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Design of Quantum Machine Learning Course for a 
Computer Science Program   

Abstract—In this work, we present the design and plan of 
Quantum machine learning (QML) course in a computer 
science (CS) University program at senior undergraduate level / 
first year graduate level.  Based on our survey, there is a lack of 
detailed design and assessment plan for the delivery of QML 
course. In this paper we have presented the QML course design 
with week by week details of QML concepts and hands on 
activities that are covered in the course. We also present how 
this QML course can be assessed from CS program learning 
outcomes perspective.    

Keywords—Quantum machine learning;  Quantum computing; 
Course Assessment; Course Design; QML Workflow. 

I. INTRODUCTION  AND BACKGROUND

Quantum computing is a radically different approach to 
classical computing and promises a more efficient problem-
solving approach compared to the existing approaches [7]. 
The innovative progressions of the last decade have made 
quantum PCs a more practical possibility, and many accept 
the possibility that the quantum computing could become 
reality in the following 10 years, if not less. If so, the 
accompanying impacts in the Information processing and 
decision making will be enormous. Most by and large, 
organizations should carry out quantum innovations into their 
analytics and decision-making frameworks. Also, there is a 
critical need to  equip the workforce with the quantum skills 
to implement the quantum revolution that is envisioned.  The 
big technology organizations such as Google, NVIDIA, 
Microsoft, IBM, Amazon and HP are heavily investing in 
quantum technologies and quantum computing research. As 
a result, there are needs of graduates who have a solid 
foundation in quantum data science. With the anticipated 
growth in quantum computing needs, the skill needs will 
expand rapidly.   

Quantum computing involves much more than quantum 
processing [1, 2, 33]. Quantum data science has the potential 
to become mainstream data analytic technology and it is 
important to equip the next generation of data scientists and 
the Artificial Intelligence professionals  with the Quantum 
machine learning techniques. Quantum machine learning can 
be defined as the process of integrating machine learning and 
quantum computing for high-performance data processing, 
modeling, and learning. The role of QML is to enhance the 
performance and evaluation processes of machine learning 
models inspired by quantum mechanics [3]. On the other 
hand, machine learning techniques also can be implemented 
to describe quantum error-correcting codes, measure 
quantum systems properties, and develop new quantum 

algorithms [4]. There are several recent works that highlight 
the importance and opportunities of Quantum machine 
learning [5, 6, 10, 21, 22]. The importance of QML is 
highlighted by the availability of the books related to QML 
including the one written by the co-author of this work, 
Ganguly [31].  
      The contribution of this work are as follows: We outline 
a framework for the successful implementation of the 
quantum machine learning course that can be offered to 
senior level undergraduate and first year graduate students. 
By identifying, addressing, assessing and promoting 
workforce development solutions for the quantum machine 
learning skill gap,  the proposed course will serve as an 
educational foundation for preparing the next generation of 
the data scientists and the Artificial Intelligence 
professionals. In addition, the proposed QML course will 
equip quantum computing and quantum physicists with QML 
skills. 
      The rest of the paper is organized as follows. Section II 
explains the related work in the literature as well as the survey 
of existing QML courses. Section III provides the motivation 
of creating the QML course. Section IV outlines the design 
of the proposed QML course along with the description of the 
QML concepts and QML practical hands on exercises that 
will be covered. Section V explains the assessment plan for 
the proposed QML course. Section VI outlines the  future 
work recommendations and finally section VII concludes the 
paper with concluding remarks. 

