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Abstract—In this work, we present the design and plan of
Quantum machine learning (QML) course in a computer
science (CS) University program at senior undergraduate level /
first year graduate level. Based on our survey, there is a lack of
detailed design and assessment plan for the delivery of QML
course. In this paper we have presented the QML course design
with week by week details of QML concepts and hands on
activities that are covered in the course. We also present how
this QML course can be assessed from CS program learning
outcomes perspective.
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L INTRODUCTION AND BACKGROUND

Quantum computing is a radically different approach to
classical computing and promises a more efficient problem-
solving approach compared to the existing approaches [7].
The innovative progressions of the last decade have made
quantum PCs a more practical possibility, and many accept
the possibility that the quantum computing could become
reality in the following 10 years, if not less. If so, the
accompanying impacts in the Information processing and
decision making will be enormous. Most by and large,
organizations should carry out quantum innovations into their
analytics and decision-making frameworks. Also, there is a
critical need to equip the workforce with the quantum skills
to implement the quantum revolution that is envisioned. The
big technology organizations such as Google, NVIDIA,
Microsoft, IBM, Amazon and HP are heavily investing in
quantum technologies and quantum computing research. As
a result, there are needs of graduates who have a solid
foundation in quantum data science. With the anticipated
growth in quantum computing needs, the skill needs will
expand rapidly.

Quantum computing involves much more than quantum
processing [1, 2, 33]. Quantum data science has the potential
to become mainstream data analytic technology and it is
important to equip the next generation of data scientists and
the Artificial Intelligence professionals with the Quantum
machine learning techniques. Quantum machine learning can
be defined as the process of integrating machine learning and
quantum computing for high-performance data processing,
modeling, and learning. The role of QML is to enhance the
performance and evaluation processes of machine learning
models inspired by quantum mechanics [3]. On the other
hand, machine learning techniques also can be implemented
to describe quantum error-correcting codes, measure
quantum systems properties, and develop new quantum

algorithms [4]. There are several recent works that highlight
the importance and opportunities of Quantum machine
learning [5, 6, 10, 21, 22]. The importance of QML is
highlighted by the availability of the books related to QML
including the one written by the co-author of this work,
Ganguly [31].

The contribution of this work are as follows: We outline
a framework for the successful implementation of the
quantum machine learning course that can be offered to
senior level undergraduate and first year graduate students.
By identifying, addressing, assessing and promoting
workforce development solutions for the quantum machine
learning skill gap, the proposed course will serve as an
educational foundation for preparing the next generation of
the data scientists and the Artificial Intelligence
professionals. In addition, the proposed QML course will
equip quantum computing and quantum physicists with QML
skills.

The rest of the paper is organized as follows. Section II
explains the related work in the literature as well as the survey
of existing QML courses. Section III provides the motivation
of creating the QML course. Section IV outlines the design
of the proposed QML course along with the description of the
QML concepts and QML practical hands on exercises that
will be covered. Section V explains the assessment plan for
the proposed QML course. Section VI outlines the future
work recommendations and finally section VII concludes the
paper with concluding remarks.

II. RELATED WORK AND EXISTING QML COURSES

As per our literature review, there are quite a few papers
related to Quantum Computing education course
development [8, 9, 11, 27-29]. Mykhailova presented a
paper on the delivery of programming assignments [27] for
teaching quantum computing. Temporao et al., presented a
case study of how quantum computing can be taught without
prerequisites [28]. Considering that the field of Quantum
computing is evolving, Wootton et al., described in their
paper [29], how quantum computing can be taught using
interactive textbook. M. Piattini analyzes the existing
international curriculums as well as some global training
programs to illustrate the quantum computing education
needs. This related work also defines a quantum computing
specialization that can be included within the existing
international curriculums [8]. C.L. Friedrichs et al., has
looked into the analysis of Quantum Computing Courses
World Wide [9]. In their study they analyze the textbooks that
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are being used for Quantum computing. They also surveyed
the type of textbook, the department that teaches the Quantum
Computing course , circuit simulators that are being used in
these courses and the companies that have shown interest in
the Quantum computing students. O. Salehi et al., in their
work presents a computer science (specifically quantum
programming tool as an educational tool) oriented approach
to introduce Quantum Computing to the students [11]. They
use the concept of generalized mathematical and statistical
concepts (algebra and probability theory) rather than a field
emanating from physics to teach the quantum computing to
the students. The tools that the students will use include
Jupyter notebooks for coding and analysis, along with the
Qiskit framework by IBM and the Pennylane framework by
Xanadu [11].

As per our survey, to our knowledge there is only one
related work on teaching Quantum Machine Learning course
[30]. That work is more related to research training of
Quantum machine learning and most of the effort in the
related work is spent on describing about Quantum Machine
Learning, Data Embedding rather than the detailed design
and delivery of the course using the theoretical concepts and
the programming assignments. Also, that work did not deal
with the assessment plan for the QML course.

As per our quick survey, while there are classical
machine learning courses offered as an elective course in
quantum graduate program, we could not see offering of a
QML course at the University settings. While looking at the
Massively Open Online Course (MOOC) platforms, Udemy
offers a Quantum machine learning as part of Quantum
computing and Quantum machine learning course and EdX
offers Quantum Machine Learning course in partnership with
the University of Toronto. However, these courses are dated
and does not have detailed coverage of QML topics.

