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Abstract—Interference poses a significant challenge in improv-
ing cell throughput in multi-cell multi-user networks. Coordi-
nated beamforming and power control have shown promise in
mitigating interference and maximizing cell throughput. How-
ever, existing techniques often suffer from computational com-
plexity and the overhead of collecting channel state information
(CSI) from interfering cells. In this paper, we propose a deep
reinforcement learning based approach that addresses these
limitations by eliminating the need for explicit CSI knowledge.
Through extensive simulations in millimeter-wave networks with
various cell configurations, we demonstrate the effectiveness of
our interference management technique. The simulation results
showcase the ability of our method to learn near-optimal power
and beamforming strategies for multi-cell multi-user networks,
all without the need for explicit CSI information.

I. INTRODUCTION

Inter-cell interference is the main barrier to achieving high
throughputs and spectral efficiency in today’s networks. It also
causes outages at the cell edges [1]. Interference management
is a long-standing problem and has been extensively studied
in the literature [1]-[3]. Interference alignment [2], [4] is
a theoretical breakthrough that offers greater efficiency than
time-division multiple access (TDMA). However, its practical
implementation is limited due to the requirement of global
channel state information (CSI), which is not feasible in
practical wireless systems. Coordinated multi-point (CoMP)
[5] is another well-known solution to addressing inter-cell
interference by enabling neighboring base stations (BSs) to
share data and CSI for coordinated downlink transmissions
and joint processing of received signals in the uplink. However,
CoMP relies on a high-speed backhaul network for efficient
information exchange between BSs [5].

The lack of knowledge about the optimal strategy for multi-
cell networks has led to a pragmatic approach of treating
interference as noise. These approaches rely on the signal-to-
interference-plus-noise ratio (SINR) for network performance,
but they require knowledge of the interfering cells’ CSI, which
is not practical. Multi-cell coordination, e.g., beamforming and
transmit power coordination, has been identified as an effective

M. Dahal and M. Vaezi’s work was supported by the U. S. National
Science Foundation under Grant CNS-2239524. W. Shin’s work was supported
by the Institute of Information & Communications Technology Planning &
Evaluation (IITP) grant (No. 2021-0-00467).

approach to mitigate inter-cell interference and enhance cell
throughput in multi-cell networks. However, many existing
methods for multi-cell coordination suffer from limitations
such as high computational complexity and the need for
collecting global CSI, which are impractical in dynamic wire-
less environments [4], [5]. In [6], [7] joint power control
and beamforming are considered but they focused on time-
invariant channels with fixed routes.

To address these limitations and explore the potential for
discovering better solutions, researchers have increasingly em-
braced the power of deep learning techniques, specifically deep
reinforcement learning (DRL) [8]. DRL has been successful in
solving various communication problems in different scenar-
i0s, including beamforming, power allocation, and interference
cancellation [9]-[11]. In reinforcement learning [12] an agent
learns to interact with an environment by taking a sequence
of actions to maximize a cumulative reward, e.g., the spectral
efficiency or any other desired quantity. Existing research, e.g.,
[10], mostly focus on single-user scenarios, which may not
fully capture the dynamics of real-world cellular networks
where multiple users are in the same cell, leading to significant
multi-user interference.

In this paper, we propose a deep Q-network (DQN)-based
algorithm to address inter-cell interference in a multi-cell
multi-user network by jointly optimizing power and beam-
forming. While industry standards [13] typically require the
user equipment (UE) to report its CSI, which can be a vector
or matrix depending on the number of antenna elements, we
reduce the reporting overhead by utilizing the UE’s position
instead to reduce the reporting overhead associated with CSI
and enhance overall cell throughput and coverage [14], [15].
Our goal is to maximize the spectral efficiency of the net-
work, evaluated in terms of achievable sum-rate, by jointly
optimizing the transmit power and beamforming vectors at all
BSs to maximize the UEs received SINR. Simulation results
demonstrate a significant increase in spectral efficiency with
the spectral efficiency scaling almost linearly with the number
of cells with no explicit CSI.

II. CHANNEL AND SYSTEM MODEL

We consider a downlink cellular network with L (L > 2)
cells. Each cell consists of a BS adopting M antennas in a
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uniform linear array (ULA) and is assumed to serve mul-
tiple single-antenna users. UEs are randomly and uniformly
distributed in the cell serving area. Each BS simultaneously
serves U UEs where U > 1, and each UE can only be served
by one BS at a time. The operating frequency band is within
the millimeter-wave (mmWave) range, and the channels may
be multi-path or line-of-sight.

