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Abstract—Interference poses a significant challenge in improv-
ing cell throughput in multi-cell multi-user networks. Coordi-
nated beamforming and power control have shown promise in
mitigating interference and maximizing cell throughput. How-
ever, existing techniques often suffer from computational com-
plexity and the overhead of collecting channel state information
(CSI) from interfering cells. In this paper, we propose a deep
reinforcement learning based approach that addresses these
limitations by eliminating the need for explicit CSI knowledge.
Through extensive simulations in millimeter-wave networks with
various cell configurations, we demonstrate the effectiveness of
our interference management technique. The simulation results
showcase the ability of our method to learn near-optimal power
and beamforming strategies for multi-cell multi-user networks,
all without the need for explicit CSI information.

I. INTRODUCTION

Inter-cell interference is the main barrier to achieving high

throughputs and spectral efficiency in today’s networks. It also

causes outages at the cell edges [1]. Interference management

is a long-standing problem and has been extensively studied

in the literature [1]–[3]. Interference alignment [2], [4] is

a theoretical breakthrough that offers greater efficiency than

time-division multiple access (TDMA). However, its practical

implementation is limited due to the requirement of global

channel state information (CSI), which is not feasible in

practical wireless systems. Coordinated multi-point (CoMP)

[5] is another well-known solution to addressing inter-cell

interference by enabling neighboring base stations (BSs) to

share data and CSI for coordinated downlink transmissions

and joint processing of received signals in the uplink. However,

CoMP relies on a high-speed backhaul network for efficient

information exchange between BSs [5].

The lack of knowledge about the optimal strategy for multi-

cell networks has led to a pragmatic approach of treating

interference as noise. These approaches rely on the signal-to-

interference-plus-noise ratio (SINR) for network performance,

but they require knowledge of the interfering cells’ CSI, which

is not practical. Multi-cell coordination, e.g., beamforming and

transmit power coordination, has been identified as an effective
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approach to mitigate inter-cell interference and enhance cell

throughput in multi-cell networks. However, many existing

methods for multi-cell coordination suffer from limitations

such as high computational complexity and the need for

collecting global CSI, which are impractical in dynamic wire-

less environments [4], [5]. In [6], [7] joint power control

and beamforming are considered but they focused on time-

invariant channels with fixed routes.

To address these limitations and explore the potential for

discovering better solutions, researchers have increasingly em-

braced the power of deep learning techniques, specifically deep

reinforcement learning (DRL) [8]. DRL has been successful in

solving various communication problems in different scenar-

ios, including beamforming, power allocation, and interference

cancellation [9]–[11]. In reinforcement learning [12] an agent

learns to interact with an environment by taking a sequence

of actions to maximize a cumulative reward, e.g., the spectral

efficiency or any other desired quantity. Existing research, e.g.,

[10], mostly focus on single-user scenarios, which may not

fully capture the dynamics of real-world cellular networks

where multiple users are in the same cell, leading to significant

multi-user interference.

In this paper, we propose a deep Q-network (DQN)-based

algorithm to address inter-cell interference in a multi-cell

multi-user network by jointly optimizing power and beam-

forming. While industry standards [13] typically require the

user equipment (UE) to report its CSI, which can be a vector

or matrix depending on the number of antenna elements, we

reduce the reporting overhead by utilizing the UE’s position

instead to reduce the reporting overhead associated with CSI

and enhance overall cell throughput and coverage [14], [15].

Our goal is to maximize the spectral efficiency of the net-

work, evaluated in terms of achievable sum-rate, by jointly

optimizing the transmit power and beamforming vectors at all

BSs to maximize the UEs received SINR. Simulation results

demonstrate a significant increase in spectral efficiency with

the spectral efficiency scaling almost linearly with the number

of cells with no explicit CSI.