III. MOTIVATION

While there is a heavy need for graduates with classical
computing skills in CS, IS and IT, there is a critical shortage
of quantum computing and quantum machine learning
professionals who can research, develop and maintain
quantum-based machine learning models to address the
scientific and business needs [12].

The Global Quantum Computing market is expected to
grow from USD 472 million in 2021 to USD 1,765 million
by 2026, at a CAGR of 30.2% [13]. There are also excellent
commercial aspects of Quantum Computing [24].

The governments across the world recognizes the
importance of the Quantum computing education /research
and has invested in millions of dollars in the Quantum
computing recently [23, 25]. For example, The US National
Quantum Initiative [17], Quantum Canada [14], Europe’s
Quantum Flagship initiative [15], Quantum information
science and technology in Japan [18], Quantum technologies
in Russia [19], Charting the Australian quantum landscape
[16], and Quantum information research in China [20].

A quick survey at the Quantum Machine Learning
related online job boards reveal that the following QML
related jobs are available currently [26] that requires expertise
in QML: Sr. Research Scientist Quantum Al and ML,;
Quantum Computational Scientist; Quantum Research Data
Scientist; Quantum Computing Computer Scientist; Applied
Researcher Consultant;  Principal Solutions Architect,
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Quantum Computing; Sr. Software Engineer, Quantum Al
and Quantum Solutions Scientist.

The proposed course address majority of the skills that
are required by the above-mentioned job titles and succeed in
the Industry, Academia and Government agencies. The
course will provide the necessary theoretical and applied
practical skills that will help the prospective graduate from
this course, succeed in the job of applying quantum
computing principles for the data science/AI/ML related
problems. The proposed course will prepare graduates to
build end to end quantum-based learning models by enabling
them to apply quantum mechanics and data science concepts
to solve real world problems.

IV. QML COURSE DESIGN

The course can be offered as a 10 to 15-week program.
In this work, we chose to design it for a 14-week program.
Following Table 1 shows the topics that will be covered in
each week. We plan to offer this course for a senior level
undergraduate / first year graduate student. The pipeline
shown in the following Figure 1 will be used in the course for
the student training purposes especially for the practical
exercises and assignments.

Input Quantum QML
n Data )
Classical Curation Encoding: m Algorithm
Data (CD CD to QD

Measure
CD from

Predicted m Validate m Model
CD Output Model Training

Fig. 1 — The QML Pipeline (CD—Classical Data; QD-Quantum Data)

Table 1 — The QML Course Design
Theoretical Concepts and Practical Hands On
Exercises Covered
1 Math Basics and Overview of Classical ML
Introduction to Quantum Computing — Gates;
Operators and Circuits

Week

3 Introduction to Quantum Computing — States;
Superposition; Bloch Sphere; Entanglement and
Measurement

4 Quantum Algorithms (Shor’s Algorithm; Grover
Algorithm and Deutsch-Jozsa Algorithm)

5 Introduction to Quantum Machine Learning

6 Quantum Data Encoding and Representation

7 Quadratic Unconstrained Binary Optimization and
Quantum Approximate Optimization Algorithm

8 Variational Quantum Circuits

9 Quantum Support Vector Machines and Kernel
Methods

10 Quantum K-Means and K-Medians Clustering

11 Quantum Neural Networks

12 Quantum Generative Models
13 Quantum Reinforcement Learning
14 Hybrid Quantum Classical Machine Learning

Students will be expected to have a basic programming,
statistics and probability background. Week 1 to 4 will cover
the basics of quantum computing, mathematics,
programming tools/infrastructure and classical machine
learning that is needed for the students to be successful in the
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course. Several works exist in the literature on how these
modules can be designed [8, 9, 11, 27-29]. In the rest of the
sub-sections, we describe the design of QML related topics
from theoretical and practical exercises perspective.

a Week 5:Introduction to Quantum Machine Learning:

In week 5, we introduce the fundamental concepts of QML,
where we provide a structured overview with practical
exercises that sets the stage for students to delve deeper into
specific QML approaches for the later weeks in the course.

Theoretical concepts: We first provide a clear explanation
of QML’s primary objective, principles, and potential
application. This centers around the development of quantum
applications that harness the immense computational
capabilities of quantum computers in conjunction with the
scalability and learning capacity of machine learning
algorithms [36], [37]. We will follow by presenting a
comprehensive taxonomy of approaches for QML,
categorizing the different methodologies and algorithms.
This serves as a foundational framework to help students
understand the underlying principles and techniques
employed in various QML approaches. By systematically
classifying QML algorithms into distinct categories, such as
quantum-inspired  algorithms, quantum circuit-based
algorithms, and quantum kernel methods[38], students gains
a holistic understanding of the different strategies and their
unique advantages and limitations. The topic concludes with
exploring the process and workflow involved in developing
QML algorithms.