A. Channel Model

Since mmWave has a short wavelength, it allows for the
deployment of BSs equipped with a large number of antennas.
This technology is regarded as a main solution to the spectrum
shortage caused by the rising bandwidth demand in wireless
networks [16]. However, high attenuation in mmWave results
in reduced inter-site distances, increasing the possibility of
inter-cell interference in these networks.

The mmWave channel can be described with standard
multipath models of lower mmWave frequency [17]. Adopting
this channel model, the channel from the jth BS to the uth
user served by /th BS can be written as

VI &

Peju

@t jun@ (00,j,un), (1)

n=1

£,ju =

where py ; ., is the path loss from the jth BS to the uth user, N,
is the number of paths between the transmitter and receiver,
and v j . and 8 ;. » are the complex gain and the angle of
departure (AoD), respectively. The steering vector a* (8¢, ; v.»)
depends on the angular directions of the departing plane wave,
and for an M -element uniform linear array is given by a(§) =
[1,e792m0 emddmi e‘jz’”?(M‘l)]T. Here 9 £ ¢ cos(6) is
the normalized spatial angle which is related to the physical
T T

angle of departure 6 € [~7, 7] and d and ), respectively, are

the antenna spacing and the wavelength of operation [17].

B. System Model

In mmWave systems, M is often large to account for con-
siderable high-frequency path loss and ensure that the received
signal is sufficiently powerful. Moreover, M RF links would
be required for a fully digital beamforming, which would
be expensive and use considerable amount of power at high
frequencies. Given this, analog-only beamforming is popular
in mmWave as it only needs one RF chain. Because of this, it
is presumed that BSs have an analog-only beamforming design
in which the beamforming is implemented with analog phase
shifters. Due to hardware limitations on large-scale multiple-
antenna systems, the BSs often use pre-defined beamforming
codebooks [18] that scan all potential directions for data
transmission. To simplify, the weights of each beamforming
vector are implemented using constant-modulus phase shifters.
Beamforming vectors are selected from the codebook whose
each element is given by

1
vM
where the phase shift 6,,,m = {1,2,...,M}, is selected
from a finite set ® with 2" possible discrete values. That is

w = [ejel,...7ej9M}T

) 2

T 27 (M —-1)m ) )
® = |0, VABVARE M] for r-bit quantized phase

shifters, uniformly drawn from [0, ].

In the downlink transmission, if the transmitted symbol from
the ¢th BS to user u is x, ,,, the received signal at a given UE
at cell ¢ can be expressed as

H H
Yo =Ny Weuleu + E hy W We ket
k#u

U
H
> > W+ e,
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where hy;, € CM*!, v¢,j € {1,...,L}, is the channel
vector from BS j to the user u in cell £ which is described in
(1), wj € CMx1 is the beamforming vector for user u at BS
j as described in (2), and ng,, € CN(0, 02) is the noise at
the UE w. Furthermore, x; , is subject to the average power
constraint E||x; .|| = P, where P;, is the power of BS j
alloted to user w. Then, the SINR at the UE u located at cell
{ is given by
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III. PROBLEM FORMULATION

Sum achievable rate, or simply sum-rate, is a common mea-
sure of spectral efficiency in cellular networks. Considering
this, in this paper our goal is to maximize the network sum-
rate which is defined as 25:1 25:1 logy(1 + v¢,), and is
equivalent to log, [T[](1 + 7¢,u). Since the logarithm is a
monotonic function, to find the arguments that maximize the
sum-rate we can solve

L U
ITIT @ +mew) (5)

max
Pruweu {=1u=1

subject to Py, € P, V{,Vu, (6)

weu €W, VI Vu, 7

D Pru < PP, VLY ®)

Yeu Z Ymin (9)

in which P is the possible transmit powers, W is beamforming
codebook from which wy , is selected; F;"** is a maximum
power for any ¢th BS and ~y,;,, denotes the the minimum SINR
for any user in the cellular network.

Due to the constant modulus constraints, the above opti-
mization problem is non-convex and challenging to solve. It
can be solved by exhaustively searching over the space of
the Cartesian product of P x W. The complexity of such a
solution will be |P|VL|W|VL, which is very high when L
and U are large. In the following, we develop an alternative
solution based on DRL.

108
Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on August 31,2024 at 13:42:11 UTC from IEEE Xplore. Restrictions apply.