II. CHANNEL AND SYSTEM MODEL

We consider a downlink cellular network with L (L ≥ 2)
cells. Each cell consists of a BS adopting M antennas in a
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uniform linear array (ULA) and is assumed to serve mul-

tiple single-antenna users. UEs are randomly and uniformly

distributed in the cell serving area. Each BS simultaneously

serves U UEs where U ≥ 1, and each UE can only be served

by one BS at a time. The operating frequency band is within

the millimeter-wave (mmWave) range, and the channels may

be multi-path or line-of-sight.

A. Channel Model

Since mmWave has a short wavelength, it allows for the

deployment of BSs equipped with a large number of antennas.

This technology is regarded as a main solution to the spectrum

shortage caused by the rising bandwidth demand in wireless

networks [16]. However, high attenuation in mmWave results

in reduced inter-site distances, increasing the possibility of

inter-cell interference in these networks.

The mmWave channel can be described with standard

multipath models of lower mmWave frequency [17]. Adopting

this channel model, the channel from the jth BS to the uth

user served by ℓth BS can be written as

hℓ,j,u =

√
M

Äℓ,j,u

Np∑

n=1

³ℓ,j,u,na
∗(¹ℓ,j,u,n), (1)

where Äℓ,j,u is the path loss from the jth BS to the uth user, Np

is the number of paths between the transmitter and receiver,

and ³ℓ,j,u,n and ¹ℓ,j,u,n are the complex gain and the angle of

departure (AoD), respectively. The steering vector a∗(¹ℓ,j,u,n)
depends on the angular directions of the departing plane wave,

and for an M -element uniform linear array is given by a(¹) =
[
1, e−j2Ãϑ, e−j4Ãϑ, . . . , e−j2Ãϑ(M−1)

]T
. Here ϑ ≜ d

¼
cos(¹) is

the normalized spatial angle which is related to the physical

angle of departure ¹ ∈ [−Ã
2 ,

Ã
2 ] and d and ¼, respectively, are

the antenna spacing and the wavelength of operation [17].

B. System Model

In mmWave systems, M is often large to account for con-

siderable high-frequency path loss and ensure that the received

signal is sufficiently powerful. Moreover, M RF links would

be required for a fully digital beamforming, which would

be expensive and use considerable amount of power at high

frequencies. Given this, analog-only beamforming is popular

in mmWave as it only needs one RF chain. Because of this, it

is presumed that BSs have an analog-only beamforming design

in which the beamforming is implemented with analog phase

shifters. Due to hardware limitations on large-scale multiple-

antenna systems, the BSs often use pre-defined beamforming

codebooks [18] that scan all potential directions for data

transmission. To simplify, the weights of each beamforming

vector are implemented using constant-modulus phase shifters.

Beamforming vectors are selected from the codebook whose

each element is given by

w =
1√
M

[
ej¹1 , . . . , ej¹M

]T
, (2)

where the phase shift ¹m,m = {1, 2, . . . ,M}, is selected

from a finite set Φ with 2r possible discrete values. That is

Φ =

[

0,
Ã

M
,
2Ã

M
, . . . ,

(M − 1)Ã

M

]

for r-bit quantized phase

shifters, uniformly drawn from [0, Ã].

In the downlink transmission, if the transmitted symbol from

the ℓth BS to user u is xℓ,u, the received signal at a given UE

at cell ℓ can be expressed as

yℓ,u = h
H
ℓ,ℓ,uwℓ,uxℓ,u +

∑

k ̸=u

h
H
ℓ,ℓ,uwℓ,kxℓ,k+

∑

j ̸=ℓ

U∑

u=1

h
H
ℓ,j,uwj,uxj,u + nℓ,u,

(3)

where hℓ,j,u ∈ C
M×1, ∀ℓ, j ∈ {1, . . . , L}, is the channel

vector from BS j to the user u in cell ℓ which is described in

(1), wj,u ∈ C
M×1 is the beamforming vector for user u at BS

j as described in (2), and nℓ,u ∈ CN (0, Ã2) is the noise at

the UE u. Furthermore, xj,u is subject to the average power

constraint E||xj,u|| = Pj,u, where Pj,u is the power of BS j
alloted to user u. Then, the SINR at the UE u located at cell

ℓ is given by

µℓ,u=
Pℓ,u|hH

ℓ,ℓ,uwℓ,u|2

Ã2 +
∑

k ̸=u

Pℓ,k|hH
ℓ,ℓ,uwℓ,k|2 +

∑

j ̸=ℓ

U∑

u=1
Pj,u|hH

ℓ,j,uwj,u|2
.

