
1

Sparsity-Preserving Encodings for Straggler-Optimal
Distributed Matrix Computations at the Edge

Anindya Bijoy Das, Aditya Ramamoorthy, David J. Love and Christopher G. Brinton

Abstract—Matrix computations are a fundamental building-
block of edge computing systems, with a major recent uptick
in demand due to their use in AI/ML training and inference
procedures. Existing approaches for distributing matrix compu-
tations involve allocating coded combinations of submatrices
to worker nodes, to build resilience to slower nodes, called
stragglers. In the edge learning context, however, these approaches
will compromise sparsity properties that are often present in
the original matrices found at the edge server. In this study,
we consider the challenge of augmenting such approaches to
preserve input sparsity when distributing the task across edge
devices, thereby retaining the associated computational efficiency
enhancements. First, we find a lower bound on the weight of
coding, i.e., the number of submatrices to be combined to obtain
coded submatrices, to provide the resilience to the maximum
possible number of straggler devices (for given number of devices
and their storage constraints). Next we propose distributed matrix
computation schemes which meet the exact lower bound on the
weight of the coding. Numerical experiments conducted in Amazon
Web Services (AWS) validate our assertions regarding straggler
mitigation and computation speed for sparse matrices.

Index Terms—Distributed computing, MDS Codes, Stragglers,
Sparsity, IoT/edge heterogeneity

I. INTRODUCTION

Edge computing platforms are constantly struggling to keep
pace with the escalating demands for data processing tasks.
A vast volume of data is being generated at the network
edge today due to the rise of the Internet of Things (IoT),
which encompasses self-driving cars, drones, health monitoring
devices, and many other intelligent applications [2]. The
mounting complexity of edge learning tasks, exemplified by
the constantly growing sizes of deep neural networks and other
AI/ML models, coupled with vast amounts of data used in
training and inference, persistently obstruct scalability. As
these models become more sophisticated, they necessitate
increasingly robust computational resources and capabilities.

A possible solution to this can be borrowed from distributed
computing systems, where computationally intensive tasks
are distributed across multiple worker nodes. In the edge
computing context, an oversubscribed edge server can allocate

Anindya Bijoy Das, David J. Love, and Christopher. G. Brinton are with
the School of Electrical and Computer Engineering, Purdue University, West
Lafayette, IN, USA 47907 (e-mail: {das207, djlove, cgb}@purdue.edu).

Aditya Ramamoorthy is with the Department of Electrical and Computer
Engineering, Iowa State University, Ames, Iowa, USA 50011 (email: adit-
yar@iastate.edu).

The material in this work has appeared in part [1] at the 59th Annual
Allerton Conference on Communication, Control, and Computing (Allerton),
Monticello, IL, USA, 2023, [DOI: 10.1109/Allerton58177.2023.10313473].

This work was supported in part by the National Science Foundation (NSF)
under Grants CNS-2212565, ITE-2326898 and CCF-2115200, and Office of
Naval Research (ONR) under grant N000142112472.

a processing task across multiple edge/IoT devices that has
access to. Specifically, a profoundly-complex learning task
can undergo partitioning into numerous sub-learning tasks,
which are subsequently dispatched to multiple edge devices
for execution [3]. Thus, the computational burden at the edge
server can be parallelized, enhancing training speed.

In the edge learning context, particular attention must be
paid to matrix computations, which form the cornerstone of
numerous data processing tasks in AI/ML. With the expansion
of data sizes, these computations encompass high-dimensional
matrices, leading to extended runtimes with all else held
constant. Distributed edge computations will aim to mitigate
this by segmenting the entire matrix operation into smaller
submatrices, and dispersing them across multiple edge devices
for parallel execution. Nonetheless, the overall execution time
of a task can be markedly impacted by slower or failed edge
devices, often referred to as “stragglers” [4].

Stragglers are prevalent across the edge due to different
reasons including heterogeneous computation capabilities found
across devices [4], [5] and network congestion [6], [7], and
can pose challenges to completing edge learning tasks in a
timely manner. Since the system must wait for the slowest
task to finish before proceeding, these are particularly prob-
lematic in environments where tasks are expected to complete
synchronously. Scenarios affected by stragglers encompass
various real-world applications in federated learning [8]–[10],
blockchain [11]–[13], timely computing [14], [15], distributed
optimization [16]–[19], smart healthcare [20], [21] and other
similar environments. Thus, mitigating the stragglers is essential
for optimizing the synchronization and speed of task completion
in such cases.

Several coding theory techniques [22]–[33] have been
recently proposed to mitigate the effect of stragglers. A simple
example [22] for computing ATx using three devices involves
partitioning the matrix A into two block-columns, denoted as
A = [A0|A1]. The edge devices are then assigned specific
tasks: one computes AT

0 x, another computes AT
1 x, and the

third computes (A0 +A1)
Tx. Each device then handles only

half of the computational load, the system can recover ATx
if any two out of the devices return their results. This implies
that the system can withstand the failure or delay of a single
straggler. In broader terms, the recovery threshold stands as a
pivotal metric, denoting the minimum number of edge devices
(τ) needed to fulfill their tasks, thereby facilitating the recovery
of ATx from any subset of τ devices. Note that this idea can
be extended to matrix-matrix multiplication also.

While numerous existing works achieve the optimal recovery
threshold [23], [25], [32], [33] for specific device and storage

2

constraints, they are not exempt from limitations. Real-world
datasets, pervasive across various fields like optimization, deep
learning, power systems, and computational fluid dynamics,
frequently manifest as sparse matrices. Leveraging this sparsity
effectively holds the potential to significantly reduce the overall
time required for matrix computations. However, techniques
relying on MDS codes tend to generate dense linear combina-
tions of submatrices [23], [25], [32], [33], thereby obliterating
the inherent sparsity within the matrix structure. Consequently,
this can result in a severe reduction in the computational speed
of edge devices [34]. In addition, this can lead to further delay,
since the central server needs to transmit a larger number
of non-zero entries to the edge devices. In this paper, our
primary objective is to devise methodologies that integrate a
relatively modest number of submatrices while preserving an
optimal recovery threshold. This can enhance the computation
speed and reduce the transmission delay, thereby improving
the overall job completion speed.

Organization: In this work, first we formulate the problem,
provide a literature background and summarize our contribu-
tions in Sec. II. Then, in Sec. III, we find a lower bound
on the number of submatrices to be combined for coded
submatrices that will provide resilience to the maximum number
of stragglers in a system with given storage and computation
constraints. After that, we develop novel approaches for dis-
tributed matrix-vector multiplication (Sec. IV) and distributed
matrix-matrix multiplication (Sec. V), both of which meet that
lower bound, maximizing sparsity preservation while providing
resilience to the maximum number of stragglers. Next, we carry
out experiments on an Amazon Web Services (AWS) cluster,
and provide the numerical results in Sec. VI. Finally, Sec. VII
concludes the paper with several possible future directions.

II. PROBLEM FORMULATION, BACKGROUND AND
SUMMARY OF CONTRIBUTIONS

In this section, we initially outline the problem of addressing
sparsity in distributed matrix computations. Following that, we
provide a concise overview of existing methods, analyze their
limitations, and outline the key contributions of our research.

A. Problem Formulation

In this work, we investigate a distributed computing system
comprised of a edge server and a set of n edge devices. The goal
is to compute ATx for matrix-vector multiplication or ATB
for matrix-matrix multiplication. Here, A ∈ Rt×r, B ∈ Rt×w

are the “input” matrices, and x ∈ Rt is a vector.
First, we consider a coded matrix-vector multiplication

scheme where The primary objective of this system is to
calculate the product ATx, where A represents a sparse matrix
and x denotes a vector. In line with previous approaches, we
initially partition matrix A into kA distinct block-columns,
A0,A1,A2, . . . ,AkA−1; hence the goal is to recover kA
corresponding unknowns AT

0 x,A
T
1 x,A

T
2 x, . . . ,A

T
kA−1x.

Next, we consider the matrix-matrix multiplication case,
where matrices A and B are partitioned into kA and
kB disjoint block-columns, as A0,A1,A2, . . . ,AkA−1 and
B0,B1,B2, . . . ,BkB−1. Thus, in this case we need to recover,

in total, kAkB unknowns in the form of AT
i Bj where

0 ≤ i ≤ kA − 1 and 0 ≤ j ≤ kB − 1.
The assumption is that the edge devices possess uniform

memory capacity and computational speed. To elaborate, each
worker can retain γA = 1

kA
portion of matrix A, as well as

the complete vector x (in the matrix-vector case), or γB = 1
kB

portion of matrix B (in the matrix-matrix case). In real-world
scenarios, stragglers might emerge owing to discrepancies in
computational speeds or instances of failure among designated
edge devices at particular times [23].

In this work, we allocate to each edge device a randomized
linear combination of specific block-columns from matrix A,
along with the vector x in the matrix-vector case. For matrix-
matrix multiplication, each edge device receives a randomized
linear combination of certain block-columns from A and
another combination from B. However, as discussed in Section
I, assigning dense linear combinations risks losing the inherent
sparsity of the matrices involved. To circumvent this, our aim
is to distribute linear combinations involving fewer submatrices
[29], [31]. To quantify this strategy, we introduce the notion of
“weight”, which plays a pivotal role in handling sparse matrices
in distributed matrix computations.

Definition 1. We define the “weight” (ω) for a coded matrix-
computation scheme as the number of unknowns that participate
within any matrix product computed by each of the edge
device. Thus, if we combine ωA submatrices of A to obtain
the encoded submatrices for matrix-vector multiplication, we
have ω = ωA. In the matrix-matrix case, if we combine ωA

and ωB submatrices of A and B, respectively, to obtain the
assigned encoded submatrices, then ω = ωAωB .

Thus, our goal is to obtain the optimal recovery threshold
(τ = kA for the matrix-vector case, and τ = kAkB for
the matrix-matrix case [25]) while maintaining ω as low as
possible.

B. Existing Methods and Our Motivations

Numerous coded computation schemes have been recently
proposed for distributed matrix computations [22]–[25], [27]–
[30], [32], [33], [35]–[41]. In this section, we provide an
overview of existing algorithms and examine their limitations,
which have inspired our current research efforts. Note that
there are methods in [35], [40]–[42] which are developed for
matrix-vector multiplication only. In this work, in addition to
the matrix-vector case, we also address the distributed matrix-
matrix multiplication scenario, the more challenging one.

The initial studies in this domain focused on the recovery
threshold as a pivotal metric. Unlike the methodologies outlined
in [34], [40], which exhibit suboptimal straggler resilience, the
polynomial code approach emerges as one of the pioneering
methods to achieve the optimal recovery threshold. We begin
by illustrating a simplified example of this approach [25] in
the context of distributed matrix-matrix multiplication.

Let us consider a system consisting of n = 5 edge devices,
each capable of storing half of each of the matrices A and
B, hence 1/kA = 1/kB = 1/2. We partition A and B into
kA = kB = 2 block-columns each, denoted as A0, A1 and
B0, B1, respectively. Defining matrix polynomials A(z) =

3

A0 +A1z and B(z) = B0 +B1z
2, we can write the product

of these two matrix polynomials as AT (z)B(z) = AT
0 B0 +

AT
1 B0z+AT

0 B1z
2+AT

1 B1z
3. The edge server assesses A(z)

and B(z) at n = 5 distinct real numbers, and then, transmits
the corresponding evaluated matrices to edge device Wi, where
0 ≤ i ≤ n−1. Each device then computes its designated matrix-
matrix block-product and sends back the result to the server.
Given that AT (z)B(z) forms a degree-3 polynomial, upon
receiving results from the fastest τ = 4 devices, the server can
decode all coefficients within AT (z)B(z), thereby obtaining
ATB (since any 4 × 4 submatrix of a 5 × 4 Vandermonde
matrix has a rank 4). Hence, the recovery threshold is τ = 4,
indicating resilience to s = 1 straggler.

