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ABSTRACT

We consider the problem of recovering a complex vector (up

to a global unimodular constant) given noisy and incomplete

outer product measurements. Such problems arise when im-

plementing distributed clock synchronization schemes, radar

autofocus methods, and phaseless signal recovery. This prob-

lem is known as vector synchronization and is a variant of the

more common angular synchronization problem. In appli-

cations with windowed measurements and/or convolutional

models - for example, phase retrieval from STFT magnitude

data, the outer product measurement matrix is highly incom-

plete and has a block diagonal structure. We describe a vector

synchronization technique which applies an eigenvector com-

putation to blocks of this matrix followed by a block com-

patibility operation to piece together the final solution. We

provide theoretical guarantees (in the noiseless case) and em-

pirical simulations demonstrating the accuracy and efficiency

of the method.

Index Terms— Vector Synchronization, Phaseless Imag-

ing, Magnitude-only STFT Inversion

1. INTRODUCTION

We consider the problem of recovering (up to a global phase

constant) a complex vector x =
[
x0 x1 . . . xn−1

]T ∈
C

n, n ∈ N given the “measurement” matrix Z ∈ C
n×n with

Zjk =

{
xjxk + ηjk, (j, k) ∈ E,

0, (j, k) /∈ E.
(1)

Here ηjk ∼ CN (0, σ2) denotes independent and identically

distributed (circularly symmetric) complex Gaussian noise
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with variance σ2, a is the complex conjugate of a ∈ C and

E ⊆ {0, 1, . . . , n − 1}2 denotes an index set containing the

(ordered pair) entries for which measurements are available.

This problem is known as vector synchronization and is a

variant of the more common angular synchronization prob-

lem [1] where we recover n distinct angles {θi}n−1
i=0 given

angular differences or offsets. Indeed, if x is unimodular

(|xj | = |eiθj | = 1, j = 0, . . . , n − 1), we obtain the angu-

lar synchronization problem. Such problems arise in clock

synchronization schemes in distributed network settings [2],

certain imaging modalities (such as structured lifting tech-

niques for phaseless image recovery) [3] and when correcting

for systemic (autofocus) errors in radar imaging [4].

With perfect and complete measurements (i.e., ηjk = 0
and E = {0, 1, . . . , n− 1}2), we have Z = xx

∗ (with x
∗ de-

noting the conjugate transpose of x). Hence, we may recover

x by computing the (scaled) leading eigenvector (correspond-

ing to the largest eigenvalue) of the rank-1 matrix Z. We are,

however, interested in recovering x when Z has structure as

follows: 


• • ◦ ◦ ◦ ◦ ◦ •
• • • • ◦ ◦ ◦ •
◦ • • • ◦ ◦ ◦ ◦
◦ • • • • • ◦ ◦
◦ ◦ ◦ • • • ◦ ◦
◦ ◦ ◦ • • • • •
◦ ◦ ◦ ◦ ◦ • • •
• • ◦ ◦ ◦ • • •




with the •s denoting entries included in the index set E.

Such index sets arise in problems with convolutional mod-

els and/or windowed measurements such as ptychographic

phaseless imaging [5], which can be cast as a problem of

signal recovery from STFT magnitude measurements.

A simple eigenvector computation as in the case with per-

fect and complete measurements no longer works. An equiv-

alent procedure (after entrywise normalization of the nonzero

entries) may still be used to recover x; however, there are a

few important caveats. To start with, the corresponding Z is

no longer rank-1. It is also possible to show (see [3]) that the
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spectral gap reduces as the block size reduces or the problem

size increases. This can lead to reduced accuracy and robust-

ness when using traditional vector synchronization methods.

