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ABSTRACT

We consider the problem of recovering a complex vector (up
to a global unimodular constant) given noisy and incomplete
outer product measurements. Such problems arise when im-
plementing distributed clock synchronization schemes, radar
autofocus methods, and phaseless signal recovery. This prob-
lem is known as vector synchronization and is a variant of the
more common angular synchronization problem. In appli-
cations with windowed measurements and/or convolutional
models - for example, phase retrieval from STFT magnitude
data, the outer product measurement matrix is highly incom-
plete and has a block diagonal structure. We describe a vector
synchronization technique which applies an eigenvector com-
putation to blocks of this matrix followed by a block com-
patibility operation to piece together the final solution. We
provide theoretical guarantees (in the noiseless case) and em-
pirical simulations demonstrating the accuracy and efficiency
of the method.

Index Terms— Vector Synchronization, Phaseless Imag-
ing, Magnitude-only STFT Inversion

1. INTRODUCTION

We consider the problem of recovering (up to a global phase

T
constant) a complex vector x = [xo T xnfl] S
C™, n € N given the “measurement” matrix Z € C"*" with

0, (J,k) ¢ E.

Here nj; ~ CN(0,0?) denotes independent and identically
distributed (circularly symmetric) complex Gaussian noise
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with variance o2, @ is the complex conjugate of a € C and
E C {0,1,...,n — 1}? denotes an index set containing the
(ordered pair) entries for which measurements are available.
This problem is known as vector synchronization and is a
variant of the more common angular synchronization prob-
lem [1] where we recover n distinct angles {6; ?;01 given
angular differences or offsets. Indeed, if x is unimodular
(|z;| = |e®%] =1, j = 0,...,n — 1), we obtain the angu-
lar synchronization problem. Such problems arise in clock
synchronization schemes in distributed network settings [2],
certain imaging modalities (such as structured lifting tech-
niques for phaseless image recovery) [3] and when correcting
for systemic (autofocus) errors in radar imaging [4].

With perfect and complete measurements (i.e., 75 = 0
and £ = {0,1,...,n— 1}?), we have Z = xx* (with x* de-
noting the conjugate transpose of x). Hence, we may recover
x by computing the (scaled) leading eigenvector (correspond-
ing to the largest eigenvalue) of the rank-1 matrix Z. We are,
however, interested in recovering x when Z has structure as
follows:
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with the es denoting entries included in the index set E.
Such index sets arise in problems with convolutional mod-
els and/or windowed measurements such as ptychographic
phaseless imaging [5], which can be cast as a problem of
signal recovery from STFT magnitude measurements.

A simple eigenvector computation as in the case with per-
fect and complete measurements no longer works. An equiv-
alent procedure (after entrywise normalization of the nonzero
entries) may still be used to recover x; however, there are a
few important caveats. To start with, the corresponding Z is
no longer rank-1. It is also possible to show (see [3]) that the
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spectral gap reduces as the block size reduces or the problem
size increases. This can lead to reduced accuracy and robust-
ness when using traditional vector synchronization methods.

Related Work and Contributions

The more common angular synchronization problem has
been addressed previously (see, for example, [1]) via meth-
ods such as eigenvector, graph-based, and semi-definite pro-
gramming methods. We propose an eigenvector technique
which is motivated by the methods described in [1] and [3]
and applies to the above practically important block struc-
tured measurement setting. A similar procedure was utilized
in [6] to improve the magnitude recovery in ptychographic
reconstruction schemes. Additionally, the dissertation [7]
contains graph-theoretic analysis of the angular and vector
synchronization problems, including a theoretical robustness
bound for the setting discussed in this paper. It is remarked
in [7], however, that this bound is overly pessimistic. Numer-
ical results in this paper confirm this conjecture by showing
that the proposed method provides excellent robustness and
computational efficiency, and is even amenable to parallel
computations.

The rest of this paper is organized as follows: §2 sum-
marizes the connection between vector synchronization and
phaseless ptychographic imaging, while §3 discusses the
block vector synchronization method. Numerical experi-
ments confirming the efficacy and robustness of the method
are provided in §4, while §5 provides some concluding re-
marks.

2. PTYCHOGRAPHIC IMAGING

Ptychography [5] is a diffractive imaging technique where
overlapping local regions of a specimen under study are il-
luminated by electromagnetic radiation of appropriate wave-
length in a raster scan fashion. Diffraction pattern measure-
ments corresponding to each of these illuminations are then
combined together computationally to recover the specimen.
The physics of the imaging process means that the diffraction
patterns are (squared) magnitude-only measurements; never-
theless, by incorporating a suitable window or mask between
the radiation source and specimen, phase relationships be-
tween the components of the specimen can be encoded in the
phaseless measurements. All that remains is to solve a phase
retrieval problem [8, 9] to recover the phase and the specimen.

