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Curse of rarity for autonomous vehicles

Henry X. Liu & Shuo Feng
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The curse of rarity—the rarity of safety-critical
events in high-dimensional variable spaces—
presents significant challenges in ensuring the
safety of autonomous vehicles using deep
learning. Looking at it from distinct perspec-
tives, we identify three potential approaches for
addressing the issue.

The concept of autonomous vehicles (AVs) has been around for about
a century. Over the past two decades, AVs have attracted extensive
attention from academic institutions, government agencies, profes-
sional organizations, and industries. By 2015, multiple companies had
announced that they would mass-produce AVs before 2020 (Ref. 1).
However, the reality has not lived up to expectations, and there are
currently no commercially available SAE Level 4 (Ref. 2) AVs. One of the
main reasons is the significant gap in safety performance of AVs'. This
gap poses a major challenge as AVs struggle to effectively handle a
multitude of rare safety-critical events, despite the accumulation of
millions of testing miles on public roads. The occurrence of these
events, characterized by a probability distribution resembling a long
tail that is far from the head or central part of the distribution, is
commonly referred to as the long-tail challenge for AV safety®*. The
catchphrase “long-tail challenge” for AV safety, however, is frequently
used in a handwaving manner without a formal definition in the lit-
erature. This lack of understanding impedes progress in resolving
the issue.

In this Comment, we uncover that the shape of the probability
distribution for safety-critical occurrences, whether it exhibits a long
tail or not, is not essential to the issue at hand. Instead, the primary
challenge in defining the problem stems from the rareness of safety-
critical situations in highly complex driving environments, which
encompass various factors such as different weather conditions,
diverse road infrastructures, and behavioral distinctions among road
users. The safety-critical circumstances may arise due to a variety of
reasons, such as misidentification of an unknown object or inaccurate
prediction of nearby pedestrian’s movement, all of which have a low
probability of occurrence. We term this challenge as the curse of rarity
(CoR) and mathematically define CoR for a generic deep learning
problem, which is commonly used for perception, behavior modelling,
prediction and decision making in AVs. CoR emerges from the com-
bination of rare occurrence of safety-critical situations and the vast
number of variables involved, resulting in a compounding effect. Such
an effect hinders the ability of deep learning models to perform safely
in real-time®*.

In the following, we elaborate the CoR in different AV tasks
including perception, prediction, planning, as well as validation and
verification. Based on these analyses, we discuss potential solutions
towards addressing the CoR. We hope that this Comment can provide
a better understanding of the safety challenges faced by the AV com-
munity, and a rigorous formulation of CoR can help accelerate the

development and deployment of AVs as well as other safety-critical
autonomous systems.

What is the curse of rarity?

The basic concept of CoR is that the occurrence probability for the
events of interest in high-dimensional space is so rare that most
available data contain very little information of the rare events.
Therefore, it is hard for a deep-learning model to learn, since valuable
information of rare events could be buried under a large amount of
normal data. It becomes particularly challenging to improve safety
performance because better safety performance also means a lower
frequency of safety-critical events, which makes it more difficult for
the deep-learning model to learn. An illustration of CoR can be found
in Box 1.

What challenges does it bring for autonomous vehicles?
In this section, we elaborate on the CoR in various aspects of AVs
including perception, prediction, planning, validation and verification.

Perception. Deep learning methods have been extensively utilized in
perception tasks to acquire information and extract pertinent knowl-
edge from the surrounding environment. The problem of imbalanced
data has been studied in perception tasks, where a small portion of
object classes have a large number of samples, while the remaining
classes have only a few samples®’. However, this issue becomes par-
ticularly challenging for safety-critical perception tasks of AVs, as the
imbalance ratios are much more severe, often exceeding 10° (Ref. 8).
Existing approaches such as class rebalancing, information augmen-
tation, and module improvement are inadequate in addressing this
problem, as they can only handle a limited imbalance ratio, usually
smaller than 10° (Ref. 7). This significant difference in magnitude fun-
damentally transforms the problem from an imbalanced data issue to
the CoR problem. Moreover, the cumulative effects of a series of
perception errors could be dangerous, even if each individual error
appears insignificant. For example, an object misclassification in a
single frame might be less of an issue, while multiple object mis-
classifications in a sequence of frames may lead to safety-critical out-
comes. Since the occurrence probability of such a sequence is much
lower than that of any individual error, the issue of CoR becomes even
more severe.

