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Abstract—Increases in the deployment of machine learning
algorithms for applications that deal with sensitive data have
brought attention to the issue of fairness in machine learning.
Many works have been devoted to applications that require
different demographic groups to be treated fairly. However,
algorithms that aim to satisfy inter-group fairness (also called
group fairness) may inadvertently treat individuals within the
same demographic group unfairly. To address this issue, this
paper introduces a formal definition of within-group fairness
that maintains fairness among individuals from within the same
group. A pre-processing framework is proposed to meet both
inter- and within-group fairness criteria with little compromise
in performance. The framework maps the feature vectors of
members from different groups to an inter-group fair canonical
domain before feeding them into a scoring function. The mapping
is constructed to preserve the relative relationship between the
scores obtained from the unprocessed feature vectors of individuals
from the same demographic group, guaranteeing within-group
fairness. This framework has been applied to the Adult, COMPAS
risk assessment, and Law School datasets, and its performance
is demonstrated and compared with two regularization-based
methods in achieving inter-group and within-group fairness.

I. INTRODUCTION

The deployment of machine learning (ML) models in
sensitive domains—including criminal justice, healthcare, ad-
vertising, and finance— is increasingly raising potential legal
and fairness concerns [1]. In a number of studies involving
sensitive information, bias was detected in ML models that
were used to make decisions. For example, racial discrimination
was detected in the COMPAS recidivism assessment model
[2] and Google’s Ads model [3]; gender discrimination was
found in Amazon’s recruiting model [4]; and skin tone bias
was found in models used to detect melanoma in images [5].
Because the results produced by ML models rely on the data on
which they are trained, any pre-existing societal biases could
be embedded in data and may be inherited by these models
unless proper mitigants are applied. There is a growing body
of research focused on combating unfairness in ML models
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from which a number of definitions of fairness have been
advanced, and many tools have been developed to satisfy them.
Two of the most prominent categories of fairness definitions
include: (1) group fairness [6]–[12] and (2) individual fairness
[13]–[19]. The output of an ML model is a distribution of
scores, between 0 and 1, to which a threshold is applied to
produce decisions. Group fairness definitions focus on ensuring
that different demographic groups are treated equally, meaning
that these decisions are unbiased based on group affiliation.
Individual fairness definitions aim to guarantee that individuals
with similar feature values are treated similarly, meaning that
an ML model assigns them similar scores.

As multiple works have shown [7], [20], [21], achieving a
universal notion of fairness is impossible. Compromises must
be made when it is desirable to satisfy multiple conflicting
notions of fairness. How to balance these trade-offs depends
on the particular application. For example, unless a discrete
exception applies, it is prohibited under U.S. fair lending laws1

to take into consideration in any aspect of a credit transaction
protected attributes, including, but not limited to, race, sex, and
religion [22]. Thus, financial institutions undertake qualitative
and quantitative fair lending analyses to identify, assess, and
mitigate any associated fair lending risks [23]. The European
Union also prohibits discrimination on the basis of a similar
set of protected attributes under Title III (Equality), Article 21
of the European Union Charter of Fundamental Rights [24].

A variety of approaches have been proposed to preserve
group-based fairness [6], [8], [25]–[29]. To offset biases
reflected in the score distributions produced by a model for
different demographic groups, Chen et al. construct an optimiza-
tion problem to solve for separate scoring thresholds for each
group to produce fair decisions [26]. Hardt et al. [6] and Hsu
et al. [25] approach this problem by equalizing the output
scores of different groups by constructing post-processing
transformations that are applied to the original distribution of
scores produced by an ML model. However, these approaches
assume that sensitive group affiliation information is directly
available to their decision-making models for processing in the
testing stage of the ML process, which is often not the case and,
under some circumstances, may be prohibited by applicable
law. That is to say, given the restrictive, highly sensitive nature
of protected attributes, it is common to restrict the model
development team’s access to those attributes. Instead, that team

1The Equal Credit Opportunity Act and its implementing regulation,
Regulation B, prohibit creditors from considering any protected characteristic
(such as race, gender, or age, etc.) in any aspect of a credit transaction, unless
an express exception applies.
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develops the models that will be integrated into the institution’s
decision-making process, while a separate compliance team
with access to the sensitive data evaluates the models for
fairness. As such, the models do not make direct use of the
sensitive attributes, but those attributes are available to the
compliance team that tests the models for fairness.

Regularization-based methods provide a potential solution
to this bottleneck [8], [26]–[29]. Regularization is a common
method used in many AI/ML applications [30]–[32] to improve
model generalization or teach models to satisfy additional
constraints. In fairness-aware AI/ML applications, regulariza-
tion is often used to teach a model to enforce group fairness
by decorrelating its decisions with respect to the sensitive
attribute during the training process. Yet these methods do
not directly include the sensitive attribute as an input to the
model, meaning that it is only used in the testing phase of
the ML process, not the training phase. However, a lack of
heterogeneity in the feature values of individuals in different
demographic groups may impede a model from learning how
to equalize different demographic groups’ score distributions
without disparately impacting similar individuals within each
group. Hence, asking a classifier to approximate statistical
parity between different groups may cause it to badly violate
parity among the individuals within a group [33].

This highlights an important consideration that must be
addressed in dealing with problems in which group fairness is
a hard constraint—solutions that satisfy group fairness must
treat individuals within each group fairly with respect to each
other. Two issues must be addressed to satisfy this requirement:
(1) a definition must be constructed to articulate what it means
for individuals within the same group to be treated fairly
(within-group fairness) and (2) a solution must be developed to
satisfy within-group fairness without violating group fairness.
This paper addresses these two issues, particularly under the
constraining scenario in which the sensitive attribute is not
allowed to be directly provided to a decision-making model
in the testing phase of the ML process. In the remainder of
this paper, we will use the terminology inter-group fairness
in place of group fairness to avoid any potential confusion
between this notion and the notion of within-group fairness.

To achieve our two aforementioned goals, we take advantage
of a key insight: though an ML model is prohibited from
directly using a sensitive attribute in the testing phase of the
ML process, it may be available to pre-process the data prior
to providing it to the ML model for decision-making. Referring
to our example on fair lending, this means that a compliance
team could pre-process the data it oversees before providing
it to the machine learning team for use. Thus, in this paper,
we introduce a pre-processing framework for simultaneously
satisfying inter- and within-group fairness. The core idea of
our pre-processing framework is to devise a mapping that
(1) removes the correlation between different groups’ feature
distributions while (2) ensuring that the ordering of scores
produced by an ML model for individuals within the same
group is preserved for the pre-processed feature distribution.
We adopt a stringent notion of fairness—the threshold invariant
form of demographic parity [10]—for our inter-group fairness
definition [8] and introduce a new definition of within-group

fairness, which is used to devise a measure for fairness
assessment. Furthermore, we compare this approach against
regularization-based training methods to verify its utility. To
summarize, this paper provides the following contributions:

• We introduce a new definition of fairness, termed within-
group fairness, which ensures that individuals within the
same group are treated fairly with respect to each other.

• We provide a metric for measuring within-group fairness.
• We introduce a novel framework that uses pre-processing

to achieve both inter- and within-group fairness.
• We experimentally verify that our pre-processing frame-

work can achieve both inter- and within-group fairness
with little compromise in accuracy, while empirically
demonstrating that regularization methods struggle to
satisfy both without compromising model performance.

The remainder of this paper is organized as follows. In
Section II, a summary of basic fairness-related concepts relevant
to this work is provided. In Section III, the problem setup is
formulated, while in Section IV, the pre-processing framework
is described along with the regularized training approach used
for comparison. Experimental results are presented in Section
V to quantify each method’s accuracy and ability to achieve
inter-group fairness and within-group fairness. A discussion
of the limitations associated with this paper is provided in
Section VI. Finally, the paper is concluded in Section VII.

II. BACKGROUND AND RELATED WORK

A. Fairness definitions

Fairness definitions may be grouped into three main cate-
gories, which include inter-group, individual, and subgroup
fairness [34]. Inter-group fairness is measured by prediction
performance parity across different demographic groups. To
deal with multifaceted issues of bias and discrimination, various
inter-group fairness notions have been proposed in the literature,
including demographic parity [13], equalized odds [6], test
fairness [7], and threshold invariant fairness [8]. However,
solutions that only enforce inter-group fairness may produce
outcomes that are blatantly unfair from the perspective of an
individual [35]. Individual fairness aims to ensure that similar
prediction performance is achieved for similar individuals with
respect to the same task [13]. To bridge the gap between
inter-group and individual fairness, Kearns et al. [33] propose
the notion of subgroup fairness. This definition enforces inter-
group fairness on a large collection of subgroups defined over
combinations of protected attribute values.