Practical Exercise: The following practical exercises are
assigned in Week 5. Exercise I: Involves installing all
necessary libraries in Qiskit. Exercise 2: This exercise guides
student to explore how quantum circuits can be designed to
perform machine learning operations and the steps involved,
with Qiskit to represent quantum model for a QML algorithm
as shown in Figure 3. Exercise 3: Using the workflow as
shown in Figure 2 and a synthetic dataset of numerical
datapoints the students will experiment with the designed
QML model to classify the dataset.

Design encoding
circuit

Choose ansatz

Model
> Yes—»|
Construct Quantum Good?
circuit for QML model| ]

Fig 2: Workflow for designing a QML Algorithm

Make
Predictions

Evaluate
and Test
model

Choosea
Classical
optimizer
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cost »
function

Train the
model

2
2

eoe Designing a QML Aigorithm

b
X = input_data, y = label

def QML_Circuit(qubit,gates)

feat_map = PauliFeatureMap( feature_dimension=X.shape[1])

ansatz = RealAmplitudes(nun_qubits=featuresap.nua_qubits,
entanglement: , reps=1)

cost_function =

optimizer = COBYLA(maxiter

backend = Aer.get_backend( e or*)
quantus_instance = QuantumInstance(backend)

QML_model = QML_ctrcuit(qubit, gates)

model = QML_sodel(optimizer, feat_map, ansatz, cost_function,
quant_instance)

ata, train_labels = split_dataset_to_data_and_labels(X, y
rain(train_data, train_labels)

print( accuracy)

Fig 3: Sample code for the exercise where students will design a simple
QML model. “Insert code here” is where each student input their own
custom codes
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b Week 6: Quantum Data Encoding and Representation:

Week 6 theoretical concepts and practical exercises explore
the intricacies of representing and manipulating data in the
context of QML.

Theoretical Concepts: Students will learn about the
fundamental principles and techniques involved in
representing classical data in the quantum form [39]. As
shown in Figure 5, various approaches will be discussed, such
as quantum feature maps [40], where the classical data is
mapped onto a quantum feature space and also methods for
encoding classical data into quantum states such as amplitude
encoding, angle encoding, and quantum circuit-based
encoding [41]. Then we also describe how these encoded data
is used to train QML models. The techniques for quantum
measurement and extracting classical information from
quantum states will also be taught, in this they explore
measurement  operators and  measurement  bases,
understanding how to retrieve classical data from quantum
systems [42]. By comprehending the advantages and
limitations of each technique, they will be better equipped to
choose appropriate data representation and encoding methods
for different QML tasks [43].

Practical Exercise: Students will reinforce their knowledge
with the following practical exercises. Exercise 1: We
provide the students with the Mnist dataset [44], then guide
them in encoding using functions provided by the Pennylane
programming framework [45]. They also evaluate the
performance of each encoding method in a QML task.
Exercise 2: Students implement a quantum feature map using
Qiskit [46]. Once the quantum feature map is implemented,
they encode the classical data samples from the Iris dataset
[47] into quantum states using a feature map circuit and then
run the circuit on the IBM quantum simulator. Finally, they
analyze the encoded quantum states by measuring and
comparing relevant metrics using the code as shown in Figure
4. Exercise 3: Students design and implement measurement
circuits to extract classical information from a prepared
quantum state. They compare the extracted information with
the original classical data to evaluate the fidelity or accuracy
of the information extraction process. Further, the students
will experiment with different measurement strategies and
compare the results obtained.

o o Quantum Encoding with Pennylane

dev = gml.device("default.qubit", wires= )

#function for amplitude encoding

def amplitude_encoding(data):
qml.templates.embeddings.AmplitudeEmbedding(data, wires=range( ))
return [gml.expval(gml.PauliZ(i)) for i in range( )]

#function for angle encoding

def angle_encoding(data):
qml.templates.embeddings.AngleEmbedding(data, wires=range( ))
return [gml.expval(gml.Pauliz(i)) for i in range( )]

amplitude_encoded_data = amplitude_encoding(sample_data)
angle_encoded_data = angle_encoding(sample_data)

Fig 4: Code illustrating Quantum Encoding

Quantum
States

Classical
data

Data Embedding

QuAM QRAM

Angle Amplitude Basis
Encoding Encoding Encoding Encoding Encoding

Fig 5: Quantum State preparation process
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c. Week 7: Quantum Approximate Optimization Algorithm
and Quadratic Unconstrained Binary Optimization

Quantum Approximate Optimization Algorithm: In this
week, we provide students with a solid understanding on
QAOA.

Theoretical Concepts: We start by introducing and
defining the fundamental idea behind QAOA. We present it
as a general technique used to find an approximate solution
to combinatorial optimization problems [72]. Students learn
about the structure of QAOA, we also briefly introduce the
quantum variational principle and the role of parameterized
quantum circuits in optimization tasks. Other theoretical
aspects that will be covered will include understanding the
QAOA ansatz, the optimization landscape, and the role of the
quantum-classical interface in solving optimization problems
[73]. We will also provide the performance, challenges, and
limitation of the QAOA and its industry applications in
optimization tasks. These concepts will help student to gain
experience in applying QAOA to solve real-world
combinatorial optimization problems.

