Sparsity-Preserving Encodings for Straggler-Optimal
Distributed Matrix Computations at the Edge

Anindya Bijoy Das, Aditya Ramamoorthy, David J. Love and Christopher G. Brinton

Abstract—Matrix computations are a fundamental building-
block of edge computing systems, with a major recent uptick
in demand due to their use in AI/ML training and inference
procedures. Existing approaches for distributing matrix compu-
tations involve allocating coded combinations of submatrices
to worker nodes, to build resilience to slower nodes, called
stragglers. In the edge learning context, however, these approaches
will compromise sparsity properties that are often present in
the original matrices found at the edge server. In this study,
we consider the challenge of augmenting such approaches to
preserve input sparsity when distributing the task across edge
devices, thereby retaining the associated computational efficiency
enhancements. First, we find a lower bound on the weight of
coding, i.e., the number of submatrices to be combined to obtain
coded submatrices, to provide the resilience to the maximum
possible number of straggler devices (for given number of devices
and their storage constraints). Next we propose distributed matrix
computation schemes which meet the exact lower bound on the
weight of the coding. Numerical experiments conducted in Amazon
Web Services (AWS) validate our assertions regarding straggler
mitigation and computation speed for sparse matrices.

Index Terms—Distributed computing, MDS Codes, Stragglers,
Sparsity, IoT/edge heterogeneity

I. INTRODUCTION

Edge computing platforms are constantly struggling to keep
pace with the escalating demands for data processing tasks.
A vast volume of data is being generated at the network
edge today due to the rise of the Internet of Things (IoT),
which encompasses self-driving cars, drones, health monitoring
devices, and many other intelligent applications [2]. The
mounting complexity of edge learning tasks, exemplified by
the constantly growing sizes of deep neural networks and other
AI/ML models, coupled with vast amounts of data used in
training and inference, persistently obstruct scalability. As
these models become more sophisticated, they necessitate
increasingly robust computational resources and capabilities.

A possible solution to this can be borrowed from distributed
computing systems, where computationally intensive tasks
are distributed across multiple worker nodes. In the edge
computing context, an oversubscribed edge server can allocate

Anindya Bijoy Das, David J. Love, and Christopher. G. Brinton are with
the School of Electrical and Computer Engineering, Purdue University, West
Lafayette, IN, USA 47907 (e-mail: {das207, djlove, cgb} @purdue.edu).

Aditya Ramamoorthy is with the Department of Electrical and Computer
Engineering, Iowa State University, Ames, Iowa, USA 50011 (email: adit-
yar@iastate.edu).

The material in this work has appeared in part [1] at the 59th Annual
Allerton Conference on Communication, Control, and Computing (Allerton),
Monticello, IL, USA, 2023, [DOI: 10.1109/Allerton58177.2023.10313473].

This work was supported in part by the National Science Foundation (NSF)
under Grants CNS-2212565, ITE-2326898 and CCF-2115200, and Office of
Naval Research (ONR) under grant N000142112472.

a processing task across multiple edge/IoT devices that has
access to. Specifically, a profoundly-complex learning task
can undergo partitioning into numerous sub-learning tasks,
which are subsequently dispatched to multiple edge devices
for execution [3]. Thus, the computational burden at the edge
server can be parallelized, enhancing training speed.

In the edge learning context, particular attention must be
paid to matrix computations, which form the cornerstone of
numerous data processing tasks in AI/ML. With the expansion
of data sizes, these computations encompass high-dimensional
matrices, leading to extended runtimes with all else held
constant. Distributed edge computations will aim to mitigate
this by segmenting the entire matrix operation into smaller
submatrices, and dispersing them across multiple edge devices
for parallel execution. Nonetheless, the overall execution time
of a task can be markedly impacted by slower or failed edge
devices, often referred to as “stragglers” [4].

Stragglers are prevalent across the edge due to different
reasons including heterogeneous computation capabilities found
across devices [4], [5] and network congestion [6], [7], and
can pose challenges to completing edge learning tasks in a
timely manner. Since the system must wait for the slowest
task to finish before proceeding, these are particularly prob-
lematic in environments where tasks are expected to complete
synchronously. Scenarios affected by stragglers encompass
various real-world applications in federated learning [8]-[10],
blockchain [11]-[13], timely computing [14], [15], distributed
optimization [16]-[19], smart healthcare [20], [21] and other
similar environments. Thus, mitigating the stragglers is essential
for optimizing the synchronization and speed of task completion
in such cases.

Several coding theory techniques [22]-[33] have been
recently proposed to mitigate the effect of stragglers. A simple
example [22] for computing A”x using three devices involves
partitioning the matrix A into two block-columns, denoted as
A = [Ag|A;]. The edge devices are then assigned specific
tasks: one computes Al'x, another computes ATx, and the
third computes (Ao + A;)7x. Each device then handles only
half of the computational load, the system can recover A7x
if any two out of the devices return their results. This implies
that the system can withstand the failure or delay of a single
straggler. In broader terms, the recovery threshold stands as a
pivotal metric, denoting the minimum number of edge devices
(1) needed to fulfill their tasks, thereby facilitating the recovery
of ATx from any subset of 7 devices. Note that this idea can
be extended to matrix-matrix multiplication also.

While numerous existing works achieve the optimal recovery
threshold [23], [25], [32], [33] for specific device and storage

constraints, they are not exempt from limitations. Real-world
datasets, pervasive across various fields like optimization, deep
learning, power systems, and computational fluid dynamics,
frequently manifest as sparse matrices. Leveraging this sparsity
effectively holds the potential to significantly reduce the overall
time required for matrix computations. However, techniques
relying on MDS codes tend to generate dense linear combina-
tions of submatrices [23], [25], [32], [33], thereby obliterating
the inherent sparsity within the matrix structure. Consequently,
this can result in a severe reduction in the computational speed
of edge devices [34]. In addition, this can lead to further delay,
since the central server needs to transmit a larger number
of non-zero entries to the edge devices. In this paper, our
primary objective is to devise methodologies that integrate a
relatively modest number of submatrices while preserving an
optimal recovery threshold. This can enhance the computation
speed and reduce the transmission delay, thereby improving
the overall job completion speed.

Organization: In this work, first we formulate the problem,
provide a literature background and summarize our contribu-
tions in Sec. II. Then, in Sec. III, we find a lower bound
on the number of submatrices to be combined for coded
submatrices that will provide resilience to the maximum number
of stragglers in a system with given storage and computation
constraints. After that, we develop novel approaches for dis-
tributed matrix-vector multiplication (Sec. IV) and distributed
matrix-matrix multiplication (Sec. V), both of which meet that
lower bound, maximizing sparsity preservation while providing
resilience to the maximum number of stragglers. Next, we carry
out experiments on an Amazon Web Services (AWS) cluster,
and provide the numerical results in Sec. VI. Finally, Sec. VII
concludes the paper with several possible future directions.

II. PROBLEM FORMULATION, BACKGROUND AND
SUMMARY OF CONTRIBUTIONS

In this section, we initially outline the problem of addressing
sparsity in distributed matrix computations. Following that, we
provide a concise overview of existing methods, analyze their
limitations, and outline the key contributions of our research.

A. Problem Formulation

In this work, we investigate a distributed computing system
comprised of a edge server and a set of n edge devices. The goal
is to compute A”x for matrix-vector multiplication or A”B
for matrix-matrix multiplication. Here, A € R?X", B ¢ R**v
are the “input” matrices, and x € R? is a vector.

First, we consider a coded matrix-vector multiplication
scheme where The primary objective of this system is to
calculate the product A7x, where A represents a sparse matrix
and x denotes a vector. In line with previous approaches, we
initially partition matrix A into k4 distinct block-columns,
Ap,A1,Aq,..., Ak, —1; hence the goal is to recover ky4
corresponding unknowns Al'x, ATx Alx, ... ,AfA_lx.

Next, we consider the matrix-matrix multiplication case,
where matrices A and B are partitioned into k4 and
kp disjoint block-columns, as Ay, A1, Ao, ..., A;,—1 and
By,B1,Bg,...,Bk,—1. Thus, in this case we need to recover,

in total, k4kp unknowns in the form of AiTB ; where
0<i<ks—1land0<j<kp-—1

The assumption is that the edge devices possess uniform
memory capacity and computational speed. To elaborate, each
worker can retain y4 = i portion of matrix A, as well as
the complete vector x (in the matrix-vector case), or yp = é
portion of matrix B (in the matrix-matrix case). In real-world
scenarios, stragglers might emerge owing to discrepancies in
computational speeds or instances of failure among designated
edge devices at particular times [23].

In this work, we allocate to each edge device a randomized
linear combination of specific block-columns from matrix A,
along with the vector x in the matrix-vector case. For matrix-
matrix multiplication, each edge device receives a randomized
linear combination of certain block-columns from A and
another combination from B. However, as discussed in Section
I, assigning dense linear combinations risks losing the inherent
sparsity of the matrices involved. To circumvent this, our aim
is to distribute linear combinations involving fewer submatrices
[29], [31]. To quantify this strategy, we introduce the notion of
“weight”, which plays a pivotal role in handling sparse matrices
in distributed matrix computations.

Definition 1. We define the “weight” (w) for a coded matrix-
computation scheme as the number of unknowns that participate
within any matrix product computed by each of the edge
device. Thus, if we combine w4 submatrices of A to obtain
the encoded submatrices for matrix-vector multiplication, we
have w = w4. In the matrix-matrix case, if we combine w4
and wp submatrices of A and B, respectively, to obtain the
assigned encoded submatrices, then w = wawp.

Thus, our goal is to obtain the optimal recovery threshold
(tr = ku for the matrix-vector case, and 7 = kukp for
the matrix-matrix case [25]) while maintaining w as low as
possible.

B. Existing Methods and Our Motivations

Numerous coded computation schemes have been recently
proposed for distributed matrix computations [22]-[25], [27]-
[30], [32], [33], [35]-[41]. In this section, we provide an
overview of existing algorithms and examine their limitations,
which have inspired our current research efforts. Note that
there are methods in [35], [40]-[42] which are developed for
matrix-vector multiplication only. In this work, in addition to
the matrix-vector case, we also address the distributed matrix-
matrix multiplication scenario, the more challenging one.

The initial studies in this domain focused on the recovery
threshold as a pivotal metric. Unlike the methodologies outlined
in [34], [40], which exhibit suboptimal straggler resilience, the
polynomial code approach emerges as one of the pioneering
methods to achieve the optimal recovery threshold. We begin
by illustrating a simplified example of this approach [25] in
the context of distributed matrix-matrix multiplication.