II. RELATED WORK AND EXISTING QML COURSES

As per our literature review, there are quite a few papers
related to Quantum Computing education course 
development  [8, 9, 11, 27-29].  Mykhailova presented a 
paper on the delivery of programming assignments [27] for 
teaching quantum computing. Temporao et al., presented a 
case study of how quantum computing can be taught without 
prerequisites [28]. Considering that the field of Quantum 
computing is evolving, Wootton et al., described in their 
paper [29], how quantum computing can be taught using 
interactive textbook.  M. Piattini analyzes the existing 
international curriculums as well as some global training 
programs to illustrate the quantum computing education 
needs. This related work also defines a quantum computing 
specialization that can be included within the existing 
international curriculums [8].  C.L. Friedrichs et al., has 
looked into the analysis of Quantum Computing Courses 
World Wide [9]. In their study they analyze the textbooks that 
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are being used for Quantum computing. They also surveyed 
the type of textbook, the department that teaches the Quantum 
Computing course , circuit simulators that are being used in 
these courses and the companies that have shown interest in 
the Quantum computing students. O. Salehi et al., in their 
work presents a computer science (specifically quantum 
programming tool as an educational tool) oriented approach 
to introduce Quantum Computing to the students [11].  They 
use the concept of generalized mathematical and statistical 
concepts (algebra and probability theory) rather than a field 
emanating from physics to teach the quantum computing to 
the students. The tools that the students will use include 
Jupyter notebooks for coding and analysis, along with the 
Qiskit framework by IBM and the Pennylane framework by 
Xanadu [11]. 
        As per our survey, to our knowledge there is only one 
related work on teaching Quantum Machine Learning course 
[30]. That work is more related to research training of 
Quantum machine learning and most of the effort in the 
related work is spent on describing about Quantum Machine 
Learning, Data Embedding rather than the detailed design 
and delivery of the course using the theoretical concepts and 
the programming assignments. Also, that work did not deal 
with the assessment plan for the QML course. 
        As per our quick survey, while there are  classical 
machine learning courses offered as an elective course in 
quantum graduate program, we could not see offering of a 
QML course at the University settings. While looking at the 
Massively Open Online Course (MOOC) platforms, Udemy 
offers a Quantum machine learning as part of Quantum 
computing and Quantum machine learning course and EdX 
offers Quantum Machine Learning course in partnership with 
the University of Toronto. However, these courses are dated 
and does not have detailed coverage of QML topics. 

III. MOTIVATION

        While there is a heavy need for graduates with classical 
computing skills in CS, IS and IT, there is a critical shortage 
of quantum computing and quantum machine learning 
professionals who can research, develop and maintain 
quantum-based machine learning models to address the 
scientific and business needs [12].  
       The Global Quantum Computing market is expected to 
grow from USD 472 million in 2021 to USD 1,765 million 
by 2026, at a CAGR of 30.2% [13]. There are also excellent 
commercial aspects of Quantum Computing [24]. 
       The governments across the world recognizes the 
importance of the Quantum computing education /research 
and has invested in millions of dollars in the Quantum 
computing recently [23, 25]. For example,  The US National 
Quantum Initiative [17], Quantum Canada [14], Europe’s 
Quantum Flagship initiative [15], Quantum information 
science and technology in Japan [18], Quantum technologies 
in Russia [19], Charting the Australian quantum landscape 
[16], and Quantum information research in China [20].  
       A quick survey at the Quantum Machine Learning 
related online job boards reveal that the following QML 
related jobs are available currently [26] that requires expertise 
in QML: Sr. Research Scientist Quantum AI and ML; 
Quantum Computational Scientist; Quantum Research Data 
Scientist;  Quantum Computing Computer Scientist; Applied 
Researcher Consultant;  Principal Solutions Architect, 

Quantum Computing; Sr. Software Engineer, Quantum AI; 
and Quantum Solutions Scientist.  
       The proposed course  address majority of the skills that 
are required by the above-mentioned job titles and succeed in 
the Industry, Academia and Government agencies. The 
course will provide the necessary theoretical and applied 
practical skills that will help the prospective graduate from 
this course, succeed in the job of applying quantum 
computing principles for the data science/AI/ML related 
problems. The proposed course will prepare graduates to 
build end to end quantum-based learning models by enabling 
them to apply quantum mechanics and data science concepts 
to solve real world problems.    

IV. QML COURSE DESIGN

        The course can be offered as a 10 to 15-week program. 
In this work, we chose to design it for a 14-week program. 
Following Table 1 shows the topics that will be covered in 
each week.  We plan to offer this course for a senior level 
undergraduate / first year graduate student. The pipeline 
shown in the following Figure 1 will be used in the course for 
the student training purposes especially for the practical 
exercises and assignments. 

Fig. 1 – The QML Pipeline (CD–Classical Data; QD-Quantum Data) 

Table 1 – The QML Course Design 
Week Theoretical Concepts and Practical Hands On 

Exercises Covered 
 1 Math Basics and Overview of Classical ML 
 2 Introduction to Quantum Computing – Gates; 

Operators and Circuits 
 3 Introduction to Quantum Computing – States; 

Superposition;  Bloch Sphere; Entanglement and 
Measurement 

 4 Quantum Algorithms (Shor’s Algorithm; Grover 
Algorithm and Deutsch-Jozsa Algorithm) 

 5 Introduction to Quantum Machine Learning 
 6 Quantum Data Encoding and Representation 
 7 Quadratic Unconstrained Binary Optimization and 

Quantum Approximate Optimization Algorithm 
 8 Variational Quantum Circuits   
 9 Quantum Support Vector Machines and Kernel 

Methods 
 10 Quantum K-Means and K-Medians Clustering 
11 Quantum Neural Networks 

12 Quantum Generative Models 
13 Quantum Reinforcement Learning 

14 Hybrid Quantum Classical Machine Learning 

       Students will be expected to have a basic  programming, 
statistics and probability background. Week 1 to 4 will cover 
the basics of quantum computing, mathematics, 
programming tools/infrastructure and classical machine 
learning that is needed for the students to be successful in the 
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course. Several works exist in the literature on how these 
modules can be designed [8, 9, 11, 27-29]. In the rest of the 
sub-sections, we describe the design of QML related topics 
from theoretical and practical exercises perspective. 
  
a Week 5:Introduction to Quantum Machine Learning: 

In week 5, we introduce the fundamental concepts of QML, 
where we provide a structured overview with practical 
exercises that sets the stage for students to delve deeper into 
specific QML approaches for the later weeks in the course. 