In this paper, we define a new notion of fairness in
Section III-C, termed within-group fairness, which aims to
preserve the scoring hierarchy of individuals from the same
demographic group before and after accounting for inter-group
fairness. This idea is related to the sub-group fairness definition
proposed by Kearns et al. [33] in the special case where each
individual in a group is considered a sub-group.

B. Design of fairness-aware algorithms

Many methods have been studied to achieve some notion
of fairness in machine learning, which can be categorized
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accordingly: (1) pre-processing, (2) in-processing, and (3)
post-processing [34]. Pre-processing approaches remove the
underlying biases in the raw feature data prior to providing it
to an ML model for training or decision-making. Kamiran et
al. [10] propose a pre-processing method that “massages” a set
of training labels to remove bias in it prior to training a model.
In their method, a ranker is used to select which labels to
alter while minimizing deterioration in prediction accuracy. In-
processing methods introduce fairness-aware regularizers into
the objective function during the training process, which aim to
strike a balance between maximizing accuracy and minimizing
unfairness [12]. Calders et al. [11] devised a regularizer that
requires a trained classifier to make decisions independent of
the sensitive attribute, while Zafar et al. [27], [28] enforce
demographic parity and equalized odds constraints in the
classifier training process. Chen et al. [8] designed a fairness
loss function that aims to equalize the score distributions
of different demographic groups. Post-processing achieves
fairness by reassigning the scores produced by the initial
black-box model by applying a function to the original output
scores [9]. Other post-processing methods [36] can mitigate
bias by identifying unfair features via attention mechanisms
and manipulating the corresponding attention weights.

In this paper, we propose a novel pre-processing framework
that maps the feature vectors of different demographic groups
to a canonical feature distribution in which inter- and within-
group fairness can simultaneously be achieved with low cost
to a model’s performance. For a comprehensive review of
algorithmic fairness that provides a discussion of the prominent
causes of unfairness, algorithms, definitions, and datasets
available in this field of study, we refer the reader to Pessach
et al. [37].

III. PROBLEM SETUP

In this section, we outline the problem that we aim to
solve. Our end goal is to devise an algorithm that can achieve
both inter- and within-group fairness without compromising
predictiveness. To achieve this goal, we now introduce the inter-
and within-group fairness notions that we want our model to
satisfy and the measures, ∆TIDP and ∆WGF , that quantify
how well a method is able to satisfy inter- and within-group
fairness, respectively.

A. Notation

Following Dwork et al., we refer to individuals as the objects
that we aim to classify [13]. We refer to the set of individuals as
I. Each individual, i ∈ I , has a corresponding feature vector,
fi ∈ Rk, the elements of which represent values associated
with features from the feature set, F ≜ {f1, . . . , fk}. We
refer to a subset of features, A ⊆ F as sensitive if we are
prohibited from discriminating against individuals based on
the values of these features. Thus, no sensitive feature values
are included in feature vectors. Each individual also has a
label, y ∈ {0, 1}, associated with him or her. A dataset of
N individuals, X ∈ RN×k, is a matrix in which each row
represents an individual’s feature vector. The primary task of
binary classification is to predict the labels of individuals using

a scoring function. A scoring function, sθ : Rk → [0, 1], is
defined as a mapping of a feature vector to a score between 0
and 1, inclusive. Given a threshold, t, the estimator associated
with a scoring function, sθ , is represented by the function:

Ŷ =

{
0, sθ(f) ≤ t

1, sθ(f) > t,
(1)

and is used to predict the label associated with a given
individual. A scoring function is trained on data to optimize
its parameters to satisfy an objective and tested on separate
data to ensure the results it produces are generalizable. We
refer to the training dataset as Xtr and the testing dataset as
Xts. A loss function, Lθ , is used to quantify the ability of the
scoring function to produce scores that satisfy the objective.
A learning algorithm optimizes the weights of the scoring
function, θ, according to Lθ .

A group, g ⊆ I, is a collection of individuals that share
the same values for the sensitive features in A. The set of
all groups is denoted G. We use numerical superscripts to
specify group membership. For example, X(i) refers to the
subset of the dataset X belonging to group i. The omission
of superscripts indicates that we are referring to population
information. Lastly, dX represents a distance measure over the
set X .

B. Inter-group Fairness
A variety of definitions have been proposed to capture inter-

group fairness. Two of the most prominent definitions include
demographic parity (DP) and equalized odds (EO), and we
focus on DP in this paper.

Definition 1. (Demographic Parity) An estimator, Ŷ , satisfies
demographic parity for a binary feature, A ∈ {0, 1}, if P (Ŷ =
1|A = 0) = P (Ŷ = 1|A = 1).

An important observation to make about this definition is
that it is threshold dependent. That is, a particular classifier
may achieve DP for a given threshold, but not for all thresholds
in the range [0, 1] when the group score distributions produced
by a scoring function deviate from each other. In many
applications, this may lead to fairness issues. As described in
Section I, for example, model development teams may not have
access to sensitive demographic information associated with
the data. Without such information, they may produce models
with unequal output score distributions across groups, raising
potential fairness concerns. Thus, we wish to ensure that a
model produces score distributions that are equal across groups
without consideration of any protected attributes. This intuition
is encapsulated in the more strict definition of threshold-
invariant fairness defined by Chen et al. [8] (also coined
strong demographic parity by Jiang et al. [29]), and has been
employed in a variety of works to enforce inter-group-fair
classification [8], [26], [29], [38], [39] and regression [38],
[40]. Thus, we use this definition for the inter-group fairness
notion in our analysis:

Definition 2. (Threshold Invariant Fairness) Threshold In-
variant Demographic Parity (TIDP) is achieved when DP is
satisfied, independent of the decision threshold t.
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Fig. 1: Illustration of Fairness in Example 1.

To measure how well a classifier preserves TIDP, we can
take the average of the Calder-Verwer (CV) score [11] for
every possible threshold value t ∈ [0, 1], where the CV scores
for DP are given by: |P (Ŷ = 1|A = 0)− P (Ŷ = 1|A = 1)|.
We use ∆TIDP to refer to this resulting average value. The
framework that we propose in this paper aims to achieve TIDP
while maintaining within-group fairness.

C. Within-group Fairness

In the previous subsection, we discussed measures of inter-
group fairness, which are blind to the treatment of individuals.
To understand the negative side-effects that may arise from
only taking inter-group fairness into account, we provide the
following simple motivating example.

Example 1. Consider four individuals, Alice and Barbara,
who are female, and Carl and Dan, who are male. Assume that
all other sensitive attributes are the same for all individuals.
According to the information in their loan applications, they
receive the following loan approval scores, respectively: 0.50,
0.25; 0.75, 0.50. Since the distribution of scores between the
male and female groups is different, a loan officer adjusts
Carl’s score to a value of 0.25 so that TIDP-based inter-group
fairness is satisfied since for any threshold, the same number
of individuals from each sex score above it. (see Figure 1).
However, assuming all applicants were scored according only
to non-sensitive features, we see that Carl’s outcome is unfair
since he has a stronger application than Dan.

This simple example highlights an important consideration
that must be taken into account in the fairness process:
individual fairness must still be preserved within each group.
Clearly, a more individually fair way to achieve TIDP in
Example 1 would be to provide Carl with a score of 0.50 and
Dan with a score of 0.25. While the specific example we provide
here deals with finance, such considerations could potentially
impact recidivism assessment [41], hiring decisions [42],
credit approvals [43], and any other real-world classification
applications in which bias has been detected in the score
distributions produced by an ML model. Thus, we introduce
a new fairness definition, within-group fairness, which takes
advantage of the insight provided in this example: the most
accurate scores are the fairest for individuals that belong to
the same group. This suggests that the scores provided by
a baseline model, which does not explicitly account for any

notion of fairness, yield the fairest scores when comparing
individuals within the same group.

The inspiration for our definition comes from Dwork et
al.’s definition of individual fairness, which states that similar
individuals should be treated similarly [13]. Definition 3, below,
provides the formal definition of individual fairness.

Definition 3. (Individual Fairness) A scoring function s :
Rk → [0, 1] satisfies individual fairness if for any two individu-
als i, j ∈ I , |P (Ŷi = y)−P (Ŷj = y)| ≤ ϵ; if dI(i, j) ≈ 0.