Let us consider a system consisting of n = 5 edge devices,
each capable of storing half of each of the matrices A and
B, hence 1/k4 = 1/kp = 1/2. We partition A and B into
ka4 = kg = 2 block-columns each, denoted as Ag, A; and
By, B;, respectively. Defining matrix polynomials A(z) =

Ao+ Az and B(2) = B + B122, we can write the product
of these two matrix polynomials as AT (2)B(z) = AIBg +
ATBz+AlB 22+ ATB, 23, The edge server assesses A(z)
and B(z) at n = 5 distinct real numbers, and then, transmits
the corresponding evaluated matrices to edge device W;, where
0 <7 < n—1. Each device then computes its designated matrix-
matrix block-product and sends back the result to the server.
Given that AT (2)B(z) forms a degree-3 polynomial, upon
receiving results from the fastest 7 = 4 devices, the server can
decode all coefficients within A7 (2)B(z), thereby obtaining
ATB (since any 4 x 4 submatrix of a 5 x 4 Vandermonde
matrix has a rank 4). Hence, the recovery threshold is 7 = 4,
indicating resilience to s = 1 straggler.

For given storage constraints, i.e., storing 1/k4 and 1/kp
fractions of A and B, respectively, if each device is responsible
to compute 1/k fraction of the overall job (where k = kakp),
then s = n — kakp is the maximum number of stragglers
that any scheme can be resilient to [25]. This can be an
important property of a coded computation scheme, since
resilience to a high number of stragglers is often crucial.
For example, consider smart city IoT environments, where
distributed learning is often incorporated within edge computing
systems to provide intelligent, data-driven services [43], [44].
Quality of Service (QoS) for these smart city use-cases have
been shown to greatly improve through computation offloading,
and thus highly depends on the system being resilient to slower
devices.

While the polynomial code meets the lower bound on the
recovery threshold, recent works on matrix computations have
identified metrics beyond recovery threshold that also need to
be considered. Table I demonstrates an overall summary to
compare available schemes in terms of different other metrics.
Here we discuss the importance of factoring them into our
methodology which aims at improving those other metrics
along with enjoying the optimal recovery threshold.

Sparse Matrices: Sparse matrices are ubiquitous across
various domains like optimization, deep learning, and elec-
tromagnetism, as evidenced by their prevalence in real-world
datasets (see [49] for examples). Essentially, many practical
scenarios involve matrices with sparse elements, offering a
potential opportunity to reduce the edge device computation
time significantly [34]. For example, for anomalous defect
elimination in intelligent manufacturing, sparsity of the normal
features can be very beneficial [50], [51]. This can significantly
enhance the speed of the overall training process, which often
involves deep neural networks [52], [53].

Consider two column vectors, a and y, both of length m,
where a contains roughly 1m non-zero entries (0 < ¢ << 1).
Computing a”'y consumes about 2ym floating-point operations
(FLOPs), in contrast to approximately 2m FLOPs which
would be required for a dense vector a. In a similar manner,
the dense linear encoding strategies in [23], [25], [32], [33]
inflate the number of non-zero entries in encoded matrices,
thus forfeit sparsity preservation. For a system with storage
coefficients 1/k4 and 1/kpg, the polynomial coding scheme
[25] and its derivatives [32] obtain the encoded submatrices
of A and B by having linear combinations of k4 and kp

submatrices, respectively. Consequently, non-zero entries can
increase by up to k4 and kp times, respectively, compared
to the original matrices, substantially elongating computation
time. This underscores the necessity for schemes that minimize
the fusion of uncoded submatrices.

Note that there are various methods in the literature [29],
[34]-[36], [54] that highlight and leverage the inherent sparsity
of the “input” matrices. However, they have other limitations.
For example, the approach detailed in [35] is only applicable
to the matrix-vector case; does not apply to matrix-matrix
multiplication. The assumptions in [54] differ from ours as
they involve the edge server in some matrix computations.
Furthermore, the approach in [34] and the [-level coding
scheme in [36] do not meet the optimal recovery threshold,
necessitating more devices to complete their tasks. On the other
hand, the straggler optimal approaches in [29], [36] assign
multiple tasks to each edge device, some of which can be
quite densely coded, leading to higher computation delay. The
approach in [31] also addresses the sparsity issue, but it does
not make any guarantees in terms of a theoretical lower bound
on the encoding weights. This implies that an enhanced coding
approach could further streamline computational speed beyond
these techniques for sparse matrices. We provide theoretical
guarantees for our proposed coding method in Sec. III.

Numerical Stability: The numerical stability of the system
stands as another crucial concern. Given that the encoding and
decoding techniques in coded computation function within the
real field, decoding the unknowns from a system of equations
may lead to highly inaccurate results if the corresponding sys-
tem matrix is ill-conditioned. Round-off errors could magnify
in the decoded outcome due to the elevated condition numbers
of the decoding matrices. For instance, the polynomial code
method outlined in [25] integrates Vandermonde matrices into
the encoding process, known for their ill-conditioned nature.
Literature addressing this challenge [23], [32], [33] underscores
the significance of minimizing the worst-case condition number
(kworst) across different choices of stragglers.

However, several numerically stable methods rely on random
codes [23], [29], [33], [36], necessitating substantial time
investment to find an optimal set of random coefficients to
ensure the numerical stability of the system. This typically
involves generating a set of random coefficients initially and
assessing Kyorst across all straggler permutations. This step
iterates several times (e.g., 20), retaining the set of coefficients
yielding the minimum r,,,,s;. However, the latency introduced
by this iterative process escalates with the number of edge
devices, potentially causing delays in the encoding process. For
example, the sparsely coded approaches in [29], [36] involve
significant delay for determining a “good” set of coefficients,
as demonstrated numerically in Sec. VI.

C. Summary of Contributions

e We address the straggler issue in distributed matrix
computations for edge learning tasks, specifically focusing
on sparse matrices. We define the concept of “weight” and
determine its lower bound to ensure resilience against the

TABLE I: Comparison among existing works on coded matrix-computations (the approach in [45] involves a higher computational complexity).
However, the methods in [35], [40]-[42] are developed for matrix-vector multiplication only, and therefore, are not included in the comparison.

Note that the method in [31] does not develop and meet the lower bound on the encoding weight, which is one of our contributions.

CODES

HETEROGENEOUS
SYSTEM?

SPARSELY
CODED?

NUMERICAL
STABILITY?

OPTIMAL
THRESHOLD?

REPETITION CODES

PrRODUCT CODES [46], FACTORED CODES [30]

PoLYNOMIAL CODES [25]

MATDOT CODES [45]

ORTHOGONAL POLYNOMIAL [32], RKRP CODE [33],

BIVARIATE POLYNOMIAL CODE [47]

CONVOLUTIONAL CODE [23], CIRCULAR ROT. MATRIX [48]

[-LEVEL CODING [36]

SPARSELY CODED STRAGGLER OPTIMAL SCHEME [36]

CLASS-BASED SCHEME [29]

CycLIC CODE (WITH RANDOM COEFFICIENTS) [31]

Proposed Scheme

SNENENENESENENENENENRNEN
ANANENENENENESENENESENEN
ANENENENEN RNV EN ENENESEN
ANANESIES A ENENENENANENEN

maximum number of stragglers, maximizing the system’s
tolerance to delays or inefficiencies.

o Then, we develop an algorithm (Alg. 1) for distributed
matrix-vector multiplication, which meets the exact lower
bound to build resilience against maximum number of
stragglers for any number of edge devices (n) and for any
given storage constraint.

« Next, we develop an algorithm (Alg. 2) for straggler-
resilient distributed matrix-matrix multiplication, which
also meets the lower bound on the weight for different
values of n, k4 and kp. Both of Alg. 1 and Alg. 2 can be
extended to a heterogeneous setting where the edge devices
can have different storage and computation abilities.

« Subsequently, we analyze the per edge device computa-
tional complexity for our algorithms, and show that our
approaches involve lower computational complexity than
other recent approaches [29], [31]. In addition, we show
that our approach also outperforms the approaches in [29],
[36] requiring less time to find the encoding coefficients
for the numerical stability of the system.

« Finally, we conduct extensive numerical experiments in the
Amazon Web Services (AWS) cluster. Our results confirm
the superiority of our approach to different dense coded
approaches [25], [32], [33], and to the recent approaches
developed specifically for sparse matrices [29], [31].

Note that a preliminary version of this paper appeared in [1].
Compared to the conference version, we have (i) developed Alg.
2 for the more challenging case: matrix-matrix multiplication,
(ii) proved necessary theorems for straggler-resilience, and (iii)
conducted the corresponding numerical simulations.

III. MINIMUM WEIGHT OF ENCODING

We assume homogeneous weights, i.e., the same number
(wa) of uncoded A (and wp for B) submatrices are combined
to obtain the encoded A (and B) submatrices. If we define w as
the number of participating unknowns in any computed results
obtained from any edge device, in matrix-vector multiplication,
we have w = w4 and in the matrix-matrix case, w = WAWR.
Now we state the following proposition which provides a lower
bound on w for any coded matrix computation scheme with

resilience to s = n — k stragglers, where k = k4 for the
matrix-vector case and k = k4kp for the matrix-matrix case.

Proposition 1. Consider a distributed computation system
of n total devices each of which can store 1/k, fraction of
matrix A (and 1/kp fraction of matrix B for the matrix-
matrix multiplication case). Now, assume that a coded matrix
computation scheme aims at resilience to s = n — k stragglers
out of n devices, where k = k4 for the matrix-vector case and
k = kakp for the matrix-matrix case. Any such scheme that
partitions A into k4 (and B into kp) disjoint block-columns

has to maintain a minimum homogeneous value for w, which
)(s+1) W

is given by & = f("_sn
Proof. Since the scheme aims at resilience to any s stragglers,
any scheme needs to ensure the presence of each of the
corresponding k unknowns in at least s+ 1 different devices. In
other words, for the matrix-vector case, each of £ = k4 such
A,’s (and for the matrix-matrix case, each of k = k kg such
AiTBj’s) has to participate within the encoded submatrices in
at least s + 1 different devices. Thus, the sum of the required
number of appearances of all the uncoded unknowns is k(s+1).
Now, we assume homogeneous w, i.e., each of these
n devices is assigned a linear combination of w uncoded
unknowns. Hence, the total number of appearances of all the
uncoded unknowns over the set of the worker nodes is nw.
Therefore, to build the resilience to any s stragglers, we
need to have, nw > k(s + 1), hence, w > %.Thus,
(n—s)(s-ﬁ—l)—‘. n

n
Now we state a corollary which considers different values
of k4 in terms of s, and provides the corresponding optimal
weights for coded sparse matrix-vector multiplication.

the minimum weight & = {

Corollary 1. Consider the same setting as Prop. 1 for coded
matrix computations. Now, we have the following cases.
o (i) If k> 52 then © = s+ 1.

o (i) If s <k < s? then [#H] <& <s.