Theoretical concepts: We first provide a clear explanation 
of QML’s primary objective, principles, and potential 
application. This centers around the development of quantum 
applications that harness the immense computational 
capabilities of quantum computers in conjunction with the 
scalability and learning capacity of machine learning 
algorithms [36], [37]. We will follow by presenting a 
comprehensive taxonomy of approaches for QML, 
categorizing the different methodologies and algorithms. 
This serves as a foundational framework to help students 
understand the underlying principles and techniques 
employed in various QML approaches. By systematically 
classifying QML algorithms into distinct categories, such as 
quantum-inspired algorithms, quantum circuit-based 
algorithms, and quantum kernel methods[38], students gains 
a holistic understanding of the different strategies and their 
unique advantages and limitations. The topic concludes with 
exploring the process and workflow involved in developing 
QML algorithms. 

Practical Exercise: The following practical exercises are 
assigned in Week 5. Exercise 1: Involves installing all 
necessary libraries in Qiskit. Exercise 2: This exercise guides 
student to explore how quantum circuits can be designed to 
perform machine learning operations and the steps involved, 
with Qiskit to represent quantum model for a QML algorithm 
as shown in Figure 3. Exercise 3: Using the workflow as 
shown in Figure 2 and a synthetic dataset of numerical 
datapoints the students will experiment with the designed 
QML model  to classify the dataset. 

 
Fig 2: Workflow for designing a QML Algorithm 

 

 
Fig 3: Sample code for the exercise where students will design a simple 
QML model. “Insert code here” is where each student input their own 
custom codes  

b Week 6: Quantum Data Encoding and Representation: 
Week 6 theoretical concepts and practical exercises explore 

the intricacies of representing and manipulating data in the 
context of QML.  

Theoretical Concepts: Students will learn about the 
fundamental principles and techniques involved in 
representing classical data in the quantum form [39].  As 
shown in Figure 5, various approaches will be discussed, such 
as quantum feature maps [40], where the classical data is 
mapped onto a quantum feature space and also methods for 
encoding classical data into quantum states such as amplitude 
encoding, angle encoding, and quantum circuit-based 
encoding [41]. Then we also describe how these encoded data 
is used to train QML models. The techniques for quantum 
measurement and extracting classical information from 
quantum states will also be taught, in this they explore 
measurement operators and measurement bases, 
understanding how to retrieve classical data from quantum 
systems [42]. By comprehending the advantages and 
limitations of each technique, they will be better equipped to 
choose appropriate data representation and encoding methods 
for different QML tasks [43]. 

Practical Exercise: Students will reinforce their knowledge 
with the following practical exercises. Exercise 1: We 
provide the students with the Mnist dataset [44], then guide 
them in encoding using functions provided by the Pennylane 
programming framework [45]. They also evaluate the 
performance of each encoding method in a QML task. 
Exercise 2: Students implement a quantum feature map using 
Qiskit [46]. Once the quantum feature map is implemented, 
they encode the classical data samples from the Iris dataset 
[47] into quantum states using a feature map circuit and then 
run the circuit on the IBM quantum simulator. Finally, they 
analyze the encoded quantum states by measuring and 
comparing relevant metrics using the code as shown in Figure 
4. Exercise 3: Students design and implement measurement 
circuits to extract classical information from a prepared 
quantum state. They compare the extracted information with 
the original classical data to evaluate the fidelity or accuracy 
of the information extraction process. Further, the students 
will experiment with different measurement strategies and 
compare the results obtained. 