For given storage constraints, i.e., storing 1/kA and 1/kB
fractions of A and B, respectively, if each device is responsible
to compute 1/k fraction of the overall job (where k = kAkB),
then s = n − kAkB is the maximum number of stragglers
that any scheme can be resilient to [25]. This can be an
important property of a coded computation scheme, since
resilience to a high number of stragglers is often crucial.
For example, consider smart city IoT environments, where
distributed learning is often incorporated within edge computing
systems to provide intelligent, data-driven services [43], [44].
Quality of Service (QoS) for these smart city use-cases have
been shown to greatly improve through computation offloading,
and thus highly depends on the system being resilient to slower
devices.

While the polynomial code meets the lower bound on the
recovery threshold, recent works on matrix computations have
identified metrics beyond recovery threshold that also need to
be considered. Table I demonstrates an overall summary to
compare available schemes in terms of different other metrics.
Here we discuss the importance of factoring them into our
methodology which aims at improving those other metrics
along with enjoying the optimal recovery threshold.

Sparse Matrices: Sparse matrices are ubiquitous across
various domains like optimization, deep learning, and elec-
tromagnetism, as evidenced by their prevalence in real-world
datasets (see [49] for examples). Essentially, many practical
scenarios involve matrices with sparse elements, offering a
potential opportunity to reduce the edge device computation
time significantly [34]. For example, for anomalous defect
elimination in intelligent manufacturing, sparsity of the normal
features can be very beneficial [50], [51]. This can significantly
enhance the speed of the overall training process, which often
involves deep neural networks [52], [53].

Consider two column vectors, a and y, both of length m,
where a contains roughly ψm non-zero entries (0 < ψ << 1).
Computing aTy consumes about 2ψm floating-point operations
(FLOPs), in contrast to approximately 2m FLOPs which
would be required for a dense vector a. In a similar manner,
the dense linear encoding strategies in [23], [25], [32], [33]
inflate the number of non-zero entries in encoded matrices,
thus forfeit sparsity preservation. For a system with storage
coefficients 1/kA and 1/kB , the polynomial coding scheme
[25] and its derivatives [32] obtain the encoded submatrices
of A and B by having linear combinations of kA and kB

submatrices, respectively. Consequently, non-zero entries can
increase by up to kA and kB times, respectively, compared
to the original matrices, substantially elongating computation
time. This underscores the necessity for schemes that minimize
the fusion of uncoded submatrices.

Note that there are various methods in the literature [29],
[34]–[36], [54] that highlight and leverage the inherent sparsity
of the “input” matrices. However, they have other limitations.
For example, the approach detailed in [35] is only applicable
to the matrix-vector case; does not apply to matrix-matrix
multiplication. The assumptions in [54] differ from ours as
they involve the edge server in some matrix computations.
Furthermore, the approach in [34] and the β-level coding
scheme in [36] do not meet the optimal recovery threshold,
necessitating more devices to complete their tasks. On the other
hand, the straggler optimal approaches in [29], [36] assign
multiple tasks to each edge device, some of which can be
quite densely coded, leading to higher computation delay. The
approach in [31] also addresses the sparsity issue, but it does
not make any guarantees in terms of a theoretical lower bound
on the encoding weights. This implies that an enhanced coding
approach could further streamline computational speed beyond
these techniques for sparse matrices. We provide theoretical
guarantees for our proposed coding method in Sec. III.

Numerical Stability: The numerical stability of the system
stands as another crucial concern. Given that the encoding and
decoding techniques in coded computation function within the
real field, decoding the unknowns from a system of equations
may lead to highly inaccurate results if the corresponding sys-
tem matrix is ill-conditioned. Round-off errors could magnify
in the decoded outcome due to the elevated condition numbers
of the decoding matrices. For instance, the polynomial code
method outlined in [25] integrates Vandermonde matrices into
the encoding process, known for their ill-conditioned nature.
Literature addressing this challenge [23], [32], [33] underscores
the significance of minimizing the worst-case condition number
(κworst) across different choices of stragglers.

However, several numerically stable methods rely on random
codes [23], [29], [33], [36], necessitating substantial time
investment to find an optimal set of random coefficients to
ensure the numerical stability of the system. This typically
involves generating a set of random coefficients initially and
assessing κworst across all straggler permutations. This step
iterates several times (e.g., 20), retaining the set of coefficients
yielding the minimum κworst. However, the latency introduced
by this iterative process escalates with the number of edge
devices, potentially causing delays in the encoding process. For
example, the sparsely coded approaches in [29], [36] involve
significant delay for determining a “good” set of coefficients,
as demonstrated numerically in Sec. VI.

C. Summary of Contributions

• We address the straggler issue in distributed matrix
computations for edge learning tasks, specifically focusing
on sparse matrices. We define the concept of “weight” and
determine its lower bound to ensure resilience against the

4

TABLE I: Comparison among existing works on coded matrix-computations (the approach in [45] involves a higher computational complexity).
However, the methods in [35], [40]–[42] are developed for matrix-vector multiplication only, and therefore, are not included in the comparison.
Note that the method in [31] does not develop and meet the lower bound on the encoding weight, which is one of our contributions.

CODES
OPTIMAL NUMERICAL SPARSELY HETEROGENEOUS

THRESHOLD? STABILITY? CODED? SYSTEM?

REPETITION CODES ✗ ✓ ✓ ✓
PRODUCT CODES [46], FACTORED CODES [30] ✗ ✓ ✗ ✗

POLYNOMIAL CODES [25] ✓ ✗ ✗ ✓
MATDOT CODES [45] ✓ ✗ ✗ ✓

ORTHOGONAL POLYNOMIAL [32], RKRP CODE [33], ✓ ✓ ✗ ✓
BIVARIATE POLYNOMIAL CODE [47] ✓ ✗ ✗ ✓

CONVOLUTIONAL CODE [23], CIRCULAR ROT. MATRIX [48] ✓ ✓ ✗ ✓
β-LEVEL CODING [36] ✗ ✓ ✓ ✗

SPARSELY CODED STRAGGLER OPTIMAL SCHEME [36] ✓ ✓ ✓ ✗
CLASS-BASED SCHEME [29] ✓ ✓ ✓ ✗

CYCLIC CODE (WITH RANDOM COEFFICIENTS) [31] ✓ ✓ ✓ ✓
Proposed Scheme ✓ ✓ ✓ ✓

maximum number of stragglers, maximizing the system’s
tolerance to delays or inefficiencies.

• Then, we develop an algorithm (Alg. 1) for distributed
matrix-vector multiplication, which meets the exact lower
bound to build resilience against maximum number of
stragglers for any number of edge devices (n) and for any
given storage constraint.

• Next, we develop an algorithm (Alg. 2) for straggler-
resilient distributed matrix-matrix multiplication, which
also meets the lower bound on the weight for different
values of n, kA and kB . Both of Alg. 1 and Alg. 2 can be
extended to a heterogeneous setting where the edge devices
can have different storage and computation abilities.

• Subsequently, we analyze the per edge device computa-
tional complexity for our algorithms, and show that our
approaches involve lower computational complexity than
other recent approaches [29], [31]. In addition, we show
that our approach also outperforms the approaches in [29],
[36] requiring less time to find the encoding coefficients
for the numerical stability of the system.

• Finally, we conduct extensive numerical experiments in the
Amazon Web Services (AWS) cluster. Our results confirm
the superiority of our approach to different dense coded
approaches [25], [32], [33], and to the recent approaches
developed specifically for sparse matrices [29], [31].

Note that a preliminary version of this paper appeared in [1].
Compared to the conference version, we have (i) developed Alg.
2 for the more challenging case: matrix-matrix multiplication,
(ii) proved necessary theorems for straggler-resilience, and (iii)
conducted the corresponding numerical simulations.

III. MINIMUM WEIGHT OF ENCODING

We assume homogeneous weights, i.e., the same number
(ωA) of uncoded A (and ωB for B) submatrices are combined
to obtain the encoded A (and B) submatrices. If we define ω as
the number of participating unknowns in any computed results
obtained from any edge device, in matrix-vector multiplication,
we have ω = ωA and in the matrix-matrix case, ω = ωAωB .
Now we state the following proposition which provides a lower
bound on ω for any coded matrix computation scheme with

resilience to s = n − k stragglers, where k = kA for the
matrix-vector case and k = kAkB for the matrix-matrix case.

Proposition 1. Consider a distributed computation system
of n total devices each of which can store 1/kA fraction of
matrix A (and 1/kB fraction of matrix B for the matrix-
matrix multiplication case). Now, assume that a coded matrix
computation scheme aims at resilience to s = n− k stragglers
out of n devices, where k = kA for the matrix-vector case and
k = kAkB for the matrix-matrix case. Any such scheme that
partitions A into kA (and B into kB) disjoint block-columns
has to maintain a minimum homogeneous value for ω, which
is given by ω̂ = ⌈ (n−s)(s+1)

n ⌉.

Proof. Since the scheme aims at resilience to any s stragglers,
any scheme needs to ensure the presence of each of the
corresponding k unknowns in at least s+1 different devices. In
other words, for the matrix-vector case, each of k = kA such
Ai’s (and for the matrix-matrix case, each of k = kAkB such
AT

i Bj’s) has to participate within the encoded submatrices in
at least s+ 1 different devices. Thus, the sum of the required
number of appearances of all the uncoded unknowns is k(s+1).

Now, we assume homogeneous ω, i.e., each of these
n devices is assigned a linear combination of ω uncoded
unknowns. Hence, the total number of appearances of all the
uncoded unknowns over the set of the worker nodes is nω.

Therefore, to build the resilience to any s stragglers, we
need to have, nω ≥ k(s + 1), hence, ω ≥ (n−s)(s+1)

n .Thus,
the minimum weight ω̂ =

⌈
(n−s)(s+1)

n

⌉
. ■

Now we state a corollary which considers different values
of kA in terms of s, and provides the corresponding optimal
weights for coded sparse matrix-vector multiplication.

Corollary 1. Consider the same setting as Prop. 1 for coded
matrix computations. Now, we have the following cases.

• (i) If k > s2, then ω̂ = s+ 1.
• (ii) If s ≤ k ≤ s2, then ⌈ s+1

2 ⌉ ≤ ω̂ ≤ s.

Proof. Since n = k + s, from Prop. 1, we have

ω̂ =
⌈k(s+ 1)

k + s

⌉
=

⌈ 1 + s

1 + s
k

⌉
; (1)

5

W0 W1 W2 W3 W4 W5

{A0,A1} {A1,A2} {A2,A3} {A3,A0} {A0,A1} {A2,A3}

Fig. 1: Submatrix allocation by the edge server to a system with
n = 6 devices, s = 2 stragglers and γA = 1

4
according to Alg. 1.

Here, the weight of every coded submatrix is ωA =
⌈

kA(s+1)
kA+s

⌉
= 2.

Any {Ai,Aj} indicates a random linear combination of Ai and Aj .

hence, ω̂ is a non-decreasing function of k for fixed s.
Part (i): When k > s2, we have s

k <
1
s , and 1+s

1+ s
kA

> 1+s
1+ 1

s

= s.
Thus, from (1), ω̂ > s. In addition, from (1), for any s ≥ 0,
we have ω̂ ≤ s+ 1. Thus, we have ω̂ = s+ 1.
Part (ii): If k = s2, from (1), we have ω̂ = s. Similarly, if
k = s, from (1), we have ω̂ = ⌈ s+1

2 ⌉. Thus, the non-decreasing
property of ω̂ in terms of k concludes the proof. ■

Now we describe a motivating example below where the
encoding scheme meets the lower bound mentioned in Prop. 1.