With this in mind, we provide a few definitions that build
toward our definition of within-group fairness.

Definition 4. (Signed Distance Function) The signed distance
function for x, y ∈ X is given by:

ϕX (x, y) =

{
dX (x, y), x ≤ y

−dX (x, y), x > y
(2)

Definition 5. (Individual Fairness Across Mappings) A map-
ping Q : Rk → [0, 1] satisfies individual fairness with respect to
a different mapping R : Rk → [0, 1] if for any two individuals,
i, j ∈ I,

|ϕ[0,1](Q(fi), Q(fj))− ϕ[0,1](R(fi), R(fj))| ≤ ϵ. (3)

Definition 6. (Within-group Fairness Across Mappings) A
mapping Q : Rk → [0, 1] is said to satisfy within-group fairness
with respect to a different mapping R : Rk → [0, 1] if for any
group g ∈ G, individual fairness across models is satisfied
between any two individuals, i, j ∈ g. That is,

|ϕ[0,1](Q(fi), Q(fj))− ϕ[0,1](R(fi),R(fj))| ≤ ϵ,

∀g ∈ G; ∀i, j ∈ g (4)

Intuitively, our within-group fairness definition states that the
scores provided by one mapping are fair with respect to another
if the distance between any two individuals’ scores is relatively
preserved and the ordering of their scores does not change
across models. In the algorithm proposed in Section IV, we
consider one of the mappings to be the baseline scoring function.
The second mapping is considered to be a pre-processing
transformation T : Rk → Rk composed with the baseline
scoring function. Since we design T to remove the bias between
the distribution of feature vectors for different demographic
groups, if Definition 6 is satisfied, then our framework achieves
both inter- and within-group fairness. To quantify how well
a mapping, Q, is able to preserve within-group fairness with
respect to another mapping, R, we use the following equation:

∆WGF =

2
∑
g∈G

∑
i,j∈g
i<j

1{|ϕ[0,1](Q(fi), Q(fj))− ϕ[0,1](R(fi), R(fj))| > ϵ}

∑
g∈G

Ng(Ng − 1)
,

(5)

where 1 represents the indicator function, ϵ may be a user-
specified parameter quantifying how much within-group un-
fairness we are willing to tolerate, and Ng is the number
of individuals in group g. ∆WGF accounts for the change
in signed distance between every pair of scores within each
demographic group that results from using mapping R in place
of mapping Q. If the signed distance between the scores of
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Fig. 2: Overview of the pre-processing framework for achieving inter- and within-group fairness.

any pair of individuals produced by mapping Q is drastically
different from the baseline model (i.e. greater than ϵ), this
means these individuals are being treated drastically differently.
That is, within-group fairness is violated for this pair of
individuals. Hence, the numerator of Equation 5 counts all the
pairs of individuals for which an inter-group-fair model violates
within-group fairness, while the denominator counts how many
pairs of individuals exist in each group. Thus, ∆WGF provides
the percentage of individuals for which within-group fairness
is violated.

IV. FRAMEWORK FOR ACHIEVING GROUP AND
WITHIN-GROUP FAIRNESS

In this section, we outline the proposed pre-processing
framework for achieving inter- and within-group fairness. We
also describe an in-processing algorithm in which fairness
is encouraged through the loss function during training with
the use of regularizers, which we use to compare against our
framework.

A. Proposed Pre-processing Framework

Figure 2 illustrates the proposed pre-processing algorithm. In
Phase I, we train an ML scoring function on training data. This
scoring function may produce disparate score distributions for
different groups, violating inter-group fairness. To deal with this
issue, we construct transformations that map the feature vectors
of individuals from different groups to a domain in which the
bias between these groups is removed, which we refer to as
the canonical domain. The goal is to design these mappings
such that when the baseline scoring function is applied to the
transformed feature vectors of any group, the output score
distribution resembles the original un-transformed population

score distribution. Each group’s transformation is constructed
by creating a correspondence between the feature vectors within
the group and the feature vectors in the entire population. The
details of each phase of the system are presented in the ensuing
subsections.
Phase I: Baseline Model Training: Assume we have a popu-
lation training dataset, Xtr ∈ RNtr×k with associated labels
y ∈ {0, 1}Ntr consisting of Ntr individuals. We construct
a scoring function of the form sθ(x) = σ(mθ(x)), where
mθ : Rk → R is an ML model (e.g. logistic regression, support
vector machine, neural network, etc.) and σ : R → [0, 1]
is the sigmoid function. We call this scoring function the
baseline model. The baseline model is designed to maximize
accuracy according to the training data using a standard (sub-)
differentiable loss function, Lθ , (e.g., cross-entropy, hinge, etc.).
Finally, we use a learning algorithm (e.g., gradient descent,
stochastic gradient descent, etc.) to optimize the model weights,
θ.
Phase II: Establish Feature Correspondence: Once the base-
line model, sθ , is obtained from Phase I, we split the population
training data into groups using the sensitive attribute, where
we assume these groups are mutually exclusive. Specifically,
we decompose Xtr into group training datasets X

(i)
tr , i =

1, . . . , |G|. The baseline model is applied to each group’s
training dataset and the population training dataset to obtain
the score vectors s

(i)
tr , i = 1, . . . , |G| and str, respectively. We

then map the distribution of scores associated with each group
to the population score distribution. To do this, we apply
histogram specification [44], which is a distribution matching
technique commonly applied in image processing to transform
the histogram of the pixel values in a given image to match a
specified histogram. In our case, the histograms of the group
and population score distributions are computed and histogram
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Fig. 3: Dual relationship between Voronoi diagram and Delau-
nay Triangulation.

matching is applied to each group’s distribution to match it
to the population distribution. We denote these score vectors
by ŝ

(i)
tr , i = 1, . . . , |G|. Because the scores in ŝ

(i)
tr and str are

approximately equally distributed, each score in ŝ
(i)
tr should

be close in distance to some score in str. We pair group and
population feature vectors if their scores are sufficiently close,
calling such pairs feature correspondences. Below, we provide
the formal definition of a feature correspondence.

Definition 7. (Feature Correspondence) Let a ∈ ŝ
(i)
tr and

b ∈ str be the scores associated with the nth feature vector of
group i, f (i)n , and the lth feature vector of the population, fl,
respectively. We say f

(i)
n and fl form a correspondence, denoted

f
(i)
n ∼ fl, if for any c ∈ str, such that c ̸= b, the following

inequality holds |a− b| ≤ |a− c|.

Our goal is to exploit these feature correspondences to create
a transformation that maps feature vectors from each group
to the canonical population domain. This idea is illustrated in
Figure 2b. Critically, histogram specification is a monotonically
increasing transform on the scores. As a result, when we use
these correspondences to construct our group transformations,
it should follow that the scores that the baseline model produces
for the transformed features preserve the ordering of the scores
that the baseline model produced for the original feature
vectors. As a result, our notion of within-group fairness should
be preserved.
Phase III: Mapping Construction: Phase III uses the feature
correspondences found in Phase II to construct a mapping
between each group domain and the population domain for
individuals not seen in the training data. Our approach assumes
that each group’s data lie on a manifold in Rk and that the
training data sample this manifold densely enough to provide
a faithful representation of it. Hence our goal is to construct a
more general correspondence between each group’s manifold to
the population manifold. To achieve this goal, we note that the
field of computational geometry provides a variety of candidate
data structures that may be used for manifold representation
to construct these mappings. Two notable candidates include:
(1) the Delaunay Triangulation (DT), which serves as the dual
counterpart of the Voronoi Diagram (VD), and (2) the k-d tree.

Given a set of points in Rk called cell cites—which are given
by the training feature vectors in our context, a VD induces
a cell decomposition of space where each cell represents all

k-d Treek Dimensional Space

Fig. 4: Representation of a k-d tree.

of the points closest to a particular cell site. A DT is a planar
subdivision of Rk, constructed by drawing edges connecting
any two cell sites that share an edge between their VD cells,
and as a result, the closest pair of sites in a VD is represented
as neighbors in the DT. In this way, each cell in the VD
corresponds to a vertex in the dual complex. Figure 3 illustrates
this primal-dual relationship.

The k-d tree is a space-partitioning data structure used to
organize points in k-dimensional space. In this data structure,
each leaf node represents one data point, while each non-leaf
node represents a splitting hyperplane used to generate two
half-spaces. The points in each half-space correspond to the
leaves of a given node’s subtree. This structure is illustrated
in Figure 4.