Proof. Since n = k + s, from Prop. 1, we have

o= =[]

ey

w1 w3 W4
: :
T

[{a0a] [{As A2}| |{A2A3}| [14s.A0}] |{A0A>| [(42.Aq1]
5) X 3]

-]
-G
a

| ' ' '
v v ' i
v v '

\

QO =
[« I
[I

Fig. 1: Submatrix allocation by the edge server to a system with
n = 6 devices, s = 2 stragglers and y4 = i according to Alg. 1.

ka(s+1) | _
ka+s —‘ =2

Here, the weight of every coded submatrix is wa = [
Any {A;, A;} indicates a random linear combination of A; and A ;.

hence, @ is a non-decreasing function of k for fixed s.
Part (i): When k > s2, we have £ < 1, and 1?? > f:f
Thus, from (1), @ > s. In addition, from (D), for any s > 0,
we have w < s + 1. Thus, we have © = s + 1.

Part (ii): If k£ = s2, from (1), we have & = s. Similarly, if
k = s, from (1), we have & = [£$1]. Thus, the non-decreasing
property of @ in terms of k concludes the proof. |

= S.

Now we describe a motivating example below where the
encoding scheme meets the lower bound mentioned in Prop. 1.

Example 1. Consider a toy system for distributed matrix-vector
multiplication with n = 6 edge devices each of which can store
1/4 fraction of matrix A. We partition matrix A into k4 = 4
disjoint block-columns, Ay, A1, Ao, Az. According to Prop. 1,
the optimal weight w = w4 can be as low as [%1 =2.
Now, we observe that the way the jobs are assigned in Fig.
1 meets that lower bound, where random linear combinations
of ws = 2 submatrices are assigned to the devices. It can be
verified that this system has a recovery threshold 7 = k4 = 4,
and thus, it is resilient to any s = 2 stragglers.

IV. PROPOSED MATRIX-VECTOR MULTIPLICATION
APPROACH

In this section, we detail our overall approach for dis-
tributed matrix-vector multiplication which is outlined in
Alg. 1. We partition matrix A into k4 block columns,
Ao, A1, Ay, ..., Ay, 1, and assign a random linear combina-
tion of w4 (weight) submatrices of A to every edge device. We
show that for given n and k4, our proposed approach provides
resilience to maximum number of stragglers, s =n — k4. In
addition, our coding scheme maintains the minimum weight
of coding as mentioned in Prop. 1.
ka(s+1)

ka+s

combination of A;, A;11,...,A;1,,—1 (indices modulo k)
to edge device W;, for ¢« = 0,1,...,k4 — 1, where the
linear coefficients are chosen randomly from a continuous
distribution. Next, we assign a random linear combination of
Ay Aoy 11, Adwost2s -+ A(ig1)wa—1 (indices modulok4)
to edge device W;, for i = ka, k4 + 1,...,n — 1. Note that
every edge device also receives the vector x. Once the fastest

Formally, we set wy = [—‘, and assign a linear

Algorithm 1: Proposed scheme for distributed matrix-
vector multiplication

Input :Matrix A, vector X, n-number of edge
devices, s- number of stragglers, storage
fraction 74 = +—, such that k4 > s.

1 Partition A into kg4 dlS]OlIlt block-columns;

ka(s+1) |.
ka+s 2

for i< 0Oton—1do
4 if i < k4 then
5 Define T = {i,i +1,...,

(5]

Set weight wy = {

w

i+ ws — 1} (reduced

modulo k4);

6 else

Define T' = {iwa,iwa + 1,...
(reduced modulo k4);

,(+1Dwa — 1}

8 end
9 Create a random vector r of length k4 with entries
Tm, 0<m < kg —1;
10 Create a random linear combination of A,’s where
q €T, thus A, = > orgAys
qeT
1 Assign encoded submatrix A; and the vector X to
edge device W;;
12 Edge device W; computes AlTx
13 end
Output : The edge server recovers ATx from the
returned results by the fastest k4 devices.

= k4 edge devices finish and return their computation
results, the edge server decodes ATx. Note that we assume
ka > s, i.e., at most half of the devices may be stragglers.

A. Straggler Resilience Guarantee

Next we state the Lemma 1 which assists us to prove
Theorem 1 that discusses straggler resilience of our scheme.

Lemma 1. Choose any m < k4 edge devices out of all n
devices in the distributed system. Now, if we assign the jobs
to the edge devices according to Alg. 1, the total number
of participating uncoded A submatrices within those m edge
devices is lower bounded by m.

Proof. First we partition all n edge devices into two sets where
the first set, YV, includes the first k4 devices and the second
set, Wi, includes the next s edge devices, i.e., we have

WQ = {Wo,Wl,WQ, .. '7Wk4—1};
and W1 = {WkA,WkA+1,"'7Wn—1}-

Thus, we have [Wy| = ka and |W;| = s < ka. Now, we
choose any m < k4 edge devices, where we choose m devices
from W, and m; devices from Wi, so that m = mg+m. We
denote set of the participating uncoded A submatrices within
those devices as A and A;, respectively. Hence, to prove the
lemma, we need to show |Ag U .A;| > m, for any m < k4.
First, according to Alg. 1, we assign a random linear combi-
nation of A;, A;y1,Ait2,...,Ajtw,—1 (indices modulok 4)
to edge device W; € W). Thus, the participating submatrices

@)

are assigned in a cyclic fashion [36], and the total number of
participating submatrices within any mg devices of W is

|Ag| > min(mg +wa — 1, k4). 3)

Next, we state the following claim for the number of partici-
pating submatrices in W; the detailed proof is in [1].

Claim 1. Choose any m; > w4 devices from WW;. The number
of participating submatrices within these devices, |A;| = k4.

Case 1: If m; < wy — 1, from (3) we have

|Ao UA;| > | Ao| = min(mg +wa — 1,ka) (when mgy > 0)
> min(mo +my, ka) > m,

since m = mo + my1 < ka. We take account the remaining
scenario when mg = 0. In that case,

‘A()U.A1| > ‘A1| >wa >myg+mpg=m.

Here, the inequality |A;| > w4 holds, because the number of
unknowns participating in any device is wg4.
Case 2: If my; > wy, from Claim 1 we can say,

|A0 UA1| > |A1| =kyg > m,
which concludes the proof of the lemma.]

Example 2. Consider the same scenario in Example 1, where
ka = 4 and s = 2, therefore, Wy, = {Wy, Wy, Wy, W3}
and W, = {Wy, Ws}. Now, choose m = 3 devices, Wy, Wy
and Wy. Thus, mg = 2 and m; = 1. Now, from the figure,
we have Ay = {Ag, A1, Az} and A; = {Ay, A;}. Hence,
| Ao U .A1| = 3 > m. Similar properties can be shown for any
choice m < k4 = 4 different devices.

Now we state the following theorem which provides the
guarantee of resilience to maximum number of stragglers for
given storage constraints.

Theorem 1. Assume that a system has n edge devices each
of which can store 1/k4 fraction of matrix A and the whole
vector x for the distributed matrix-vector multiplication A”7x.
If we assign the jobs according to Alg. 1, we achieve resilience
to s =n — k4 stragglers.

Proof. According to Alg. 1, first we partition matrix A into
ka disjoint block-columns. Thus, to recover the matrix-vector
product, ATx, we need to decode all k4 vector unknowns,
Alx ATx Alx, ... ,AgAflx. We denote the set of these k 4
unknowns as /. Now we choose an arbitrary set of k4 edge
devices each of which corresponds to an equation in terms of
w4 of those k4 unknowns. Denoting the set of k4 equations
as V), we can say, [U| = |V| = ka.

Now we consider a bipartite graph G =V U U, where any
vertex (equation) in V is connected to some vertices (unknowns)
in U which participate in the corresponding equation. Thus,
each vertex in) has a neighborhood of cardinality w4 in U.

Our goal is to show that there exists a perfect matching
among the vertices of)V and U. To do so, we consider yCy,
where |V| = m < k4. Now, we denote the neighbourhood
of V as N(V) C U. Thus, according to Lemma 1, for any
m < ka, we can say that [N (V)| > m. So, according to Hall’s

. »

[(A0 AL A} | [{ALA2A | [{AnAsalg]| [{AsAdAs)]

| {A4,:5,A6} | [(asacan| [{acanas]| | {A7,:8,A0} |
e

| {As,Ag, A1} | | {Ag, A1, Ay} | | {A3, A4, A5} | {As, A7, Ag} |

Fig. 2: Submatrix allocation for n = 12 workers and s = 3

stragglers, with y4 = é according to Alg. 1. Here, the weight of every
.. k 1 ..
submatrix is wa = [2;5; f‘ =3. Any {A;,A;, A} indicates a
random linear combination of the corresponding submatrices where the
coefficients are chosen i.i.d. at random from a continuous distribution.

marriage theorem [55], we can say that there exists a perfect
matching among the vertices of V and U.

Next we consider the largest matching where the vertex
v; € V is matched to the vertex u; € U/, which indicates
that u; participates in the equation corresponding to v;. Now,
considering k4 equations and k4 unknowns, we construct
the k4 X ku coding (or decoding) matrix H where row
t corresponds to the equation associated to v; where u;
participates. We replace row 7 of H by e; where e; is a
unit row-vector of length k4 with the j-th entry being 1, and 0
otherwise. Thus we have a k4 x k4 matrix where each row has
only one non-zero entry which is 1. In addition, since we have
a perfect matching, H will have only one non-zero entry in
every column. Thus, H is a permutation of the identity matrix,
and therefore, H is full rank. Since the matrix is full rank for a
choice of definite values, according to Schwartz-Zippel lemma
[56], the matrix continues to be full rank for random choices
of non-zero entries. Thus, the edge server can recover all k4
unknowns from any set of k4 edge devices. |

Example 3. Consider a system with n = 12 devices each of
which can store 1/9-th fraction of matrix A. We partition A as

Ay, A4, ..., Ag. According to Alg. 1, we set the weight wy =
[%—‘ = 3, and assign random linear combinations of w 4

submatrices to each device as shown in Fig. 2. It can be verified
that ATx can be recovered from any T = ka = 9 devices,
therefore, the scheme is resilient to any s = 3 stragglers.

Remark 1. Our proposed approach meets the lower bound
on the weight for any s < k4, as mentioned in Prop. 1.
On the other hand, the approach in [31] always assigns a
weight min(s + 1, k4) which can be higher than ours when
s<ky<s? (e.g., Examples 1 and 3), and thus, may lead to
reduction in worker computation speed compared to ours.

B. Extension to Heterogeneous System

In this section, we expand our approach described in Alg.
1 to accommodate a heterogeneous system comprising n
edge devices, each with varying computational abilities and
communication speeds. The assumption is that the storage
capacities and processing speeds of the edge devices (i.e., the
overall system architecture) are known before job assignment.
Similar to the approach in [31], we assume that the system
includes A different types of devices, indexed from O to A — 1.
For simplicity, we sort the devices in non-ascending order
based on their types.