 
Fig 4: Code illustrating Quantum Encoding 

 

 
Fig 5: Quantum State preparation process 
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c. Week 7: Quantum Approximate Optimization Algorithm  
 and Quadratic Unconstrained Binary Optimization   
       Quantum Approximate Optimization Algorithm: In this 
week, we provide students with a solid understanding on 
QAOA. 
     Theoretical Concepts: We start by introducing and 
defining the fundamental idea behind QAOA. We present it 
as a general technique used to find an approximate solution 
to combinatorial optimization problems [72]. Students learn 
about the structure of QAOA, we also briefly introduce the 
quantum variational principle and the role of parameterized 
quantum circuits in optimization tasks. Other theoretical 
aspects that will be covered will include understanding the 
QAOA ansatz, the optimization landscape, and the role of the 
quantum-classical interface in solving optimization problems 
[73]. We will also provide the performance, challenges, and 
limitation of the QAOA and its industry applications in 
optimization tasks. These concepts will help student to gain 
experience in applying QAOA to solve real-world 
combinatorial optimization problems. 
      Practical Exercise: Following are the practical exercises 
that will be covered, which will enable student to have hands-
on experience. Exercise 1: In this exercise, students will 
experiment with the quantum circuit that implements the 
QAOA using the Qiskit programming framework, as shown 
in Figure 5 and design a parameterized quantum circuit, that 
represents the QAOA ansatz [74].  Exercise 2: In exercise 2, 
we will guide the students through the steps involved in using 
QAOA to reveal approximate solutions to an optimization 
problem. The exercise will focus on solving a specific 
combinatorial optimization problem, such as the MaxCut 
problem [75], [76], whose sample circuit is as shown in 
Figure 6. Exercise 3: In this exercise, the students will 
explore the effects of varying the number of QAOA layers 
and the choice of variational parameters on QAOA 
performance. They will experiment with different numbers of 
layers and optimize the variational parameters using classical 
optimization techniques or built-in optimization routine. 

 
Fig 6: Sample circuit for implementing QAOA applied to the MAXCUT 

problem. 

 
 
Fig 7: Sample algorithm for QAOA implemented on Pennylane. 

Quadratic Unconstrained Binary Optimization: In addition 
to QAOA, in this week we will introduce QUBO for QML 
concepts to  the students as well. The goal is to provide 
theoretical concepts and practical exercises that enhance 
students understanding of how QUBO will help optimize 
QML. 

Theoretical Concepts: First, we will explain the 
fundamental concept of optimization problems. Then, we will 
introduce students to QUBO, which involves optimizing a 
quadratic objective function subject to binary variables [77, 
78]. Finally, we will discuss the advantages and 
disadvantages of using QML optimization algorithms, such 
as quantum annealing and Quantum Approximate 
Optimization Algorithm (QAOA) to solve the Ising problem 
as a QUBO problem [79, 80, 81]. 

Practical exercises: Exercise 1: In exercise 1, we will 
introduce students to the process of encoding the Ising 
problem as QUBO. We will also Guide them in converting 
the Ising problem objective function into an equivalent 
QUBO formulation using binary variables and quadratic 
terms. In this exercise, we will help the students understand 
the correspondence between the Ising problem and the 
QUBO representation through the implementation. Exercise 
2: In this exercise 2, we will ask students to use quantum 
annealing and QAOA to find an optimal solution for the Ising 
problem [79, 80, 81]. We will help them understand the 
principles and limitations of different solvers and interpret the 
results obtained through this exercise. 
 
d. Week 8: Variational Quantum Circuits: 

In this week,  we provide students with a comprehensive 
introduction to VQC, establishing a solid foundation for 
understanding of this powerful quantum computing 
paradigm. 

Theoretical Concept: Students will learn how VQCs 
leverage the flexibility and adaptability of parameterized 
quantum circuits to tackle optimization and QML tasks [48]. 
They will learn about the architecture and structure of VQCs, 
which consist of parametrized quantum circuits where the 
parameters are optimized to minimize a cost function [49]. 
The concept of variational optimization and gradient-based 
methods will be introduced, enabling students to understand 
how these techniques are applied to optimize the parameters 
of VQCs. Additionally, students will explore the role of 
ansatz design, which involves selecting appropriate quantum 
gates and their arrangement within the circuit to perform 
specific QML operations. Through the theoretical 
discussions, students will gain insights into the underlying 
principles of VQCs and their potential applications in solving 
machine learning problems. We will also delve into the 
applications of VQCs in various domains, highlighting their 
ability to address complex computational problems. 

Practical Exercise: The assigned practical exercises for 
Week 7 concepts are as follows. Exercise 1: The students will 
learn how to construct and implement a VQC for QML tasks. 
Figure 8 provides a step-by-step guide on how the students 
will build a parameterized quantum circuit using the Qiskit as 
shown in the code in Figure 9. The student also learns how to 
choose suitable gate sequences and define variational 
parameters to create a flexible and trainable quantum circuit 
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[50]. Exercise 2:  The students will be given a simple 
quantum machine learning task, such as quantum data 
classification that the students will be asked to use their 
designed VQC in exercise 1 to tackle the given task. Exercise 
3: Students will be provided with sets of pre-designed VQC 
and a specific optimization objective, and they will be tasked 
with implementing gradient-based optimization techniques to 
optimize the circuits and achieve the best possible 
performance for the given objective. 

