to complement our results.
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