Let « represent the number of assigned columns and /3 the
number of columns processed per unit time by the “weakest”
type device [31]. In this setup, an edge device W; of type j;
is allocated c;, o coded columns of the data matrix A and has
a computation speed of c;, 3, where c;, > 1 is an integer. A
higher c;, indicates a “stronger” device W;, capable of storing
and processing data c;; times faster than the “weakest” type
device.

Given that the devices are sorted in non-ascending order by
type, we have jo > j1 > jo > -+ > ja—1 = 0, which ensures
Cjo = Cj, = Cj, > -+ > ¢j,_, = 1. Note that when \ =1
and all ¢;, = 1, the system reduces to the homogeneous case
discussed in Section IV-A, where 0 < i <n —1 and j; = 0.

Consider the “weakest” type of edge device, which requires
1 units of time to process o columns of A. Consequently, any
edge device W; of type j; can process c;,« columns within
the same time frame, pu. From a computation and storage
standpoint, this means that a node W; (type j;) can be viewed
as the equivalent of c¢;; > 1 of the “weakest” type edge
devices. Thus, the n devices in our heterogeneous system
can be conceptualized as a homogeneous system composed of
n= Z;:Ol cj, “weakest” type edge devices.

In other words, a device W}, in the heterogeneous system
(0 < k < n—1) can be represented as a combination of devices
Wins Wing1s - - -, Winge,, —1 in @ homogeneous system, where
m = Zf:_ol ¢j;» and Wy, is of type j;. To further illustrate
this, for any worker node index k4 (where 0 < ky <n — 1),
we define ky = S e, and s = Y700 ¢, thus no=
Z?:_Ol ¢j, = ka + s. Thus, a heterogeneous system of n edge
devices can be thought as a homogeneous system of n = ks +s
nodes, for any ka (0<ky<m—1).

Next, similar to [31], we state the following corollary (of
Theorem 1) that demonstrates the straggler resilience property
of our proposed approach in a heterogeneous setting. The
corresponding proof can be obtained based on results in [31].

Corollary 2. Consider a heterogeneous system of 7 devices
of different types and assume any k4 (where 0 < k4 <7 —1).
Now, if the jobs are assigned to the modified homogeneous
system of n = k4 + s “weakest” type edge devices according
to Alg. 1, the system will be resilient to s such nodes.

Example 4. Consider the example in Fig. 3, which involves
7 = 8 edge devices. Suppose the computation capacities c;,
are as follows: c¢;;, = 3 when ¢ = 0, ¢;, = 2 when i = 1,2,
and c;, = 1 for 3 < ¢ < 7. Therefore, the total computation
capacity is n = Z,?;Ol ¢j; = 12. Now, ka = 5, leading to

W 0 [] L]] -
: w1 W2 = =

A
(Ao A, A} 4 4
{A3, Ay, A5} {As.Ag, A7}
{A1, Az A3}
oy [AAsad] [(Aanay [(ArAs Ao} | [(As A0 AL} |
4 4 4
[(A0.A1, 4} | [(As A4 45} | [(As. A7, A5} |

Fig. 3: A heterogeneous system where 2 = 8 and k4 = 5, and thus
n =12 and k4 = 9. First, Wy is assigned thrice, and each of W;
and W is assigned twice the load of each of W3, Wy, ..., Wr. This
system is resilient to any s = 3 block-column processing, i.e., it is
resilient to any three type 0 nodes (e.g., W3 and W) or any one type
2 node (e.g., Wo).

ka = fogl ¢, =9,and s = Z?;klA ¢;, = 3. Hence, each
“weakest” device is assigned é of the total job. This scheme is
resilient to the failure of any s = 3 block-column processing
units, meaning it can tolerate the failure of any three type 0
devices or any one type 2 device.

If the “stronger” devices (those with c;, > 1) fail to complete
all their tasks on time, our proposed system can still utilize
their partial computations. For instance, consider a scenario
where none of W3, Wy, ..., Wy is a straggler, but Wy, W7 and
W, are slower than their expected speed. If W, completes
two out of its three assigned tasks, and each of W; and W5
completes one out of their two assigned tasks, we can still
recover the final result. This is because we only need to process
k4 = 9 block-columns across all nodes. Thus, our approach can
leverage partial stragglers (Wy, W1, and Wy in this example).

Remark 2. While we extend our method to the heterogeneous
case in a similar manner as [31], our scheme involves a smaller
encoding weight (w) compared to [31], which enhances the
overall speed of the job for a sparse input matrix A.

C. Computational Complexity for a edge device

In this work, we assume that the “input” matrix, A € R!*",
is sparse, i.e., most of the entries of A are zero. Let us assume
that the probability for any entry of A to be non-zero is
u, where p > 0 is very small. According to Alg. 1, we
combine w4 submatrices (of size ¢ X 7/k 4) to obtain the coded
submatrices and assign them to the edge devices. Hence, the
probability for any entry of any coded submatrix to be non-zero
is 1 — (1 — p)“4 which can be approximated by w 4. Thus,
in our approach, the per edge device computational complexity
is O wap X ﬁ where wy = [% .

On the other hand, the dense coded approaches [25], [32],
[33] combine k4 submatrices for encoding, hence, their per
edge device computational complexity is O (kap X %) =

O (u x rt) which is £4 ~ 2tka (imes higher than that of ours.
A s+1 . .
Moreover, the recent sparse matrix computations approach

in [31] combines s + 1 submatrices for encoding (when

5 < k4). Thus, its corresponding computational complexity
is O g‘(+ Dp x ﬁ), approximately (1 + s/k) times higher
than that of ours. We clarify this with the following example.

Example 5. Consider the same setting in Example 3 where
n =12, k4, =9 and s = 3. In this scenario, the recent work
[31] assigns random linear combinations of min(s+1,k4) = 4
submatrices to each device. Thus, our proposed approach enjoys
a 25% decrease in computational complexity, which could
significantly enhance the overall computational speed.

D. Numerical Stability and Coefficient Determination Time

In this section, we discuss the numerical stability of our
proposed matrix-vector multiplication scheme. The condition
number is widely regarded as a significant measure of numerical
stability for such a system [23], [32], [33]. In the context
of a system consisting of n edge devices with s stragglers,
the worst-case condition number (Kyors¢) 1S defined as the
highest condition number among the decoding matrices when
considering all possible choices of s stragglers. In methods
involving random coding like ours, the idea is to generate
random coefficients multiple (e.g., 20) times and selecting the
set of coefficients that results in the lowest Ky orst.

In our proposed method, we partition matrix A into k4
disjoint block-columns, which underscores the necessity to
recover k4 vector unknowns. Consequently, in each attempt,
we must determine the condition numbers of () decoding
matrices, each of size k4 X k4. This whole process has a total
complexity of O ((ﬁ)ki‘) On the other hand, the recent
sparse matrix computation techniques, such as sparsely coded
straggler (SCS) optimal scheme discussed in [36] or the class-
based scheme discussed in [29] partition matrix A into Ay =
LCM(n, k1) block-columns. Thus, in each attempt, they need
to ascertain the condition numbers of (k’;) matrices, each of
which has a size A4 x Ay, resulting in a total complexity of
o ()%
those methods involve significantly more complexity compared
to our proposed scheme.

). Since A4 can be considerably larger than k4,

Remark 3. We can also utilize our proposed approach in
a D2D-enabled Federated Learning scenario as discussed
in [10]. The assumption is that the edge devices may be
responsible for generating local data and also for performing
some computational tasks. The devices transmit their local
submatrices to some other trusted devices, and build resilience
against the computationally slower devices. Since our proposed
approach involves a smaller weight, any device would require
transmitting to less number of other devices compared to the
approach in [10], therefore, the overall process would be faster.

V. PROPOSED MATRIX-MATRIX MULTIPLICATION
APPROACH

In this section, we discuss our proposed distributed matrix-
matrix multiplication approach. As we mentioned above, we
consider a system of n edge devices, each of which can store
1/ka and 1/kp fraction of matrices A and B, respectively,
and our aim is to build resilience to any s = n — k stragglers,

Algorithm 2: Proposed scheme for distributed matrix-
matrix multiplication

Input :Matrices A and B, n- number of edge devices,

storage fraction v4 = k and v4 = kB

(w.Lo.g., ka < kp), and set k = kakp;

number of stragglers, s < k.

1 Partition matrices A and B into k4 and kg
block-columns, respectively;

2 Create a n X k4 random matrix R 4 with entries r;
0<i1<n—-1land 0<j<ky—1;

3 Create a n X kg random matrix R with entries r;
0<i<n—-land 0<j<kp-—1;

4 Set weights walka and wplkp (where wa < wp) so

that wawp > | B2 | with 1< wa < has

5 fori < 0ton—1do
6 if i < kskp then

A
i,7°

B
%,7°

7 Define T'= {i,i+1,...,i+wa — 1} (entries
reduced modulo k4);

8 Define S ={j,j+1,...,j +wp — 1} (entries
reduced modulo kp) where j = |i/ka|;

9 else

10 T={lwa,lws+1,...,0+ 1wy — 1}
(reduced modulo k4) when ¢ = mod(i, k4);

11 S ={mwg,mwg+1,...,(m+ 1w — 1}
(reduced modulo kg) where m = i}:JAA ;

12 end

13 Create a random linear combination of A,’s where

qeT, thus A; = Y rf A

qeT
14 Create a random linear combination of B,’s where

ge s, thus B; = 3 rp
q€S

15 The edge server assigns encoded submatrices A,
and B to edge device W;;
16 Edge device W; computes A B;;
17 end

Output : The edge server recovers A”B from the
fastest k4kp edge devices.

where k = k akp. Similar to the matrix-vector case, we assume
that s < k, i.e., not more than half of the devices will not be
stragglers. The overall procedure is given in Alg. 2.

Here we provide an overview of our proposed method.
First we partition matrices A and B into k4 and kp disjoint
block columns, respectively, as Ay, A1, Ag,..., Ay, 1 and
By, B1,Bas, ..., Bk, 1, respectively. Then we consider the
lower bound stated in Prop. 1, and find & = [%] Next,
we find an w > @ such that w = wawp where 1 < wy < ky
and 1 < wp < kp, walka and wplkp.

Now, within the edge devices in W, =
{Wo, W1, ...,Wg_1}, we assign a random linear combination
of Ai,Ait1,...,Ai4u,—1 (indices of A are reduced modulo

ka) to edge device W;, 0 < i < k — 1. In other words, the
corresponding submatrices of A are shifted in a cyclic manner
over the edge devices in Wy. Next we set j = [i/ka], and
assign B;,Bj1,...,Bj4u,-1 (indices of B are reduced
modulo kp) to edge device W;, where 0 < i < k — 1.

wo wi w2 w3

' ' ' '
{Ag, A1} {A1,As} {A2, Az} {A3, Ao}
{BUvBl} {B()7 Bl} {B()aBl} {B()yBl}

W5 w6 w7

1 ! ! !