Practical Exercise: Following are the practical exercises
that will be covered, which will enable student to have hands-
on experience. Exercise 1: In this exercise, students will
experiment with the quantum circuit that implements the
QAOA using the Qiskit programming framework, as shown
in Figure 5 and design a parameterized quantum circuit, that
represents the QAOA ansatz [74]. Exercise 2: In exercise 2,
we will guide the students through the steps involved in using
QAOA to reveal approximate solutions to an optimization
problem. The exercise will focus on solving a specific
combinatorial optimization problem, such as the MaxCut
problem [75], [76], whose sample circuit is as shown in
Figure 6. Exercise 3: In this exercise, the students will
explore the effects of varying the number of QAOA layers
and the choice of variational parameters on QAOA
performance. They will experiment with different numbers of
layers and optimize the variational parameters using classical
optimization techniques or built-in optimization routine.

- - — — R

90 8 —1a

TR — &
- M IR an e B A B

9. | 0597 oser ns

Fig 6: Sample circuit for implementing QAOA applied to the MAXCUT
problem.
] L J

pennylane import gqaoa
cost_h, mixer_h = qaoa.min_vertex_cover(graph, constrained=False)
def (gamma, alpha):
qaoa.cost_layer(gamma, cost_h)
qaoa.mixer_layer(alpha, mixer_h)
(params, **kwargs):
rw in wires:

qml.Hadamard(wires=w)

qml.layer(qaoa_layer, depth, params[0], params[1])

def

dev = qml.device(
@qml.qnode(dev)
def

, wires=wires)

(params):
circuit(params

irn qml.expval(cost_h)
optimizer = qml.GradientDescentOptimizer ()

steps =

params = np.array([[

for 1 in range(steps):
params = optimizer.step(cost_function, params)

| Pl 11, requires_grad=True)

aqml . qnode (dev )
def (gamma, alpha):
circuit([gamma, alpha])
irn qml.probs(wires=wires)
probs = probability_circuit(params(0], params(1])

Fig 7: Sample algorithm for QAOA implemented on Pennylane.
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Quadratic Unconstrained Binary Optimization: In addition
to QAOA, in this week we will introduce QUBO for QML
concepts to the students as well. The goal is to provide
theoretical concepts and practical exercises that enhance
students understanding of how QUBO will help optimize
QML.

Theoretical Concepts: First, we will explain the
fundamental concept of optimization problems. Then, we will
introduce students to QUBO, which involves optimizing a
quadratic objective function subject to binary variables [77,
78]. Finally, we will discuss the advantages and
disadvantages of using QML optimization algorithms, such
as quantum annealing and Quantum Approximate
Optimization Algorithm (QAOA) to solve the Ising problem
as a QUBO problem [79, 80, 81].

Practical exercises: Exercise 1: In exercise 1, we will
introduce students to the process of encoding the Ising
problem as QUBO. We will also Guide them in converting
the Ising problem objective function into an equivalent
QUBO formulation using binary variables and quadratic
terms. In this exercise, we will help the students understand
the correspondence between the Ising problem and the
QUBO representation through the implementation. Exercise
2: In this exercise 2, we will ask students to use quantum
annealing and QAOA to find an optimal solution for the Ising
problem [79, 80, 81]. We will help them understand the
principles and limitations of different solvers and interpret the
results obtained through this exercise.

d. Week 8: Variational Quantum Circuits:

In this week, we provide students with a comprehensive
introduction to VQC, establishing a solid foundation for
understanding of this powerful quantum computing
paradigm.

Theoretical Concept: Students will learn how VQCs
leverage the flexibility and adaptability of parameterized
quantum circuits to tackle optimization and QML tasks [48].
They will learn about the architecture and structure of VQCs,
which consist of parametrized quantum circuits where the
parameters are optimized to minimize a cost function [49].
The concept of variational optimization and gradient-based
methods will be introduced, enabling students to understand
how these techniques are applied to optimize the parameters
of VQCs. Additionally, students will explore the role of
ansatz design, which involves selecting appropriate quantum
gates and their arrangement within the circuit to perform
specific QML operations. Through the theoretical
discussions, students will gain insights into the underlying
principles of VQCs and their potential applications in solving
machine learning problems. We will also delve into the
applications of VQCs in various domains, highlighting their
ability to address complex computational problems.

Practical Exercise: The assigned practical exercises for
Week 7 concepts are as follows. Exercise 1: The students will
learn how to construct and implement a VQC for QML tasks.
Figure 8 provides a step-by-step guide on how the students
will build a parameterized quantum circuit using the Qiskit as
shown in the code in Figure 9. The student also learns how to
choose suitable gate sequences and define variational
parameters to create a flexible and trainable quantum circuit
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[50]. Exercise 2: The students will be given a simple
quantum machine learning task, such as quantum data
classification that the students will be asked to use their
designed VQC in exercise 1 to tackle the given task. Exercise
3: Students will be provided with sets of pre-designed VQC
and a specific optimization objective, and they will be tasked
with implementing gradient-based optimization techniques to
optimize the circuits and achieve the best possible
performance for the given objective.

Classical Data
Loading

Classical
Preprocessing
pipeline

'

Variational
Quantum
Circuit

Quantum

Encoding Classical

Optimizer

an

S
i

Update parameters
Fig 8: A Classifying Protocol using VQC.