Related Work and Contributions

The more common angular synchronization problem has

been addressed previously (see, for example, [1]) via meth-

ods such as eigenvector, graph-based, and semi-definite pro-

gramming methods. We propose an eigenvector technique

which is motivated by the methods described in [1] and [3]

and applies to the above practically important block struc-

tured measurement setting. A similar procedure was utilized

in [6] to improve the magnitude recovery in ptychographic

reconstruction schemes. Additionally, the dissertation [7]

contains graph-theoretic analysis of the angular and vector

synchronization problems, including a theoretical robustness

bound for the setting discussed in this paper. It is remarked

in [7], however, that this bound is overly pessimistic. Numer-

ical results in this paper confirm this conjecture by showing

that the proposed method provides excellent robustness and

computational efficiency, and is even amenable to parallel

computations.

The rest of this paper is organized as follows: §2 sum-

marizes the connection between vector synchronization and

phaseless ptychographic imaging, while §3 discusses the

block vector synchronization method. Numerical experi-

ments confirming the efficacy and robustness of the method

are provided in §4, while §5 provides some concluding re-

marks.

2. PTYCHOGRAPHIC IMAGING

Ptychography [5] is a diffractive imaging technique where

overlapping local regions of a specimen under study are il-

luminated by electromagnetic radiation of appropriate wave-

length in a raster scan fashion. Diffraction pattern measure-

ments corresponding to each of these illuminations are then

combined together computationally to recover the specimen.

The physics of the imaging process means that the diffraction

patterns are (squared) magnitude-only measurements; never-

theless, by incorporating a suitable window or mask between

the radiation source and specimen, phase relationships be-

tween the components of the specimen can be encoded in the

phaseless measurements. All that remains is to solve a phase

retrieval problem [8, 9] to recover the phase and the specimen.

A discrete, 1D abstraction of this problem can be written

as follows: find (up to multiplications with a single unimodu-

lar constant) x ∈ C
n given the phaseless measurements

(yℓ)j =
∣∣∣
〈
x, S∗

ℓm
(j)

〉∣∣∣
2

, (ℓ, j) ∈ {0, 1, . . . , n−1}2, (2)

where Sℓ : C
n → C

n, (Sℓx)j := xj+ℓ is a circular shift op-

erator (with all indexing considered modulo-n), and {m(j)}

are a set of local masks with each m
(j) ∈ C

n having nonzero

entries in only the first s ∈ N (< n/2) indices. The shift oper-

ator models the raster scan process in ptychography while the

support constraint on m
(j) models the local illumination. The

measurement (yℓ)j hence corresponds to a shift index ℓ and

and mask index j. Depending on the imaging setup, fewer

than the full set of n shifts and/or n masks are typically used.

Note that (2) is nonlinear (and indeed, highly non-convex) in

the variable x, making convergent solutions difficult to com-

pute and guarantee. However, using a lifting argument [10],

we may linearize the measurements (denoted by A below) in

terms of the rank-1 matrix variable xx
∗, with

(yℓ)j =
∣∣∣
〈
x, S∗

ℓm
(j)

〉∣∣∣
2

=
〈
xx

∗, S∗
ℓm

(j)
m

(j)∗Sℓ

〉
HS︸ ︷︷ ︸

A(xx∗)ℓ,j

(3)

where ⟨·, ·⟩ : C
n × C

n → C, ⟨A,B⟩HS = trace(AB∗) is

the Hilbert-Schmidt inner product. Furthermore, due to the

local support constraints on the masks – characterized by the

parameter s – and the set of shifts {ℓ}, the measurements only

depend on a subset of entries of xx∗. In particular,

(yℓ)j =
〈
Ts(xx

∗), S∗
ℓm

(j)
m

(j)∗Sℓ

〉
HS

where Ts : C
n×n → C

n×n is a matrix restriction defined as

(Ts(A))jk =

{
Ajk, (j, k) ∈ E

0, (j, k) /∈ E

with E being an index set as in (1). For well designed mea-

surements, we have Span{S∗
ℓm

(j)
m

(j)∗Sℓ}ℓ,j = Ts (C
n×n),

and inverting the linear system A|Ts(Cn×n) yields Ts(xx
∗).