(4)

III. PROBLEM FORMULATION

Sum achievable rate, or simply sum-rate, is a common mea-

sure of spectral efficiency in cellular networks. Considering

this, in this paper our goal is to maximize the network sum-

rate which is defined as
∑L

ℓ=1

∑U

u=1 log2(1 + µℓ,u), and is

equivalent to log2
∏∏

(1 + µℓ,u). Since the logarithm is a

monotonic function, to find the arguments that maximize the

sum-rate we can solve

max
Pℓ,u,wℓ,u

L∏

ℓ=1

U∏

u=1

(1 + µℓ,u) (5)

subject to Pℓ,u ∈ P, ∀ℓ, ∀u, (6)

wℓ,u ∈ W, ∀ℓ, ∀u, (7)
∑

u

Pℓ,u ≤ Pmax
ℓ , ∀ℓ, ∀u, (8)

µℓ,u ≥ µmin, (9)

in which P is the possible transmit powers, W is beamforming

codebook from which wℓ,u is selected; Pmax
ℓ is a maximum

power for any ℓth BS and µmin denotes the the minimum SINR

for any user in the cellular network.

Due to the constant modulus constraints, the above opti-

mization problem is non-convex and challenging to solve. It

can be solved by exhaustively searching over the space of

the Cartesian product of P × W . The complexity of such a

solution will be |P|UL|W|UL, which is very high when L
and U are large. In the following, we develop an alternative

solution based on DRL.
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Fig. 1: The downlink multi-cell multi-user network for the proposed DQN algorithm where each BS is communicating with

its users in the presence of the interfering BSs.

IV. PRELIMINARIES OF REINFORCEMENT LEARNING

Reinforcement learning (RL) is a machine learning ap-

proach that involves learning through trial and error and

by rewarding desired behaviors. In our problem, the goal

of RL is to make decisions about the beamforming vectors

and base station powers in equation (5) to optimize the

system performance. RL is based on the concepts of agent,

environment, state, action, and reward, where the agent learns

to make optimal decisions in an environment to maximize

the cumulative reward. The DRL agent would be a central

node such as a central radio resource management controller

in 4G/5G.

The state st ∈ S is what an agent observes at a time step t,
and is a representation of the environment. It consists of x and

y coordinates of the UE u of cell ℓ as xℓ,u[t] and yℓ,u[t], the

transmit power of the BS of cell ℓ to UE u as Pℓ,u[t], and the

beamforming vector of the BS of cell ℓ to UE u as wℓ,u[t].
The observed states by the agent at time t, is given by

st =
[
{{xℓ,u[t], yℓ,u[t], Pℓ,u[t],wℓ,u[t]}Uu=1}Lℓ=1

]
. (10)

To address challenges related to real-time UE locations and

their accessibility, several approaches like privacy-preserving

techniques, exploring non-location-based solutions, utilizing

indoor positioning techniques can be considered [14], [19].

Our algorithms need UEs’ locations but the location should

not necessarily be exact. The agent at time step t produces

action at that will result in state st+1. In our problem, actions

are to change the power and beamforming vector of each BS.

The interference coordination and power control for the uth

UE served by the ℓth BS at time step t is given by

Pℓ,u[t] := Pℓ,u[t− 1] + PCℓ,u[t], (11)

in which PCℓ,u[t] is the power control command for user u at

BS ℓ which is +1dB or −1dB depending on the action related

to that command. If
∑U

u=1 Pℓ,u[t] > Pmax
ℓ , then PCℓ,u[t] will

be pushed to −1dB to obey the total power limit.