 
Fig 8: A Classifying Protocol using VQC. 

 
Fig 9: Code snippet showing VQC used as a QML model. 

 
e. Week 9: Quantum Support Vector Machine (QSVM):    

In week 9, we introduce the topic of QSVM to students 
through theoretical concepts and practical exercises that 
cover the components of QSVMs. 

Theoretical Concepts: First, we discuss that QSVMs are an 
emerging application in the field of quantum machine 
learning and how they build upon classical Support Vector 
Machines (SVMs) but leverage the principles of quantum 
mechanics for advanced computation [3, 32]. Then we 
describe how QSVMs utilize quantum superposition and 
entanglement, which enable quantum qubits to encode and 
manipulate data in quantum states [3]. Utilizing QML 
workflow in Figure 1, we illustrate the QSVMs workflow 
including the steps of data encoding, quantum circuit training, 
and classification. Then we explain how classical data is 
encoded into quantum states using encoding techniques, 
highlighting the quantum algorithms involved. Then we 
discuss how QSVMs leverage quantum interference and 
optimization techniques to find the optimal hyperplane in the 
feature space. Finally, we illustrate the training phase, where 
the parameters of the quantum circuit are iteratively adjusted 
to minimize classification errors and maximize class 
separation to provide efficient classification [32, 34]. 

Practical exercises: We plan to assign the following 
practical exercises to the students covering Week 8 concepts. 
Exercise 1: As shown in Figure. 10, we will provide students 
with a simplified QSVM circuit and guide them in coding it 
using a quantum programming framework, such as Qiskit 
using the sample code as shown in Figure 11. As an 
illustrative assignment, students will encode a Distributed 
Denial of Service (DDoS) attacks dataset and perform 

classification based on the trained circuit to classify the data 
as benign and DDoS attacks [35]. Exercise 2: In the second 
exercise, students will experiment with different quantum 
feature maps and observe their impact on QSVM 
performance. Exercise 3: In the third exercise, students will 
train a QSVM circuit with varying parameters. Then they will 
evaluate the classification accuracy and separation of classes 
to understand the impact of different QSVM configurations. 
Finally, students will compare the performance of the QSVM 
with a classical SVM. 

 
Fig 10. Example of a QSVM circuit for detecting DDoS attacks. 

 
Fig 11. Code illustrating QSVM components. 

 
Figure. 10, shows the QSVM circuit that students will be 

asked to implement. Figure. 10 describes part of the QSVM 
circuit code that the students will be developing using Qiskit. 
The code shows the components of the QSVM, how to run it 
using a quantum circuit simulator, and how to generate the 
results.   

 
f. Week 10: Quantum K-Means and K-Medians Clustering: 

Theoretical concepts and practical exercises cover how 
quantum computing can be leveraged to solve clustering 
problems more efficiently and potentially discover hidden 
patterns in complex datasets. 

Theoretical Concept: We discuss the theoretical foundation 
of Quantum K-Means and K-Medians clustering 
algorithms[51], [52]. We then teach how these quantum-
inspired algorithms adapt classical clustering methods to the 
quantum realm, taking advantage of the unique properties of 
quantum systems. The topic will also cover key concepts, 
including quantum distance metrics, centroids, and the 
optimization of clustering objectives. They will understand 
how quantum gates and quantum circuit architectures can be 
designed to optimize the clustering results. We illustrate how 
by manipulating quantum states and applying quantum 
operations one can exploit the computational advantages of 
quantum systems to achieve more accurate and efficient 
clustering [53]. We also show how quantum circuit 
parameters are systematically fine-tuned to minimize the 
distance between data points and cluster centroids, enabling 
efficient clustering [54]. 

Practical Exercise: Following practical activities will be 
offered during this week. Exercise 1: We provide the students 
with numerical datapoints and guide then on how to 
implement quantum K-means and K-medians algorithms to 
cluster the data points into predefined K clusters using 
circuits generated using Qiskit as shown in Figure 12. 
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Exercise 2: We provide a customer segmentation dataset and 
then guide the students to apply Quantum K-Means and K-
Medians Clustering algorithms to group customers based on 
their similarities [55]. The dataset is first preprocessed, and 
then the quantum clustering algorithm is implemented using 
Qiskit to identify distinct customer segments based on their 
shared characteristics as shown in the sample code in Figure 
13. They evaluate the performance of the algorithm by 
comparing it with classical clustering techniques. Exercise 3: 
Students explore the robustness of quantum K-means and K-
medians clustering algorithms in handling noisy data. We 
provide them with a generated synthetic dataset and added 
noise. The goal is to investigate how well the quantum 
clustering algorithms can handle such noisy data compared to 
classical clustering methods. 