Example 1. Consider a toy system for distributed matrix-vector
multiplication with n = 6 edge devices each of which can store
1/4 fraction of matrix A. We partition matrix A into kA = 4
disjoint block-columns, A0,A1,A2,A3. According to Prop. 1,
the optimal weight ω = ωA can be as low as

⌈
kA(s+1)
kA+s

⌉
= 2.

Now, we observe that the way the jobs are assigned in Fig.
1 meets that lower bound, where random linear combinations
of ωA = 2 submatrices are assigned to the devices. It can be
verified that this system has a recovery threshold τ = kA = 4,
and thus, it is resilient to any s = 2 stragglers.

IV. PROPOSED MATRIX-VECTOR MULTIPLICATION
APPROACH

In this section, we detail our overall approach for dis-
tributed matrix-vector multiplication which is outlined in
Alg. 1. We partition matrix A into kA block columns,
A0,A1,A2, . . . ,AkA−1, and assign a random linear combina-
tion of ωA (weight) submatrices of A to every edge device. We
show that for given n and kA, our proposed approach provides
resilience to maximum number of stragglers, s = n− kA. In
addition, our coding scheme maintains the minimum weight
of coding as mentioned in Prop. 1.

Formally, we set ωA =
⌈
kA(s+1)
kA+s

⌉
, and assign a linear

combination of Ai,Ai+1, . . . ,Ai+ωA−1 (indices modulo kA)
to edge device Wi, for i = 0, 1, . . . , kA − 1, where the
linear coefficients are chosen randomly from a continuous
distribution. Next, we assign a random linear combination of
AiωA

,AiωA+1,AiωA+2, . . . ,A(i+1)ωA−1 (indices modulo kA)
to edge device Wi, for i = kA, kA + 1, . . . , n − 1. Note that
every edge device also receives the vector x. Once the fastest

Algorithm 1: Proposed scheme for distributed matrix-
vector multiplication

Input : Matrix A, vector x, n-number of edge
devices, s-number of stragglers, storage
fraction γA = 1

kA
, such that kA ≥ s.

1 Partition A into kA disjoint block-columns;

2 Set weight ωA =
⌈
kA(s+1)
kA+s

⌉
;

3 for i← 0 to n− 1 do
4 if i < kA then
5 Define T = {i, i+ 1, . . . , i+ ωA − 1} (reduced

modulo kA);
6 else
7 Define T = {iωA, iωA + 1, . . . , (i+ 1)ωA − 1}

(reduced modulo kA);
8 end
9 Create a random vector r of length kA with entries

rm, 0 ≤ m ≤ kA − 1;
10 Create a random linear combination of Aq’s where

q ∈ T , thus Ãi =
∑
q∈T

rqAq;

11 Assign encoded submatrix Ãi and the vector x to
edge device Wi;

12 Edge device Wi computes ÃT
i x;

13 end
Output : The edge server recovers ATx from the

returned results by the fastest kA devices.

τ = kA edge devices finish and return their computation
results, the edge server decodes ATx. Note that we assume
kA ≥ s, i.e., at most half of the devices may be stragglers.

A. Straggler Resilience Guarantee

Next we state the Lemma 1 which assists us to prove
Theorem 1 that discusses straggler resilience of our scheme.

Lemma 1. Choose any m ≤ kA edge devices out of all n
devices in the distributed system. Now, if we assign the jobs
to the edge devices according to Alg. 1, the total number
of participating uncoded A submatrices within those m edge
devices is lower bounded by m.

Proof. First we partition all n edge devices into two sets where
the first set, W0 includes the first kA devices and the second
set, W1, includes the next s edge devices, i.e., we have

W0 = {W0,W1,W2, . . . ,WkA−1} ;
and W1 = {WkA

,WkA+1, . . . ,Wn−1} . (2)

Thus, we have |W0| = kA and |W1| = s ≤ kA. Now, we
choose any m ≤ kA edge devices, where we choose m0 devices
fromW0 and m1 devices fromW1, so that m = m0+m1. We
denote set of the participating uncoded A submatrices within
those devices as A0 and A1, respectively. Hence, to prove the
lemma, we need to show |A0 ∪ A1| ≥ m, for any m ≤ kA.

First, according to Alg. 1, we assign a random linear combi-
nation of Ai,Ai+1,Ai+2, . . . ,Ai+ωA−1 (indices modulo kA)
to edge device Wi ∈ W0. Thus, the participating submatrices

6

are assigned in a cyclic fashion [36], and the total number of
participating submatrices within any m0 devices of W0 is

|A0| ≥ min(m0 + ωA − 1, kA). (3)

Next, we state the following claim for the number of partici-
pating submatrices in W1; the detailed proof is in [1].

Claim 1. Choose any m1 ≥ ωA devices fromW1. The number
of participating submatrices within these devices, |A1| = kA.

Case 1: If m1 ≤ ωA − 1, from (3) we have

|A0 ∪ A1| ≥ |A0| = min(m0 + ωA − 1, kA) (when m0 > 0)

≥ min(m0 +m1, kA) ≥ m,

since m = m0 +m1 ≤ kA. We take account the remaining
scenario when m0 = 0. In that case,

|A0 ∪ A1| ≥ |A1| ≥ ωA ≥ m0 +m1 = m.

Here, the inequality |A1| ≥ ωA holds, because the number of
unknowns participating in any device is ωA.
Case 2: If m1 ≥ ωA, from Claim 1 we can say,

|A0 ∪ A1| ≥ |A1| = kA ≥ m,

which concludes the proof of the lemma. ■

Example 2. Consider the same scenario in Example 1, where
kA = 4 and s = 2, therefore, W0 = {W0,W1,W2,W3}
and W1 = {W4,W5}. Now, choose m = 3 devices, W0,W1

and W4. Thus, m0 = 2 and m1 = 1. Now, from the figure,
we have A0 = {A0,A1,A2} and A1 = {A0,A1}. Hence,
|A0 ∪ A1| = 3 ≥ m. Similar properties can be shown for any
choice m ≤ kA = 4 different devices.

Now we state the following theorem which provides the
guarantee of resilience to maximum number of stragglers for
given storage constraints.

Theorem 1. Assume that a system has n edge devices each
of which can store 1/kA fraction of matrix A and the whole
vector x for the distributed matrix-vector multiplication ATx.
If we assign the jobs according to Alg. 1, we achieve resilience
to s = n− kA stragglers.

Proof. According to Alg. 1, first we partition matrix A into
kA disjoint block-columns. Thus, to recover the matrix-vector
product, ATx, we need to decode all kA vector unknowns,
AT

0 x,A
T
1 x,A

T
2 x, . . . ,A

T
kA−1x. We denote the set of these kA

unknowns as U . Now we choose an arbitrary set of kA edge
devices each of which corresponds to an equation in terms of
ωA of those kA unknowns. Denoting the set of kA equations
as V , we can say, |U| = |V| = kA.

Now we consider a bipartite graph G = V ∪ U , where any
vertex (equation) in V is connected to some vertices (unknowns)
in U which participate in the corresponding equation. Thus,
each vertex in V has a neighborhood of cardinality ωA in U .

Our goal is to show that there exists a perfect matching
among the vertices of V and U . To do so, we consider V̄ ⊆ V ,
where |V̄| = m ≤ kA. Now, we denote the neighbourhood
of V̄ as N (V̄) ⊆ U . Thus, according to Lemma 1, for any
m ≤ kA, we can say that |N (V̄)| ≥ m. So, according to Hall’s

W0 W1 W2 W3

W4 W5 W6 W7

W8 W9 W10 W11

{A0,A1,A2} {A1,A2,A3} {A2,A3,A4} {A3,A4,A5}

{A4,A5,A6} {A5,A6,A7} {A6,A7,A8} {A7,A8,A0}

{A8,A0,A1} {A0,A1,A2} {A3,A4,A5} {A6,A7,A8}

Fig. 2: Submatrix allocation for n = 12 workers and s = 3
stragglers, with γA = 1

9
according to Alg. 1. Here, the weight of every

submatrix is ωA =
⌈

kA(s+1)
kA+s

⌉
= 3. Any {Ai,Aj ,Ak} indicates a

random linear combination of the corresponding submatrices where the
coefficients are chosen i.i.d. at random from a continuous distribution.

marriage theorem [55], we can say that there exists a perfect
matching among the vertices of V and U .

Next we consider the largest matching where the vertex
vi ∈ V is matched to the vertex uj ∈ U , which indicates
that uj participates in the equation corresponding to vi. Now,
considering kA equations and kA unknowns, we construct
the kA × kA coding (or decoding) matrix H where row
i corresponds to the equation associated to vi where uj
participates. We replace row i of H by ej where ej is a
unit row-vector of length kA with the j-th entry being 1, and 0
otherwise. Thus we have a kA×kA matrix where each row has
only one non-zero entry which is 1. In addition, since we have
a perfect matching, H will have only one non-zero entry in
every column. Thus, H is a permutation of the identity matrix,
and therefore, H is full rank. Since the matrix is full rank for a
choice of definite values, according to Schwartz-Zippel lemma
[56], the matrix continues to be full rank for random choices
of non-zero entries. Thus, the edge server can recover all kA
unknowns from any set of kA edge devices. ■

Example 3. Consider a system with n = 12 devices each of
which can store 1/9-th fraction of matrix A. We partition A as
A0,A1, . . . ,A8. According to Alg. 1, we set the weight ωA =⌈
kA(s+1)
kA+s

⌉
= 3, and assign random linear combinations of ωA

submatrices to each device as shown in Fig. 2. It can be verified
that ATx can be recovered from any τ = kA = 9 devices,
therefore, the scheme is resilient to any s = 3 stragglers.

Remark 1. Our proposed approach meets the lower bound
on the weight for any s ≤ kA, as mentioned in Prop. 1.
On the other hand, the approach in [31] always assigns a
weight min(s + 1, kA) which can be higher than ours when
s ≤ kA ≤ s2 (e.g., Examples 1 and 3), and thus, may lead to
reduction in worker computation speed compared to ours.

7

B. Extension to Heterogeneous System

In this section, we expand our approach described in Alg.
1 to accommodate a heterogeneous system comprising n̄
edge devices, each with varying computational abilities and
communication speeds. The assumption is that the storage
capacities and processing speeds of the edge devices (i.e., the
overall system architecture) are known before job assignment.
Similar to the approach in [31], we assume that the system
includes λ different types of devices, indexed from 0 to λ− 1.
For simplicity, we sort the devices in non-ascending order
based on their types.

Let α represent the number of assigned columns and β the
number of columns processed per unit time by the “weakest”
type device [31]. In this setup, an edge device Wi of type ji
is allocated cjiα coded columns of the data matrix A and has
a computation speed of cjiβ, where cji ≥ 1 is an integer. A
higher cji indicates a “stronger” device Wi, capable of storing
and processing data cji times faster than the “weakest” type
device.

Given that the devices are sorted in non-ascending order by
type, we have j0 ≥ j1 ≥ j2 ≥ · · · ≥ jn̄−1 = 0, which ensures
cj0 ≥ cj1 ≥ cj2 ≥ · · · ≥ cjn̄−1

= 1. Note that when λ = 1
and all cji = 1, the system reduces to the homogeneous case
discussed in Section IV-A, where 0 ≤ i ≤ n− 1 and ji = 0.