Behavior prediction and simulation. AV’s high safety performance
requirements necessitate precise behavior modeling and accurate
prediction of surrounding road users. Even a minor error in predicting
the behaviors of surrounding road users can be deemed unacceptable
in safety-critical situations. For example, in a jaywalking scenario,
precise prediction of pedestrian trajectories is crucial for AVs to avoid
collisions. A small prediction error could result in either a false alarm or
a missed alarm, leading to overly cautious driving decisions or overly
confident decision that cause an accident. The same holds true for
driving behavior simulation. Inaccuracies in simulations can lead to
underestimation or overestimation of AV’s safety performance,
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BOX 1

Curse of rarity for deep learning models
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The key to deep learning is to obtain the optimal parameters 8" of
neural networks by optimizing the expectations of the objective
function fg(s) over the data X with an underlying distribution P. To solve
this optimization problem, the most commonly used approach is
based on the gradient descent (see Chapter 8 in ref. 19). Existing
approaches estimate the gradient with Monte Carlo estimation?® using
a batch of data at each training step. However, the estimation variance
could increase exponentially with the rarity of safety-critical events
(see Theorem 1in Methods), resulting in the curse of rarity. This analysis

thereby misleading the development process’. To achieve the required
level of safety, behavior prediction models must effectively handle rare
events in high-dimensional driving environments, which are prone to
the CoR.

Decision making. Deep learning techniques, such as deep imitation
learning and deep reinforcement learning, have been applied in the
decision-making process of AVs. However, when it comes to safety-
critical scenarios, deep learning models suffers from the CoR due to
the scarcity of real-world data. This scarcity may lead to severe var-
iance in the estimation of policy gradients, thereby impeding the
effectiveness of deep learning®. Another approach aiming to ensure
the safety of decision-making involves using formal methods based on
a set of assumptions. Typical assumptions include the availability of a
system model, which may be characterized by bounded unknown
dynamics and noise'’. Due to the CoR, it is difficult to verify these
assumptions to account for all rare safety-critical events in high-
dimensional driving environments.

is applicable to various deep-learning approaches. In the case of deep
reinforcement learning, the data consists of the state-action pairs, and
the objective function is based on the reward function (see our pre-
vious work® for details); whereas in deep supervised learning, the data
comprises the labelled data, and the objective function is based on the
loss function. More details can be found in the Methods section.

Verification and validation. Verification and validation of safety per-
formance play a crucial role in assessing the readiness of AVs for
widespread deployment’. Prevailing approaches usually test AVs in the
naturalistic driving environment through a combination of software
simulation, closed test track, and on-road testing. Due to the CoR,
however, hundreds of millions of miles would be required to evaluate
the safety performance of AVs, which is impractical and inefficient®. To
accelerate the process, various approaches have been developed, such
as scenario-based approaches, which focus on testing AVs in purposely
generated scenarios. Unfortunately, the complexity of generating
spatiotemporally intricate safety-critical scenarios poses significant
challenge due to the CoR. For example, it has been found that the
importance-sampling-based approaches could suffer from a severe
inefficiency owing to the dramatic variance for generating complex
safety-critical scenarios®. As a result, many existing approaches are
limited to handling short scenario segments with limited dynamic
objects, failing to capture the full complexity and variability of real-
world safety-critical events®.
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What are the potential solutions?

Based on the analyses and discussions above, we identify three
potential approaches for solving the CoR problem, each addressing it
from a distinct perspective. It is important to note that these approa-
ches are not mutually exclusive, and combining these approaches
holds immense potential in resolving the CoR issue and expediting the
widespread deployment of AVs.