This leads us to the vector synchronization problem intro-

duced in §1 since Ts(xx
∗) = Z in the case of perfect (noise-

less and invertible) measurements.

3. BLOCK VECTOR SYNCHRONIZATION

By definition of (1) and the block structure of Z, we note that

each block is locally rank-1. Hence, we may compute the

Fig. 1: Illustrating block eigenvector computations

leading eigenvectors of the individual blocks accurately (due

to the rank-1 structure), efficiently (due to the typically small
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block size) and (if needed) in parallel. For the example in Fig.

1, the eigenvectors corresponding to the two indicated blocks

are denoted as u
(1) (corresponding to the green block) and

u
(2) (corresponding to the blue block), where we have

u
(1) = c1

[
x̂1 x̂2 x̂3

]T
, u

(2) = c2
[
x̂3 x̂4 x̂5

]T
.

Here x̂j denotes an approximation to the true component xj .

Since any multiple of an eigenvector is also an eigenvector,

c1, c2 ∈ C denote unavoidable local scale factors. The over-

lap of the blocks in Fig. 1, however, means that the last entry

of u(1) and the first entry of u(2) should coincide. More gen-

erally (as shown in Fig. 2), we require the last s−α entries of

block u
(ℓ−1) coincide with the first s−α entries of block u

(ℓ)

where s, α ∈ N (with s > α) and s denotes the block size.

These subvectors are denoted (and shaded red) as ũ(ℓ−1) and

ũ
(ℓ) respectively in Fig. 2. To resolve incompatibilities in

magnitude between the blocks, we set

Fig. 2: Illustrating block compatibility operations

u
(ℓ) ← ∥ũ(ℓ−1)∥2

∥ũ(ℓ)∥2
u
(ℓ) (4)

while incompatibilities in the phase are resolved by setting

u
(ℓ) ← ωu(ℓ), ω =

⟨ũ(ℓ−1), ũ(ℓ)⟩
⟨ũ(ℓ−1), ũ(ℓ−1)⟩ (5)

where ⟨x,y⟩ = y
∗
x denotes the complex inner product.

These block compatibility operations ensure that the overlap-

ping portions of the vectors agree with each other (i.e., they

are synchronized). Applying these to all pairs of successive

blocks (and noting the use of circular indexing), we obtain

Alg. 1. For ease of exposition, we have utilized the maps

R1, R2 : Cs → C
s−α which extract the last and first s − α

entries respectively given a vector u ∈ C
s, where

R1







u0

u1

...

us−1





 =




uα

uα+1

...

us−1


, R2







u0

u1

...

us−1





 =




u0

u1

...

us−α−1


 .

Similarly, we denote by Z(ℓ−1) and Z(ℓ) successive rank-1

blocks of Z (see highlighted boxes in Fig. 1 for illustration).

We note that any of the blocks may be denoted Z(0) for ini-

tialization purposes. A block Z(ℓ) typically consists of the s2

entries Zpℓ:pℓ+s−1,pℓ:pℓ+s−1 for a suitable pℓ ∈ Zn with all

indexing1 considered modulo-n. The succeeding block will

then contain the entries Zpℓ+α:pℓ+α+s−1,pℓ+α:pℓ+α+s−1.

1we use Matlab indexing notation here for simplicity

Algorithm 1 Eigenvector-based block vector synchronization

Input: Measurements Z ∈ C
n×n as per (1); block size s;

overlap parameter α
Output: Estimate x̂ ∈ C

n of the unknown signal x

1: Set Z ← (Z + Z∗)/2 to enforce Hermitian symmetry.

2: Compute λ(0) and u
(0) – the largest (in magnitude) eigen-

value and corresponding eigenvector of Z(0) and set

x̂k =
√
λ(0) u

(0)
k , k = p0, . . . , p0 + s− 1.