2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)

l Global Reward I
Environment
DRL Agent a; l (Multi-cell Network)

wv
-]
Output =
Layer ]
c
2

S Ly
Hidden o
Layer s
) \ >
&
Input z
(<]

Layer ﬂ e
- SEIVING @

— — » _Interference

States, St = [{{xé,u[t]yyé,u[t]yPl,u[t]-,wf,U[t”g:l}éLzl}

Collect environment
state from all cells

Fig. 1: The downlink multi-cell multi-user network for the proposed DQN algorithm where each BS is communicating with

its users in the presence of the interfering BSs.

IV. PRELIMINARIES OF REINFORCEMENT LEARNING

Reinforcement learning (RL) is a machine learning ap-
proach that involves learning through trial and error and
by rewarding desired behaviors. In our problem, the goal
of RL is to make decisions about the beamforming vectors
and base station powers in equation (5) to optimize the
system performance. RL is based on the concepts of agent,
environment, state, action, and reward, where the agent learns
to make optimal decisions in an environment to maximize
the cumulative reward. The DRL agent would be a central
node such as a central radio resource management controller
in 4G/5G.

The state s; € S is what an agent observes at a time step ¢,
and is a representation of the environment. It consists of x and
y coordinates of the UE u of cell ¢ as x¢,[t] and yg,[t], the
transmit power of the BS of cell £ to UE u as Py, [t], and the
beamforming vector of the BS of cell £ to UE u as wy ,[t].
The observed states by the agent at time ¢, is given by

st = [{{zeult] veult), Poault], weult i} ] - (10)

To address challenges related to real-time UE locations and
their accessibility, several approaches like privacy-preserving
techniques, exploring non-location-based solutions, utilizing
indoor positioning techniques can be considered [14], [19].
Our algorithms need UEs’ locations but the location should
not necessarily be exact. The agent at time step ¢ produces
action a, that will result in state s;;. In our problem, actions
are to change the power and beamforming vector of each BS.
The interference coordination and power control for the uth
UE served by the ¢th BS at time step ¢ is given by

P&u[t] = P&u[t* 1] +PCg7u[t], (11D
in which PCy ,[t] is the power control command for user u at
BS ¢ which is +1dB or —1dB depending on the action related

to that command. If 25:1 P, [t] > P**, then PCy,[t] will

be pushed to —1dB to obey the total power limit.
Action a; € A has the following form

M} au,QL}g:17 (12)

a; = {au,h cevy Oy Ly Ay, L41, -

power control beamforming

Each element of the above action is either ‘0’or ‘1°, Specifi-
cally, for any w and ¢ we have

e a,¢ = 0: decrease the transmit power of user u in (th
BS by 1 dB.

e a, ¢ = l: increase the transmit power of user v in fth BS
by 1 dB.

e ay 1+¢ = 0: step down the beamforming codebook index
of user u in /th BS.

e Qy,r+¢ = 1: step up the beamforming codebook index of
user u in /th BS.

It is seen that, by taking action a., the agent is changing
the beamforming vectors as well as transmit power for each
user in the serving and all interfering cells. Thus, this is a col-
laborative interference management algorithm via coordinated
power and beamforming design.

The state-action value function Q(s:,a;) describes the
expected reward after taking one specific action following the
policy 7. More accurately,

Qr(st;a;) = Erip1 + aQnr (i1, arr1)|se, aq] - (13)

This is also known as the Bellman equation, in which « is
a discount factor whose range is [0, 1], s;+1 and a;y; are the
new state and action, respectively, 7,1 is the reward achieved
when moving to the new state. The agent and the environment
interact in discrete time steps, and the agent will act based
on the state it will receive according to the 7 policy. The
environment will react to the new state and provide a reward
as feedback.
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The reward is an incentive mechanism that tells the agent
the consequence of an action. The agent’s final objective is
to maximize the total cumulative reward. Defining the reward
function is a crucial step in evaluating the performance. Since
the agent is seeking to increase its reward and our ultimate goal
is to maximize sum-rate of the multi-cell multi-user network,
an immediate definition of reward would be

L v
ren =[] [T @+ ew)

(=1u=1

(14)

where 7, ,, is SINR received by the UE wu at cell £ when action
a; is taken by the agent. This resembles the objective of the
optimization problem in (5). This tells the immediate effect of
taking action a; in state s; at time step ¢.

V. DRL-BASED DOWNLINK INTERFERENCE CONTROL

In this paper, we use a value-based DRL which learns the
state or state-action value. The agent acts by choosing the best
action in the state. The value function Q. (s, a;) is obtained
using a neural network and is optimized by using a replay
buffer (denoted by R).