VQC Algorithm

feat_map = ZZFeatureMap(fetaure_dimension=feature_dim, reps=2)
optimizer = SPSA(maxiter=40, c0=4.0, skip_calibration=True)

var_form = TwoLocal(feature_dim, ['ry', 'rz'], 'cz', reps =3)

vgc = VQC(optimizer, feat_map, var_form, train_input, test_input,
datapoints[0])

backend = BasicAer.get_backend('gasm_simulator')

quant_inst = QuantumInstance(backend, shots=1024, seed_simulator=seed,
seed_transpiler=seed)

result =vqc.run(quant_inst)

Fig 9: Code snippet showing VQC used as a QML model.

e. Week 9: Quantum Support Vector Machine (QSVM):

In week 9, we introduce the topic of QSVM to students
through theoretical concepts and practical exercises that
cover the components of QSVMs.

Theoretical Concepts: First, we discuss that QSVMs are an
emerging application in the field of quantum machine
learning and how they build upon classical Support Vector
Machines (SVMs) but leverage the principles of quantum
mechanics for advanced computation [3, 32]. Then we
describe how QSVMs utilize quantum superposition and
entanglement, which enable quantum qubits to encode and
manipulate data in quantum states [3]. Utilizing QML
workflow in Figure 1, we illustrate the QSVMs workflow
including the steps of data encoding, quantum circuit training,
and classification. Then we explain how classical data is
encoded into quantum states using encoding techniques,
highlighting the quantum algorithms involved. Then we
discuss how QSVMs leverage quantum interference and
optimization techniques to find the optimal hyperplane in the
feature space. Finally, we illustrate the training phase, where
the parameters of the quantum circuit are iteratively adjusted
to minimize classification errors and maximize -class
separation to provide efficient classification [32, 34].

Practical exercises: We plan to assign the following
practical exercises to the students covering Week 8 concepts.
Exercise 1: As shown in Figure. 10, we will provide students
with a simplified QSVM circuit and guide them in coding it
using a quantum programming framework, such as Qiskit
using the sample code as shown in Figure 11. As an
illustrative assignment, students will encode a Distributed
Denial of Service (DDoS) attacks dataset and perform
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classification based on the trained circuit to classify the data
as benign and DDoS attacks [35]. Exercise 2: In the second
exercise, students will experiment with different quantum
feature maps and observe their impact on QSVM
performance. Exercise 3: In the third exercise, students will
train a QSVM circuit with varying parameters. Then they will
evaluate the classification accuracy and separation of classes
to understand the impact of different QSVM configurations.
Finally, students will compare the performance of the QSVM
with a classical SVM.

—0 0
Trained QSVC model

B

[BENIGN:0, DDoS:1]

Go —0
ZZFeatureMap
PUR]
=1

= i)

2 0 1

C

Fig 10. Example of a QSVM circuit for detecting DDoS attacks.

feature_map = ZZFeatureMap(feature_dimension=2, reps=2, entanglement='linear')
qsvm = QSVM(feature_map, training_input, test_input, datapoints[e])

backend = BasicAer.get_backend("statevector_simulator')
quantum_instance = QuantumInstance(backend, shots=5000, seed_simulator=seed, seed_transpiler=seed)

#Results on my classsical computer
result2 = qsvm.run(quantum_instance)
kernel_matrix = result2['kernel matrix_training']

print("predicted class:
print("accuracy:

{}".format(result2[ 'predicted classes']))
{}".format(result2( ‘testing_accuracy']))

Fig 11. Code illustrating QSVM components.

Figure. 10, shows the QSVM circuit that students will be
asked to implement. Figure. 10 describes part of the QSVM
circuit code that the students will be developing using Qiskit.
The code shows the components of the QSVM, how to run it
using a quantum circuit simulator, and how to generate the
results.

|- Week 10: Quantum K-Means and K-Medians Clustering:

Theoretical concepts and practical exercises cover how
quantum computing can be leveraged to solve clustering
problems more efficiently and potentially discover hidden
patterns in complex datasets.

Theoretical Concept: We discuss the theoretical foundation
of Quantum K-Means and K-Medians clustering
algorithms[51], [52]. We then teach how these quantum-
inspired algorithms adapt classical clustering methods to the
quantum realm, taking advantage of the unique properties of
quantum systems. The topic will also cover key concepts,
including quantum distance metrics, centroids, and the
optimization of clustering objectives. They will understand
how quantum gates and quantum circuit architectures can be
designed to optimize the clustering results. We illustrate how
by manipulating quantum states and applying quantum
operations one can exploit the computational advantages of
quantum systems to achieve more accurate and efficient
clustering [53]. We also show how quantum circuit
parameters are systematically fine-tuned to minimize the
distance between data points and cluster centroids, enabling
efficient clustering [54].