Consider the “weakest” type of edge device, which requires
µ units of time to process α columns of A. Consequently, any
edge device Wi of type ji can process cjiα columns within
the same time frame, µ. From a computation and storage
standpoint, this means that a node Wi (type ji) can be viewed
as the equivalent of cji ≥ 1 of the “weakest” type edge
devices. Thus, the n̄ devices in our heterogeneous system
can be conceptualized as a homogeneous system composed of
n =

∑n̄−1
i=0 cji “weakest” type edge devices.

In other words, a device Wk in the heterogeneous system
(0 ≤ k ≤ n̄−1) can be represented as a combination of devices
W̄m, W̄m+1, . . . , W̄m+ckj−1 in a homogeneous system, where
m =

∑k−1
i=0 cji , and Wk is of type ji. To further illustrate

this, for any worker node index k̄A (where 0 ≤ k̄A ≤ n̄− 1),
we define kA =

∑k̄A−1
i=0 cji and s =

∑n̄−1
i=k̄A cji , thus n =∑n̄−1

i=0 cji = kA + s. Thus, a heterogeneous system of n̄ edge
devices can be thought as a homogeneous system of n = kA+s
nodes, for any k̄A (0 ≤ k̄A ≤ n̄− 1).

Next, similar to [31], we state the following corollary (of
Theorem 1) that demonstrates the straggler resilience property
of our proposed approach in a heterogeneous setting. The
corresponding proof can be obtained based on results in [31].

Corollary 2. Consider a heterogeneous system of n̄ devices
of different types and assume any k̄A (where 0 ≤ k̄A ≤ n̄−1).
Now, if the jobs are assigned to the modified homogeneous
system of n = kA + s “weakest” type edge devices according
to Alg. 1, the system will be resilient to s such nodes.

Example 4. Consider the example in Fig. 3, which involves
n̄ = 8 edge devices. Suppose the computation capacities cji
are as follows: cji = 3 when i = 0, cji = 2 when i = 1, 2,
and cji = 1 for 3 ≤ i ≤ 7. Therefore, the total computation
capacity is n =

∑n̄−1
i=0 cji = 12. Now, k̄A = 5, leading to

W0
W1 W2

W3 W4

W5 W6 W7

{A0,A1,A2}

{A1,A2,A3}

{A2,A3,A4}

{A3,A4,A5}

{A4,A5,A6}

{A5,A6,A7}

{A6,A7,A8}
{A7,A8,A0} {A8,A0,A1}

{A0,A1,A2} {A3,A4,A5} {A6,A7,A8}

Fig. 3: A heterogeneous system where n̄ = 8 and k̄A = 5, and thus
n = 12 and kA = 9. First, W0 is assigned thrice, and each of W1

and W2 is assigned twice the load of each of W3,W4, . . . ,W7. This
system is resilient to any s = 3 block-column processing, i.e., it is
resilient to any three type 0 nodes (e.g., W3 and W6) or any one type
2 node (e.g., W0).

kA =
∑k̄A−1

i=0 cji = 9, and s =
∑n̄−1

i=k̄A
cji = 3. Hence, each

“weakest” device is assigned 1
9 of the total job. This scheme is

resilient to the failure of any s = 3 block-column processing
units, meaning it can tolerate the failure of any three type 0
devices or any one type 2 device.

If the “stronger” devices (those with cji > 1) fail to complete
all their tasks on time, our proposed system can still utilize
their partial computations. For instance, consider a scenario
where none of W3,W4, . . . ,W7 is a straggler, but W0,W1 and
W2 are slower than their expected speed. If W0 completes
two out of its three assigned tasks, and each of W1 and W2

completes one out of their two assigned tasks, we can still
recover the final result. This is because we only need to process
kA = 9 block-columns across all nodes. Thus, our approach can
leverage partial stragglers (W0, W1, and W2 in this example).

Remark 2. While we extend our method to the heterogeneous
case in a similar manner as [31], our scheme involves a smaller
encoding weight (ω) compared to [31], which enhances the
overall speed of the job for a sparse input matrix A.

C. Computational Complexity for a edge device

In this work, we assume that the “input” matrix, A ∈ Rt×r,
is sparse, i.e., most of the entries of A are zero. Let us assume
that the probability for any entry of A to be non-zero is
µ, where µ > 0 is very small. According to Alg. 1, we
combine ωA submatrices (of size t×r/kA) to obtain the coded
submatrices and assign them to the edge devices. Hence, the
probability for any entry of any coded submatrix to be non-zero
is 1− (1− µ)ωA which can be approximated by ωAµ. Thus,
in our approach, the per edge device computational complexity
is O

(
ωAµ× rt

kA

)
where ωA =

⌈
kA(s+1)
kA+s

⌉
.

On the other hand, the dense coded approaches [25], [32],
[33] combine kA submatrices for encoding, hence, their per
edge device computational complexity is O

(
kAµ× rt

kA

)
=

O (µ× rt) which is kA

ωA
≈ s+kA

s+1 times higher than that of ours.
Moreover, the recent sparse matrix computations approach
in [31] combines s + 1 submatrices for encoding (when

8

s < kA). Thus, its corresponding computational complexity
is O

(
(s+ 1)µ× rt

kA

)
; approximately (1 + s/k) times higher

than that of ours. We clarify this with the following example.

Example 5. Consider the same setting in Example 3 where
n = 12, kA = 9 and s = 3. In this scenario, the recent work
[31] assigns random linear combinations of min(s+1, kA) = 4
submatrices to each device. Thus, our proposed approach enjoys
a 25% decrease in computational complexity, which could
significantly enhance the overall computational speed.

D. Numerical Stability and Coefficient Determination Time

In this section, we discuss the numerical stability of our
proposed matrix-vector multiplication scheme. The condition
number is widely regarded as a significant measure of numerical
stability for such a system [23], [32], [33]. In the context
of a system consisting of n edge devices with s stragglers,
the worst-case condition number (κworst) is defined as the
highest condition number among the decoding matrices when
considering all possible choices of s stragglers. In methods
involving random coding like ours, the idea is to generate
random coefficients multiple (e.g., 20) times and selecting the
set of coefficients that results in the lowest κworst.

In our proposed method, we partition matrix A into kA
disjoint block-columns, which underscores the necessity to
recover kA vector unknowns. Consequently, in each attempt,
we must determine the condition numbers of

(
n
kA

)
decoding

matrices, each of size kA× kA. This whole process has a total
complexity of O

((
n
kA

)
k3A

)
. On the other hand, the recent

sparse matrix computation techniques, such as sparsely coded
straggler (SCS) optimal scheme discussed in [36] or the class-
based scheme discussed in [29] partition matrix A into ∆A =
LCM(n, kA) block-columns. Thus, in each attempt, they need
to ascertain the condition numbers of

(
n
kA

)
matrices, each of

which has a size ∆A ×∆A, resulting in a total complexity of
O
((

n
kA

)
∆3

A

)
. Since ∆A can be considerably larger than kA,

those methods involve significantly more complexity compared
to our proposed scheme.

Remark 3. We can also utilize our proposed approach in
a D2D-enabled Federated Learning scenario as discussed
in [10]. The assumption is that the edge devices may be
responsible for generating local data and also for performing
some computational tasks. The devices transmit their local
submatrices to some other trusted devices, and build resilience
against the computationally slower devices. Since our proposed
approach involves a smaller weight, any device would require
transmitting to less number of other devices compared to the
approach in [10], therefore, the overall process would be faster.

V. PROPOSED MATRIX-MATRIX MULTIPLICATION
APPROACH

In this section, we discuss our proposed distributed matrix-
matrix multiplication approach. As we mentioned above, we
consider a system of n edge devices, each of which can store
1/kA and 1/kB fraction of matrices A and B, respectively,
and our aim is to build resilience to any s = n− k stragglers,

Algorithm 2: Proposed scheme for distributed matrix-
matrix multiplication
Input : Matrices A and B, n-number of edge devices,

storage fraction γA = 1
kA

and γA = 1
kB

(w.l.o.g., kA ≤ kB), and set k = kAkB ;
number of stragglers, s ≤ k.

1 Partition matrices A and B into kA and kB
block-columns, respectively;

2 Create a n× kA random matrix RA with entries rAi,j ,
0 ≤ i ≤ n− 1 and 0 ≤ j ≤ kA − 1;

3 Create a n× kB random matrix RB with entries rBi,j ,
0 ≤ i ≤ n− 1 and 0 ≤ j ≤ kB − 1;

4 Set weights ωA|kA and ωB |kB (where ωA ≤ ωB) so

that ωAωB ≥
⌈
kAkB(s+1)
kAkB+s

⌉
with 1 < ωA < kA;

5 for i← 0 to n− 1 do
6 if i < kAkB then
7 Define T = {i, i+ 1, . . . , i+ ωA − 1} (entries

reduced modulo kA);
8 Define S = {j, j + 1, . . . , j + ωB − 1} (entries

reduced modulo kB) where j = ⌊i/kA⌋;
9 else

10 T = {ℓωA, ℓωA + 1, . . . , (ℓ+ 1)ωA − 1}
(reduced modulo kA) when ℓ = mod(i, kA);

11 S = {mωB ,mωB + 1, . . . , (m+ 1)ωB − 1}
(reduced modulo kB) where m =

⌊
i ωA

kA

⌋
;

12 end
13 Create a random linear combination of Aq’s where

q ∈ T , thus Ãi =
∑
q∈T

rAi,qAq;

14 Create a random linear combination of Bq’s where
q ∈ S, thus B̃i =

∑
q∈S

rBi,qBq;

15 The edge server assigns encoded submatrices Ãi

and B̃i to edge device Wi;
16 Edge device Wi computes ÃT

i B̃i;
17 end

Output : The edge server recovers ATB from the
fastest kAkB edge devices.

where k = kAkB . Similar to the matrix-vector case, we assume
that s ≤ k, i.e., not more than half of the devices will not be
stragglers. The overall procedure is given in Alg. 2.

Here we provide an overview of our proposed method.
First we partition matrices A and B into kA and kB disjoint
block columns, respectively, as A0,A1,A2, . . . ,AkA−1 and
B0,B1,B2, . . . ,BkB−1, respectively. Then we consider the
lower bound stated in Prop. 1, and find ω̂ = ⌈ (n−s)(s+1)

n ⌉. Next,
we find an ω ≥ ω̂ such that ω = ωAωB where 1 < ωA < kA
and 1 < ωB < kB , ωA|kA and ωB |kB .

Now, within the edge devices in W0 =
{W0,W1, . . . ,Wk−1}, we assign a random linear combination
of Ai,Ai+1, . . . ,Ai+ωA−1 (indices of A are reduced modulo
kA) to edge device Wi, 0 ≤ i ≤ k − 1. In other words, the
corresponding submatrices of A are shifted in a cyclic manner
over the edge devices in W0. Next we set j = ⌊i/kA⌋, and
assign Bj ,Bj+1, . . . ,Bj+ωB−1 (indices of B are reduced
modulo kB) to edge device Wi, where 0 ≤ i ≤ k − 1.

9

W0 W1 W2 W3

W4 W5 W6 W7

W8 W9 W10 W11

W12 W13 W14 W15

W16 W17 W18 W19

{A0,A1} {A1,A2} {A2,A3} {A3,A0}

{A0,A1} {A1,A2} {A2,A3} {A3,A0}

{A0,A1} {A1,A2} {A2,A3} {A3,A0}

{A0,A1} {A1,A2} {A2,A3} {A3,A0}

{A0,A1} {A2,A3} {A0,A1} {A2,A3}

{B0,B1} {B0,B1} {B0,B1} {B0,B1}

{B1,B2} {B1,B2} {B1,B2} {B1,B2}

{B2,B3} {B2,B3} {B2,B3} {B2,B3}

{B3,B0} {B3,B0} {B3,B0} {B3,B0}

{B0,B1} {B0,B1} {B2,B3} {B2,B3}

Fig. 4: Submatrix allocation according to Alg. 2 when n = 20 with
γA = γB = 1

4
; thus resilient to s = n− 1

γAγB
= 4 straggler devices.