The utility of each of these data structures lies in their ability
to represent new feature vectors as a weighted combination of
the closest neighboring training feature vectors in Rk used to
construct each data structure. This can be done by constructing
|G| DT or k-d tree data structures using the feature vectors in
the training sets X

(i)
tr , i = 1, . . . , |G| to represent each group’s

individual manifold. When a new feature vector for group
i, f

(i)
new, is to be pre-processed, we can represent it by a

weighted average of feature vectors to which it is closest,
as illustrated in Figure 2c, which are obtained by traversing the
given data structure to find the closest neighbors to represent
the new feature. In particular, mapping new feature vectors
from the group domain to the population domain can be done
as follows. Without loss of generality (WLOG), let {f (i)n }kn=1

represent the k nearest neighbors of f (i)new, belonging to group
i. The Euclidean distances between f

(i)
new and the elements

of {f (i)n }kn=1 are represented by {d(i)n }kn=1. Inspired by the
algorithm presented by Dongsheng et al. [45], we construct a set
of weights {d(i)−1

n /
∑k

l=1 d
(i)−1
l }kn=1 = {w(i)

n }kn=1 associated
with each element in {f (i)n }kn=1 that reflect how closely they
resemble the new feature vector in the group domain. In
the population domain, WLOG, we obtain the corresponding
feature vectors {fn}kn=1, where f (i)n ∼ fn, and use these weights
to construct their new feature vectors in the population domain
fnew =

∑k
l=1 wlfl. We use the notation T (i) : Rk → Rk to

describe the mapping from a feature vector from group i’s
domain to the population domain. Hence, given a test dataset,
Xts ∈ RNts×k of Nts individuals, we can decompose it in
group test sets X

(i)
ts , i, ..., |G|, obtain the canonical group test
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Fig. 5: The distribution of scores produced for each dataset by the baseline scoring function and the pre-processing framework
for using three different ML models.

dataset, T (i)(X
(i)
ts ), i, ..., |G|, and apply the baseline model, sθ ,

to it. A user-specified threshold, t, can then be used to make
the classification decision for these test data.

In our pre-processing framework, we utilize the k-d tree
instead of the DT because it possesses one important property:
it can be used to efficiently perform nearest neighbor searches
for data in high dimensions. Conversely, performing searches
using DTs in higher dimensions can be extremely expensive.
We elaborate on the significance of this property in Section V-G
and provide runtime analyses for each data structure to illustrate
the importance of this property.

B. In-processing Framework

In this section, we describe an in-processing alternative to
our pre-processing framework for comparison. In this approach,
a scoring function is trained to internalize inter-group fairness
in the training process. This approach is similar to that of the
algorithm described by Chen et al. [8].

We start by training a baseline scoring function, sθ(x), as
in Phase I of Section IV-A. The weights θ serve as a starting
point from which we will fine-tune to improve the fairness of
the scoring function. Specifically, once we obtain

θbase = argmin
θ

Lθ(Xtr), (6)
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We learn another set of weights, θeq , for sθ(x) through

θeq = argmin
θ

Lθ(Xtr) + λE(Xtr), (7)

by initializing θ = θbase before applying the learning algorithm.
Here, E(Xtr), is a regularizer that uses a distance notion to
calculate the distance between the scores from two different
groups, i, j ∈ G. We take this two-stage fine-tuning approach
instead of directly optimizing Equation 7 starting from random
weights for two reasons. First, by using θbase as our starting
point, we are able to start at the most accurate solution and
observe the trade-off we incur between inter-group fairness and
accuracy during the training process in 7. Second, training the
scoring model using Equation 7 with a randomized initialization
of θ can lead to instability in the resulting output of θeq

reflected by the random seed from which θ is initialized.
Two common regularizers are considered to compare with

our pre-processing framework: (1) an Earth Mover’s distance
(EMD) regularizer [46] and (2) a Kullback–Leibler (KL)
divergence regularizer [8]. The EMD regularizer is of the
form:

EMD(X
(i)
tr ,X

(j)
tr ) =

C∑
n=1

(CDFn(ĥi)− CDFn(ĥj))
2, (8)

where ĥi and ĥj are Gaussian approximated histogram bins
calculated from X

(i)
tr and X

(j)
tr , CDFn represents the energy

in the nth bin of the cumulative distribution function, and
n represents the bin number. Because rectangular histogram
bins are non-differentiable at the bin edges, we use Gaussian
approximations of the rectangular histogram bins as done by
Chen et al. [8] so that we can apply a (sub-)gradient-based
learning algorithm for optimizing θ.

For the second regularizer tested, we use the symmetric KL
divergence with an added Gaussian assumption that Chen et
al. [8] formulate. Since the KL divergence is less tractable than
the EMD, using the aforementioned Gaussian approximated
histogram binning approach leads to convergence issues when
trying to equalize group distributions. Adding the Gaussian
assumption instead leads to a simple loss that is only dependent
on the second-order statistics of each group dataset, alleviating
these tractability issues. Thus, letting Ni and Nj represent
normal distributions with the same mean and variance as group
i and group j, respectively. Then, the regularizer is given as:

KL(X
(i)
tr ,X

(j)
tr )

=
1

2
(
(µ̂i − µ̂j)− σ̂i

σ̂j
+

(µ̂j − µ̂i)− σ̂j

σ̂i
)− 2. (9)

V. EXPERIMENTAL RESULTS

A. Datasets for Experimental Studies

In this section, the proposed pre-processing framework is
analyzed on the Adult [47], COMPAS risk assessment [41]
and Law School [48] datasets—three benchmark datasets
with known biases with respect to a given sensitive attribute.
For brevity, we simply refer to these datasets as the Adult,
COMPAS, and Law datasets. The Adult dataset contains a
variety of features correlated with an individual’s financial

TABLE I: Dataset Compositions

Characteristic Adult COMPAS Law

Features

age
workclass

fnlwgt
education

education-num
marital-status

occupation
relationship

race
capital-gain
capital-loss

hours-per-week
native-country

age
sex

juv_fel_count
juv_misd_count
juv_other_count

priors_count
c_charge_degree

decile1b
decile3

lsat
ugpa

zfygpa
zgpa

fulltime
family income

sex
tier

Class Label
Income >50k

(0/1)
Recividate

(0/1)
Pass Bar

(0/1)

Sensitive attribute
Sex

(Male/Female)
Race

(White/Black)
Race

(White/Non-white)
# Samples

(Group 1/Group 2) 30527 / 14695 2103 / 3175 17491 / 3307

# 0/1 Class Labels
(Group 1) 20988 / 9539 822 / 1281 1377 / 16114

# 0/1 Class Labels
(Group 2) 13026 / 1669 1514 / 1661 916 / 2391

status. The ML task for this dataset is to predict whether
individuals in the dataset make above or below $50,000
annually, with bias existing in the features on the basis of
sex, with females being less likely than males to make over
$50,000. The COMPAS dataset is composed of the records
of criminal defendants screened by the COMPAS model in
Broward County. It includes information on a defendant’s
demographics, case details, and criminal histories, with the
ML task being to use this information to predict whether a
person recidivated within two years of being screened. Biases
have been found to exist in the score distributions of white and
black demographic groups produced by ML models trained on
this dataset, with the white demographic group having lower
scores than the black demographic group on average. The Law
dataset contains law school admissions records from a survey
conducted by the Law School Admission Council (LSAC)
across 163 law schools in the United States in 1991. Using
the variables provided in this dataset, the ML task is to predict
whether someone is likely to pass the bar exam or not. ML
models trained on this dataset have been shown to produce
biased score distributions when predicting whether white and
non-white demographic groups will pass the bar examination,
with the white demographic group having much higher scores
on average.

In Table I we provide details on the composition of each
dataset used for training and testing the models for our
experiments. Full descriptions of the features in each dataset
are provided in Table IV of the appendix. Group 1 and Group
2 respectively refer to the advantaged and disadvantaged groups
of each dataset. It can clearly be observed that bias exists in the
class label distributions associated with each group. We also
note that 0 and 1 class labels associated with each dataset may
have opposing connotations. For the Adult and Law datasets,
a 1 class label respectively indicates that a person makes over
$50,000 annually or passed the bar examination (which is
good), while for the COMPAS dataset, a 1 class label indicates
that a person did recidivate (which is bad). Moreover, in the
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Fig. 6: Plots of the value of ∆TIDP at different thresholds when an average ∆WGF value has been achieved for three different
models: (a) LR, (b)MLP, and (c) SVM.