Practical Exercise: Following practical activities will be
offered during this week. Exercise 1: We provide the students
with numerical datapoints and guide then on how to
implement quantum K-means and K-medians algorithms to
cluster the data points into predefined K clusters using
circuits generated using Qiskit as shown in Figure 12.
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Exercise 2: We provide a customer segmentation dataset and
then guide the students to apply Quantum K-Means and K-
Medians Clustering algorithms to group customers based on
their similarities [55]. The dataset is first preprocessed, and
then the quantum clustering algorithm is implemented using
Qiskit to identify distinct customer segments based on their
shared characteristics as shown in the sample code in Figure
13. They evaluate the performance of the algorithm by
comparing it with classical clustering techniques. Exercise 3:
Students explore the robustness of quantum K-means and K-
medians clustering algorithms in handling noisy data. We
provide them with a generated synthetic dataset and added
noise. The goal is to investigate how well the quantum
clustering algorithms can handle such noisy data compared to
classical clustering methods.

qro — H

o

e
ar — i ozion

e !
ar: i osion

3 0
cr

Fig 12: A quantum circuit for Quantum K-means model

Quantum K-means Circuit

theta_list = np.linspace(0, np.pt, num = 3)
e="qr" )

qr = QuantumRegister(5, nam
cr = ClassicalRegister(5, name="cr")
qc = QuantumCircuit(qr, cr, names )

for  tn range(9)
for j in range(1, 10 - 1):

theta_l = theta_list[i]
theta_2 = theta_list(i + j)

qc.h(qr(2])
qc.hiar(1])

qc.h(qr(4])

qc.u(theta_1, pt, pt, ar(1])
qc.u(theta_2, pt, pt, ar(4])
qc.cswap(ari(2], ar(1], ar(4])
qc.h(ar(2])

qc.measure(ar(2], cr(2])
qc.reset(ar)

backend = Aer.get_backend( tor*)

job = execute(qc, backendsbackend, shots=1024)
result = job.result()

Fig 13: Code snippet implementing Quantum k-means.

g. Week 11: Quantum Neural Networks:

In this week, we introduce QNNs by providing theoretical
concepts and practical exercises covering all the essential
components of QNNs. The goal is to provide students with
the knowledge and skills to understand and implement QNN's
effectively.

Theoretical Concepts: First, we discuss the motivation
behind QNNs, which aim to leverage quantum phenomena to
enhance classical Neural Networks (NNs) [65]. Then, we
describe the architecture of QNNs that consist of quantum
layers and explain how they will utilize quantum gates to
process quantum states. Finally, we illustrate the concepts of
entanglement, unitary matrix multiplications, and quantum
activation functions, which are used in quantum layers to
perform computations on quantum states.

Practical Exercises: Exercise 1: As shown in Figure 14, we
intend to provide students with a QNN structure and guide
them in coding it using Qiskit. The students will experiment
with different quantum gates and activation functions to
observe their impact on QNN behavior. Exercise 2: In
exercise 2, students will train a QNN using a quantum variant
of backpropagation or other optimization techniques. We will
provide the students with the DDoS attacks dataset and guide
them in evaluating the QNN classification performance.
Exercise 3: For exercise 3, we will generate variations of the
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DDoS dataset by introducing noise, class imbalances, or
outliers. For this exercise, we will task students with adapting
the QNN architecture or training process to handle these
variations and observe the impact on the model's robustness.
Exercise 4: For exercise 4, we will develop a quantum
activation function and guide the students in implementing it
[66]. Students will experiment with the effect of the quantum
activation function on the performance of the QNN compared
to classical activation functions.
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Fig 14. Example of a QNN.

Figure 14, shows the QNN approach that students will be
asked to implement Here, the input represents the DDoS
attacks dataset that will be encoded into quantum states in the
encoding layer. The evaluation layer represents the unitary
matrix multiplications and the estimation of the nonlinear
activation functions. The results of the evaluation layer will
be fed forward to the measurement layer to learn the model
to predict future data [65, 66].

h. Week 12: Quantum Generative Models:

The theoretical concepts and practical exercise introduced
in week 10 covers QGM and error mitigation techniques for
quantum generative algorithms.

Theoretical Concept: We explore the theory behind
quantum generative models, briefly introducing them to the
mathematical foundations of quantum probability theory and
its implications in generative modeling. Major approaches
will be discussed, such as quantum generative adversarial
networks (qGAN) [56], quantum Boltzmann machines
(qBM) [57], and quantum variational autoencoders (QVAE)
[58]. These models enable the generation of quantum data by
learning from existing datasets or by sampling from a learned
probability distribution. We discuss how these quantum-
inspired algorithms adapt classical generative modeling
techniques to the quantum domain, and how they are
developed using quantum circuits. Additionally, students are
introduced to quantum noise and its impact on generative
algorithms [59], [60]. Here they learn about various sources
of noise in quantum systems and explore techniques for noise
mitigation [61]-[64]. By understanding the effects of
quantum noise and how to mitigate them, students can
develop robust and reliable generative models in the presence
of noise.