The weights of the submatrices are ωA = ωB = 2. Any assignment
{Ai,Aj} or {Bi,Bj} indicates a random linear combination of the
corresponding submatrices where the coefficients are chosen i.i.d. at
random from a continuous distribution.

After that, within the edge devices in W1 =
{Wk,Wk+1, . . . ,Wn−1}, we assign a random linear combi-
nation of AℓωA

,AℓωA+1, . . . ,A(ℓ+1)ωA−1 (indices of A are
reduced modulo kA) to edge device Wi, where ℓ = mod(i, kA)
and k ≤ i ≤ n − 1. Next we set m = ⌊ iωA

kA
⌋, and assign

BmωB
,BmωB+1, . . . ,B(m+1)ωB−1 (indices of B are reduced

modulo kB) to edge device Wi, where k ≤ i ≤ n − 1.
After assigning the jobs, all the edge devices will start
computing their respective submatrix-products, and once the
fastest τ = kAkB devices finish and return their results, the
edge server recovers all the unknowns in the form of AT

i Bj ,
where 0 ≤ i ≤ kA − 1 and 0 ≤ j ≤ kB − 1.

Example 6. Consider the example shown in Fig. 4 where
n = 20, γA = γB = 1/4. So, we partition A and B into
kA = kB = 4 block-columns, respectively. In each of the
devices, according to Alg. 2, we assign one coded submatrix
from A and one from B which are linear combinations of

ωA = ωB = 2 uncoded submatrices with coefficients chosen
i.i.d. at random from a continuous distribution. It can be verified
that this scheme is resilient to s = n− kAkB = 4 stragglers.

1) Structure of the Job Assignment: To describe the struc-
ture of the proposed scheme, first we partition the edge
devices in W0 = {W0,W1,W2, . . . ,Wk−1} into kA disjoint
classes, denoted by Mi’s, where any Mi consists of all
the edge devices Wj’s if j ≡ i(mod kA). In other words,
Mi = {Wi, WkA+i, W2kA+i, . . . }, for i = 0, 1, 2, . . . , kA−1.
Hence, |Mi| = kB , for any i.

Moreover, according to our proposed scheme, the partic-
ipating submatrices of A are the same over all the edge
devices in any Mi. For instance, in Fig. 4, we have M0 =
{W0, W4, W8, W12}, and random linear combinations of A0

and A1 are assigned to all the corresponding edge devices. At
this point, we define a set, DA

i = {Ai,Ai+1, . . . ,Ai+ωA−1},
which consists of the participating submatrices of A corre-
sponding to edge device setMi, where the indices are reduced
modulo kA. Now we state the following claim (with the proof
in [31]) which gives a lower bound for the cardinality of the
union of any arbitrary number of DA

i ’s.

Claim 2. Consider any q sets DA
i ’s, q ≤ kA−ωA+1, denoted

w.l.o.g., D̄A
j , 0 ≤ j ≤ q − 1 arbitrarily. Then

∣∣∣∣∣q−1⋃
j=0

D̄A
j

∣∣∣∣∣ ≥
ωA + q − 1.

Now, consider any particular Mi. According to Alg. 2,
the participating submatrices of B are shifted in a cyclic
fashion over the edge devices of any Mi. For instance, in
Example 6, the participating submatrices, B0,B1,B2 and B3,
are shifted in a cyclic fashion within the edge devices of M0,
i.e., W0,W4,W8 and W12. Next, in the following claim, we
find the minimum number of participating unknowns (in the
form of AT

uBv) within any δ edge devices from any Mq .

Claim 3. ConsiderMq , 0 ≤ q ≤ kA−1. Denote the minimum
of total number of participating unknowns (in the form of
AT

i Bj) within any δ edge devices from Mq by ρ. Then

ρ = ωA ×min (ωB + δ − 1, kB) .

Proof. The participating uncoded submatrices of B are shifted
in a cyclic fashion within the edge devices of Mq. Thus
according to the proof of cyclic scheme in Appendix C in
[36], the minimum number of constituent submatrices of B
within any δ edge devices of Mq is min (ωB + δ − 1, kB)
if δ ≥ 1. Now the coded submatrices of B are multiplied
by linear combinations of the same ωA submatrices, thus the
minimum of total number of participating unknowns (in the
form of AT

uBv) is ρ = ωA ×min (ωB + δ − 1, kB). ■

2) Rearrangement of Mi’s: Before stating the necessary
theorem, we discuss a pre-processing step that rearranges the
Mi’s. Choose any arbitrary m0 edge devices (m0 ≤ kAkB),
and assume that δi devices have been chosen from Mi, for
0 ≤ i ≤ kA − 1, so that

∑kA−1
i=0 δi = m0. Now, we rearrange

the δi’s in a non-increasing sequence so that δ̃0 ≥ δ̃1 ≥ δ̃2 ≥
· · · ≥ δ̃kA−1, and rename the corresponding Mi’s as M̃i’s so
that δ̃i devices have been chosen from M̃i.

10

Now, we denote ρ0 as the minimum of total number of
participating unknowns (in the form of AT

i Bj) within the δ̃0
edge devices of M̃0. Thus, according to Claim 3,

ρ0 = ωA ×min(ωB + δ̃0 − 1, kB) . (4)

After that, we move to M̃1,M̃2, . . . ,M̃kA−ωA
, sequentially,

to find the number of additional participating unknowns within
the corresponding δ̃i edge devices of M̃i, where 1 ≤ i ≤
kA−1. We denote ρi as the minimum number of such additional
participating unknowns in M̃i.

Here, according to Claim 2,

∣∣∣∣∣ 0⋃
j=0

D̄A
j

∣∣∣∣∣ ≥ ωA and

∣∣∣∣∣ 1⋃
j=0

D̄A
j

∣∣∣∣∣ ≥
ωA+1. Thus, there will be at least one additional participating
submatrix of A in M̃0 ∪ M̃1 in comparison to M̃0, and
the property will continue to hold until we consider the set
M̃0∪M̃1∪· · ·∪M̃0∪M̃kA−ωA

. Now, since the submatrices
of B (which will be multiplied by the additional submatrix of
A) are shifted in a cyclic fashion within any M̃i,

ρi = min
(
ωB + δ̃i − 1, kB

)
, (5)

for 1 ≤ i ≤ kA − ωA. Note that, ρi has a trivial lower bound,
zero, when kA − ωA + 1 ≤ i ≤ kA − 1.

Now we state the following lemma that provides a lower
bound on the minimum number of participating unknowns
(in the form of AT

uBv) in the equations from any arbitrary
m0 ≤ kAkB devices. Note that, we assume kB ≥ kA without
loss of generality; if kA > kB , we can compute ATB as(
BTA

)T
without any additional computational cost.

Lemma 2. For any arbitrary kA ≥ 3 and kB ≥ 3 (where
kA ≤ kB without loss of generality), if we assign the jobs to
n = k + s edge devices (where s ≤ k = kAkB) according
to Alg. 2, then the minimum of total number of participating
unknowns within any m edge devices (m ≤ k) will be lower
bounded by m.

Proof. We prove the lemma in a similar manner as we
have proved Lemma 1. First, we partition all n edge de-
vices into two sets where W0 includes the first k de-
vices and W1, includes the next s edge devices, i.e.,
we have W0 = {W0,W1,W2, . . . ,Wk−1} and W1 =
{Wk,Wk+1, . . . ,Wn−1}, where k = kAkB . Thus, we have
|W0| = k and |W1| = s ≤ k. Now, we choose any m ≤ k
edge devices, where we choose m0 devices from W0 and m1

devices from W1, so that m = m0 +m1. We denote set of
the participating unknowns within those devices as X0 and
X1, respectively. Hence, to prove the lemma, we need to show
|X0 ∪ X1| ≥ m, for any m ≤ k.

Now we state the following claims to find the number of
participating unknowns in W0 and W1, with the proofs in App.
A and App. B, respectively..

Claim 4. Choose any m0 ≤ k devices from W0 such that
m0 > 0. The number of participating submatrices within these
devices is lower bounded by min (m0 + ω − 1, k).

Claim 5. Choose any m1 ≥ ω devices from W1. The number
of participating submatrices within these devices, |X1| = k.

Case 1: m1 ≤ ω − 1. In this case, from Claim 4, we have

|X0 ∪ X1| ≥ |X0| = min(m0 + ω − 1, k) (when m0 > 0)

≥ min(m0 +m1, k) ≥ m,

since m = m0 + m1 ≤ k. We take account the remaining
scenario when m0 = 0. In that case,

|X0 ∪ X1| ≥ |X1| ≥ ω ≥ m0 +m1 = m.

Here, the inequality |X1| ≥ ω = ωAωB holds, because the
number of unknowns participating in any device is ωAωB .
Case 2: m1 ≥ ω. In this case, from Claim 5 we can say,

|X0 ∪ X1| ≥ |X1| = k ≥ m,

which concludes the proof of the lemma. ■

While Alg. 2 and Lemma 2 have been developed and
proved for scenarios where ωA|kA and ωB |kB , our approach
is applicable for other values also. The job assignment in the
edge devices can still be the same as mentioned in Alg. 2.

Example 7. Consider a distributed system when k > s2 as
mentioned in Corollary 1(i). In this scenario, ω̂ = s + 1.
However, |W1| = s, thus we have m1 ≤ ω − 1. It indicates
that only Case 1 is enough to conclude the proof of Lemma 2
in this setting. Hence, we do not require the constraints ωA|kA
and ωB |kB here, which were required only to prove Claim 5
(and hence, the corresponding Case 2).

Now we state the following theorem which provides the
guarantee of resilience to maximum number of stragglers for
given storage constraints.

Theorem 2. Assume that a system has n edge devices each of
which can store 1/kA and 1/kB fractions of matrices A and B
respectively, for distributed matrix-matrix multiplication ATB;
kA ≤ kB . If we assign the jobs according to Alg. 2, we achieve
resilience to s = n− kAkB stragglers, where s ≤ kAkB .

Proof. According to Alg. 2, first we partition matrix A and B
into kA and kB disjoint block-columns, respectively. Thus, to
recover the matrix-matrix product, ATB, we need to decode
all k = kAkB matrix unknowns, in the form of AT

i Bj , where
0 ≤ i ≤ kA − 1 and 0 ≤ j ≤ kB − 1. We denote the set of
these k unknowns as U . Now we choose an arbitrary set of
kAkB edge devices each of which corresponds to an equation
in terms of ω = ωAωB of those k unknowns. Denoting the set
of k equations as V , we can say, |U| = |V| = k.

Now, similar to the proof of Theorem 1, we consider a
bipartite graph G = V ∪U , where any vertex (equation) in V is
connected to some vertices (unknowns) in U which participate
in the corresponding equation. Thus, each vertex in V has a
neighborhood of cardinality ω in U . Our goal is to show that
there exists a perfect matching among the vertices of V and
U . Now, according to Lemma 2, for any m ≤ k, we can say
that |N (V̄)| ≥ m. Thus, similar to to the proof of Theorem 1,
according to Hall’s marriage theorem [55] and Schwartz-Zippel
lemma [56], we can prove that the edge server can recover all
k = kAkB unknowns from any set of k edge devices. ■

Remark 4. While Theorem 2 has been developed considering
a homogeneous setting of edge devices, it can be also extended

11

to a heterogeneous setting [31], similar to the matrix-vector
case discussed in Sec. IV-B.

