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ABSTRACT

Fish scale-like structures on substrates, arranged periodically, work together to create unique mechanical and
optical behaviors. These include nonlinear stiffness, anisotropic deformation, and eventually, locking behavior.
Fabrication of scale-like biomimetic examples involves embedding stiffer, plate-like sections into softer substrates.
Previously, research has focused on their static qualities. The dynamic response is just as fascinating, showing
remarkable interplay between geometry and materials, along with anisotropies. The damping behavior observed
here significantly diverges from the conventional damping seen in mechanical frameworks, often modeled as
Rayleigh damping. Here we discuss the origin of some of these behaviors that include material-geometry distinc-
tion in damping, multiple damping modes and interplay of dissipation possibilities. We have shown a derivation
of simple mathematical laws estimating nonlinear spring damper system that govern architecture-dissipation
relationships and can help guide design. We conclude by noting the different type of structural damping with
other forms of dissipation typically encountered in mechanical behavior.
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1. INTRODUCTION

Fish scale inspired structures have been under intense scrutiny as lightweight and smart alternatives to traditional
materials.1–4 Their structural advantages are now already well established. However, their behavior in dynamic
regime, especially damping has been somewhat poorly understood. An archetype of these materials have been
slender substrates with scales adorned on one or both sides. Several new studies have shed light on these
biomimetic scale systems.5,6 These studies emphasize the dynamic properties and damping mechanisms of thin
plates and membranes, attributed to the sliding motion of scales.3,5, 6

Given the complexity and the high cost associated with detailed analysis due to the continuous variation
of properties across the structure, a more accessible approach can be passively considered through the use of
lumped parameter models. Lumped parameter models simplify the representation of a system by condensing
its continuous properties—mass, stiffness, and damping—into a finite set of concentrated parameters. Lumped
parameter model has widely been used in many applications.7–9 This enables the dynamic behavior of these
intricate fish scale-inspired structures to be efficiently captured with ordinary differential equations. Such a
methodology not only aids in achieving a more profound comprehension and predictability of the materials’
dynamic responses but also significantly reduces the need for extensive resources, effectively narrowing the
divide between the complexity of biological inspirations and the feasibility of engineering applications.

Non-linear oscillators mark a significant frontier in the field of mechanical engineering and solid mechanics,
offering innovative solutions to challenges in energy harvesting, vibration isolation, and system miniaturization.
Studies found that, a piezoelectric generator incorporating into nonlinear spring oscillator can be designed to
enhance energy conversion efficiency by enabling operation across multiple resonant frequencies. Employing
nonlinear springs with distinct stiffness values, the generator demonstrated superior performance by producing
significantly higher output power across three resonant frequencies compared to traditional linear systems. This
approach confirmed the efficacy of utilizing nonlinear mechanics for energy harvesting but also opened avenues
for optimizing such systems to adapt to varying ambient vibrations through potential frequency tuning mecha-
nisms.10,11 In a study, an experimental setup was developed to explore the dynamics of a nonlinear oscillator
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equipped with a nonlinear negative magnetic stiffness (NNMS). Through direct testing on an air track platform,
the research demonstrated how NNMS can significantly influence the system’s dynamic responses, showcasing be-
haviors consistent with Duffing’s equation. Key findings revealed the potential of NNMS in enhancing vibration
isolation capabilities by effectively reducing resonance frequencies and broadening the bandwidth for vibration
control, underscoring its utility in designing advanced mechanical systems for complex dynamic scenarios.12 Be-
sides, in an experimental study an X-shaped anti-vibration structure with tunable contact mechanisms (NXSC)
was developed which significantly enhances low-frequency vibration isolation. Their findings demonstrate that
the NXSC structure markedly improves loading capacity, extends the quasi-zero stiffness zone without sacrificing
performance, and offers superior adjustability and stability compared to traditional systems.13 Additionally, the
study on micromechanical oscillators with non-linear springs hints at the feasibility of miniaturization in non-
linear oscillatory systems, suggesting a promising direction for developing highly sensitive and efficient mechanical
sensors and actuators crucial in micro-electromechanical systems (MEMS) and beyond.14 These investigations
advance our understanding of non-linear oscillatory systems and also also underscore the transformative potential
of non-linear spring mechanisms in enhancing the efficiency, versatility, and performance of mechanical systems
across a wide array of applications.

Despite some studies have explored the dynamic behavior of fish-scale structures, several challenges have
limited the use of full scale FE models and experimental analysis leading us to explore lumped parameter models
for these systems. In this paper, we present a novel lumped parameter model and its consequences on the
nonlinear dynamics of bio-mimetic scale systems. Specifically we discover that the models predict existence of
chaotic vibrations under forced regime for various geometric parameter.