Practical FExercise: We present following practical
exercises for the students to gain a hands-on experience on
the theoretical concept taught. Exercise I: In exercise 1, we
will guide student on the task of creating a qGAN model
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using the sample code as shown in Figure 16 for generating
synthetic image of human faces. They design a quantum
circuit in Qiskit to serve as the generator as shown in Figure
15 and another quantum circuit as the discriminator. Exercise
2: We guide students to implement a qVAE for data
compression and reconstruction tasks. They utilize the
theoretical concepts of quantum encoding and decoding
covered in the week 6 to design a quantum circuit that acts as
the encoder and decoder for the qVAE. They train the qVAE
using molecular structures dataset for compression and
reconstructing new sample. Exercise 3: Students explore the
implementation of a qBM for unsupervised learning tasks.
They develop a quantum circuit that represents the energy
function of the gBM and use Qiskit to train the model using
contrastive  divergence learning algorithm. Students
experiment with different numbers of visible and hidden units
in the ¢gBM to observe the effect on the model's learning
capacity and performance. They apply the trained gBM for
pattern recognition financial dataset consisting of correlated
currency pairs.
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Fig 15: A sample ansatz for a generator in a qVAE

[ N J Variational Quantum Generator
generator = Twolocal(2,
# Parameterized single qubit rotations
['ry*, *'r2'],
cz', # Entangling gate
‘full', # Ent

ucture: all to all

Generator')
generator = generator.decompose() # decompose
generator.draw()

into standard gates

Fig 16: Code snippet for the generator circuit in a qVAE

i. Week 13: Quantum Reinforcement Learning:

In this week, we will introduce QRL concepts to the
students by providing theoretical concepts and practical
exercises covering the essential components of QRL.

Theoretical Concepts: First, we will discuss the motivation
behind QRL, which aims to use the power of quantum
computation to address classical reinforcement learning
problems more efficiently [69]. Then, we will explain the
elements of QRL and how its states and actions differ from
the states and actions in classical reinforcement learning.
Then, we will emphasize that QRL explores quantum
strategies and utilize quantum algorithms to enhance classical
reinforcement. Finally, we will illustrate the workflow of
QRL, highlighting the key components and steps involved
[69, 70]. Then we explain the quantum representation of
states and actions, where qubits encode the information and
quantum gates manipulate the quantum states. Then we
discuss the role of quantum algorithms in QRL, such as
quantum amplitude amplification and quantum phase
estimation for optimizing policy or value functions. We will
then explain how quantum agents interact with the
environment, make decisions based on the quantum state and
rewards, and update their policies or value functions
accordingly [71]. Finally, we illustrate the iterative process of
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QRL, where the quantum agent uses trial-and-error to interact
with the environment, updating its strategies to maximize
rewards.

Practical exercises: Exercise 1: As shown in Figure. 17, we
will provide students with a QRL approach that consists of a
Grover Autonomous Quantum Agent (GAQA) and a
Quantum Tic-Tac-Toe (QTTT) environment [82, 83, 84]. We
will assist them in coding this approach and teach them how
the quantum strategies affect the GAQA learning and
decision-making. Exercise 2: In exercise 2, we will ask
students to provide a solution for the QTTT environment [82,
83, 84]. This involves teaching students how to run the
GAQA, how to make it manipulate the QTTT through a set
of quantum gates, and how to construct the quantum circuit
that represents the solution of the QTTT. Exercise 3: In
exercise 3, we will ask students to integrate quantum phase
estimation into the GAQA learning process and have them
observe the effects on policy optimization or value function

estimation.
x
> H
CNOT

Actions

o | Environemnt
(QTTT)

Reward

0,

Fig 17. The QRL approach.

Figure 17 illustrates the QRL approach that we will provide
to the students. The GAQA interacts with the QTTT
environment using quantum gates that represents the actions
and utilizes Grover-based probability amplitude updating to
select the optimal action to be taken [82, 83]. Weused QTTT
as an environment because it provides an efficient example
of teaching quantum mechanisms. As shown in Figure 18, the
QTTT represents a quantum board circuit that consists of
qubits that can be manipulated using X, H, and CNOT gates.
Therefore, students will gain an in-depth understanding of
superposition and entanglement [84].
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Fig 18. Quantum board circuit of nine qubits.

Figure 18 represents the board circuit of nine qubits that is
generated by the GAQA during the learning process. The
gates that the actions that the agent takes to interact with the
QTTT environment construct the board circuit.
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Jj. Week 14: Hybrid Quantum-Classical Machine Learning:

In this week, we introduce students to HCQML. Our
approach will consist of a combination of theoretical
knowledge and practical exercises, enabling students to
understand the fundamental components of HCQML.

Theoretical Concepts: First, we will explain the motivation
behind HCQML, which aims to integrate the strengths of both
quantum computing and classical machine learning to handle
complex computational problems and enhance machine
learning tasks [67]. Then, we will emphasize that HCQML
leverages the power of quantum computations in specific
parts of the learning process while utilizing classical machine
learning algorithms for other aspects. Finally, we will
describe the workflow of HCQML, which typically involves
a combination of classical and quantum components. We will
explain how classical data preprocessing and feature
extraction techniques are employed to prepare the data for
hybrid processing. Further, we illustrate how quantum
algorithms and computations are used in specific tasks, such
as quantum optimization for parameter tuning, quantum
sampling for generating training data, or quantum feature
selection. We then emphasize that classical machine learning
models are still utilized for decision-making such as
classification, regression, or result interpretation.

Practical exercises: Exercise 1: As shown in Figure 18, we
intend to provide students with a Hybrid Classical-Quantum
Neural Network (HCQNN) and guide them in coding it using
Pennylane and other machine learning packages. The
students will train the HCQNN using a solar radiation dataset
and evaluate its performance [68]. Exercise 2: In exercise 2,
students will be asked to expand the HCQNN created in
Exercise 1. They will add more classical layers and introduce
anew quantum layer to the HCQNN. Then, they will evaluate
and analyze the performance of the HCQNN.