{Ag, A1} {A1, Ay} {As, Az} {A3, Ao}
{B1,B,} {B1,Bs} {B1,B3} {B1,By}
w8 w9 W10

1 ! ! !

{Ap, A} {A1, A5} {A,, Az} {A3, Ao}
{Bz, B3} {B2, B3} {Bz, B3} {Bgz, B3}
wi2 w13
! : ! !
{Ag, A1} {A1, As} {As, Az} {A3, Ao}
{B3,Bo} {B3,Bo} {B3,Bo} {B3,Bo}
W18

W16

1 ! ! 1

{Ao, A} {As, Az} {Ao, A1} {As, Az}

{B2,Bs} {B2,B3}

{Bo,B1} {Bo,B1}

Fig. 4: Submatrix allocation according to Alg. 2 when n = 20 with
YA =B = j; thus resilient to s = n — ——— = 4 straggler devices.
The weights of the submatrices are wa = wp = 2. Any assignment
{A;,A;} or {B;,B,} indicates a random linear combination of the
corresponding submatrices where the coefficients are chosen i.i.d. at
random from a continuous distribution.

After that, within the edge devices in W; =
{Wk, Wkt1,...,Wp_1}, we assign a random linear combi-
nation of Ay, , Awyt1s-- -, At1)wa—1 (indices of A are
reduced modulo k,4) to edge device W, where £ = mod(i, k)
and £ < ¢ < n — 1. Next we set m = V,:i;“j, and assign
Brws> Bmwg+1s- -+ Bim41)ws—1 (indices of B are reduced
modulo kp) to edge device W;, where £k < i < n — 1.
After assigning the jobs, all the edge devices will start
computing their respective submatrix-products, and once the
fastest 7 = kakp devices finish and return their results, the
edge server recovers all the unknowns in the form of A7 B,
where 0<i<kp—1land0<j<kp-—1.

Example 6. Consider the example shown in Fig. 4 where
n = 20,y4 = v = 1/4. So, we partition A and B into
ka = kp = 4 block-columns, respectively. In each of the
devices, according to Alg. 2, we assign one coded submatrix
from A and one from B which are linear combinations of

w4 = wp = 2 uncoded submatrices with coefficients chosen
1.1.d. at random from a continuous distribution. It can be verified
that this scheme is resilient to s = n — kakp = 4 stragglers.

1) Structure of the Job Assignment: To describe the struc-
ture of the proposed scheme, first we partition the edge
devices in Wy = {Wy, Wy, Wa,...,Wi_1} into k4 disjoint
classes, denoted by M;’s, where any M, consists of all
the edge devices W;’s if j = i(mod k4). In other words,
M; = {W;iy, Wi ytis Wogagiy, -« Jrofori=0,1,2,... ka—1.
Hence, |M;| = kp, for any i.

Moreover, according to our proposed scheme, the partic-
ipating submatrices of A are the same over all the edge
devices in any M. For instance, in Fig. 4, we have My =
{Woy, Wy, Ws, Wis}, and random linear combinations of Ay
and A are assigned to all the corresponding edge devices. At
this point, we define a set, DA = {A;, Airy, ..., Aivw, 1)
which consists of the participating submatrices of A corre-
sponding to edge device set M, where the indices are reduced
modulo k4. Now we state the following claim (with the proof
in [31]) which gives a lower bound for the cardinality of the
union of any arbitrary number of D’s.

Claim 2. Consider any g sets DiA’s, q < ks—wy+1, denoted
q—1

HA
7=0

w.lo.g., DA, 0 < j < q — 1 arbitrarily. Then
wa+qg—1.

Now, consider any particular M;. According to Alg. 2,
the participating submatrices of B are shifted in a cyclic
fashion over the edge devices of any M,. For instance, in
Example 6, the participating submatrices, By, B, B2 and Bs,
are shifted in a cyclic fashion within the edge devices of M,
ie., Wy, Wy, Wg and Wiy, Next, in the following claim, we
find the minimum number of participating unknowns (in the
form of ATB,) within any § edge devices from any M.

Claim 3. Consider M, 0 < ¢ < k4 —1. Denote the minimum
of total number of participating unknowns (in the form of
ATB,) within any § edge devices from M, by p. Then

p=wa xmin(wB—i-é—l,k:B) .

Proof. The participating uncoded submatrices of B are shifted
in a cyclic fashion within the edge devices of M,. Thus
according to the proof of cyclic scheme in Appendix C in
[36], the minimum number of constituent submatrices of B
within any ¢ edge devices of M, is min(wp + J — 1,kp)
if § > 1. Now the coded submatrices of B are multiplied
by linear combinations of the same w,4 submatrices, thus the
minimum of total number of participating unknowns (in the
form of ATB,) is p = wa x min (wp +6 — 1,kp). []

2) Rearrangement of M;’s: Before stating the necessary
theorem, we discuss a pre-processing step that rearranges the
M;’s. Choose any arbitrary mg edge devices (mg < kakp),
and assume that §; devices have been chosen from M;, for
0<4<ks—1,so that Zfﬁo_l 0; = mg. Now, we rearrange
the §;’s in a non-increasing sequence so that 50 > 51 > 52 >
S > SkA_l, and rename the corresponding M;’s as M,’s so
that 51 devices have been chosen from ./\;ll

Now, we denote py as the minimum of total number gf
participating unknowns (in the form of ATB;) within the o
edge devices of M. Thus, according to Claim 3,

“

After that, we move to /\;117 /\;127 .. /\;lk 1 —w .4 Sequentially,
to find the number of additional partlc1patmg unknowns within
the corresponding 4, edge devices of M;, where 1 < i <
ka—1. We denote p; as the minimum number of such additional
participating unknowns in M;.

po = wa X min(wp + S — 1,kg) .

U Dit| > w4 and U D& >
Jj=0 Jj=0

wa + 1. Thus, there will be at least one additional participating
submatrix of A in My U M; in comparison to My, and
the property will continue to hold until we consider the set
MoUM U UMoUM, +—w4- Now, since the submatrices
of B (which will be multiplied by the additional submatrix of
A) are shifted in a cyclic fashion within any M,

Here, according to Claim 2,

pi = min (OJB-F& - 1,k:B) :)
for 1 <i<ky — wy. Note that, p; has a trivial lower bound,
zero, when kg —wq +1<i1<ky—1.

Now we state the following lemma that provides a lower
bound on the minimum number of participating unknowns
(in the form of ATB,) in the equations from any arbitrary
mg < kakp devices. Note that, we assume kp > k4 without
loss of jgenerahty, if kg > kp, we can compute ATB as
(BTA)" without any additional computational cost.

Lemma 2. For any arbitrary k4 > 3 and kg > 3 (where
ka < kp without loss of generality), if we assign the jobs to
n = k + s edge devices (where s < k = kakp) according
to Alg. 2, then the minimum of total number of participating
unknowns within any m edge devices (m < k) will be lower
bounded by m.

Proof. We prove the lemma in a similar manner as we
have proved Lemma 1. First, we partition all n edge de-
vices into two sets where W, includes the first k de-
vices and W, includes the next s edge devices, i.e.,
we have WO = {Wo,Wl,WQ,...,Wk_l} and Wl =
{Wk, Wgt1,...,Wp_1}, where k = kakp. Thus, we have
[Wo| = k and [W1| = s < k. Now, we choose any m < k
edge devices, where we choose mg devices from W, and mq
devices from W, so that m = mg + my. We denote set of
the participating unknowns within those devices as Aj, and
X1, respectively. Hence, to prove the lemma, we need to show
|Xo U Xy1| > m, for any m < k.

Now we state the following claims to find the number of
participating unknowns in W, and W, with the proofs in App.
A and App. B, respectively..

Claim 4. Choose any mgy < k devices from W, such that
mgo > 0. The number of participating submatrices within these
devices is lower bounded by min (mg + w — 1, k).

Claim 5. Choose any m; > w devices from W;. The number
| = k.

Case 1: m; < w — 1. In this case, from Claim 4, we have
|X0 U X1| > |X0| = min(mo +w-—1,]{) (when mo > O)
> min(mg + mq, k) > m,

since m = mg + m; < k. We take account the remaining
scenario when mg = 0. In that case,

| U Xy > | X > w>mg+mg =m.

Here, the inequality |X;| > w = wawp holds, because the
number of unknowns participating in any device is wawp.
Case 2: m; > w. In this case, from Claim 5 we can say,

|XOUX1| > |X1‘ =k>m,
which concludes the proof of the lemma. |

While Alg. 2 and Lemma 2 have been developed and
proved for scenarios where wa|k4 and wg|kp, our approach
is applicable for other values also. The job assignment in the
edge devices can still be the same as mentioned in Alg. 2.

Example 7. Consider a distributed system when k& > s2 as

mentioned in Corollary 1(i). In this scenario, & = s + 1.
However, |W;| = s, thus we have m; < w — 1. It indicates
that only Case 1 is enough to conclude the proof of Lemma 2
in this setting. Hence, we do not require the constraints w |k 4
and wp|kp here, which were required only to prove Claim 5
(and hence, the corresponding Case 2).

Now we state the following theorem which provides the
guarantee of resilience to maximum number of stragglers for
given storage constraints.

Theorem 2. Assume that a system has n edge devices each of
which can store 1/k 4 and 1/kp fractions of matrices A and B
respectively, for distributed matrix-matrix multiplication A”B;
ka < kp.If we assign the jobs according to Alg. 2, we achieve
resilience to s = n — kakp stragglers, where s < kakp.

Proof. According to Alg. 2, first we partition matrix A and B
into k4 and kp disjoint block-columns, respectively. Thus, to
recover the matrix-matrix product, ATB, we need to decode
all k = k kg matrix unknowns, in the form of AZ-TB]-, where
0<i<ky—1and 0 <j < kp— 1. We denote the set of
these k£ unknowns as /. Now we choose an arbitrary set of
kakp edge devices each of which corresponds to an equation
in terms of w = wawp of those k unknowns. Denoting the set
of k equations as V, we can say, [U| = |V|=k.

Now, similar to the proof of Theorem 1, we consider a
bipartite graph G = V UU, where any vertex (equation) in V is
connected to some vertices (unknowns) in ¢/ which participate
in the corresponding equation. Thus, each vertex in V has a
neighborhood of cardinality w in /. Our goal is to show that
there exists a perfect matching among the vertices of ¥V and
U. Now, according to Lemma 2, for any m < k, we can say
that |[A/(V)| > m. Thus, similar to to the proof of Theorem 1,
according to Hall’s marriage theorem [55] and Schwartz-Zippel
lemma [56], we can prove that the edge server can recover all
k = kakp unknowns from any set of k edge devices. |

Remark 4. While Theorem 2 has been developed considering
a homogeneous setting of edge devices, it can be also extended

to a heterogeneous setting [31], similar to the matrix-vector
case discussed in Sec. IV-B.