A. Computational Complexity for a Worker Node

In this work, we assume that A ∈ Rt×r and B ∈ Rt×w

are sparse, only a small fraction (η) of the entries are non-
zero. Therefore, in our case, the computational complex-
ity for any edge device is O

(
ωAη × ωBη × t× rw

kAkB

)
=

O
(
ωAωBη

2 × rwt
kAkB

)
. On the other hand, any dense coded ap-

proach [25], [32] assigns linear combinations of kA and kB sub-
matrices, hence, the corresponding computational complexity is
approximately O

(
kAη × kBη × t× rw

kAkB

)
= O

(
η2 × rwt

)
;

kAkB

ωAωB
times larger than ours, as ωA < kA, ωB < kB .

Example 8. Consider the example in Fig. 4, where kA = kB =
4 and s = 4. The approach in [31] requires ω ≥ 5; hence sets
ωA = 3 and ωB = 2. On the other hand, in our approach, we
require ω =

⌈
16×5
20

⌉
= 4, hence, we set ωA = ωB = 2. This

indicates a 33% reduction of computational complexity in our
case compared to the method in [31].

B. Numerical Stability

Similar to the discussion in the matrix-vector case in Sec.
IV-D, we can develop a numerically stable scheme using Alg. 2.
Note that in the matrix-matrix case, we need to find two “good”
sets of random coefficients, one for the encoding of A, and
the other for the encoding of B. We empirically demonstrate
the numerical stability of our approach in Sec. VI.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct simulations on distributed
matrix-computations, which can be incorporated within the
framework of numerous data processing tasks. For example,
high-dimensional linear transformations are vital for dimen-
sionality reduction techniques such as principal component
analysis (PCA) [57] and linear discriminant analysis (LDA)
[58]. Furthermore, they are fundamental to training deep
neural networks and employing them for classification. For
example, every layer of a fully-connected deep neural network
necessitates matrix-matrix multiplications during both forward
and backward propagation [4].

For our numerical experiments, we compare the performance
of our algorithm against various alternative techniques [25],
[29], [31]–[33], [36]. It is important to note the existence of
several other methodologies tailored specifically for sparse
matrix computations. Notably, the approach outlined in [34]
lacks resilience to the maximum number of stragglers given
certain storage constraints. Additionally, the strategy proposed
in [35], which partitions edge devices into untrusted and partly
trusted clusters, diverges from our foundational assumptions.
The approach described in [59], which delegates certain
tasks to the edge server to mitigate the probability of rank-
deficiency during decoding, also does not align with our model
assumptions. Therefore, these methodologies are excluded from
consideration in our numerical experimentation section.

We explore a distributed system that consists of n = 42 edge
devices with s = 6 stragglers. We assume that each device can

store γA = γB = 1
6 fraction of matrices A and B. We consider

sparse input matrices A of size 20, 000× 15000 and B of size
20, 000× 12000. We assume three different cases where the
sparsity of A and B are 95%, 98% and 99%, respectively,
which indicate that randomly chosen 95%, 98% and 99%
entries of the matrices are zero. It is worth noting that there exist
numerous practical instances where data matrices demonstrate
such (or, even more) levels of sparsity (refer to [49] for specific
examples). We carry out the experiments on an AWS (Amazon
Web Services) cluster, utilizing a c5.18xlarge machine as
the server and t2.small machines as the edge devices.

Worker computation time: Table II presents a comparison
among different methods based on the computation time
required by edge devices to complete their respective tasks.
In this scenario, where kA = kB = 6, the approaches
described in [25], [32], [33] allocate two linear combinations of
kA = kB = 6 submatrices of A and B, respectively, to each of
the edge devices. Consequently, the original sparsity of matrix
A (and B) is lost within the encoded submatrices. As a result,
the edge devices experience a significantly increased processing
time for their tasks compared to our proposed approach or
the methods outlined in [29], [31], [36], which are specifically
designed for sparse matrices and involve smaller weights.

To discuss the effectiveness of our approach in more details,
we compare the weight of the coding of our approach against
the approach in [31]. In this scenario, when n = 42 and s = 6,
our approach sets the weight

⌈
(n−s)(s+1)

n

⌉
=

⌈
36×7
42

⌉
= 6;

thus we set ωA = 2 and ωB = 3. On the other hand, the
approach in [10] uses a weight greater than or equal to s+1 = 7,
thus needs to set ωA = 4 and ωB = 2. Hence, our approach
involves around 25% less computational complexity per edge
device, which is supported by the results in Table II.

Communication delay: In Table II, we also illustrate the
delay incurred during the transmission of encoded submatrices
from the server to the edge devices. The methods outlined
in [25], [32], and [33] utilize dense linear combinations of
submatrices, causing a notable rise in non-zero entries within
these encoded submatrices. Consequently, transmitting this
increased number of non-zero entries results in significant
communication delays. In contrast, our proposed approach
addresses this issue by employing encoded submatrices formed
through linear combinations of a limited number of uncoded
submatrices, thus markedly reducing communication delays.

In addition, here we compare our proposed approach against
the method in [31] in terms of the approximate number of
non-zero entries that need to be sent from the edge server
to any edge device. We consider the case when the matrices
A and B have approximately 99% entries to be zero, hence,
only 1% entries are non-zero. Now, in this scenario (n =
42, kA = kB = 6 and s = 6), the corresponding number of
non-zero entries for our proposed approach is approximately
20k×15k

kA
× 0.01 × ωA + 20k×12k

kB
× 0.01 × ωB = 2.2 × 106,

since we set ωA = 2 and ωB = 3. On the other hand, the
number of the non-zero entries to be sent to each edge device
in the approach [31] is approximately 20k×15k

kA
× 0.01× ωA +

20k×12k
kB

× 0.01× ωB = 2.8× 106, since in that case ωA = 4
and ωB = 2. Thus our proposed approach requires the server

12

TABLE II: Comparison of worker computation time and communication delay for matrix-matrix multiplication for n = 42, γA = γB = 1
6

when randomly chosen 95%, 98% and 99% entries of matrices A and B are zero.

METHODS
WORKER COMP. TIME (IN S) COMMUNICATION DELAY (IN S)

µ = 99% µ = 98% µ = 95% µ = 99% µ = 98% µ = 95%

POLY. CODE [25] 1.65 5.19 8.95 0.78 1.42 2.44
ORTHO POLY CODE [32] 1.60 5.16 9.03 0.80 1.48 2.36

RKRP CODE [33] 1.61 5.11 8.96 0.82 1.44 2.39
SCS OPTIMAL SCHEME [36] 1.09 2.12 5.23 0.39 0.58 0.93
CLASS-BASED SCHEME [29] 0.74 1.21 4.12 0.30 0.47 0.77

CYCLIC CODE [31] 0.76 1.24 4.19 0.32 0.51 0.83
PROPOSED SCHEME 0.61 1.04 3.11 0.25 0.39 0.65

TABLE III: Comparison among different approaches in terms of
worst case condition number (κworst) and the corresponding required
time for 10 trials to find a good set of random coefficients

METHODS
κworst FOR REQ. TIME FOR

n = 42, s = 6 10 TRIALS

POLY. CODE [25] 3.67× 1023 0
ORTHO-POLY [32] 8.80× 1010 0
RKRP CODE [33] 4.84× 108 84 MIN

SCS OPT. SCH. [36] 7.88× 109 16 HR
CLASS BASED [29] 5.81× 108 15 HR
CYCLIC CODE [31] 2.13× 109 85 MIN

PROPOSED SCHEME 7.95× 108 86 MIN

to transmit approximately 22% less non-zero entries than the
method in [31]; Table II confirms this gain of our approach.

Numerical stability: Next, we assess the numerical stability
of distributed systems using different coded matrix computation
techniques. We examine the condition numbers of the decoding
matrices for various combinations of n = 42 workers and s = 6
stragglers. By comparing the worst-case condition number
(κworst) across different methods, we present the κworst values
in Table III. The polynomial coding method [25] encounters
issues with ill-conditioned Vandermonde matrices, leading to
pronounced numerical instability, as indicated by its notably
elevated κworst value. In contrast, our proposed technique,
characterized by numerical robustness, yields a smaller κworst

compared to the method described in [32] where the condition
numbers grow exponentially in terms of s = n−k. Although the
approach outlined in [33] achieves a slightly reduced κworst

compared to ours, Table II reveals substantial increases in
computation and communication delays due to the assignment
of dense linear combinations of submatrices to the edge devices.

Coefficient determination time: Next, Table III shows a
comparative analysis of various methods with respect to the
time required for performing 10 trials to obtain a “good” set
of random coefficients that ensures numerical stability of the
system. As explained in Section IV-D, the techniques proposed
in [36] and [29] involve partitioning matrix A into ∆A =
LCM(n, kA) block-columns. For instance, when n = 42 and
s = 6, ∆A = 42 is significantly larger than kA = 6, which
denotes the partition level in our approach. Consequently, when
dealing with higher-sized matrices to determine the condition
number, the methods proposed in [29] and [36] necessitate
considerably more time compared to our approach.

Remark 5. We also conduct numerical simulations on matrix-
vector multiplication (Sec. V in [1]), yielding results that mirror

MV: n = 30, s = 9 MM: n = 36, s = 8 MM: n = 56, s = 14
0

2

4

6

8

10

12

14

16

E
nc

od
in

g
w

ei
gh

ts

Cyclic-random code [31]
Proposed Approach
Theoretical Lower Bound

Fig. 5: Comparison of encoding weights in matrix-vector (MV) and
matrix-matrix (MM) multiplication between the method in [31], our
proposed approach, and the theoretical lower bound for different
choices of n and s.

a similar trend observed in the matrix-matrix scenario.

Encoding weights: We also compare our approach more
closely against the recent method developed in [31], in terms
of encoding weights for different scenarios. The results are
shown in Fig. 5. First, we consider a system of n = 30 devices
and s = 9 stragglers within the matrix-vector scenario. Our
proposed approach always matches the theoretical lower bound
on the weight developed in Prop. 1 in the matrix-vector case,
and outperforms the approach in [31].

Next we consider the matrix-matrix scenario, for two
different systems: (a) n = 36 and s = 8 and (b) n = 56
and s = 14. While our method involves slightly higher weights
than the theoretical lower bound for system (a), it matches the
bound for system (b), and outperforms the approach in [31] in
both cases. Here, the theoretical lower bound in system (a) is⌈ (36−8)(8+1)

36

⌉
= 7, which is a prime number. Thus, because of

the divisibility issue with ωA, ωB > 1, our proposed approach
involves a slightly higher weight, ω = ωAωB = 8. Note that
the dense coded approaches [25], [32], [33] involve a weight
n− s, which is significantly higher than our proposed one and
the method in [31], and hence, they are not included in the
comparison in Fig. 5.