Input —— — Output
Dense layer

(Softmax)

Quantu layer

Dense layer
(ReLU)

Fig 18. The HCQNN approach.

As shown in Fig. 18, the HCQNN consists of three layers:
a dense layer that uses the Rectified Linear Unit (ReLU)
function, a quantum layer, and another dense layer that
utilizes the Softmax function.

dev = gml.device("default.qubit"”, wires=n_qubits)

(@qm1.qnode (dev)

def gnode(inputs, weights):
qml.templates.AngleEmbedding(inputs, wires=range(n_qubits))
qml.templates.StronglyEntanglinglLayers(weights, wires=range(n_qubits))
return [qml.expval(qml.Pauliz(i)) for i in range(n_qubits)]

weight_shapes = {"weights": (layers,n_qubits,3)}

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(n_qubits,activation="relu',input_dim=2))
model.add(qml.qnn.KerasLayer(qnode, weight_shapes, output_dim=n_qubits))
model.add(tf.keras.layers.Dense(data_dimension, activation='softmax'))

Fig 19. HCQNN layers.

Figure 19 shows the sample code to implement HCQNN
layers. The quantum layer represents a quantum circuit that
consists of encoding, entanglement, and measurements. The
output of this layer is passed to the last dense layer to perform
the classification
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V. QML COURSE ASSESSMENT

In this section, we explain how the proposed course can
be assessed from Accreditation Board for Engineering and
Technology (ABET) program learning outcomes perspective.
by mapping CS program outcomes with this QML course
student course learning outcomes. Table 2 depicts the six
course learning outcomes that measure the student’s success

after the successful completion of this course.
Table 2 — Student Course Leaning Outcomes

Course Course Learning Outcome description

Learning

Qutcome

CLO1 Describe Basics and Use cases of Quantum Computing
and Quantum Machine Learning

CLO2 Explain Fundamentals of Quantum Machine Learning,
Feature Maps, Kernel Tricks, and fundamental
algorithms.

CLO3 Implement Quantum Machine Learning Techniques such
as QSVM, QNN, QGAN.

CLO4 Encode classical information into quantum states

CLOS Implement appropriate Quantum Algorithms such as
VQE/VQA, and QUBO

CLO6 Implement QML project and present the project outcomes
orally and as a written report

CLO1 and CLO2 will be assessed through the mid-term
and final exam. CLO3, CLO4 and CLOS5 will be assessed
through practical exercise-based assignments. CLO6 will be
assessed through in class presentations and term project
report that is submitted at the end of the semester. In addition
to the above assessment instruments, online quizzes can be
administered through learning management platform such as
blackboard on a weekly basis.

Following ABET Computer Science program learning
outcomes can be mapped to the QML course learning
outcomes: PO1. Analyze a complex computing problem and
to apply principles of computing and other relevant
disciplines to identify solutions. PO2. Design, implement,
and evaluate a computing-based solution to meet a given set
of computing requirements in the context of the program’s
discipline. PO3. Communicate effectively in a variety of
professional contexts. PO4. Recognize professional
responsibilities and make informed judgments in computing
practice based on legal and ethical principles. POS. Function
effectively as a member or leader of a team engaged in
activities appropriate to the program’s discipline. Table 3
shows the mapping of this QML course student learning
outcomes with the ABET CS program outcomes. Following
Table 3 represents the mapping of ABET program learning
outcomes and this QML course student learning outcomes
described earlier. Students will also be asked to complete a
self-assessment on how they perceive themselves with the
course student learning outcomes at the beginning and end of
the semester. The outcome from these self-assessments will

be used to measure the success of the course.
Table 3 — Mapping of ABET PO and CLO

PO1 PO2 PO3 PO4 PO5
CLOl X
CLO2 X
CLO3 X
CLO4 X
CLOS X
CLO6 X X X X
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Our plan is to implement this course on an annual basis.
Also, in the future, we plan to incorporate this course as part
of the certificate and degree program related to Quantum
computing. We also plan to deploy this course as an online
MOOC course.

To assess and mitigate the risks, the course would need
to have an annual online course and program evaluation
survey to assess the program. Student course evaluations and
classroom assessments (peer evaluations) will also be an
integral part of the assessment process and course
enhancement. Also, we plan to be in touch with alumni
through social networking site such as LinkedIn to gather
feedback based on their experience and how well the course
prepared them for careers in quantum computing and/or
quantum machine learning.

FUTURE WORK

VII. CONCLUSION

To address the existing need, we have proposed the
course design and assessment plan of Quantum machine
learning course as part of the computer science college degree
program. We plan to deploy this in the upcoming Spring
semester for the senior undergraduate/first year graduate
students as an elective course. This paper proposes a new
advancement in the field of Computing education by
proposing the QML course as part of the Computer Science
college degree program. We believe the course will help the
students to become QML professionals with sound
theoretical background and practical skillset, making them
very attractive to future employers and can further promote
cooperation between different scientific disciplines.
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