A discrete, 1D abstraction of this problem can be written
as follows: find (up to multiplications with a single unimodu-
lar constant) x € C" given the phaseless measurements

A 2
(yf)j = ‘<X752<m(])> ) (&.7) € {0717 s ,’I’L—].}Q, (2)

where Sy : C* — C”, (Sx); := x,1¢ is a circular shift op-
erator (with all indexing considered modulo-n), and {m)}

are a set of local masks with each m/) € C™ having nonzero
entries in only the first s € N (< n/2) indices. The shift oper-
ator models the raster scan process in ptychography while the
support constraint on m) models the local illumination. The
measurement (y¢); hence corresponds to a shift index ¢ and
and mask index j. Depending on the imaging setup, fewer
than the full set of n shifts and/or n masks are typically used.
Note that (2) is nonlinear (and indeed, highly non-convex) in
the variable x, making convergent solutions difficult to com-
pute and guarantee. However, using a lifting argument [10],
we may linearize the measurements (denoted by .4 below) in
terms of the rank-1 matrix variable xx*, with

v0); = [{(x 5imO)|" = (o, SrmImO" ;) )

A(xx*) g5

where (-,-) : C* x C* — C, (A, B)ygs = trace(AB*) is
the Hilbert-Schmidt inner product. Furthermore, due to the
local support constraints on the masks — characterized by the
parameter s — and the set of shifts {£}, the measurements only
depend on a subset of entries of xx*. In particular,

(ye); = <T$(xx*)7 S}m(j)m(j)* S€>Hs

where T, : C"*"™ — C™*"™ is a matrix restriction defined as

Ajkv (.]a k) S
0, (k)¢E

with E being an index set as in (1). For well designed mea-
surements, we have Span{S;mm®)" Sy}, ; = T, (C"*™),
and inverting the linear system Al (cnxny yields T (xx*).
This leads us to the vector synchronization problem intro-
duced in §1 since T (xx*) = Z in the case of perfect (noise-
less and invertible) measurements.

(Ts (A))jk = {

3. BLOCK VECTOR SYNCHRONIZATION

By definition of (1) and the block structure of Z, we note that
each block is locally rank-1. Hence, we may compute the

Fig. 1: Illustrating block eigenvector computations

leading eigenvectors of the individual blocks accurately (due
to the rank-1 structure), efficiently (due to the typically small



block size) and (if needed) in parallel. For the example in Fig.
1, the eigenvectors corresponding to the two indicated blocks
are denoted as u(?) (corresponding to the green block) and
u® (corresponding to the blue block), where we have

11(1) = C1 [53‘\1 33\2 ./r\g}T, Ll(2) = C2 [./fg ./23\4 3)\5]T
Here ; denotes an approximation to the true component x;.
Since any multiple of an eigenvector is also an eigenvector,
c1, ¢ € C denote unavoidable local scale factors. The over-
lap of the blocks in Fig. 1, however, means that the last entry
of u™ and the first entry of u(® should coincide. More gen-
erally (as shown in Fig. 2), we require the last s — « entries of
block u*~ coincide with the first s — « entries of block u(®)
where s, € N (with s > «) and s denotes the block size.
These subvectors are denoted (and shaded red) as u“~) and
u® respectively in Fig. 2. To resolve incompatibilities in
magnitude between the blocks, we set
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Fig. 2: Tllustrating block compatibility operations
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where (x,y) = y*x denotes the complex inner product.
These block compatibility operations ensure that the overlap-
ping portions of the vectors agree with each other (i.e., they
are synchronized). Applying these to all pairs of successive
blocks (and noting the use of circular indexing), we obtain
Alg. 1. For ease of exposition, we have utilized the maps