 
Fig 12: A quantum circuit for Quantum K-means model 

 
Fig 13: Code snippet implementing Quantum k-means. 

 
g. Week 11: Quantum Neural Networks: 

In this week, we introduce QNNs by providing theoretical 
concepts and practical exercises covering all the essential 
components of QNNs. The goal is to provide students with 
the knowledge and skills to understand and implement QNNs 
effectively. 

Theoretical Concepts: First, we discuss the motivation 
behind QNNs, which aim to leverage quantum phenomena to 
enhance classical Neural Networks (NNs) [65]. Then, we 
describe the architecture of QNNs that consist of quantum 
layers and explain how they will utilize quantum gates to 
process quantum states. Finally, we illustrate the concepts of 
entanglement, unitary matrix multiplications, and quantum 
activation functions, which are used in quantum layers to 
perform computations on quantum states. 

Practical Exercises: Exercise 1: As shown in Figure 14, we 
intend to provide students with a QNN structure and guide 
them in coding it using Qiskit. The students will experiment 
with different quantum gates and activation functions to 
observe their impact on QNN behavior. Exercise 2: In 
exercise 2, students will train a QNN using a quantum variant 
of backpropagation or other optimization techniques. We will 
provide the students with the DDoS attacks dataset and guide 
them in evaluating the QNN classification performance. 
Exercise 3: For exercise 3, we will generate variations of the 

DDoS dataset by introducing noise, class imbalances, or 
outliers. For this exercise, we will task students with adapting 
the QNN architecture or training process to handle these 
variations and observe the impact on the model's robustness. 
Exercise 4: For exercise 4, we will develop a quantum 
activation function and guide the students in implementing it 
[66]. Students will experiment with the effect of the quantum 
activation function on the performance of the QNN compared 
to classical activation functions. 

 
Fig 14. Example of a QNN. 

 Figure 14, shows the QNN approach that students will be 
asked to implement Here, the input represents the DDoS 
attacks dataset that will be encoded into quantum states in the 
encoding layer. The evaluation layer represents the unitary 
matrix multiplications and the estimation of the nonlinear 
activation functions. The results of the evaluation layer will 
be fed forward to the measurement layer to learn the model 
to predict future data [65, 66]. 
 
h. Week 12: Quantum Generative Models: 

The theoretical concepts and practical exercise introduced 
in week 10 covers QGM and error mitigation techniques for 
quantum generative algorithms. 

Theoretical Concept: We explore the theory behind 
quantum generative models, briefly introducing them to the 
mathematical foundations of quantum probability theory and 
its implications in generative modeling. Major approaches 
will be discussed, such as quantum generative adversarial 
networks (qGAN) [56], quantum Boltzmann machines 
(qBM) [57], and quantum variational autoencoders (qVAE) 
[58]. These models enable the generation of quantum data by 
learning from existing datasets or by sampling from a learned 
probability distribution. We discuss how these quantum-
inspired algorithms adapt classical generative modeling 
techniques to the quantum domain, and how they are 
developed using quantum circuits. Additionally, students are 
introduced to quantum noise and its impact on generative 
algorithms [59], [60]. Here they learn about various sources 
of noise in quantum systems and explore techniques for noise 
mitigation [61]–[64]. By understanding the effects of 
quantum noise and how to mitigate them, students can 
develop robust and reliable generative models in the presence 
of noise. 

Practical Exercise: We present following practical 
exercises for the students to gain a hands-on experience on 
the theoretical concept taught. Exercise 1: In exercise 1, we 
will guide student on the task of creating a qGAN model 
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using the sample code as shown in Figure 16 for generating 
synthetic image of human faces. They design a quantum 
circuit in Qiskit to serve as the generator as shown in Figure 
15 and another quantum circuit as the discriminator. Exercise 
2: We guide students to implement a qVAE for data 
compression and reconstruction tasks. They utilize the 
theoretical concepts of quantum encoding and decoding 
covered in the week 6 to design a quantum circuit that acts as 
the encoder and decoder for the qVAE. They train the qVAE 
using molecular structures dataset for compression and 
reconstructing new sample. Exercise 3: Students explore the 
implementation of a qBM for unsupervised learning tasks. 
They develop a quantum circuit that represents the energy 
function of the qBM and use Qiskit to train the model using 
contrastive divergence learning algorithm. Students 
experiment with different numbers of visible and hidden units 
in the qBM to observe the effect on the model's learning 
capacity and performance. They apply the trained qBM for 
pattern recognition financial dataset consisting of correlated 
currency pairs. 