A. Computational Complexity for a Worker Node

In this work, we assume that A € R**" and B € R*%
are sparse, only a small fraction (1) of the entries are non-
zero. Therefore, in our case, the computational comslex-

ity for any edge device is O (wAn X wpn X t X k;}gB

@ (w awpn? x 75k) On the other hand, any dense coded ap-
proach [25], [32] assigns linear combinations of k4 and kp sub-
matrices, hence, the corresponding computational complexity is
approximately O (k:An X kpn Xt x Y) =0 (n* x rwt);

kaks
kakp
ﬁ times larger than ours, as wy < ka,wp < kp.

Example 8. Consider the example in Fig. 4, where k4 = kp =
4 and s = 4. The approach in [31] requires w > 5; hence sets
wa = 3 and wp = 2. On the other hand, in our approach, we
require w = [10%2] = 4, hence, we set wq = wp = 2. This
indicates a 33% reduction of computational complexity in our
case compared to the method in [31].

B. Numerical Stability

Similar to the discussion in the matrix-vector case in Sec.
IV-D, we can develop a numerically stable scheme using Alg. 2.
Note that in the matrix-matrix case, we need to find two “good”
sets of random coefficients, one for the encoding of A, and
the other for the encoding of B. We empirically demonstrate
the numerical stability of our approach in Sec. VI.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct simulations on distributed
matrix-computations, which can be incorporated within the
framework of numerous data processing tasks. For example,
high-dimensional linear transformations are vital for dimen-
sionality reduction techniques such as principal component
analysis (PCA) [57] and linear discriminant analysis (LDA)
[58]. Furthermore, they are fundamental to training deep
neural networks and employing them for classification. For
example, every layer of a fully-connected deep neural network
necessitates matrix-matrix multiplications during both forward
and backward propagation [4].

For our numerical experiments, we compare the performance
of our algorithm against various alternative techniques [25],
[29], [31]-[33], [36]. It is important to note the existence of
several other methodologies tailored specifically for sparse
matrix computations. Notably, the approach outlined in [34]
lacks resilience to the maximum number of stragglers given
certain storage constraints. Additionally, the strategy proposed
in [35], which partitions edge devices into untrusted and partly
trusted clusters, diverges from our foundational assumptions.
The approach described in [59], which delegates certain
tasks to the edge server to mitigate the probability of rank-
deficiency during decoding, also does not align with our model
assumptions. Therefore, these methodologies are excluded from
consideration in our numerical experimentation section.

We explore a distributed system that consists of n = 42 edge
devices with s = 6 stragglers. We assume that each device can

store Y4 =y = % fraction of matrices A and B. We consider
sparse input matrices A of size 20,000 x 15000 and B of size
20,000 x 12000. We assume three different cases where the
sparsity of A and B are 95%, 98% and 99%, respectively,
which indicate that randomly chosen 95%, 98% and 99%
entries of the matrices are zero. It is worth noting that there exist
numerous practical instances where data matrices demonstrate
such (or, even more) levels of sparsity (refer to [49] for specific
examples). We carry out the experiments on an AWS (Amazon
Web Services) cluster, utilizing a ¢5.18xlarge machine as
the server and t2.small machines as the edge devices.

Worker computation time: Table II presents a comparison
among different methods based on the computation time
required by edge devices to complete their respective tasks.
In this scenario, where k4 = kp = 6, the approaches
described in [25], [32], [33] allocate two linear combinations of
k4 = kp = 6 submatrices of A and B, respectively, to each of
the edge devices. Consequently, the original sparsity of matrix
A (and B) is lost within the encoded submatrices. As a result,
the edge devices experience a significantly increased processing
time for their tasks compared to our proposed approach or
the methods outlined in [29], [31], [36], which are specifically
designed for sparse matrices and involve smaller weights.

To discuss the effectiveness of our approach in more details,
we compare the weight of the coding of our approach against
the approach in [31]. In this scenario, when n = 42 and s = 6,
our approach sets the weight [("_S)TL(SH) = |37 = 6;
thus we set wg = 2 and wy = 3. On the other hand, the
approach in [10] uses a weight greater than or equal to s+1 = 7,
thus needs to set wq = 4 and wp = 2. Hence, our approach
involves around 25% less computational complexity per edge
device, which is supported by the results in Table II.

Communication delay: In Table II, we also illustrate the
delay incurred during the transmission of encoded submatrices
from the server to the edge devices. The methods outlined
in [25], [32], and [33] utilize dense linear combinations of
submatrices, causing a notable rise in non-zero entries within
these encoded submatrices. Consequently, transmitting this
increased number of non-zero entries results in significant
communication delays. In contrast, our proposed approach
addresses this issue by employing encoded submatrices formed
through linear combinations of a limited number of uncoded
submatrices, thus markedly reducing communication delays.

In addition, here we compare our proposed approach against
the method in [31] in terms of the approximate number of
non-zero entries that need to be sent from the edge server
to any edge device. We consider the case when the matrices
A and B have approximately 99% entries to be zero, hence,
only 1% entries are non-zero. Now, in this scenario (n =
42, k4 = kp = 6 and s = 6), the corresponding number of
non-zero entries for our proposed approach is approximately
20RXIBE 5 (.01 X wa + 2EXZE 5 0.01 x wp = 2.2 x 10°,
since we set wq = 2 and wg = 3. On the other hand, the
number of the non-zero entries to be sent to each edge device
in the approach [31] is approximately % x 0.01 X wa +
20kx12k ()01 x wp = 2.8 x 109, since in that case wq = 4
and wp = 2. Thus our proposed approach requires the server

TABLE II: Comparison of worker computation time and communication delay for matrix-matrix multiplication for n = 42, v4 = v = +

6

when randomly chosen 95%, 98% and 99% entries of matrices A and B are zero.

WORKER COMP. TIME (IN S)

COMMUNICATION DELAY (IN S)

METHODS L=00% n=98% n=9% n=99% nu=98% u=95%
PoLy. CODE [25] 1.65 5.19 8.95 0.78 1.42 2.44
ORTHO PoLY CODE [32] 1.60 5.16 9.03 0.80 1.48 2.36
RKRP CODE [33] 1.61 5.11 8.96 0.82 1.44 2.39
SCS OPTIMAL SCHEME [36] 1.09 2.12 5.23 0.39 0.58 0.93
CLASS-BASED SCHEME [29] 0.74 1.21 4.12 0.30 0.47 0.77
CycLic CODE [31] 0.76 1.24 4.19 0.32 0.51 0.83
PROPOSED SCHEME 0.61 1.04 3.11 0.25 0.39 0.65
TABLE III: Comparison among different approaches in terms of 16
worst case coqdition number (Kworst) and the correspor}ding required] 08 Cyclic-random code [31] |
time for 10 trials to find a good set of random coefficients 14
leProposed Approach
g 2 In Theoretical Lower Bound i
Kworst FOR REQ. TIME FOR 2]
METHODS n=42,s=6 10TRIALS B o)]
=3
PoLY. CODE [25] 3.67 x 10%° 0 o 8| 1
ORTHO-POLY [32] 8.80 x 10'° 0 Rl |
RKRP CODE [33] 4.84 x 108 84 MIN 5
SCS OPT. SCH. [36] 7.88 x 10° 16 HR af .
CLASS BASED [29] 5.81 x 108 15 HR J| |
CycLic CODE [31] 2.13 x 10° 85 MIN i
PROPOSED SCHEME 7.95 x 10% 86 MIN 0
MV:n=30,s=9 MM:n=36,s=8 MM:n=56,s=14

to transmit approximately 22% less non-zero entries than the
method in [31]; Table II confirms this gain of our approach.

Numerical stability: Next, we assess the numerical stability
of distributed systems using different coded matrix computation
techniques. We examine the condition numbers of the decoding
matrices for various combinations of n = 42 workers and s = 6
stragglers. By comparing the worst-case condition number
(Kworst) across different methods, we present the s+ Values
in Table III. The polynomial coding method [25] encounters
issues with ill-conditioned Vandermonde matrices, leading to
pronounced numerical instability, as indicated by its notably
elevated kqors¢ value. In contrast, our proposed technique,
characterized by numerical robustness, yields a smaller ko5t
compared to the method described in [32] where the condition
numbers grow exponentially in terms of s = n—Fk. Although the
approach outlined in [33] achieves a slightly reduced Ky orst
compared to ours, Table II reveals substantial increases in
computation and communication delays due to the assignment
of dense linear combinations of submatrices to the edge devices.

Coefficient determination time: Next, Table III shows a
comparative analysis of various methods with respect to the
time required for performing 10 trials to obtain a “good” set
of random coefficients that ensures numerical stability of the
system. As explained in Section IV-D, the techniques proposed
in [36] and [29] involve partitioning matrix A into Ay =
LCM(n, k1) block-columns. For instance, when n = 42 and
s =6, Ay = 42 is significantly larger than k4 = 6, which
denotes the partition level in our approach. Consequently, when
dealing with higher-sized matrices to determine the condition
number, the methods proposed in [29] and [36] necessitate
considerably more time compared to our approach.

Remark 5. We also conduct numerical simulations on matrix-
vector multiplication (Sec. V in [1]), yielding results that mirror

Fig. 5: Comparison of encoding weights in matrix-vector (MV) and
matrix-matrix (MM) multiplication between the method in [31], our
proposed approach, and the theoretical lower bound for different
choices of n and s.

a similar trend observed in the matrix-matrix scenario.

Encoding weights: We also compare our approach more
closely against the recent method developed in [31], in terms
of encoding weights for different scenarios. The results are
shown in Fig. 5. First, we consider a system of 7 = 30 devices
and s = 9 stragglers within the matrix-vector scenario. Our
proposed approach always matches the theoretical lower bound
on the weight developed in Prop. 1 in the matrix-vector case,
and outperforms the approach in [31].

Next we consider the matrix-matrix scenario, for two
different systems: (a) n = 36 and s = 8 and (b) n = 56
and s = 14. While our method involves slightly higher weights
than the theoretical lower bound for system (a), it matches the
bound for system (b), and outperforms the approach in [31] in
both cases. Here, the theoretical lower bound in system (a) is
[%] = 7, which is a prime number. Thus, because of
the divisibility issue with w4,wp > 1, our proposed approach
involves a slightly higher weight, w = wawp = 8. Note that
the dense coded approaches [25], [32], [33] involve a weight
n — s, which is significantly higher than our proposed one and
the method in [31], and hence, they are not included in the
comparison in Fig. 5.