R, Ry : C° — C®~ which extract the last and first s — «
entries respectively given a vector u € C?®, where

uo U Uo Uo
U1 Ua+1 (5} U1
Ry = , Ro =
Us—1 Us—1 Us—1 Us—a—1

Similarly, we denote by Z(¢=1) and Z() successive rank-1
blocks of Z (see highlighted boxes in Fig. 1 for illustration).
We note that any of the blocks may be denoted Z(®) for ini-
tialization purposes. A block Z© typically consists of the s2
entries Zp,.p,4+s—1,p,:p,+s—1 for a suitable py € Z, with all
indexing' considered modulo-n. The succeeding block will
then contain the entries Zp, 1 a:p,+a+s—1,ps+a:pr+ats—1-

we use Matlab indexing notation here for simplicity

Algorithm 1 Eigenvector-based block vector synchronization

Input: Measurements Z € C™*"™ as per (1); block size s;
overlap parameter «
Output: Estimate X € C™ of the unknown signal x
1: Set Z + (Z 4+ Z*)/2 to enforce Hermitian symmetry.
2: Compute A\(©) and u(®) — the largest (in magnitude) eigen-
value and corresponding eigenvector of Z(©) and set
Tk = \/Wug)),k:po,...,po—l—s—l.
3fort=1,...,% —1do

4:  Compute eigenpair A, u® corresponding to Z(©)
5: Extract overlapping entries in the successive blocks
A= = Riu* Y, a® = Ryu®
6: Apply block compatibility operations (4) and then (5)
7: Update output estimate
?Ek:u](f)v k:Pb--wpeJrS*l-
8: end for

By using the power method for eigenvector computations,
we can show that the method is essentially linear time with
cost O (ns?/a). Moreover, we have the following theoretical
result in the noiseless (perfect measurements) setting.

Lemma 1. Let Z € C™*"™ be an admissible measurement ma-
trix as defined in (1) with 0, identically zero for all (j,k) €
{0,1,...,n — 1}2 Alg. I computes an estimate X of the true
signal x € C™ such that X = wx where w € C is a unimodu-
lar (Jw| = 1) constant.

Proof. The proof follows from the definition of Z, the rank-
1 property of each of the blocks Z(), and noting that the
block compatibility operations (4) and (5) yield perfect syn-
chronization in the case of noiseless measurements. O

4. NUMERICAL RESULTS

We now provide representative results from empirical sim-
ulations. Results in this section were obtained using a lap-
top computer (Apple MacBook Pro with 16GB RAM and In-
tel Core 15 quad-core processor) in Matlab (R2021a). Data
points in the figures were obtained by averaging results from
50 trials. For noise robustness experiments, we report the
added noise level (as well as reconstruction errors) in the form
of signal to noise ratios (SNR) in decibels (dB), with
X115
SNR (dB) = 101log (
PAIZ - X%
minjg,|—; [lw X — X%)
%13

Error (dB) = 10log;, (

where X, x and X denote the noise-free measurement matrix,
true signal and estimate returned by Alg. 1 respectively.



Fig. 3 plots the recovery error (in dB) versus the noise
level (SNR, in dB) when using Alg. 1. The problem and
block sizes are fixed to be n = 150 and s = 11 respectively.
Plots for various overlap parameters o are shown in Fig. 3.
Note that the noise level decreases (with increasing SNR) as
we move from left to right in the figure. As observed, we
expect to see straight line plots with roughly unit negative
slope and suitable vertical offset; this indicates recovery up
to the level of added noise. We also see that larger overlaps
(smaller « values) provide better robustness — in these cases,
more entries are used in block compatibility operations.

vise: n = 150, = 11
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o 10 2 EJ )
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Fig. 3: Noise robustness of the proposed method
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Fig. 4: Computational efficiency simulations for Alg. 1
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(a) Comparing the noise robustness of Alg. 1 with other methods
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(b) Comparing the computational cost of Alg. 1 with other methods

Fig. 5: Comparisons with other methods

We next provide results confirming the computational cost
and efficiency of Alg. 1. Fig. 4a plots the execution time
for implementing Alg. 1 as a function of the problem size n.
We see that the execution time scales linearly as predicted in
§3. Similarly, Fig. 4b plots the the execution time for vari-
ous block sizes s. Here, the execution time scales as O(s?);
once again, this agrees with the prediction in §3. Finally,
Fig. 5 compares the performance of the proposed technique
with other methods from literature, including one based on
spectral analysis of a weighted graph Laplacian [7] and a clas-
sical (non-block based) eigenvector method [1]. These plots
confirm that Alg. 1 is a computationally efficient and robust
method for performing vector synchronization.

5. CONCLUSION

In this paper, we discussed a block eigenvector-based tech-
nique for the vector synchronization problem. Empirical re-
sults confirm the accuracy, robustness and computational ef-
ficiency of the method. Possible avenues for future research
include statistical estimation-theoretic analysis of the method,
deriving improved robust recovery guarantees (for example,
improving on the results from [7]), incorporation into existing
phaseless imaging algorithms, and considering constrained or
relaxed variants of the problem.
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