2. METHODS AND MODELS

Our lumped parameter nonlinear spring-mass-damper model is based upon close investigation of the behavior of
prior fish scale systems, capable of reproducing nonlinear strain stiffening1 and jamming or locking behavior1 as
well as emergent viscosity.5 Fig. 1 (a) shows a schematic view of a scale-covered beam under various conditions:
no bending (left), positive curvature (middle), and negative curvature (right). Figure 1b depicts a schematic view
of a nonlinear spring. In Figure 1c (left), a force-displacement plot demonstrates how variations in Γ enhance the
nonlinearity within the spring-mass-damper system. This effect contrasts with observations from prior study,4

which illustrated in Figure 1c (right), where an increase in the frictional coefficient within the moment-curvature
analysis indicates a higher structural stiffness. It is well known that the origin of jamming and nonlinear strain
stiffening arises due to scales sliding. Such jammed spring can be modeled using a functional approximation of
the restoring force of the scaled substrate using a two variable tangent function Fsp = α tan(ζ x) where x is
analogous to curvature of the substrate. α measures the strength of non-linearity which is dependent on the
amount of scale embedding, scales density/overlap and elastic modulus of the substrate. The parameter ζ is also
a function of scale overlap since, structural models indicate the locking curvature is inversely related to scale
overlap, with denser scales leading to earlier locking. Thus one can say that at lock x → xL, ζxL → π/2 and
hence ζ = π

2xL
. Thus one can write the spring restoring force as Fsp = α tan πx

2xL
. Second interesting point to

note is the nature of damping. It is well known that even dry frictional effects give rise to linear drag like forces
due to scales sliding effect.5 Hence the damper will be modeled as a linear dashpot with some drag coefficient c.
Assuming a harmonic force of frequency ω and amplitude f0 on the system, the overall equation of motion can
be written as:

mẍ(t) + cẋ(t) + α tan

(
πx

2xL

)
= f0 cos(ωt) (1)

Following non-dimensionalization can be done for this system x̄ = x/xL, which leads to the following spatially-
non dimensional equation:

¨̄x(t) + δ ˙̄x(t) + Γ2 tan
(πx̄

2

)
= γ cos(ωt) (2)

where δ = c/m, Γ =
√
α/mxL, γ = f/mxL. The physical Interpretation of these parameters are as follows - δ

is specific damping coefficient that measures the amount of damping per unit mass, Γ is a measure of specific
nonlinear stiffness and γ is the ratio of applied force to inertia. Note that despite the commonality of these
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systems to fish scale substrate, critical distinction exists - that of not having the asymmetry due to scales being
present on only one direction of the substrate. Thus the system is fundamentally both more symmetric and more
nonlinear with nonlinear stiffening present on both directions of bending. This is however, more apt for scale
covered organisms executing motion in a submerged media. We now take advantage of this lumped parameter
system to carry out parameter analysis to explore the effect of these parameters on the overall dynamics of
vibration.
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Figure 1. a) The structure depicts a fish scale-covered structure where the scales are initially engagement (left). in
addition, it is illustrated the deformation of the intended structure and the sliding of the scales on one side and their
separation on the other side (middle and right). b) Non-linear spring that is used for estimation of analytical model. c)
The force-displacement diagram for the scaled structure as the parameter Γ increases, which represents the non-linear
stiffness of the system, gradually making the system stiffer with its increment. Γ = 0 is depicted for linear type of the
equation assuming k = 1 which k is the stiffness constant. On the right side, the normalized moment-curvature diagram
of the scaled beam is observed, which has been obtained from.4 As a result, the nonlinear behavior of the structure is
visible and comparable in both figures.

3. RESULTS AND DISCUSSION

We first investigate the effect of various system parameters on the non-dimensional displacement-time profile of
the system. In Fig.2(a) we plot the displacement profile of the oscillator for various values of specific damping
parameter δ. We find that an increase in damping leads to a reduction of amplitude of vibration. This is expected
and mirrors linear systems. As damping term is decreased, there is an increase in the amplitude of vibration
but at the same time, the waveforms undergo change from a regular sinusoidal shape to more irregular shape
reflecting an increased non linearity in response. The increase is amplitude is also accompanied by an increase
in frequency of vibration. These trends amplify as the damping is further decreased. As the damping decreases,
higher frequency terms become more prominent. Next, in Fig.2(b) we plot the non-displacement-time profile
of the oscillator with various values of nonlinear stiffness parameter Γ. An unmistakable trend emerges where
higher nonlinear stiffness leads to lower amplitude and higher frequency. Similarly, plotting the dimensional
displacement with time for various values of angular frequency of the applied force ω clearly shows that higher
ω leads to lower amplitude and higher frequency, Fig.2(c). This shows that more frequent load leads to more
vibration of the system. Finally in Fig.2(d), we plot the non-dimensional displacement with time for various
amplitudes of forcing parameters Γ. The forcing has a profound effect on the displacement profile. Higher forcing
amplitudes lead to higher time periods as clear from Fig.2(d). This is a classic route to chaotic vibrations well
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known in literature. The higher amplitude forcing also leads to much more complex waveforms with pronounced
peak splitting. These factors strongly indicate the potential chaotic vibrations in the system.