Action at ∈ A has the following form

at = {au,1, . . . , au,L
︸ ︷︷ ︸

power control

, au,L+1, . . . , au,2L
︸ ︷︷ ︸

beamforming

}Uu=1, (12)

Each element of the above action is either ‘0’or ‘1’, Specifi-

cally, for any u and ℓ we have

• au,ℓ = 0: decrease the transmit power of user u in ℓth
BS by 1 dB.

• au,ℓ = 1: increase the transmit power of user u in ℓth BS

by 1 dB.

• au,L+ℓ = 0: step down the beamforming codebook index

of user u in ℓth BS.

• au,L+ℓ = 1: step up the beamforming codebook index of

user u in ℓth BS.

It is seen that, by taking action at, the agent is changing

the beamforming vectors as well as transmit power for each

user in the serving and all interfering cells. Thus, this is a col-

laborative interference management algorithm via coordinated

power and beamforming design.

The state-action value function QÃ(st,at) describes the

expected reward after taking one specific action following the

policy Ã. More accurately,

QÃ(st,at) = E [rt+1 + ³QÃ(st+1,at+1)|st,at] . (13)

This is also known as the Bellman equation, in which ³ is

a discount factor whose range is [0, 1], st+1 and at+1 are the

new state and action, respectively, rt+1 is the reward achieved

when moving to the new state. The agent and the environment

interact in discrete time steps, and the agent will act based

on the state it will receive according to the Ã policy. The

environment will react to the new state and provide a reward

as feedback.
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The reward is an incentive mechanism that tells the agent

the consequence of an action. The agent’s final objective is

to maximize the total cumulative reward. Defining the reward

function is a crucial step in evaluating the performance. Since

the agent is seeking to increase its reward and our ultimate goal

is to maximize sum-rate of the multi-cell multi-user network,

an immediate definition of reward would be

rt+1 =

L∏

ℓ=1

U∏

u=1

(1 + µℓ,u), (14)

where µℓ,u is SINR received by the UE u at cell ℓ when action

at is taken by the agent. This resembles the objective of the

optimization problem in (5). This tells the immediate effect of

taking action at in state st at time step t.

V. DRL-BASED DOWNLINK INTERFERENCE CONTROL

In this paper, we use a value-based DRL which learns the

state or state-action value. The agent acts by choosing the best

action in the state. The value function QÃ(st,at) is obtained

using a neural network and is optimized by using a replay

buffer (denoted by R).

Let Θt ∈ R
u×v represent the weights of neural networks at

time steps t, where u is the number of hidden nodes and v is

the number of layers. We define θt ≜ vec(Θt) ∈ R
uv and use

this as a function approximator. DQN with the initial weight

θ is adjusted at every time step t to reduce the error via the

mean-squared error loss function Lt(θt)

min
θt

Lt(θt) ≜ Est,at

[
(yt −QÃ(st,at;θt))

2
]
, (15)

in which

yt := Est,at

[

rt+1 + ³max
at+1

QÃ(st+1,at+1;θt−1|st,at)

]

is the estimated function value at time step t given state st and

have an action at. The algorithm tries to reduce this loss in

every iteration. The objective of the DQN algorithm is to find

a solution that optimizes the state-action value function. The

episode (E) is a time frame within which the agent interacts

with the environment. Each episode has T time steps.

The algorithm has two phases: training and testing phases.

During the training phase, the agent is trained offline before

it becomes active in the network. In this phase, the weights of

the neural network is optimized using the stochastic gradient

descent algorithm on the batches of the dataset taken from the

replay buffer R. Having a replay buffer allows the agent to

use a more diverse mini-batch for performing updates during

the training process. It also allows the agent to take larger

mini-batch sizes B. Further, by sampling at random from the

replay buffer, the updates to the neural network will have low

variance since the data entering the optimization method look

independent and identically distributed.