Numerical robustness and scalability: Finally, we consider
the case of matrix-vector multiplication in different system
architectures having different number of edge devices (n)
and stragglers (s). The kqorst values for different scenarios
obtained from different available approaches are demonstrated
in Fig. 6. These results confirm that our proposed approach
consistently leads to smaller K,ors¢ values compared to the

1010

11 Ortho-Poly Code [32]
I RKRP Code [33]]
10| |08 Cyclic-random code [31] .
0s Proposed Approach]

107

106

Worst case condition number (K0r-st)

n=20,s=3 n=20,s=4 n=40,s=3 n=40,s=4

Fig. 6: Comparison of worst case condition numbers (Kqyorst) Of
the encoding matrices obtained by different methods in distributed
matrix-vector multiplication with different choices of n and s.

numerically stable approaches in [32] and [31], and provides
competitive results compared to another numerically stable
method in [33] for even larger values of n and s. This verifies
the numerical robustness and the scalability of our proposed
method for a larger network comprised of more edge devices.
Note that in addition to the numerical robustness, unlike
[33], our approach can leverage the inherent sparsity of the
“input” matrices, and thus leads to reduced computation and
communication delays, as demonstrated in Table II.

VII. CONCLUSION

In this study, we developed novel distributed matrix com-
putation techniques to maintain the sparsity characteristics of
input matrices while ensuring resilience against a maximum
number of stragglers within specified storage constraints.
First, we find a lower bound on the homogeneous weight
of the encoded submatrices, and we show that our approaches
meet that lower bound. Unlike conventional dense coded
methods [23], [25], [32], [33], our proposed approach restricts
coding within submatrices, thereby preserving the inherent
sparsity of the input matrices A and B to a significant extent.
Consequently, both worker computation and communication
delays are markedly reduced compared to different coding
techniques. In addition, unlike the sparsely coded methods in
[29], [36], we demonstrate the extension of the approach to
the heterogeneous setting, where the edge devices are rated
with different computational and communication speeds.

Future research avenues include exploring server-less archi-
tectures where edge devices collaborate directly, rather than
relying on a edge server for matrix encoding [8]. Enhancing
performance in heterogeneous settings [60] by allocating
multiple jobs with varying weights as proposed in [61], [62],
and devising schemes where knowledge about edge devices is
limited prior to job assignment, can also be important directions
for future investigation.

APPENDIX
A. Proof of Claim 4

Proo[. As ~dis.cu~ssed in Sec.~ V-2, we rearrange the M;’s such
that 69 > 61 > d2 > -+ > 5,1 and rename the correspond-
ing M;’s as M;’s so that §; devices have been chosen from

M;. Next we denote the minimum number of participating
unknowns in M; by p; when 0 < i < k4 — 1. The trivial
lower bound for p; is zero when kg —wa +1 <1< ks —1,

ka—1 ka—wa
hence, > p; > > p;. Thus, in order to prove the lemma,
i=0 i=0
(3 kA—l 5 K
for mg = > §;, we need to show that
i=0
ka—wa
Z pi > min(mo+w—1,k) . (6)
i=0

Now we consider the following cases for each of which we
show that (6) is true. Note that the minimum value of g = 1,
since mg > 1.

Case 1: 1 <y < kp —wg. In this case, according to (4),

Po = wa X min(wB + 50 — 1,](33) = wA(wB + 80 — 1). 7)

Case 1(a): SkA,wAH = 0. In this scenario, SkA,wAH =

_ _ ka—1 S
v+ =0k,—1 =0, hence Zi:hfwﬂ 0; = 0. Thus,
ka—wap ka—wa
E pi = po+ E Pi
i—0 i=1
ka—wa ka—1

=1 i=kp—wa+1
ka—1
=wadp +walwp — 1) + Z 0
i=1
=(wa—1bo+d0+ Y di+walws—1)
i—1
Fa-1
Zz5i+wAw371:mo+w*1; (8)
i=0

since 50 > 1. Thus, (6) is true in this scenario.

Case 1(b): SkA,wAH > 1. In this scenario, SkA,wAH >
ka—1 ~

2

i=ka—wa+1 5
Next note that according to (5), we have p; > wp + §; — 1 for
1<i<ksg—wa. Thus, we can say

gkA—wA—‘rQ 2 e Z SkA—la hence 62 S (WA - 1)50

ka—wa ka—wa

Z pi = po+ Z Pi
=0 =1
ka—wa

> walwp +00 — 1) + Z (WB“FSZ‘_ 1)
i=1
=604 (wa — 1)0g +wa(wp — 1)

ka—wa

+ > b+ (ka—wa)(ws — 1)

i=1

ka—1
> > 0+ (ka —wa)(wp — 1) + walws — 1)

vV
S
+
©
o]
|
=
+
&
S
&
o]
|
=

0 +wawp —1 = mg+w—1;

Y

&)

S
Il
=)

as we assume w4 < wpg. Thus, (6) is true in this scenario too.
Case 2: kg —wp < SO < kp. In this case, according to (4),
we have pg = wa X min(wp + 5o — 1,kp) = wakp.
Case 2(a): SkA,wA > kp — wp. In this scenario, 50 > 31 >
R Sch—wA => kg — wpg. Thus,

ka—wa ka—wa
Z pi = po+ Z Pi
1=0 =1

:wAkB-i-(k‘A—wA)k’B:kAkB:k‘. (10)

where p; = kp according to (5), for i = 1,2,..., k4 —wa.
Thus, (6) is true in this scenario.

Case 2(b): 6k ,—w, < kp — wp. Thus, according to (5),
Phka—wa %Slm —wa Twp — 1. Moreover, since in this scenario,

we have 0,1 < 0p,—2 < -+ < Opp—wat+1 < kB — wp;

ka1 _
hence we have > 6 < (kp—wp)(wa —1). Now,
i=kap—wa+1
ka—wa ka—wa—1
ST o=t > it Pracwn
=0 =1
ka—wa—1 _ B
>wakp+ Y 0t (51@;7% +wp — 1)
=1
ka—wa ~
=(wa-Dkp+kptwp—1+ > &
=1
> (wA — 1)]{33 +wp—1-— (k’B —wp)(wa — 1)
5 ka—wa ~ ka—1 ~
+oo+ > b+ D> 6
i=1 i=ka—wa+1
=wakp —kp+wp — 1 —wakp +wawp
ka—1 ~
+kp —wp+ Z 0
i=1
ka—1
> Z5¢+WAWB—1- (11)

i=1

Thus, (6) is true in this scenario; this concludes the proof.

]
B. Proof of Claim 5
Proof. Consider the edge devices in W;. According
to Alg. 2, we assign a linear combination of

Avess Atwopt1s -3 Agrg1)wa—1 (indices modulo k4) to edge
device Wy, fori = k,k+1,...,n — 1 where £ = mod(i,k4).
In addition, we assign another linear combination of
Brws, Brwg+1s- - s Bim41)wp—1 (indices mod kp) to
device W;, for i = k,k+1,...,n — 1, where m = {%J
Thus, the participating unknowns in edge device Wi,
are AgBo, ey AngB_l,A,{Bo, ceegeany AZA—leB_l'
Similarly, the participating submatrices in Wp,4; are
AEABO, e ,AEABWB_l,AEAHBO, e
In a consequence, w = w4wp number of submatrices
participate in each of those s edge devices in a cyclic fashion.
Now, denote the number of appearances of any submatrix
AZTBj within the devices in W; by v;; > 0. Thus, for any 0 <

T
oo Agy 1Bup-1.

i,p<ka—1land 0 < j,g<kp—1, wehave |v;; — vy, <1,

where Zf;‘o_ ! Z;ﬁﬁo_ ! v;; = sw. Thus, the average of these
vi;’s is k = %2. Since for every pair of (i, j) and (p,q), we

Sw

have |v;; —v,4| < 1, thus, we can say that v;; > [k] = | ¥

It indicates that within all s devices of W), every unknown
participates in at least |«| times over |x| distinct devices.
In other words, any unknown may not participate in at most
s — | k] devices within the devices of W;.

First, consider the case, & = s. Here, every unknown
participates in | k] = w devices, therefore, any unknown does
not participate in s — w devices. But, we choose any m; > w

devices in W;, where w = [Sgl], since k = s. Thus,

2w > s+ 1 > s which indicates that, w > s — w.

In addition, since m; > w, we claim that mq > s — w4. Thus,
every submatrix will participate at least once within those
chosen my devices, hence |X;| = k = kakp.

Next, consider the other case when k > s. Again, since we
choose any arbitrary m; > w devices in W, we are leaving
s —myq devices in W,. But

s—mp<s—w<s— |k

The second inequality holds since s < k, hence, |k] < w.
Thus, every submatrix will participate at least once within
those my > w devices, hence |X;| = k. [|

REFERENCES

[1] A. B. Das, A. Ramamoorthy, D. J. Love, and C. G. Brinton, “Preserving
sparsity and privacy in straggler-resilient distributed matrix computations,’
in Proc. of Annual Allerton Conf. Comm., Control, and Comput.
(Allerton), 2023, pp. 1-8.

E. Vedadi and H. Seferoglu, “Adaptive coding for matrix multiplication

at edge networks,” in Proc. of IEEE Intl. Symp. on Info. Th. (ISIT), 2021,

pp. 1064-1069.

[3] N. Van Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “Joint
coding and scheduling optimization for distributed learning over wireless
edge networks,” IEEE J. Sel. Area. Comm., vol. 40, no. 2, pp. 484-498,
2022.

[4] A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed
matrix computation via coding theory: Removing a bottleneck in large-
scale data processing,” IEEE Sig. Proc. Mag., vol. 37, no. 3, pp. 136-145,
2020.

[51 S. Hosseinalipour, C. G. Brinton, V. Aggarwal, H. Dai, and M. Chiang,
“From federated to fog learning: Distributed machine learning over
heterogeneous wireless networks,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 4147, 2020.

[6] M. Amadeo, C. Campolo, A. Molinaro, G. Ruggeri, and G. Singh,

“Mitigating the communication straggler effect in federated learning via

named data networking,” IEEE Comm. Mag., pp. 1-7, 2024.

S. Kadhe, O. O. Koyluoglu, and K. Ramchandran, “Communication-

efficient gradient coding for straggler mitigation in distributed learning,”

in Proc. of IEEE Intl. Symp. on Info. Th. (I1SIT), 2020, pp. 2634-2639.

S. Prakash, S. Dhakal, M. R. Akdeniz, Y. Yona, S. Talwar, S. Avestimehr,

and N. Himayat, “Coded computing for low-latency federated learning

over wireless edge networks,” IEEE J. Sel. Area. Comm., vol. 39, no. 1,

pp. 233-250, 2021.

[9] S. Dhakal, S. Prakash, Y. Yona, S. Talwar, and N. Himayat, “Coded

federated learning,” in IEEE Globecom Workshops, 2019, pp. 1-6.