COMPAS dataset, the minority group (Group 1) is advantaged,
while the opposite is the case in the Adult and Law dataset.
We can further observe that there is a large variation in the
sample size of each dataset. Thus, there is diversity in the
distributions associated with each dataset, which is good for
drawing generalized insights from our results.

B. Experimental Details

The ensuing subsections are devoted to testing our pre-
processing framework’s ability to achieve both inter- and within-
group fairness on all three datasets. We compare its performance
with the regularization approaches described in Section IV-B.
As done by Chen et al. [8], we split all data into 70% training
and 30% testing for the COMPAS and Law datasets and make
the simplifying assumption that race is the only binary sensitive
attribute that creates inter-group biases in the data. The Adult
dataset was originally partitioned into a 75%-25% training-
testing split by its creators. For this dataset, we treat sex as the
sensitive attribute. All binary and categorical variables were
one-hot-encoded and all ML models were trained in TensorFlow
using gradient descent with step sizes between 0.1 and 0.0001.
All programs were conducted using Python 3.8 and run on a
MacBook Pro (1.7 GHz Quad-Core Intel Core i7) with no GPU
support. We used the SciPy library for k-d tree construction
and set k = 10 for the number of nearest neighbors used

in constructing the mappings from the group to population
domain for all experiments. We also use this library to construct
Delaunay triangulations for the experimental analysis provided
in Section V-G.

C. Baseline vs. Pre-processing Framework: Risk Distribution
Comparison

In this section, the risk score distributions produced by the
baseline scoring function and the pre-processing framework are
visually compared for three different scoring functions: a logis-
tic regression (LR), three-layer perception (MLP), and support
vector machine (SVM). These distributions are presented in
Figure 5, with the first and second rows corresponding with the
Adult dataset, the third and fourth rows corresponding with the
COMPAS dataset, and the fifth and sixth rows corresponding
with the Law dataset. The first, third, and fifth rows of
distributions capture the baseline scoring function results
applied to the raw feature vectors. The second, fourth, and sixth
rows of distributions use the pre-processing framework to map
the raw feature vectors to the canonical population domains for
each dataset before applying their baseline scoring functions to
generate their score distributions. The dark, overlapped regions
in these plots capture the similarity between the distributions of
Groups 1 and 2. A classifier that perfectly captures the threshold
invariant demographic parity group fairness definition, TIDP,
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Fig. 7: Plots of ∆WGF at different thresholds when an average ∆TIDP value has been achieved for three different models: (a)
LR, (b)MLP, and (c) SVM.

would produce entirely overlapped distributions. It can clearly
be seen that distributions associated with the pre-processed
features show significantly more overlap than those associated
with the raw features for each model for all datasets. Notably,
the biases seen in the risk distributions for all sensitive groups
is removed when the canonical features are used in place of the
raw features for each dataset. Hence, these illustrations capture
the improvements made in inter-group fairness by applying the
baseline scoring function to the canonical features instead of
to raw features.

D. Pre-processing Framework vs. Regularization Methods

In this section, our pre-processing framework’s ability to
achieve inter- and within-group fairness is compared with
the two regularization methods described in Section IV-B
respectively using the measures ∆TIDP and ∆WGF from
Sections III-B and III-C. ∆TIDP represents the average Calder-
Verwer (CV) score obtained for all thresholds t ∈ [0, 1]. The CV
score measures the absolute difference between the percentage
of individuals in each demographic group that lie on one side
of the threshold decision boundary, t. The lower this value,

the better a model is at satisfying inter-group fairness for a
given value of t. By averaging over all values of t ∈ [0, 1],
∆TIDP ensures that inter-group fairness is not sensitive to an
arbitrary choice of t. Hence smaller values of ∆TIDP indicate
that a model is able to satisfy inter-group fairness regardless
of our choice in t, meaning that the distributions of scores for
different demographic groups are equalized.

As described in Section III-C, ∆WGF measures the percent-
age of individuals that are treated differently by two different
mappings (i.e. the change in the signed distance between pairs
of scores within a group is greater than ϵ). This means that
a lower value of this metric leads to better preservation of
the treatment of individuals across two mappings. In our case,
we require any proposed method to treat pairs of individuals
within the same demographic group similarly to the baseline
model to ensure that within-group fairness is preserved.

Intuitively, obtaining low values of ∆TIDP may require a
model to adjust two groups’ score distributions to overlap.
In situations in which a model applies large morphological
changes to each group’s score distribution (meaning the
ordering of scores or shapes of the group distributions is
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significantly changed), this will cause tension between ∆TIDP

and ∆WGF . This is because ∆WGF aims to preserve the
structure of each group’s baseline score distribution. Thus, a
model that can successfully achieve low values of ∆TIDP

and ∆WGF will minimize the structural changes required to
equalize each group’s score distributions.

Regularization methods achieve different levels of ∆TIDP

and ∆WGF through tuning the hyper-parameter, λ, in Equa-
tion 7. In contrast, our pre-processing framework achieves a
single level of fairness since it involves no hyper-parameters.
Therefore, we aim to compare the ability of these approaches
to simultaneously satisfy inter- and within-group fairness by
answering the following questions: (1) How do the values
of ∆TIDP compare when the regularization methods are
required to achieve comparable values of ∆WGF to our pre-
processing method? (2) How do the values of ∆WGF compare
when the regularization methods are required to achieve
comparable values of ∆TIDP to our pre-processing method?
If the regularization methods are able to perform as well as our
pre-processing framework, the answer to question (1) should
be that the differences between groups, measured by ∆TIDP ,
across all models are comparable, and the answer to question (2)
should be that the mapping differences, measured by ∆WGF ,
across all models are comparable.

We approach the first question as follows. For each pair
of models and regularizers, we perform multiple rounds of
training over a range of values for λ in Equation 7. Then, from
all the training sessions for each pair, we select the model for
which the average value (taken over ϵ ∈ [0, 0.5]) of ∆WGF

is closest to equaling the average value of ∆WGF produced
by our pre-processing method. Given that the pre-processing
framework and regularization methods achieve approximately
equal values of ∆WGF , the method that produces a lower
value of ∆TIDP is better at achieving overall fairness. The
second question is approached in the reverse direction. That is,
we again perform multiple rounds of training for each model-
regularizer pairing. Then, from all the training sessions for
each pair, we select the model for which the average value
(taken over t ∈ [0, 1]) of ∆TIDP is closest to the average value
of ∆TIDP produced by our pre-processing method. We refer
the reader to Section V-F for a detailed analysis of λ.

The results of our comparative analysis are summarized
in Figure 6 and Figure 7 for the Adult, COMPAS, and Law
testing data. Figure 6 displays plots of the inter-group fairness
measure, ∆TIDP , for the pre-processing framework and both
regularization methods for three different ML models. The
values of ∆WGF above each plot represent the average value of
the within-group fairness measure associated with a particular
method. Thus, we can see that for approximately equal values
of ∆WGF , the pre-processing framework consistently provides
significantly lower ∆TIDP values for all models and thresholds
for all datasets.

Figure 7 displays plots of the within-group fairness measure,
∆WGF , for the pre-processing framework and both regular-
ization methods for three different ML models. The value
of ∆TIDP above each plot represents the average value of
the inter-group fairness measure associated with a particular
method. Again, regardless of the ML model, our pre-processing

framework can achieve lower values ∆WGF for a wide range
of thresholds for all datasets, indicating that fewer pairs of
individuals in the pre-processing framework violate within-
group fairness. Thus, the results in Figures 6 and 7 indicate
that the regularization methods must make significantly larger
compromises between inter-group and within-group fairness
than our pre-processing framework.

E. Performance Evaluation of Pre-processing Framework

In this section, we compare the performances of our pre-
processing framework to the regularization methods when all
methods achieve comparable levels of inter-group fairness (i.e.
∆TIDP is approximately the same for each approach). The
baseline classifier should produce superior performance to all
of these methods. However, the performance of a fair model
should not significantly deteriorate if it is to be considered
useful in practice. Thus, we use two metrics—accuracy
and area under the curve (AUC) for the receiver operating
characteristic (ROC) curve—to compare the performances of
our pre-processing framework and regularization methods to
the baseline classifier’s performance.