At each round of the training process, the agent strikes

a balance between exploring the environment and exploit-

ing the knowledge of the best action accumulated through

such exploration. We adopt an ϵ-greedy policy [12], where

ϵ := max(ϵ¶, ϵmin) is the exploration rate, ¶ is the exploration

decay rate, and ϵmin is the minimum exploration rate. The

exploration rate decays in every episode until it reaches ϵmin.

We exploit if p > ϵ where p is randomly drawn from

Unif(0, 1); we explore otherwise. Mathematically,

at =

{

argmaxat+1
QÃ(st,at+1;θt), p > ϵ,

randomly chosen from A, p ≤ ϵ.
(16)

Based on the selected action at, the agent computes its reward

function according to (14).

A summary of the training phase is given in Algorithm 1.

Algorithm 1 Training phase of proposed DQN algorithm

1: Input: θ, ³,B
2: Output: Optimized θ

3: Randomly initialize network Q(st,at|θ) with weight θ

4: Initialize time, states, actions, minibatch size B and R
5: for episode 1 to E do

6: Receive initial observation state st

7: for t=1 to T do

8: Select an action based on (16)

9: Calculate the reward based on (14)

10: Observe the next state st+1

11: Store transition (st,at, rt+1, st+1) in R
12: Set b = min(B, T (E − 1) + t)
13: Sample a random minibatch of size b transitions

(sb,ab, rb+1, sb+1) from R
14: Set yb =

[
rb+1 + ³maxat+1

QÃ(sb+1,at+1;θt)
]

15: Perform SGD on (yb −QÃ(sb,ab;θt))
2 to find θ

∗

16: Update θt = θ
∗ in the DQN

17: st = st+1

18: end for

19: end for

After the convergence of the training, we use the optimized

weights for the evaluation (testing) of the DRL algorithm to

assess the quality of the learned policy [20]. The evaluation

can be performed during training or after that. In this phase,

the agent chooses its actions greedily (no exploration) for each

state.

Our method does not need any explicit CSI information,

it only need the power measurements from which SINR will

be measured, as in [21]. To achieve this, when the serving

BS is not transmitting, each UE in that cell will receive

and measure interference plus noise (I + N ) level. Next,

when the serving BS is transmitting, the UE will measure

signal plus interference plus noise (S + I + N ) level. The

received power (S) of the UE can hence be determined by

subtracting two measurements, and the SINR can be approx-

imately obtained by S/(I + N). UEs then fed back SINR

to their serving BS. The serving BS receives the immediate

reward rt+1 which is SINR feedback by user. The serving

BS relays the information to central agent which stores these

experiences in a replay memory data set R = {e1, . . . , et},

where et = {st,at, rt+1, st+1} represents the current state,

action, reward, and the next state after executing at at state

st.
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Fig. 2: Performance of the proposed DQN algorithm for L = 2 and L = 3 cell network.

Our approach utilizes centralized DRL in which all cooper-

ating BSs are connected to a central node via backhaul links.

This central node contain an agent which calculates the actions

strategy (optimized power allocation and beamforming vector)

for the entire network and communicates it to the BSs through

this backhaul links. This optimized power and beamforming

vector optimize the UE’s received SINR.

The overhead incurred from transmitting data over the

backhaul to this central location, considering a total of UEs

(NUE) in the service area, follows an order of complexity

O(gLNUE). Here, the periodicity g represents the number of

measurements sent by any specific UE during time step t [22].

The complexity of brute force is O((|P||W|)UL) which is very

high.

VI. TRAINING SETUP AND SIMULATION RESULTS

The training setup, simulation details, performance mea-

sures and numerical results are demonstrated in this section.

A. Simulation Details Performance Measures

We have set up the experiments described below and an

appropriate performance measure to show the performance

improvement of our proposed method.

1) Simulation Setup: We consider an L-cell network with

hexagonal geometry each with a cell radius of 150m and inter-

site distance D = 225m. The operation frequency is 28 GHz.