Let ®; € R"*" represent the weights of neural networks at
time steps t, where u is the number of hidden nodes and v is
the number of layers. We define 6; = vec(©;) € R*” and use
this as a function approximator. DQN with the initial weight
0 is adjusted at every time step ¢ to reduce the error via the
mean-squared error loss function L;(6;)

I%inLt(Ht) 2 s, a, [(yt — Qn(st,a1561))7],

in which

15)

Yt = Es, a, [Tt+1 + OéglaXQw(St-s-l, 15018, ar)
t+1

is the estimated function value at time step ¢ given state s; and
have an action a;. The algorithm tries to reduce this loss in
every iteration. The objective of the DQN algorithm is to find
a solution that optimizes the state-action value function. The
episode (F) is a time frame within which the agent interacts
with the environment. Each episode has 7' time steps.

The algorithm has two phases: training and testing phases.
During the training phase, the agent is trained offline before
it becomes active in the network. In this phase, the weights of
the neural network is optimized using the stochastic gradient
descent algorithm on the batches of the dataset taken from the
replay buffer R. Having a replay buffer allows the agent to
use a more diverse mini-batch for performing updates during
the training process. It also allows the agent to take larger
mini-batch sizes B. Further, by sampling at random from the
replay buffer, the updates to the neural network will have low
variance since the data entering the optimization method look
independent and identically distributed.

At each round of the training process, the agent strikes
a balance between exploring the environment and exploit-
ing the knowledge of the best action accumulated through
such exploration. We adopt an e-greedy policy [12], where
€ := max(€d, €min) 18 the exploration rate, § is the exploration

decay rate, and €, is the minimum exploration rate. The
exploration rate decays in every episode until it reaches €pyiy.
We exploit if p > € where p is randomly drawn from
Unif(0, 1); we explore otherwise. Mathematically,

(16)

_ Jorgmaxa, ., Qr(8t,a141;0:), p>e
randomly chosen from A, p<e

Based on the selected action a;, the agent computes its reward
function according to (14).
A summary of the training phase is given in Algorithm 1.

Algorithm 1 Training phase of proposed DQN algorithm
1: Input: 8, a, B

2: Output: Optimized 6

3: Randomly initialize network Q(s;, a.|@) with weight 0
4: Initialize time, states, actions, minibatch size B and R
5: for episode 1 to E do
6
7

8
9

Receive initial observation state s;
for t=1 to T do
Select an action based on (16)
Calculate the reward based on (14)

10: Observe the next state s

11: Store transition (s, @¢,r+41,8¢+1) in R

12: Set b = min(B,T(F — 1) +t)

13: Sample a random minibatch of size b transitions
(Sb, @b, Tbt1,Sp+1) from R

14: Set yp = [Tb+1 +amaxa,,, Qr(So41,ai11; at)]

15: Perform SGD on (y, — Q(sp, ay; 0;))? to find 6*

16: Update 8; = 8* in the DQN

17: St = St41

18:  end for

19: end for

After the convergence of the training, we use the optimized
weights for the evaluation (testing) of the DRL algorithm to
assess the quality of the learned policy [20]. The evaluation
can be performed during training or after that. In this phase,
the agent chooses its actions greedily (no exploration) for each
state.

Our method does not need any explicit CSI information,
it only need the power measurements from which SINR will
be measured, as in [21]. To achieve this, when the serving
BS is not transmitting, each UE in that cell will receive
and measure interference plus noise (I + IN) level. Next,
when the serving BS is transmitting, the UE will measure
signal plus interference plus noise (S + I + N) level. The
received power (S) of the UE can hence be determined by
subtracting two measurements, and the SINR can be approx-
imately obtained by S/(I + N). UEs then fed back SINR
to their serving BS. The serving BS receives the immediate
reward r,y; which is SINR feedback by user. The serving
BS relays the information to central agent which stores these
experiences in a replay memory data set R = {e1,...,e:},
where e; = {s;,as, 7141, St41} represents the current state,
action, reward, and the next state after executing a; at state
St.
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(a) CCDF for L = 3 with M = 16.

(b) CCDF for L = 3 with different M.

(c) Convergence curve for L = 2.

Fig. 2: Performance of the proposed DQN algorithm for L = 2 and L = 3 cell network.

Our approach utilizes centralized DRL in which all cooper-
ating BSs are connected to a central node via backhaul links.
This central node contain an agent which calculates the actions
strategy (optimized power allocation and beamforming vector)
for the entire network and communicates it to the BSs through
this backhaul links. This optimized power and beamforming
vector optimize the UE’s received SINR.

The overhead incurred from transmitting data over the
backhaul to this central location, considering a total of UEs
(NyEg) in the service area, follows an order of complexity
O(gLNyg). Here, the periodicity g represents the number of
measurements sent by any specific UE during time step ¢ [22].
The complexity of brute force is O((|P||W|)UF) which is very
high.