 
Fig 15: A sample ansatz for a generator in a qVAE 

 
Fig 16: Code snippet for the generator circuit in a qVAE 

 
i. Week 13: Quantum Reinforcement Learning: 

In this week, we will introduce QRL concepts to the 
students by providing theoretical concepts and practical 
exercises covering  the essential components of QRL. 

Theoretical Concepts: First, we will discuss the motivation 
behind QRL, which aims to use the power of quantum 
computation to address classical reinforcement learning 
problems more efficiently [69]. Then, we will explain the 
elements of QRL and how its states and actions differ from 
the states and actions in classical reinforcement learning. 
Then, we will emphasize that QRL explores quantum 
strategies and utilize quantum algorithms to enhance classical 
reinforcement. Finally, we will illustrate the workflow of 
QRL, highlighting the key components and steps involved 
[69, 70]. Then we explain the quantum representation of 
states and actions, where qubits encode the information and 
quantum gates manipulate the quantum states. Then we 
discuss the role of quantum algorithms in QRL, such as 
quantum amplitude amplification and quantum phase 
estimation for optimizing policy or value functions. We will 
then explain how quantum agents interact with the 
environment, make decisions based on the quantum state and 
rewards, and update their policies or value functions 
accordingly [71]. Finally, we illustrate the iterative process of 

QRL, where the quantum agent uses trial-and-error to interact 
with the environment, updating its strategies to maximize 
rewards. 

Practical exercises: Exercise 1: As shown in Figure. 17, we 
will provide students with a QRL approach that consists of a 
Grover Autonomous Quantum Agent (GAQA) and a 
Quantum Tic-Tac-Toe (QTTT) environment [82, 83, 84]. We 
will assist them in coding this approach and teach them how 
the quantum strategies affect the GAQA learning and 
decision-making. Exercise 2: In exercise 2, we will ask 
students to provide a solution for the QTTT environment [82, 
83, 84]. This involves teaching students how to run the 
GAQA, how to make it manipulate the QTTT through a set 
of quantum gates, and how to construct the quantum circuit 
that represents the solution of the QTTT. Exercise 3: In 
exercise 3, we will ask students to integrate quantum phase 
estimation into the GAQA learning process and have them 
observe the effects on policy optimization or value function 
estimation. 

 
Fig 17. The QRL approach. 

Figure 17 illustrates the QRL approach that we will provide 
to the students. The GAQA interacts with the QTTT 
environment using quantum gates that represents the actions 
and utilizes Grover-based probability amplitude updating to 
select the optimal action to be taken [82, 83].  We used QTTT 
as an environment because it provides an efficient example 
of teaching quantum mechanisms. As shown in Figure 18, the 
QTTT represents a quantum board circuit that consists of 
qubits that can be manipulated using 𝑋, 𝐻, and 𝐶𝑁𝑂𝑇 gates. 
Therefore, students will gain an in-depth understanding of 
superposition and entanglement [84]. 

 

 
Fig 18. Quantum board circuit of nine qubits. 

Figure 18 represents the board circuit of nine qubits that is 
generated by the GAQA during the learning process. The 
gates that the actions that the agent takes to interact with the 
QTTT environment construct the board circuit. 
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j. Week 14: Hybrid Quantum-Classical Machine Learning: 
In this week, we introduce students to HCQML. Our 

approach will consist of a combination of theoretical 
knowledge and practical exercises, enabling students to 
understand the fundamental components of HCQML. 

Theoretical Concepts: First, we will explain the motivation 
behind HCQML, which aims to integrate the strengths of both 
quantum computing and classical machine learning to handle 
complex computational problems and enhance machine 
learning tasks [67]. Then, we will emphasize that HCQML 
leverages the power of quantum computations in specific 
parts of the learning process while utilizing classical machine 
learning algorithms for other aspects. Finally, we will 
describe the workflow of HCQML, which typically involves 
a combination of classical and quantum components. We will 
explain how classical data preprocessing and feature 
extraction techniques are employed to prepare the data for 
hybrid processing. Further, we illustrate how quantum 
algorithms and computations are used in specific tasks, such 
as quantum optimization for parameter tuning, quantum 
sampling for generating training data, or quantum feature 
selection. We then emphasize that classical machine learning 
models are still utilized for decision-making such as 
classification, regression, or result interpretation. 

Practical exercises: Exercise 1: As shown in Figure 18, we 
intend to provide students with a Hybrid Classical-Quantum 
Neural Network (HCQNN) and guide them in coding it using 
Pennylane and other machine learning packages. The 
students will train the HCQNN using a solar radiation dataset 
and evaluate its performance [68]. Exercise 2: In exercise 2, 
students will be asked to expand the HCQNN created in 
Exercise 1. They will add more classical layers and introduce 
a new quantum layer to the HCQNN. Then, they will evaluate 
and analyze the performance of the HCQNN. 