To analyze the accuracy of a method, we use a value of 0.5
as the threshold for all classifiers since this is the most common
value used in practice. The resulting performances of these
methods on the test data of the Adult, COMPAS, and Law
datasets are shown in Table II. To verify that each approach
achieves a comparable level of inter-group fairness, we provide
the values of ∆TIDP associated with each model in this table.
The results show that the pre-processing framework outperforms
the regularization-based methods in AUC for all datasets and
accuracy for all datasets except the Adult dataset, for which the
EMD regularizer produces slightly higher accuracy. Compared
with the baseline model, no more than a 2.78% drop in accuracy
and 0.022 drop in AUC is incurred by any of the three ML
models when applying the pre-processing framework to the
COMPAS dataset. In contrast, when applying the regularization
methods to the COMPAS dataset, we see accuracy drop-offs
of over 8.91% and AUC drop-offs of over 0.100 in all cases.

Although the pre-processing framework also outperforms the
regularization approaches on the Law dataset, the difference
is less pronounced. That is, all methods incur a little drop in
accuracy from the baseline model. This is because there is
large class imbalance for this dataset, with 88.86% of the class
labels in the test set and 88.97% of the class labels in the entire
dataset having a value of 1. Thus, simply assigning everyone
the same class label will achieve a high accuracy. This explains
why the accuracies of all regularization methods for the Law
dataset are identical—each of the regularized models assigns
a class label of 1 to every person in the test set. On the other
hand, the accuracies displayed for our pre-processing method
for the Law dataset show slightly higher variability. The higher
accuracies produced by the LR and MLP models result from
our pre-processing method’s ability to preserve the left tails
of the score distributions produced by their baseline models.
This is illustrated in the first and second plots in the bottom
row of Figure 5 in which the tails of the score distributions
produced by the pre-processing method stretch below the 0.5
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TABLE II: Performance comparisons on the Adult, COMPAS, and Law Datasets. Results are presented across five trials.

  Baseline Pre-processing EMD Regularizer KL Regularizer 
  Acc. AUC ∆𝑇𝐼𝐷𝑃 Acc. AUC ∆𝑇𝐼𝐷𝑃 Acc. AUC ∆𝑇𝐼𝐷𝑃 Acc. AUC ∆𝑇𝐼𝐷𝑃 

Adult 

LR 84.55±".$" 0.901±".""% 0.186±".""& 81.84±".%$ 𝟎. 𝟖𝟔𝟎±".""% 0.008±".""% 𝟖𝟐. 𝟏𝟔±"."% 0.847±".""% 0.007±".""% 81.13±".$' 0.830±".""( 0.014±".""( 
MLP 85.19±".%" 0.908±".""% 0.186±".""% 81.48±".") 𝟎. 𝟖𝟔𝟖±".""% 0.010±".""% 𝟖𝟏. 𝟖𝟓±".%* 0.842±".""$ 0.013±".""% 80.29±".&) 0.840±".""( 0.017±".""$ 
SVM 84.40±".%' 0.898±".""% 0.173±".""% 81.91±".%* 𝟎. 𝟖𝟓𝟗±".""$ 0.014±".""$ 𝟖𝟐. 𝟑𝟑±"."( 0.847±".""% 0.009±".""$ 81.27±".$" 0.826±".""$ 0.014±".""( 

Avg. Drop    2.97 0.040  2.60 0.570  3.81 0.070  

COMPAS 

LR 68.41±"."" 0.740±".""" 0.150±".""% 𝟔𝟕. 𝟎𝟗±"."" 𝟎. 𝟕𝟏𝟖±".""" 0.017±".""" 56.89±".%' 0.588±".""$ 0.017±"."%" 55.25±%."* 0.554±".""% 0.022±".""' 
MLP 67.95±".(" 0.743±".""" 0.152±".""( 𝟔𝟔. 𝟔𝟎±".%( 𝟎. 𝟕𝟐𝟐±".""% 0.021±".""$ 60.31±%."% 0.641±".""' 0.019±".""+ 59.68±$.*, 0.595±"."+) 0.041±"."$" 
SVM 67.53±"."" 0.737±".""" 0.148±".""" 𝟔𝟒. 𝟕𝟓±"."" 𝟎. 𝟕𝟏𝟕±".""" 0.015±".""" 56.18±%.+( 0.556±".""% 0.015±".""& 52.03±%.** 0.530±".""* 0.017±"."") 

Avg. Drop    1.33 0.021  11.52 0.145  13.16 0.180  

Law 

LR 89.74±"."( 0.869±".""" 0.197±".""% 𝟖𝟗. 𝟏𝟒±"."& 𝟎. 𝟖𝟏𝟖±".""" 0.007±".""% 88.86±"."" 0.712±".""% 0.007±".""% 88.86±"."" 0.630±"."%, 0.005±".""$ 
MLP 89.75±"."+ 0.872±".""% 0.188±".""$ 𝟖𝟗. 𝟏𝟗±"."$ 𝟎. 𝟖𝟏𝟗±".""% 0.007±".""+ 88.86±"."" 0.714±"."%& 0.006±".""% 88.86±"."" 0.701±"."%& 0.002±".""$ 
SVM 88.86±"."" 0.862±".""$ 0.047±"."%$ 88.86±"."" 𝟎. 𝟖𝟏𝟗±".""% 0.002±".""% 88.86±"."" 0.745±"."&& 0.001±".""" 88.86±"."" 0.651±"."$% 0.001±".""" 

Avg. Drop    0.60 0.049  0.88 0.144  0.88 0.204  

 
 Adult COMPAS Law 
 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 
DT –– –– 172.59±".$% 905.46±&".'' –– –– 

𝑘-𝑑 Tree 16.12±(.)* 4.78±(.(+ 0.05±(.(" 0.10±(.(" 1.07±(.(% 0.16±(.(" 
 
 

Dataset Feature Description 

Adult 

age Individual’s age 
workclass Employment status 
fnlwgt Weight variable 
education Highest education level attained 

education-num Numerical form of education variable 
marital-status Individual’s age 
occupation Individual’s general occupation category 
relationship Individual’s relationship to others 
race Individual’s race 

capital-gain Amount of capital gains 
capital-loss Amount of capital losses 

hours-per-week Number of hours worked per week 
native-country Individual’s country of origin 

COMPAS 

age Defendant age 
sex Defendant sex 

juv_fel_count # juvenile felonies committed 
juv_misd_count # juvenile misdemeanors committed 
juv_other_count # of other crimes commited 
priors_count # prior criminal records 

c_charge_degree Charge degree (felony/ misdemeanor) 

Law 

decile1b Decile in the school given student’s grades in Year 1 
decile3b Decile in the school given student’s grades in Year 3 
lsat LSAT score 
ugpa Undergraduate GPA 
zfygpa First year law school GPA 
zgpa Cumulative law school GPA 
fulltime Whether student will work full- or part-time 

family income Student’s family income bracket 
sex Student’s sex 
tier Student’s tier 

 

threshold. As a result, some of the test samples are assigned 0
class labels. Conversely, the AUC for the ROC curve shows
much more significant drop-offs in the results obtained for the
regularization methods than the pre-processing method. This is
because the ordering of scores produced by the regularization
methods has become shuffled with respect to the score ordering
of the baseline model. This causes the results to be sensitive
to the placement of the decision threshold over the support of
the score distribution.

As previously mentioned, our pre-processing approach
achieves slightly lower accuracy on the Adult dataset compared
to the EMD regularizer when using a 0.5 classification threshold.
This is not unexpected since accuracy is determined by applying
a single threshold to the score distributions to perform classifi-
cation. Though 0.5 is a common choice of threshold, it may
not be universally optimal for every dataset. This observation
is reflected in the fact that our pre-processing framework’s
AUC performance is higher than the EMD regularizer’s for
every dataset, including the Adult dataset. Since AUC captures
the dynamics associated with selecting any threshold in the
range [0, 1], it is threshold invariant.

F. λ Sensitivity Analysis
In Section V-D, we analyzed inter- and within-group fairness

for the EMD and KL regularization methods by tuning λ in
Equation 7. In this section, we provide experimental results
that illustrate the effect that λ has on the values of ∆TIDP

and ∆WGF for these methods. Figure 8 provides plots that
illustrate the progression of the values of ∆TIDP and ∆WGF

as λ is tuned over a range of values to train the LR, MLP, and
SVM models. For all datasets, each of these models was trained
over five sessions for each value of λ. Each plot contains four
curves (with standard deviation error bars from the five trials)
which provide the test results for the values of ∆TIDP and
∆WGF for the EMD and KL regularizers. The left and right
y-axes respectively provide the scales for the ∆TIDP (blue and
red) and ∆WGF (black and green) curves. We personalize the
tuning of λ for each model and regularizer pairing since the
strength of λ may have different effects on each pairing. Thus,
the top x-axis provides the scale of λ for all EMD regularizer
results (the blue and black curves), while the bottom x-axis
provides the scale of λ for all KL regularizer results (the red
and green curves).