Numerical robustness and scalability: Finally, we consider
the case of matrix-vector multiplication in different system
architectures having different number of edge devices (n)
and stragglers (s). The κworst values for different scenarios
obtained from different available approaches are demonstrated
in Fig. 6. These results confirm that our proposed approach
consistently leads to smaller κworst values compared to the

13

n = 20, s = 3 n = 20, s = 4 n = 40, s = 3 n = 40, s = 4
102

103

104

105

106

107

108

109

1010

W
or

st
ca

se
co

nd
iti

on
nu

m
be

r(
κ
w
or
st

) Ortho-Poly Code [32]
RKRP Code [33]
Cyclic-random code [31]
Proposed Approach

Fig. 6: Comparison of worst case condition numbers (κworst) of
the encoding matrices obtained by different methods in distributed
matrix-vector multiplication with different choices of n and s.

numerically stable approaches in [32] and [31], and provides
competitive results compared to another numerically stable
method in [33] for even larger values of n and s. This verifies
the numerical robustness and the scalability of our proposed
method for a larger network comprised of more edge devices.
Note that in addition to the numerical robustness, unlike
[33], our approach can leverage the inherent sparsity of the
“input” matrices, and thus leads to reduced computation and
communication delays, as demonstrated in Table II.

VII. CONCLUSION

In this study, we developed novel distributed matrix com-
putation techniques to maintain the sparsity characteristics of
input matrices while ensuring resilience against a maximum
number of stragglers within specified storage constraints.
First, we find a lower bound on the homogeneous weight
of the encoded submatrices, and we show that our approaches
meet that lower bound. Unlike conventional dense coded
methods [23], [25], [32], [33], our proposed approach restricts
coding within submatrices, thereby preserving the inherent
sparsity of the input matrices A and B to a significant extent.
Consequently, both worker computation and communication
delays are markedly reduced compared to different coding
techniques. In addition, unlike the sparsely coded methods in
[29], [36], we demonstrate the extension of the approach to
the heterogeneous setting, where the edge devices are rated
with different computational and communication speeds.

Future research avenues include exploring server-less archi-
tectures where edge devices collaborate directly, rather than
relying on a edge server for matrix encoding [8]. Enhancing
performance in heterogeneous settings [60] by allocating
multiple jobs with varying weights as proposed in [61], [62],
and devising schemes where knowledge about edge devices is
limited prior to job assignment, can also be important directions
for future investigation.

APPENDIX

A. Proof of Claim 4
Proof. As discussed in Sec. V-2, we rearrange the Mi’s such
that δ̃0 ≥ δ̃1 ≥ δ̃2 ≥ · · · ≥ δ̃kA−1 and rename the correspond-
ing Mi’s as M̃i’s so that δ̃i devices have been chosen from

M̃i. Next we denote the minimum number of participating
unknowns in M̃i by ρi when 0 ≤ i ≤ kA − 1. The trivial
lower bound for ρi is zero when kA − ωA + 1 ≤ i ≤ kA − 1,

hence,
kA−1∑
i=0

ρi ≥
kA−ωA∑
i=0

ρi. Thus, in order to prove the lemma,

for m0 =
kA−1∑
i=0

δ̃i, we need to show that

kA−ωA∑
i=0

ρi ≥ min (m0 + ω − 1, k) . (6)

Now we consider the following cases for each of which we
show that (6) is true. Note that the minimum value of δ̃0 = 1,
since m0 ≥ 1.

Case 1: 1 ≤ δ̃0 ≤ kB − ωB . In this case, according to (4),

ρ0 = ωA ×min(ωB + δ̃0 − 1, kB) = ωA(ωB + δ̃0 − 1). (7)

Case 1(a): δ̃kA−ωA+1 = 0. In this scenario, δ̃kA−ωA+1 =
· · · = δ̃kA−1 = 0, hence

∑kA−1
i=kA−ωA+1 δ̃i = 0. Thus,

kA−ωA∑
i=0

ρi = ρ0 +

kA−ωA∑
i=1

ρi

≥ ωA(ωB + δ̃0 − 1) +

kA−ωA∑
i=1

δ̃i +

kA−1∑
i=kA−ωA+1

δ̃i

= ωAδ̃0 + ωA(ωB − 1) +

kA−1∑
i=1

δ̃i

= (ωA − 1)δ̃0 + δ̃0 +

kA−1∑
i=1

δ̃i + ωA(ωB − 1)

≥
kA−1∑
i=0

δ̃i + ωAωB − 1 = m0 + ω − 1 ; (8)

since δ̃0 ≥ 1. Thus, (6) is true in this scenario.
Case 1(b): δ̃kA−ωA+1 ≥ 1. In this scenario, δ̃kA−ωA+1 ≥

δ̃kA−ωA+2 ≥ · · · ≥ δ̃kA−1, hence
kA−1∑

i=kA−ωA+1

δ̃i ≤ (ωA− 1)δ̃0.

Next note that according to (5), we have ρi ≥ ωB + δ̃i − 1 for
1 ≤ i ≤ kA − ωA. Thus, we can say
kA−ωA∑
i=0

ρi = ρ0 +

kA−ωA∑
i=1

ρi

≥ ωA(ωB + δ̃0 − 1) +

kA−ωA∑
i=1

(
ωB + δ̃i − 1

)
= δ̃0 + (ωA − 1)δ̃0 + ωA(ωB − 1)

+

kA−ωA∑
i=1

δ̃i + (kA − ωA)(ωB − 1)

≥
kA−1∑
i=0

δ̃i + (kA − ωA)(ωB − 1) + ωA(ωB − 1)

≥
kA−1∑
i=0

δ̃i + (ωB − 1) + ωA(ωB − 1)

≥
kA−1∑
i=0

δ̃i + ωAωB − 1 = m0 + ω − 1 ; (9)

14

as we assume ωA ≤ ωB . Thus, (6) is true in this scenario too.
Case 2: kB − ωB < δ̃0 ≤ kB . In this case, according to (4),

we have ρ0 = ωA ×min(ωB + δ̃0 − 1, kB) = ωAkB .
Case 2(a): δ̃kA−ωA

> kB −ωB . In this scenario, δ̃0 ≥ δ̃1 ≥
· · · ≥ δ̃kA−ωA

=> kB − ωB . Thus,

kA−ωA∑
i=0

ρi = ρ0 +

kA−ωA∑
i=1

ρi

= ωAkB + (kA − ωA)kB = kAkB = k. (10)

where ρi = kB according to (5), for i = 1, 2, . . . , kA − ωA.
Thus, (6) is true in this scenario.

Case 2(b): δ̃kA−ωA
≤ kB − ωB . Thus, according to (5),

ρkA−ωA
= δ̃kA−ωA

+ωB − 1. Moreover, since in this scenario,
we have δ̃kA−1 ≤ δ̃kA−2 ≤ · · · ≤ δ̃kA−ωA+1 ≤ kB − ωB;

hence we have
kA−1∑

i=kA−ωA+1

δ̃i ≤ (kB − ωB)(ωA − 1). Now,

kA−ωA∑
i=0

ρi = ρ0 +

kA−ωA−1∑
i=1

ρi + ρkA−ωA

≥ ωAkB +

kA−ωA−1∑
i=1

δ̃i +
(
δ̃kA−ωA

+ ωB − 1
)

= (ωA − 1)kB + kB + ωB − 1 +

kA−ωA∑
i=1

δ̃i

≥ (ωA − 1)kB + ωB − 1− (kB − ωB)(ωA − 1)

+ δ̃0 +

kA−ωA∑
i=1

δ̃i +

kA−1∑
i=kA−ωA+1

δ̃i

= ωAkB − kB + ωB − 1− ωAkB + ωAωB

+ kB − ωB +

kA−1∑
i=1

δ̃i

≥
kA−1∑
i=1

δ̃i + ωAωB − 1 . (11)

Thus, (6) is true in this scenario; this concludes the proof.
■

B. Proof of Claim 5

Proof. Consider the edge devices in W1. According
to Alg. 2, we assign a linear combination of
AℓωA

,AℓωA+1, . . . ,A(ℓ+1)ωA−1 (indices modulo kA) to edge
device Wi, for i = k, k + 1, . . . , n− 1 where ℓ = mod(i, kA).
In addition, we assign another linear combination of
BmωB

,BmωB+1, . . . ,B(m+1)ωB−1 (indices mod kB) to
device Wi, for i = k, k + 1, . . . , n− 1, where m =

⌊
i ωA

kA

⌋
.

Thus, the participating unknowns in edge device WkA

are AT
0 B0, . . . ,A

T
0 BωB−1,A

T
1 B0, . . . , . . . ,A

T
ωA−1BωB−1.

Similarly, the participating submatrices in WkA+1 are
AT

ωA
B0, . . . ,A

T
ωA

BωB−1,A
T
ωA+1B0, . . . , . . . ,A

T
2ωA−1BωB−1.

In a consequence, ω = ωAωB number of submatrices
participate in each of those s edge devices in a cyclic fashion.

Now, denote the number of appearances of any submatrix
AT

i Bj within the devices inW1 by vij ≥ 0. Thus, for any 0 ≤

i, p ≤ kA− 1 and 0 ≤ j, q ≤ kB − 1, we have |vij −vpq| ≤ 1,
where

∑kA−1
i=0

∑kB−1
j=0 vij = sω. Thus, the average of these

vij’s is κ = sω
k . Since for every pair of (i, j) and (p, q), we

have |vij−vpq| ≤ 1, thus, we can say that vij ≥ ⌊κ⌋ =
⌊

sω
k

⌋
.

It indicates that within all s devices of W1, every unknown
participates in at least ⌊κ⌋ times over ⌊κ⌋ distinct devices.
In other words, any unknown may not participate in at most
s− ⌊κ⌋ devices within the devices of W1.

First, consider the case, k = s. Here, every unknown
participates in ⌊κ⌋ = ω devices, therefore, any unknown does
not participate in s− ω devices. But, we choose any m1 ≥ ω
devices in W1, where ω = ⌈ s+1

2 ⌉, since k = s. Thus,

2ω ≥ s+ 1 > s which indicates that, ω > s− ω.

In addition, since m1 ≥ ω, we claim that m1 > s− ωA. Thus,
every submatrix will participate at least once within those
chosen m1 devices, hence |X1| = k = kAkB .

Next, consider the other case when k > s. Again, since we
choose any arbitrary m1 ≥ ω devices in W1, we are leaving
s−m1 devices in W1. But

s−m1 ≤ s− ω < s− ⌊κ⌋.

The second inequality holds since s < k, hence, ⌊κ⌋ < ω.
Thus, every submatrix will participate at least once within
those m1 ≥ ω devices, hence |X1| = k. ■

REFERENCES

[1] A. B. Das, A. Ramamoorthy, D. J. Love, and C. G. Brinton, “Preserving
sparsity and privacy in straggler-resilient distributed matrix computations,”
in Proc. of Annual Allerton Conf. Comm., Control, and Comput.
(Allerton), 2023, pp. 1–8.

[2] E. Vedadi and H. Seferoglu, “Adaptive coding for matrix multiplication
at edge networks,” in Proc. of IEEE Intl. Symp. on Info. Th. (ISIT), 2021,
pp. 1064–1069.

[3] N. Van Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “Joint
coding and scheduling optimization for distributed learning over wireless
edge networks,” IEEE J. Sel. Area. Comm., vol. 40, no. 2, pp. 484–498,
2022.

[4] A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed
matrix computation via coding theory: Removing a bottleneck in large-
scale data processing,” IEEE Sig. Proc. Mag., vol. 37, no. 3, pp. 136–145,
2020.

[5] S. Hosseinalipour, C. G. Brinton, V. Aggarwal, H. Dai, and M. Chiang,
“From federated to fog learning: Distributed machine learning over
heterogeneous wireless networks,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 41–47, 2020.

[6] M. Amadeo, C. Campolo, A. Molinaro, G. Ruggeri, and G. Singh,
“Mitigating the communication straggler effect in federated learning via
named data networking,” IEEE Comm. Mag., pp. 1–7, 2024.