Each L contains U = 2 UEs. UEs are uniformly distributed

within each cell and move at a speed of 2 km/h. In (1) to

(4), where needed d = ¼
2 , Np = 4 with probability 0.8 and

Np = 1 (line of sight channel) with probability 0.2, and radio

frame duration T = 10ms. The initial position of the UEs,

initial power of the BSs, and initial beamforming vectors are

selected randomly.

In order to plot the effective SINR, we set the minimum

SINR as µmin = −3 dB which represents the minimum SINR

for any user in the cellular network. If the SINR falls below

the minimum value, the episode aborts which means the call

is dropped. We follow the DQN structure of [23]. The training

parameters of the DRL are listed in Table I.

TABLE I: DQN parameters.

Parameters Value

³ 0.995
Initial ϵ 1.000
ϵmin 0.1
Learning rate 0.01
u 24
v 2
Pmax

ℓ
20 W

¶ 0.995
Batch size, B 32

In our experiments, we use Rectified Linear Unit activation

and Adam optimizer for network. All the simulation results

are obtained with TensorFlow 1.14.0 and python 3.7.

Spectral efficiency (measured by achievable sum-rate) is

the main performance evaluation measure. We evaluate the

average network sum-rate by

Rsum =
1

E

E∑

e=1

L∑

ℓ=1

U∑

u=1

log2(1 + µ
[e]
ℓ,u), (17)

where E is the total number of episodes and µ
[e]
ℓ,u is the

SINR at episode e. Another performance measure is overall

network coverage, evaluated by the complementary cumulative

distribution function (CCDF) of the SINR (µℓ,u for all cells).

B. Results

We first compare the performance of the proposed algorithm

with that of the algorithm given in [9] and the brute force

method in Fig. 2. In Fig. 2(a), CCDF of µℓ,u for proposed and

existing method [9] are plotted for three cell networks. It is

noticeable that our DQN algorithm brings further gain in SINR

compared to that of the existing method. The performs of

existing method [9] is the worst because it trains the network

until reaching the minimum value. Due to the limitation of

this approach the network is not able to learn more about the

environment. For example, while using existing method [9]

only 9% of the time the UEs have SINR > 20 dB, this number

is about 18% for the proposed algorithm. Further, it can be

seen that the network sum-rate for the proposed algorithm

is very close to that of the brute force method, which can
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Fig. 3: Network sum-rate for the proposed DQN algorithm

versus other methods for L = 2 and L = 3 with M = 16.

be seen as the upper bound. In Fig. 2(b), we see that as M
increases, the probability of having higher SINRs increases

since it depends on the beamforming array gain which is

directly related to the M . In Fig. 2(c), average user rate in the

network for proposed method is plotted. It can be observed

that after a certain iteration the algorithm is converging.

In Fig. 3, we compare the network sum-rate for the three

different algorithms. It is noticeable that our DQN algorithm

improves the SINR compared to that of Model 1 and TDM-ZF

(Time-division multiplexing Zero Forcing) [24]. Calculating

sum-rate of TDM-ZF require global knowledge of the CSI.

TDM-ZF replaces the problem of interference in an L-cell

network with L independent single-cell problems, making it

immune to interference due to which the performance is not

good. Our method, on the other hand, uses universal frequency

and does not need CSI knowledge. Yet, network sum-rate is

increased almost linearly with L. That is, interference can be

harnessed with practical assumptions. Further, it can be seen

that the network sum-rate for the proposed algorithm is very

close to that of the brute force method.

VII. CONCLUSIONS

A deep reinforcement learning-based interference manage-

ment in a multi-cell multi-user mmWave network has been

proposed in this paper. The main objective is to maximize

the network sum-rate without requiring to have access to the

explicit knowledge of CSI. We assume that each BS selects

its beamforming vector and power command from the finite

set. The input features of DQN are the UEs coordinates, BSs

power, and beamforming vectors. The output has a sequence of

interference management along with power control and beam-

forming that optimize the objective function. Our proposed

algorithm scales very well and achieves nearly the same sum-

rate when up-to-date CSI (brute force) is known. Furthermore,

the performance of the algorithms improves as the number of

cells increases.
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