Next, to investigate the potential for chaos in the system, we make use of plotting Poincare maps.

Figure 2.
The dynamic response of the scaled structure under the influence of parameter changes in the equation, including a)
damping (δ), b) nonlinear coefficient of the equation or tangent coefficient (Γ), c) the angular frequency of the periodic
external force (ω), and d) the amplitude of the periodic driving force (γ). The default coefficients are defined as δ = 0.02,
Γ = 0.65, γ = 2, ω = 0.5.

To this end, in Fig. 3, both the Poincaré section and the phase plot are depicted. The Poincaré map, a
fundamental tool in the study of dynamical systems, represents the intersection points of a periodic orbit in the
phase space with a certain lower-dimensional subspace, typically employed to analyze the qualitative behavior
of systems and to detect chaos. In this figure, an array of Poincare maps are presented with progressively
increasing specific damping coefficient. It is clear from the map that for higher damping, vibrations are more
regular as confirmed by the previous displacement-time plots. However, as the damping is reduced, the fixed
points shift, leading to complex phase plots. These plots indicate that the period of oscillations have begun to
increase. Finally, the oscillation periods increase more and more till the tell tale signature of chaos is clearly
emergent. Thus these systems are capable of exhibiting chaos for sufficiently low damping. In the real world
system, damping can be modulated through the adjustment of material properties, inter scale lubricant and the
geometric configuration of the structure, including factors such as the overlap ratio of scales, the initial angle of
scales relative to the substrate, friction between scales, the embedded length of the scales, and others.

Exploring Poincare maps further, in Fig. 4, we plot the evolution of Poincare maps with the evolution of both
damping and nonlinear stiffness magnitude. We discover that for even low damping which would otherwise lead
to chaotic vibrations, an increased stiffness leads to chaos suppression. Broadly, this trend holds as an increase
in both damping and stiffness can lead to decrease in chaotic vibration. Similarly, for even relatively higher
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Figure 3.
The perturbation section of the forced vibration equation for a substrate covered with scales, which illustrates chaotic
behavior and also depicts the influence of the damping parameter on the changes in this chaos, is presented. The remaining
parameters of the equation for this case are equal to Γ = 0.65, γ = 2, ω = 0.5, and these plots are drawn for the periodicity
of 2π/ω = 4π. Also, in the corner of each plot, the phase plots are also completely depicted. Increasing the damping
coefficient of the system leads to the emergence of a specific form of points in Poincare’ section which represent chaos in
the system. As the damping is increased, these chaotic flow are reduced and eventually eliminated.

damping, a decreased nonlinear stiffening can activate chaotic states as depicted in this figure, Fig. 4 (top left).
Note that in a real system, Γ is influenced by both the material and geometric properties of the system. Similarly
δ is also influenced by both scale overlap, friction and also presence of lubricating function. Our models suggest
that by adjusting geometric parameters, we can effectively control the chaotic characteristics of the system.

4. CONCLUSION

In conclusion, we introduce a new lumped parameter, reduced order model to investigate the nonlinear dynamics
of bio mimetic scale substrate that is capable of going beyond the limits of the computational inefficiencies
of lumped parameter models. The models mimic the behavior of actual bio mimetic scale systems reported in
earlier literature. The results indicate for the first time the potential route to chaotic vibration of these substrate.
Such chaos can be controlled and tuned geometrically using scale distribution, material and interface properties,
leading to new avenues of smart materials development. Hence, a combined material-geometry co-design with
active materials can lead to novel nonlinear dynamic behavior no observed in typical beams. Note that these
nonlinear behavior do not rely on large deformation. Model limitations include lack of introduced asymmetries,
spatial variations and comparison with experimental systems. However, despite these limitations, this study lays
ground for the first time to evaluate these biomimetic scale systems for complex, chaotic vibrations.
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Figure 4. Displaying the Poincaré section for different values of the nonlinear parameter of the equation for four different
damping conditions. The colors represent different Γ values, and it is evident that within the range of Γ = 0.6 and
Γ = 0.65, there are more instances of chaos. Other parameters are as γ = 2, ω = 0.5 As observed in the figures, for each
damping coefficient, chaos is disappeared with increasing non-linear stiffness. in fact, the occurrence of chaos with the
damping coefficient, non-linear stiffness, and locking of the scales is correlated.
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