[7] S. Kadhe, O. O. Koyluoglu, and K. Ramchandran, “Communication-
efficient gradient coding for straggler mitigation in distributed learning,”
in Proc. of IEEE Intl. Symp. on Info. Th. (ISIT), 2020, pp. 2634–2639.

[8] S. Prakash, S. Dhakal, M. R. Akdeniz, Y. Yona, S. Talwar, S. Avestimehr,
and N. Himayat, “Coded computing for low-latency federated learning
over wireless edge networks,” IEEE J. Sel. Area. Comm., vol. 39, no. 1,
pp. 233–250, 2021.

[9] S. Dhakal, S. Prakash, Y. Yona, S. Talwar, and N. Himayat, “Coded
federated learning,” in IEEE Globecom Workshops, 2019, pp. 1–6.

[10] A. B. Das, A. Ramamoorthy, D. J. Love, and C. G. Brinton, “Coded
matrix computations for D2D-enabled linearized federated learning,” in
Proc. of IEEE Intl. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP),
2023, pp. 1–5.

[11] A. Asheralieva and D. Niyato, “Throughput-efficient lagrange coded
private blockchain for secured iot systems,” IEEE Internet of Things
Jour., vol. 8, no. 19, pp. 14 874–14 895, 2021.

15

[12] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency
federated learning and blockchain for edge association in digital twin
empowered 6G networks,” IEEE Trans. Ind. Inform., vol. 17, no. 7, pp.
5098–5107, 2021.

[13] X. Ma and D. Xu, “Torr: A lightweight blockchain for decentralized
federated learning,” IEEE Internet of Things Jour., vol. 11, no. 1, pp.
1028–1040, 2024.

[14] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely coded
computing,” in Proc. of IEEE Intl. Symp. on Info. Th. (ISIT), 2019,
pp. 2798–2802.

[15] B. Buyukates and S. Ulukus, “Timely distributed computation with
stragglers,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5273–5282, 2020.

[16] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” Proc. of Adv. Neural
Inf. Process. Syst. (NeurIPS), vol. 30, 2017.

[17] D. Data, L. Song, and S. N. Diggavi, “Data encoding for byzantine-
resilient distributed optimization,” IEEE Trans. Info. Th., vol. 67, no. 2,
pp. 1117–1140, 2021.

[18] C. Karakus, Y. Sun, and S. Diggavi, “Encoded distributed optimization,”
in Proc. of IEEE Intl. Symp. on Info. Th. (ISIT), 2017, pp. 2890–2894.

[19] J. Zhu, Y. Pu, V. Gupta, C. Tomlin, and K. Ramchandran, “A sequential
approximation framework for coded distributed optimization,” in Proc.
of Annual Allerton Conf. Comm., Control, and Comput. (Allerton), 2017,
pp. 1240–1247.

[20] U. Demirbaga and G. S. Aujla, “Mapchain: A blockchain-based verifiable
healthcare service management in iot-based big data ecosystem,” IEEE
Trans. Netw. Serv. Manag., vol. 19, no. 4, pp. 3896–3907, 2022.

[21] A. Gupta, S. Misra, N. Pathak, and D. Das, “Fedcare: Federated learning
for resource-constrained healthcare devices in iomt system,” IEEE Trans.
Comput. Soc., vol. 10, no. 4, pp. 1587–1596, 2023.

[22] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Info. Th., vol. 64, no. 3, pp. 1514–1529, 2018.

[23] A. B. Das, A. Ramamoorthy, and N. Vaswani, “Efficient and robust
distributed matrix computations via convolutional coding,” IEEE Trans.
Info. Th., vol. 67, no. 9, pp. 6266–6282, 2021.

[24] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. of Adv.
Neural Inf. Process. Syst. (NeurIPS), 2016, pp. 2100–2108.

[25] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal
design for high-dimensional coded matrix multiplication,” in Proc. of
Adv. Neural Inf. Process. Syst. (NeurIPS), 2017, pp. 4403–4413.

[26] A. B. Das, L. Tang, and A. Ramamoorthy, “C3LES : Codes for coded
computation that leverage stragglers,” in Proc. of IEEE Info. Th. Workshop
(ITW), 2018, pp. 1–5.

[27] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in
distributed matrix multiplication: Fundamental limits and optimal coding,”
IEEE Trans. Info. Th., vol. 66, no. 3, pp. 1920–1933, 2020.

[28] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. of Intl. Conf.
on Mach. Learn. (ICML), 2017, pp. 3368–3376.

[29] A. B. Das and A. Ramamoorthy, “A unified treatment of partial stragglers
and sparse matrices in coded matrix computation,” IEEE Jour. on Sel.
Area. in Info. Th., vol. 3, no. 2, pp. 241–256, 2022.

[30] A. K. Pradhan, A. Heidarzadeh, and K. R. Narayanan, “Factored LT and
factored raptor codes for large-scale distributed matrix multiplication,”
IEEE Jour. Sel. Area. Info. Th., vol. 2, no. 3, pp. 893–906, 2021.

[31] A. B. Das, A. Ramamoorthy, D. J. Love, and C. G. Brinton, “Distributed
matrix computations with low-weight encodings,” IEEE Jour. Sel. Area.
Info. Th., vol. 4, pp. 363–378, 2023.

[32] M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded
computing,” IEEE Trans. Info. Th., vol. 67, no. 5, pp. 2758–2785, 2021.

[33] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random
Khatri-Rao-product codes for numerically-stable distributed matrix
multiplication,” in Proc. of Annual Allerton Conf. Comm., Control, and
Comput. (Allerton), Sep. 2019, pp. 253–259.

[34] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,” in
Proc. of Intl. Conf. on Mach. Learn. (ICML), 2018, pp. 5152––5160.

[35] M. Xhemrishi, R. Bitar, and A. Wachter-Zeh, “Distributed matrix-vector
multiplication with sparsity and privacy guarantees,” in Proc. of IEEE
Intl. Symp. on Info. Th. (ISIT), 2022, pp. 1028–1033.

[36] A. B. Das and A. Ramamoorthy, “Coded sparse matrix computation
schemes that leverage partial stragglers,” IEEE Trans. Info. Th., vol. 68,
no. 6, pp. 4156–4181, 2022.

[37] J. Li and C. Hollanti, “Private and secure distributed matrix multiplication
schemes for replicated or mds-coded servers,” IEEE Trans. Inf. Forensics
Secur., vol. 17, pp. 659–669, 2022.

[38] M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed
matrix multiplication with flexible communication load,” IEEE Trans.
Inf. Forensics Secur., vol. 15, pp. 2722–2734, 2020.

[39] W.-T. Chang and R. Tandon, “On the capacity of secure distributed matrix
multiplication,” in Proc. of IEEE Glob. Comm. Conf. (GLOBECOM),
2018, pp. 1–6.

[40] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi,
“Rateless codes for near-perfect load balancing in distributed matrix-
vector multiplication,” ACM on Meas. and Analysis of Comp. Syst.,
vol. 3, no. 3, pp. 1–40, 2019.

[41] A. B. Das and A. Ramamoorthy, “Distributed matrix-vector multiplication:
A convolutional coding approach,” in Proc. of IEEE Intl. Symp. on Info.
Th. (ISIT), 2019, pp. 3022–3026.

[42] Y. Keshtkarjahromi, Y. Xing, and H. Seferoglu, “Dynamic heterogeneity-
aware coded cooperative computation at the edge,” in Proc. of IEEE Intl.
Conf. on Network Protocols (ICNP), 2018, pp. 23–33.

[43] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city internet
of things,” IEEE Internet of Things Jour., vol. 7, no. 9, pp. 8099–8110,
2020.

[44] H. Habibzadeh, Z. Qin, T. Soyata, and B. Kantarci, “Large-scale
distributed dedicated- and non-dedicated smart city sensing systems,”
IEEE Sensors Jour., vol. 17, no. 23, pp. 7649–7658, 2017.

[45] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover,
“On the optimal recovery threshold of coded matrix multiplication,” IEEE
Trans. Info. Th., vol. 66, no. 1, pp. 278–301, 2019.

[46] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Proc. of IEEE Intl. Symp. on Info. Th. (ISIT), 2017,
pp. 2418–2422.

[47] B. Hasırcıoğlu, J. Gómez-Vilardebó, and D. Gündüz, “Bivariate polyno-
mial coding for efficient distributed matrix multiplication,” IEEE Jour.
Sel. Area. Info. Th., vol. 2, no. 3, pp. 814–829, 2021.

[48] A. Ramamoorthy and L. Tang, “Numerically stable coded matrix
computations via circulant and rotation matrix embeddings,” IEEE Trans.
Info. Th., vol. 68, no. 4, pp. 2684–2703, 2022.

[49] SuiteSparse Matrix Collection. [Online]. Available: https://sparse.tamu.
edu/

[50] H. Yao, W. Yu, and X. Wang, “A feature memory rearrangement network
for visual inspection of textured surface defects toward edge intelligent
manufacturing,” IEEE Trans. Autom. Sci. Eng., vol. 20, no. 4, pp. 2616–
2635, 2023.

[51] W. Yu, Y. Liu, T. Dillon, and W. Rahayu, “Edge computing-assisted
iot framework with an autoencoder for fault detection in manufacturing
predictive maintenance,” IEEE Trans. Ind. Inform., vol. 19, no. 4, pp.
5701–5710, 2023.

[52] R. G. Lins and S. N. Givigi, “Cooperative robotics and machine learning
for smart manufacturing: Platform design and trends within the context
of industrial internet of things,” IEEE Access, vol. 9, pp. 95 444–95 455,
2021.

[53] E. Wang, M. Zhang, X. Cheng, Y. Yang, W. Liu, H. Yu, L. Wang, and
J. Zhang, “Deep learning-enabled sparse industrial crowdsensing and
prediction,” IEEE Trans. Ind. Inform., vol. 17, no. 9, pp. 6170–6181,
2021.

[54] R. Ji, A. Heidarzadeh, and K. R. Narayanan, “Sparse random khatri-rao
product codes for distributed matrix multiplication,” in Proc. of IEEE
Info. Th. Workshop (ITW), 2022, pp. 416–421.

[55] J. Marshall. Hall, Combinatorial theory. Wiley, 1986.
[56] J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-

mial identities,” Jour. of the ACM, vol. 27, no. 4, pp. 701–717, 1980.
[57] A. Maćkiewicz and W. Ratajczak, “Principal components analysis (PCA),”

Computers & Geosciences, vol. 19, no. 3, pp. 303–342, 1993.
[58] P. Xanthopoulos, P. M. Pardalos, T. B. Trafalis, P. Xanthopoulos, P. M.

Pardalos, and T. B. Trafalis, “Linear discriminant analysis,” Robust data
mining, pp. 27–33, 2013.

[59] R. Ji, A. Heidarzadeh, and K. R. Narayanan, “Sparse random khatri-rao
product codes for distributed matrix multiplication,” in Proc. of IEEE
Info. Th. Workshop (ITW), 2022, pp. 416–421.

[60] W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah,
“Edge learning for b5g networks with distributed signal processing:
Semantic communication, edge computing, and wireless sensing,” IEEE
Jour. Sel. Topics in Sig. Proc., vol. 17, no. 1, pp. 9–39, 2023.

[61] E. Ozfatura, S. Ulukus, and D. Gündüz, “Coded distributed computing
with partial recovery,” IEEE Trans. Info. Th., vol. 68, no. 3, pp. 1945–
1959, 2021.

[62] E. Ozfatura, B. Buyukates, D. Gündüz, and S. Ulukus, “Age-based coded
computation for bias reduction in distributed learning,” in Proc. of IEEE
Glob. Comm. Conf. (GLOBECOM), 2020, pp. 1–6.