A. B. Das, A. Ramamoorthy, D. J. Love, and C. G. Brinton, “Coded

matrix computations for D2D-enabled linearized federated learning,” in

Proc. of IEEE Intl. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP),

2023, pp. 1-5.

A. Asheralieva and D. Niyato, “Throughput-efficient lagrange coded

private blockchain for secured iot systems,” IEEE Internet of Things

Jour., vol. 8, no. 19, pp. 14 874-14 895, 2021.

>

[2

—

[7

—

[8

[t}

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency
federated learning and blockchain for edge association in digital twin
empowered 6G networks,” IEEE Trans. Ind. Inform., vol. 17, no. 7, pp.
5098-5107, 2021.

X. Ma and D. Xu, “Torr: A lightweight blockchain for decentralized
federated learning,” IEEE Internet of Things Jour., vol. 11, no. 1, pp.
1028-1040, 2024.

C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely coded
computing,” in Proc. of IEEE Intl. Symp. on Info. Th. (ISIT), 2019,
pp. 2798-2802.

B. Buyukates and S. Ulukus, “Timely distributed computation with
stragglers,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5273-5282, 2020.
C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” Proc. of Adv. Neural
Inf. Process. Syst. (NeurIPS), vol. 30, 2017.

D. Data, L. Song, and S. N. Diggavi, “Data encoding for byzantine-
resilient distributed optimization,” IEEE Trans. Info. Th., vol. 67, no. 2,
pp. 1117-1140, 2021.

C. Karakus, Y. Sun, and S. Diggavi, “Encoded distributed optimization,
in Proc. of IEEE Intl. Symp. on Info. Th. (ISIT), 2017, pp. 2890-2894.
J. Zhu, Y. Pu, V. Gupta, C. Tomlin, and K. Ramchandran, “A sequential
approximation framework for coded distributed optimization,” in Proc.
of Annual Allerton Conf. Comm., Control, and Comput. (Allerton), 2017,
pp. 1240-1247.

U. Demirbaga and G. S. Aujla, “Mapchain: A blockchain-based verifiable
healthcare service management in iot-based big data ecosystem,” IEEE
Trans. Netw. Serv. Manag., vol. 19, no. 4, pp. 3896-3907, 2022.

A. Gupta, S. Misra, N. Pathak, and D. Das, “Fedcare: Federated learning
for resource-constrained healthcare devices in iomt system,” IEEE Trans.
Comput. Soc., vol. 10, no. 4, pp. 1587-1596, 2023.

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Info. Th., vol. 64, no. 3, pp. 1514-1529, 2018.

A. B. Das, A. Ramamoorthy, and N. Vaswani, “Efficient and robust
distributed matrix computations via convolutional coding,” IEEE Trans.
Info. Th., vol. 67, no. 9, pp. 6266-6282, 2021.

S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. of Adv.
Neural Inf. Process. Syst. (NeurlPS), 2016, pp. 2100-2108.

Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal
design for high-dimensional coded matrix multiplication,” in Proc. of
Adv. Neural Inf. Process. Syst. (NeurlPS), 2017, pp. 4403-4413.

A. B. Das, L. Tang, and A. Ramamoorthy, “C3LES : Codes for coded
computation that leverage stragglers,” in Proc. of IEEE Info. Th. Workshop
(ITW), 2018, pp. 1-5.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in
distributed matrix multiplication: Fundamental limits and optimal coding,”
IEEE Trans. Info. Th., vol. 66, no. 3, pp. 1920-1933, 2020.

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. of Intl. Conf.
on Mach. Learn. (ICML), 2017, pp. 3368-3376.

A. B. Das and A. Ramamoorthy, “A unified treatment of partial stragglers
and sparse matrices in coded matrix computation,” IEEE Jour. on Sel.
Area. in Info. Th., vol. 3, no. 2, pp. 241-256, 2022.

A. K. Pradhan, A. Heidarzadeh, and K. R. Narayanan, “Factored LT and
factored raptor codes for large-scale distributed matrix multiplication,”
IEEE Jour. Sel. Area. Info. Th., vol. 2, no. 3, pp. 893-906, 2021.

A. B. Das, A. Ramamoorthy, D. J. Love, and C. G. Brinton, “Distributed
matrix computations with low-weight encodings,” IEEE Jour. Sel. Area.
Info. Th., vol. 4, pp. 363-378, 2023.

M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded
computing,” IEEE Trans. Info. Th., vol. 67, no. 5, pp. 2758-2785, 2021.
A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random
Khatri-Rao-product codes for numerically-stable distributed matrix
multiplication,” in Proc. of Annual Allerton Conf. Comm., Control, and
Comput. (Allerton), Sep. 2019, pp. 253-259.

S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,” in
Proc. of Intl. Conf. on Mach. Learn. (ICML), 2018, pp. 5152—5160.
M. Xhemrishi, R. Bitar, and A. Wachter-Zeh, ‘“Distributed matrix-vector
multiplication with sparsity and privacy guarantees,” in Proc. of IEEE
Intl. Symp. on Info. Th. (ISIT), 2022, pp. 1028-1033.

A. B. Das and A. Ramamoorthy, “Coded sparse matrix computation
schemes that leverage partial stragglers,” IEEE Trans. Info. Th., vol. 68,
no. 6, pp. 41564181, 2022.

J. Li and C. Hollanti, “Private and secure distributed matrix multiplication
schemes for replicated or mds-coded servers,” IEEE Trans. Inf. Forensics
Secur., vol. 17, pp. 659-669, 2022.

>

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]
[56]
[57]

[58]

[59]

[60]

[61]

[62]

M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed
matrix multiplication with flexible communication load,” IEEE Trans.
Inf. Forensics Secur., vol. 15, pp. 2722-2734, 2020.

W.-T. Chang and R. Tandon, “On the capacity of secure distributed matrix
multiplication,” in Proc. of IEEE Glob. Comm. Conf. (GLOBECOM),
2018, pp. 1-6.

A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi,
“Rateless codes for near-perfect load balancing in distributed matrix-
vector multiplication,” ACM on Meas. and Analysis of Comp. Syst.,
vol. 3, no. 3, pp. 1-40, 2019.

A. B. Das and A. Ramamoorthy, “Distributed matrix-vector multiplication:
A convolutional coding approach,” in Proc. of IEEE Intl. Symp. on Info.
Th. (ISIT), 2019, pp. 3022-3026.

Y. Keshtkarjahromi, Y. Xing, and H. Seferoglu, “Dynamic heterogeneity-
aware coded cooperative computation at the edge,” in Proc. of IEEE Intl.
Conf. on Network Protocols (ICNP), 2018, pp. 23-33.

H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city internet
of things,” IEEE Internet of Things Jour., vol. 7, no. 9, pp. 8099-8110,
2020.

H. Habibzadeh, Z. Qin, T. Soyata, and B. Kantarci, “Large-scale
distributed dedicated- and non-dedicated smart city sensing systems,”
IEEE Sensors Jour., vol. 17, no. 23, pp. 7649-7658, 2017.

S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover,
“On the optimal recovery threshold of coded matrix multiplication,” JEEE
Trans. Info. Th., vol. 66, no. 1, pp. 278-301, 2019.

K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Proc. of IEEE Intl. Symp. on Info. Th. (ISIT), 2017,
pp. 2418-2422.

B. Hasircio8lu, J. Gémez-Vilardebd, and D. Giindiiz, “Bivariate polyno-
mial coding for efficient distributed matrix multiplication,” IEEE Jour.
Sel. Area. Info. Th., vol. 2, no. 3, pp. 814-829, 2021.

A. Ramamoorthy and L. Tang, “Numerically stable coded matrix
computations via circulant and rotation matrix embeddings,” IEEE Trans.
Info. Th., vol. 68, no. 4, pp. 2684-2703, 2022.

SuiteSparse Matrix Collection. [Online]. Available: https://sparse.tamu.
edu/

H. Yao, W. Yu, and X. Wang, “A feature memory rearrangement network
for visual inspection of textured surface defects toward edge intelligent
manufacturing,” IEEE Trans. Autom. Sci. Eng., vol. 20, no. 4, pp. 2616~
2635, 2023.

W. Yu, Y. Liu, T. Dillon, and W. Rahayu, “Edge computing-assisted
iot framework with an autoencoder for fault detection in manufacturing
predictive maintenance,” IEEE Trans. Ind. Inform., vol. 19, no. 4, pp.
5701-5710, 2023.

R. G. Lins and S. N. Givigi, “Cooperative robotics and machine learning
for smart manufacturing: Platform design and trends within the context
of industrial internet of things,” IEEE Access, vol. 9, pp. 95444-95455,
2021.

E. Wang, M. Zhang, X. Cheng, Y. Yang, W. Liu, H. Yu, L. Wang, and
J. Zhang, “Deep learning-enabled sparse industrial crowdsensing and
prediction,” IEEE Trans. Ind. Inform., vol. 17, no. 9, pp. 6170-6181,
2021.

R. Ji, A. Heidarzadeh, and K. R. Narayanan, “Sparse random khatri-rao
product codes for distributed matrix multiplication,” in Proc. of IEEE
Info. Th. Workshop (ITW), 2022, pp. 416-421.

J. Marshall. Hall, Combinatorial theory. Wiley, 1986.

J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-
mial identities,” Jour. of the ACM, vol. 27, no. 4, pp. 701-717, 1980.
A. Mackiewicz and W. Ratajczak, “Principal components analysis (PCA),”
Computers & Geosciences, vol. 19, no. 3, pp. 303-342, 1993.

P. Xanthopoulos, P. M. Pardalos, T. B. Trafalis, P. Xanthopoulos, P. M.
Pardalos, and T. B. Trafalis, “Linear discriminant analysis,” Robust data
mining, pp. 27-33, 2013.

R. Ji, A. Heidarzadeh, and K. R. Narayanan, “Sparse random khatri-rao
product codes for distributed matrix multiplication,” in Proc. of IEEE
Info. Th. Workshop (ITW), 2022, pp. 416-421.

W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah,
“Edge learning for bSg networks with distributed signal processing:
Semantic communication, edge computing, and wireless sensing,” IEEE
Jour. Sel. Topics in Sig. Proc., vol. 17, no. 1, pp. 9-39, 2023.

E. Ozfatura, S. Ulukus, and D. Giindiiz, “Coded distributed computing
with partial recovery,” IEEE Trans. Info. Th., vol. 68, no. 3, pp. 1945—
1959, 2021.

E. Ozfatura, B. Buyukates, D. Giindiiz, and S. Ulukus, “Age-based coded
computation for bias reduction in distributed learning,” in Proc. of IEEE
Glob. Comm. Conf. (GLOBECOM), 2020, pp. 1-6.