VI. TRAINING SETUP AND SIMULATION RESULTS

The training setup, simulation details, performance mea-
sures and numerical results are demonstrated in this section.

A. Simulation Details Performance Measures

We have set up the experiments described below and an
appropriate performance measure to show the performance
improvement of our proposed method.

1) Simulation Setup: We consider an L-cell network with
hexagonal geometry each with a cell radius of 150m and inter-
site distance D = 225m. The operation frequency is 28 GHz.
Each L contains U = 2 UEs. UEs are uniformly distributed
within each cell and move at a speed of 2 km/h. In (1) to
(4), where needed d = %, N, = 4 with probability 0.8 and
N, =1 (line of sight channel) with probability 0.2, and radio
frame duration 7' = 10ms. The initial position of the UEs,
initial power of the BSs, and initial beamforming vectors are
selected randomly.

In order to plot the effective SINR, we set the minimum
SINR as Ymin = —3 dB which represents the minimum SINR
for any user in the cellular network. If the SINR falls below
the minimum value, the episode aborts which means the call
is dropped. We follow the DQN structure of [23]. The training
parameters of the DRL are listed in Table L.

TABLE I: DQN parameters.

Parameters | Value
« 0.995
Initial € 1.000
€min 0.1
Learning rate 0.01
u 24
v 2
pprax 20 W
1 0.995
Batch size, B 32

In our experiments, we use Rectified Linear Unit activation
and Adam optimizer for network. All the simulation results
are obtained with TensorFlow 1.14.0 and python 3.7.

Spectral efficiency (measured by achievable sum-rate) is
the main performance evaluation measure. We evaluate the
average network sum-rate by

E L U

1 [e]
Rom = 3 3> D logs(1+77,), (17)
e=1/¢=1u=1
where E is the total number of episodes and yﬂt is the

SINR at episode e. Another performance measure is overall
network coverage, evaluated by the complementary cumulative
distribution function (CCDF) of the SINR (v, for all cells).

B. Results

We first compare the performance of the proposed algorithm
with that of the algorithm given in [9] and the brute force
method in Fig. 2. In Fig. 2(a), CCDF of v, for proposed and
existing method [9] are plotted for three cell networks. It is
noticeable that our DQN algorithm brings further gain in SINR
compared to that of the existing method. The performs of
existing method [9] is the worst because it trains the network
until reaching the minimum value. Due to the limitation of
this approach the network is not able to learn more about the
environment. For example, while using existing method [9]
only 9% of the time the UEs have SINR, > 20 dB, this number
is about 18% for the proposed algorithm. Further, it can be
seen that the network sum-rate for the proposed algorithm
is very close to that of the brute force method, which can
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Fig. 3: Network sum-rate for the proposed DQN algorithm
versus other methods for L = 2 and L = 3 with M = 16.

be seen as the upper bound. In Fig. 2(b), we see that as M
increases, the probability of having higher SINRs increases
since it depends on the beamforming array gain which is
directly related to the M. In Fig. 2(c), average user rate in the
network for proposed method is plotted. It can be observed
that after a certain iteration the algorithm is converging.

In Fig. 3, we compare the network sum-rate for the three
different algorithms. It is noticeable that our DQN algorithm
improves the SINR compared to that of Model 1 and TDM-ZF
(Time-division multiplexing Zero Forcing) [24]. Calculating
sum-rate of TDM-ZF require global knowledge of the CSIL
TDM-ZF replaces the problem of interference in an L-cell
network with L independent single-cell problems, making it
immune to interference due to which the performance is not
good. Our method, on the other hand, uses universal frequency
and does not need CSI knowledge. Yet, network sum-rate is
increased almost linearly with L. That is, interference can be
harnessed with practical assumptions. Further, it can be seen
that the network sum-rate for the proposed algorithm is very
close to that of the brute force method.

VII. CONCLUSIONS

A deep reinforcement learning-based interference manage-
ment in a multi-cell multi-user mmWave network has been
proposed in this paper. The main objective is to maximize
the network sum-rate without requiring to have access to the
explicit knowledge of CSI. We assume that each BS selects
its beamforming vector and power command from the finite
set. The input features of DQN are the UEs coordinates, BSs
power, and beamforming vectors. The output has a sequence of
interference management along with power control and beam-
forming that optimize the objective function. Our proposed
algorithm scales very well and achieves nearly the same sum-
rate when up-to-date CSI (brute force) is known. Furthermore,
the performance of the algorithms improves as the number of
cells increases.
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