3: for ℓ = 1, . . . , N
α
− 1 do

4: Compute eigenpair λ(ℓ), u(ℓ) corresponding to Z(ℓ)

5: Extract overlapping entries in the successive blocks

ũ
(ℓ−1) = R1u

(ℓ−1), ũ
(ℓ) = R2u

(ℓ)

6: Apply block compatibility operations (4) and then (5)

7: Update output estimate

x̂k = u
(ℓ)
k , k = pℓ, . . . , pℓ + s− 1.

8: end for

By using the power method for eigenvector computations,

we can show that the method is essentially linear time with

cost O
(
ns2/α

)
. Moreover, we have the following theoretical

result in the noiseless (perfect measurements) setting.

Lemma 1. Let Z ∈ C
n×n be an admissible measurement ma-

trix as defined in (1) with ηjk identically zero for all (j, k) ∈
{0, 1, . . . , n− 1}2. Alg. 1 computes an estimate x̂ of the true

signal x ∈ C
n such that x̂ = ωx where ω ∈ C is a unimodu-

lar (|ω| = 1) constant.

Proof. The proof follows from the definition of Z, the rank-

1 property of each of the blocks Z(ℓ), and noting that the

block compatibility operations (4) and (5) yield perfect syn-

chronization in the case of noiseless measurements.

4. NUMERICAL RESULTS

We now provide representative results from empirical sim-

ulations. Results in this section were obtained using a lap-

top computer (Apple MacBook Pro with 16GB RAM and In-

tel Core i5 quad-core processor) in Matlab (R2021a). Data

points in the figures were obtained by averaging results from

50 trials. For noise robustness experiments, we report the

added noise level (as well as reconstruction errors) in the form

of signal to noise ratios (SNR) in decibels (dB), with

SNR (dB) = 10 log10

( ∥X∥2F
∥Z −X∥2F

)

Error (dB) = 10 log10

(
min|ω|=1 ∥ω x̂− x∥22

∥x∥22

)

where X , x and x̂ denote the noise-free measurement matrix,

true signal and estimate returned by Alg. 1 respectively.
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Fig. 3 plots the recovery error (in dB) versus the noise

level (SNR, in dB) when using Alg. 1. The problem and

block sizes are fixed to be n = 150 and s = 11 respectively.

Plots for various overlap parameters α are shown in Fig. 3.

Note that the noise level decreases (with increasing SNR) as

we move from left to right in the figure. As observed, we

expect to see straight line plots with roughly unit negative

slope and suitable vertical offset; this indicates recovery up

to the level of added noise. We also see that larger overlaps

(smaller α values) provide better robustness – in these cases,

more entries are used in block compatibility operations.

Fig. 3: Noise robustness of the proposed method

(a) Computational cost as a function of problem size n

(b) Computational cost as a function of block size s

Fig. 4: Computational efficiency simulations for Alg. 1

(a) Comparing the noise robustness of Alg. 1 with other methods

(b) Comparing the computational cost of Alg. 1 with other methods

Fig. 5: Comparisons with other methods

We next provide results confirming the computational cost

and efficiency of Alg. 1. Fig. 4a plots the execution time

for implementing Alg. 1 as a function of the problem size n.

We see that the execution time scales linearly as predicted in

§3. Similarly, Fig. 4b plots the the execution time for vari-

ous block sizes s. Here, the execution time scales as O(s2);
once again, this agrees with the prediction in §3. Finally,

Fig. 5 compares the performance of the proposed technique

with other methods from literature, including one based on

spectral analysis of a weighted graph Laplacian [7] and a clas-

sical (non-block based) eigenvector method [1]. These plots

confirm that Alg. 1 is a computationally efficient and robust

method for performing vector synchronization.

5. CONCLUSION

In this paper, we discussed a block eigenvector-based tech-

nique for the vector synchronization problem. Empirical re-

sults confirm the accuracy, robustness and computational ef-

ficiency of the method. Possible avenues for future research

include statistical estimation-theoretic analysis of the method,

deriving improved robust recovery guarantees (for example,

improving on the results from [7]), incorporation into existing

phaseless imaging algorithms, and considering constrained or

relaxed variants of the problem.
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