As the strength of λ increases, we can see that the red
and blue curves decrease in value, meaning that the values of

∆TIDP associated with the two regularizers drop, and group
fairness is improved. However, in every case, drops in ∆TIDP

lead to increases in ∆WGF , indicated by the green and black
curves, which means that there is an increase in the violation of
within-group fairness. The size of this effect varies by dataset
and model. The COMPAS dataset, for example, tends to lead to
the largest violation of ∆WGF and also produces the least stable
curves, indicated by the large standard deviations associated
with its curves. The features in this dataset likely lack enough
heterogeneity to allow a model to learn to distinguish between
its two sensitive groups, causing it to make extreme adjustments
to its baseline score distribution to satisfy inter-group fairness.
These results highlight the contribution of our pre-processing
framework, which does not suffer this inter- and within-group
fairness trade-off. The Adult and Law datasets also suffer
from this issue, though the extent of these violations is less
pronounced. This is in part because these contain a larger and
more fruitful set of features.

G. Time Complexity Comparison: k-d Tree vs Delaunay
Triangulation

An important and non-trivial consideration that must be taken
into account for representing the manifold used in our pre-
processing framework is the time required to construct the data
structure used to represent it. While we have found that using
the Delaunay Triangulation (DT) in place of the k-d tree in our
pre-processing framework produces comparable performance
results for the COMPAS dataset, the time complexity for
computing a DT from N feature vectors in dimension k is
O(N⌈k⌉), which quickly becomes intractable as the feature
vector dimension grows to double digits. In comparison, the
time complexity of constructing a k-d tree is O(kNlog(N)),
which is far less expensive and linear in the feature vector
dimension, k. To illustrate this computational difference, we
present the time complexities in seconds associated with
computing these data structures for Groups 1 and 2 for the
Adult, COMPAS, and Law datasets in Table III. A clear and
stark contrast between the costs associated with computing
the DTs and k-d trees can clearly be observed in this table.
In particular, the k-d tree is always able to be computed in
under 20 seconds for each group for all datasets. Conversely,
no DT is able to be constructed in a relatively similar amount
of time. Notably, for the Adult and Law datasets, each group’s
associated DT is unable to be computed in under 12 hours. This
is because both of these datasets contain far more samples than
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Fig. 8: Plots of ∆TIDP and ∆WGF for the EMD and KL regularizers for different values of λ. Results provided for training
LR, MLP, and SVM models over 5 sessions for the Adult, Compas, and Law datasets.

TABLE III: Time complexity comparison for constructing data structures. Results are presented in seconds across five trials.
Processes not terminated within 12 hours are reported as "—."

  Baseline Pre-processing EMD Regularizer KL Regularizer 
  Acc. AUC ∆𝑇𝐼𝐷𝑃 Acc. AUC ∆𝑇𝐼𝐷𝑃 Acc. AUC ∆𝑇𝐼𝐷𝑃 Acc. AUC ∆𝑇𝐼𝐷𝑃 

Adult 

LR 84.55±".$" 0.901±".""% 0.186±".""& 81.84±".%$ 𝟎. 𝟖𝟔𝟎±".""% 0.008±".""% 𝟖𝟐. 𝟏𝟔±"."% 0.847±".""% 0.007±".""% 81.13±".$' 0.830±".""( 0.014±".""( 
MLP 85.19±".%" 0.908±".""% 0.186±".""% 81.48±".") 𝟎. 𝟖𝟔𝟖±".""% 0.010±".""% 𝟖𝟏. 𝟖𝟓±".%* 0.842±".""$ 0.013±".""% 80.29±".&) 0.840±".""( 0.017±".""$ 
SVM 84.40±".%' 0.898±".""% 0.173±".""% 81.91±".%* 𝟎. 𝟖𝟓𝟗±".""$ 0.014±".""$ 𝟖𝟐. 𝟑𝟑±"."( 0.847±".""% 0.009±".""$ 81.27±".$" 0.826±".""$ 0.014±".""( 

Avg. Drop    2.97 0.040  2.60 0.570  3.81 0.070  

COMPAS 

LR 68.41±"."" 0.740±".""" 0.150±".""% 𝟔𝟕. 𝟎𝟗±"."" 𝟎. 𝟕𝟏𝟖±".""" 0.017±".""" 56.89±".%' 0.588±".""$ 0.017±"."%" 55.25±%."* 0.554±".""% 0.022±".""' 
MLP 67.95±".(" 0.743±".""" 0.152±".""( 𝟔𝟔. 𝟔𝟎±".%( 𝟎. 𝟕𝟐𝟐±".""% 0.021±".""$ 60.31±%."% 0.641±".""' 0.019±".""+ 59.68±$.*, 0.595±"."+) 0.041±"."$" 
SVM 67.53±"."" 0.737±".""" 0.148±".""" 𝟔𝟒. 𝟕𝟓±"."" 𝟎. 𝟕𝟏𝟕±".""" 0.015±".""" 56.18±%.+( 0.556±".""% 0.015±".""& 52.03±%.** 0.530±".""* 0.017±"."") 

Avg. Drop    1.33 0.021  11.52 0.145  13.16 0.180  

Law 

LR 89.74±"."( 0.869±".""" 0.197±".""% 𝟖𝟗. 𝟏𝟒±"."& 𝟎. 𝟖𝟏𝟖±".""" 0.007±".""% 88.86±"."" 0.712±".""% 0.007±".""% 88.86±"."" 0.630±"."%, 0.005±".""$ 
MLP 89.75±"."+ 0.872±".""% 0.188±".""$ 𝟖𝟗. 𝟏𝟗±"."$ 𝟎. 𝟖𝟏𝟗±".""% 0.007±".""+ 88.86±"."" 0.714±"."%& 0.006±".""% 88.86±"."" 0.701±"."%& 0.002±".""$ 
SVM 88.86±"."" 0.862±".""$ 0.047±"."%$ 88.86±"."" 𝟎. 𝟖𝟏𝟗±".""% 0.002±".""% 88.86±"."" 0.745±"."&& 0.001±".""" 88.86±"."" 0.651±"."$% 0.001±".""" 

Avg. Drop    0.60 0.049  0.88 0.144  0.88 0.204  

 
 Adult COMPAS Law 
 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 
DT –– –– 172.59±".$% 905.46±&".'' –– –– 

𝑘-𝑑 Tree 16.12±(.)* 4.78±(.(+ 0.05±(.(" 0.10±(.(" 1.07±(.(% 0.16±(.(" 
 
 

Dataset Feature Description 

Adult 

age Individual’s age 
workclass Employment status 
fnlwgt Weight variable 
education Highest education level attained 

education-num Numerical form of education variable 
marital-status Individual’s age 
occupation Individual’s general occupation category 
relationship Individual’s relationship to others 
race Individual’s race 

capital-gain Amount of capital gains 
capital-loss Amount of capital losses 

hours-per-week Number of hours worked per week 
native-country Individual’s country of origin 

COMPAS 

age Defendant age 
sex Defendant sex 

juv_fel_count # juvenile felonies committed 
juv_misd_count # juvenile misdemeanors committed 
juv_other_count # of other crimes commited 
priors_count # prior criminal records 

c_charge_degree Charge degree (felony/ misdemeanor) 

Law 

decile1b Decile in the school given student’s grades in Year 1 
decile3b Decile in the school given student’s grades in Year 3 
lsat LSAT score 
ugpa Undergraduate GPA 
zfygpa First year law school GPA 
zgpa Cumulative law school GPA 
fulltime Whether student will work full- or part-time 

family income Student’s family income bracket 
sex Student’s sex 
tier Student’s tier 

 

the COMPAS dataset. This emphasizes the scalability issues
associated with using the DT for manifold representation in
higher dimensions. It is also notable that it costs more time
to construct the k-d tree for the Adult dataset than for the
Law dataset. The reasons for this are: (1) the Adult dataset
contains more samples and (2) the Adult dataset contains more
categorical features than the Law dataset, meaning that when
they are one-hot encoded, the dimensions of the associated
feature vectors increase. Nevertheless, the time complexities
associated with constructing the k-d tree for the Adult dataset
are still quite efficient.