 
Fig 18. The HCQNN approach. 

As shown in Fig. 18, the HCQNN consists of three layers: 
a dense layer that uses the Rectified Linear Unit (ReLU) 
function, a quantum layer, and another dense layer that 
utilizes the Softmax function. 

 
Fig 19. HCQNN layers. 

Figure 19 shows the sample code to implement HCQNN 
layers. The quantum layer represents a quantum circuit that 
consists of encoding, entanglement, and measurements. The 
output of this layer is passed to the last dense layer to perform 
the classification 

V. QML COURSE ASSESSMENT 

         In this section, we explain how the proposed course can 
be assessed from Accreditation Board for Engineering and 
Technology (ABET) program learning outcomes perspective. 
by mapping CS program outcomes with this QML course 
student course learning outcomes. Table 2 depicts the six 
course learning outcomes that measure the student’s success 
after the successful completion of this course.      

Table 2 – Student Course Leaning Outcomes 
Course 
Learning 
Outcome 

Course Learning Outcome description 

CLO1 Describe Basics and Use cases of Quantum Computing 
and Quantum Machine Learning 

CLO2 Explain Fundamentals of Quantum Machine Learning, 
Feature Maps, Kernel Tricks, and fundamental 
algorithms. 

CLO3 Implement Quantum Machine Learning Techniques such 
as QSVM, QNN, QGAN. 

CLO4 Encode classical information into quantum states 
CLO5 Implement appropriate Quantum Algorithms such as 

VQE/VQA, and QUBO 
CLO6 Implement QML project and present the project outcomes 

orally and as a written report 

         CLO1 and CLO2 will be assessed through the mid-term 
and final exam. CLO3, CLO4 and CLO5 will be assessed 
through practical exercise-based assignments. CLO6 will be 
assessed through in class presentations and term project 
report that is submitted at the end of the semester. In addition 
to the above assessment instruments, online quizzes can be 
administered through learning management platform such as 
blackboard on a weekly basis.  

         Following ABET Computer Science program learning 
outcomes can be mapped to the QML course learning 
outcomes: PO1. Analyze a complex computing problem and 
to apply principles of computing and other relevant 
disciplines to identify solutions. PO2. Design, implement, 
and evaluate a computing-based solution to meet a given set 
of computing requirements in the context of the program’s 
discipline. PO3. Communicate effectively in a variety of 
professional contexts. PO4. Recognize professional 
responsibilities and make informed judgments in computing 
practice based on legal and ethical principles. PO5. Function 
effectively as a member or leader of a team engaged in 
activities appropriate to the program’s discipline. Table 3 
shows the mapping of this QML course student learning 
outcomes with the ABET CS program outcomes. Following 
Table 3 represents the mapping of ABET program learning 
outcomes and this QML course student learning outcomes 
described earlier.  Students will also be asked to complete a 
self-assessment on how they perceive themselves with the 
course student learning outcomes at the beginning and end of 
the semester. The outcome from these self-assessments will 
be used to measure the success of the course. 

Table 3 – Mapping of  ABET PO and CLO 

 PO1 PO2 PO3 PO4 PO5 

CLO1 X      

CLO2 X     

CLO3  X    

CLO4  X    

CLO5  X    

CLO6 X  X X X 
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VI. FUTURE WORK 

       Our plan is to implement this course on an annual basis. 
Also, in the future, we plan to incorporate this course as part 
of the certificate and degree program related to Quantum 
computing. We also plan to deploy this course as an online 
MOOC course. 
       To assess and mitigate the risks, the course would need 
to have an annual online course and program evaluation 
survey to assess the program. Student course evaluations and 
classroom assessments (peer evaluations) will also be an 
integral part of the assessment process and course 
enhancement. Also, we plan to be in touch with alumni 
through social networking site such as LinkedIn to gather 
feedback based on their experience and how well the course 
prepared them for careers in quantum computing and/or 
quantum machine learning. 

VII. CONCLUSION 

         To address the existing need, we have proposed the 
course design and assessment plan of Quantum machine 
learning course as part of the computer science college degree 
program. We plan to deploy this in the upcoming Spring 
semester for the senior undergraduate/first year graduate 
students as an elective course. This paper proposes a new 
advancement in the field of Computing education by 
proposing the QML course as part of the Computer Science 
college degree program. We believe the course will help the 
students to become QML professionals with sound 
theoretical background and practical skillset,  making them 
very attractive to future employers and can further promote 
cooperation between different scientific disciplines. 
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