VI. LIMITATIONS AND DISCUSSIONS

In this section, we list and discuss the limitations associated
with our proposed framework. We first note that for the pro-

posed algorithm to succeed in achieving both inter- and within-
group fairness, the following assumption must approximately
hold: if the distance between the scores of two feature vectors
is close, then the distance between these feature vectors in
the input space should be close. This assumption holds well
on for the Adult, COMPAS, and Law datasets, but may not
hold in general. If this situation fails, feature vectors that are
close in the group domain may map to feature vectors that
are far from each other in the population domain. Thus, and
convex sum of these population feature vectors may lie outside
the population manifold. To resolve this issue in our ongoing
research, we are investigating new approaches for constructing
feature correspondences between the group and population
manifolds.
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Second, we note that the mapping constructed in the
configuration of the pre-processing framework proposed in
this paper requires storing the entire training dataset in the k-d
tree data structure. While this approach allowed us to construct
an interpretable mapping between a group and the population
manifold, more compact representations may potentially be
constructed by incorporating the mapping construction into the
learning process. We plan to further investigate such solutions
in our future work.

We also would like to observe that the focus of this work
has been analyzing the effectiveness of our framework on
tabular data. Nevertheless, our framework has the potential
to be generalized to other forms of data, such as image data.
While such data in its raw form may exist in much higher
dimensions, which may produce a computational burden when
constructing the k-d tree, our framework may be applied to
the features in the latent space of intermediate layers in an ML
model or to feature vectors to which dimensionality reduction
has first be applied.

Finally, we would like to mention two comments with regard
to the results of our study. First, while we have observed that
TIDP and WGF may conflict for the Adult, COMPAS, and
Law datasets, this conflict is distributional dependent and should
not be present in datasets for which the baseline classifier
does to produce a major violation of demographic parity. For
reference, Le Quy et al. [49] provide a survey of the primary
benchmark datasets used for analyzing fairness in ML and list
common fairness definitions that conflict with each. Second,
we would like to acknowledge that, while we have compared
our fairness framework against two regularization methods
using three ML models, this list does not include an exhaustive
analysis of all potential regularizers and ML models, which
may influence our results.

VII. CONCLUSION

In this paper, we study the importance of maintaining within-
group fairness in situations where satisfying inter-group fairness
is required. We introduce a notion of within-group fairness
and a metric for measuring it. We have adopted the stricter
threshold invariant form of demographic parity for analyzing
inter-group fairness, which requires the scores generated for
different groups to be equally distributed. Furthermore, we
introduce a novel pre-processing framework that maps raw
features to a canonical domain before applying a classifier
and performs well in achieving inter-group and within-group
fairness. This framework requires sensitive group attributes to
be used only for pre-processing the raw features in the testing
stage of the machine learning process and never explicitly
provides the sensitive attributes to a classifier to make decisions.
To verify its effectiveness, we compare the performance of our
framework to models in which fairness is embedded in the
training process through regularization. Experimental results
demonstrate that our pre-processing framework can achieve
both inter-group and within-group fairness with little penalty
on accuracy.
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APPENDIX

In this appendix section, we provide details on the meaning
of each of the features used for classification in the Adult [47],
COMPAS [41], and Law [48] datasets. These descriptions are
respectively provided in Table IV.

TABLE IV: Feature descriptions for the Adult, COMPAS, and
Law datasets

  Baseline Pre-processing EMD Regularizer KL Regularizer 
  Acc. AUC ∆𝑇𝐼𝐷𝑃 Acc. AUC ∆𝑇𝐼𝐷𝑃 Acc. AUC ∆𝑇𝐼𝐷𝑃 Acc. AUC ∆𝑇𝐼𝐷𝑃 

Adult 

LR 84.55±".$" 0.901±".""% 0.186±".""& 81.84±".%$ 𝟎. 𝟖𝟔𝟎±".""% 0.008±".""% 𝟖𝟐. 𝟏𝟔±"."% 0.847±".""% 0.007±".""% 81.13±".$' 0.830±".""( 0.014±".""( 
MLP 85.19±".%" 0.908±".""% 0.186±".""% 81.48±".") 𝟎. 𝟖𝟔𝟖±".""% 0.010±".""% 𝟖𝟏. 𝟖𝟓±".%* 0.842±".""$ 0.013±".""% 80.29±".&) 0.840±".""( 0.017±".""$ 
SVM 84.40±".%' 0.898±".""% 0.173±".""% 81.91±".%* 𝟎. 𝟖𝟓𝟗±".""$ 0.014±".""$ 𝟖𝟐. 𝟑𝟑±"."( 0.847±".""% 0.009±".""$ 81.27±".$" 0.826±".""$ 0.014±".""( 

Avg. Drop    2.97 0.040  2.60 0.570  3.81 0.070  

COMPAS 

LR 68.41±"."" 0.740±".""" 0.150±".""% 𝟔𝟕. 𝟎𝟗±"."" 𝟎. 𝟕𝟏𝟖±".""" 0.017±".""" 56.89±".%' 0.588±".""$ 0.017±"."%" 55.25±%."* 0.554±".""% 0.022±".""' 
MLP 67.95±".(" 0.743±".""" 0.152±".""( 𝟔𝟔. 𝟔𝟎±".%( 𝟎. 𝟕𝟐𝟐±".""% 0.021±".""$ 60.31±%."% 0.641±".""' 0.019±".""+ 59.68±$.*, 0.595±"."+) 0.041±"."$" 
SVM 67.53±"."" 0.737±".""" 0.148±".""" 𝟔𝟒. 𝟕𝟓±"."" 𝟎. 𝟕𝟏𝟕±".""" 0.015±".""" 56.18±%.+( 0.556±".""% 0.015±".""& 52.03±%.** 0.530±".""* 0.017±"."") 

Avg. Drop    1.33 0.021  11.52 0.145  13.16 0.180  

Law 

LR 89.74±"."( 0.869±".""" 0.197±".""% 𝟖𝟗. 𝟏𝟒±"."& 𝟎. 𝟖𝟏𝟖±".""" 0.007±".""% 88.86±"."" 0.712±".""% 0.007±".""% 88.86±"."" 0.630±"."%, 0.005±".""$ 
MLP 89.75±"."+ 0.872±".""% 0.188±".""$ 𝟖𝟗. 𝟏𝟗±"."$ 𝟎. 𝟖𝟏𝟗±".""% 0.007±".""+ 88.86±"."" 0.714±"."%& 0.006±".""% 88.86±"."" 0.701±"."%& 0.002±".""$ 
SVM 88.86±"."" 0.862±".""$ 0.047±"."%$ 88.86±"."" 𝟎. 𝟖𝟏𝟗±".""% 0.002±".""% 88.86±"."" 0.745±"."&& 0.001±".""" 88.86±"."" 0.651±"."$% 0.001±".""" 

Avg. Drop    0.60 0.049  0.88 0.144  0.88 0.204  

 
 Adult COMPAS Law 
 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 
DT –– –– 172.59±".$% 905.46±&".'' –– –– 

𝑘-𝑑 Tree 16.12±(.)* 4.78±(.(+ 0.05±(.(" 0.10±(.(" 1.07±(.(% 0.16±(.(" 
 
 

Dataset Feature Description 

Adult 

age Individual’s age 
workclass Employment status 
fnlwgt Weight variable 
education Highest education level attained 

education-num Numerical form of education variable 
marital-status Individual’s age 
occupation Individual’s general occupation category 
relationship Individual’s relationship to others 
race Individual’s race 

capital-gain Amount of capital gains 
capital-loss Amount of capital losses 

hours-per-week Number of hours worked per week 
native-country Individual’s country of origin 

COMPAS 

age Defendant age 
sex Defendant sex 

juv_fel_count # juvenile felonies committed 
juv_misd_count # juvenile misdemeanors committed 
juv_other_count # of other crimes commited 
priors_count # prior criminal records 

c_charge_degree Charge degree (felony/ misdemeanor) 

Law 

decile1b Decile in the school given student’s grades in Year 1 
decile3b Decile in the school given student’s grades in Year 3 
lsat LSAT score 
ugpa Undergraduate GPA 
zfygpa First year law school GPA 
zgpa Cumulative law school GPA 
fulltime Whether student will work full- or part-time 

family income Student’s family income bracket 
sex Student’s sex 
tier Student’s tier 
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