Approach #1: Effective training with more rare event data. The first
approach focuses on data and aims to continually improve the hand-
ling of rare events by making better use of additional data. One
potential method is to utilize exclusively the data associated with rare
events, which could significantly reduce the estimation variance, as
stated in Theorem 1 in Methods section. However, defining and iden-
tifying rare events are challenging, as they depend on problem-specific
objective functions and suffer from the spatiotemporal complexity of
safety-critical autonomous systems. More importantly, theoretical
foundations that can guide the utilization of rare event data remain
lacking. For AV safety validation tasks, tackling the CoR issue has been
attempted by developing the dense deep reinforcement learning
(D2RL) approach in our prior work’. Theoretical and experimental
results show that D2RL can dramatically reduce the variance of the
policy gradient estimation, a significant step towards addressing the
CoR. Another crucial concern is how to gather or generate more rare
event data. Tesla proposed the concept of shadow mode testing",
where rare events of interest are identified by comparing human
driving behavior with autonomous driving behavior, but no details are
given in the literature. Other than collecting data from naturalistic
driving environment, various data augmentation methods have been
developed to generate safety-critical scenarios™.

Approach #2: Improving capabilities of generalization and reason-
ing. The second approach centers around improving the general-
ization and reasoning capabilities of machine learning models to
overcome the data insufficiency. Intuitively, as humans can learn to
drive with limited experience (typically less than one hundred hours of
training), future Al agents for AVs may be able to overcome the CoR
without relying on extensive task-specific data. This requires an Al
agent to possess both bottom-up reasoning (sensing data-driven) and
top-down reasoning (cognition expectation-driven) capabilities®,
bridging the information gap not found in the data. These require-
ments are in line with the development of artificial general intelligence
(AGI). Recently, foundational models such as large language models
(LLMs) and vision-language models (VLMs) have exhibited remarkable
generalization and reasoning abilities in terms of natural language
processing and visual comprehension and reasoning by employing
techniques such as fully supervised fine-tuning, in-context learning,
and chain of thought. By leveraging the extensive data available, LLMs
and VLMs present a promising solution for enabling top-down rea-
soning to address the CoR issue™, although issues like hallucinations
still need further investigations®.

Approach #3: Reducing the occurrence of safety-critical events.
The third approach aims to mitigate the consequences of CoR on AV
systems by reducing the occurrences of safety-critical events. Poten-
tially, one can combine traditional model-based approaches with deep
learning approaches, taking advantages of the strengths of both'. For
example, formal methods have been developed to prevent unsafe
behaviors of AVs based on abstract models, potentially leading to

defensive driving strategies. However, as discussed in ref. 10,17, mul-
tiple challenges need to be addressed to fully harness the potential of
formal methods. Another approach is to enhance situational aware-
ness by utilizing infrastructure-based sensors or cooperative aware-
ness, aiding AVs in overcoming the limitations of their own onboard
sensors. Nevertheless, effectively utilizing this additional information
to achieve improved performance remains a challenging task, espe-
cially in safety-critical scenarios. Many existing approaches may even
result in inferior perception and decision-making outcomes in such
scenarios, due to the increased complexity and latency associated with
gathering and integrating this extra information',

Methods
Let us consider a general deep learning problem that can be for-
mulated as an optimization problem:

max [p [foX)], I

where 8 € R? denotes the parameters of a neural network, d is the
dimension of the parameters, X € Q denotes the training data with an
underlying distribution P, and f,(X) denotes the objective function
given the neural network 6 and training data X. To optimize the
objective function, the key is to estimate the gradient of the neural
network parameters at each training iteration (see Chapter 8 in ref. 19)
as

def ~ def 1
B = Volip [fo(X)|=p = *Z, Vofo(Xi).X; @

where n denotes the number of training data samples at each iteration,
V¢ denotes the gradient of parameters, and the approxxmatlon is
obtained using the Monte Carlo method®. Let ¥’ denote the kth
component of u, where k = 1,...,d. According to the Monte Carlo
method, u IS an unbiased estimation of g, that is, i, (f1) = . The var-
iance ofy can be denoted as of,uz( ). To simplify the notations, we

denote ¥ =*'V,f(X) as a random vector where ¥ =[¥;,...,Y] € RY,
so t in Eq. (2) can be represented as

o

k=02 Y 3

Now let’s focus on a special set of deep learning problems where
only a very small portion of training data (safety-critical data) can
contribute effectively to the gradient estimation, while a vast majority
of training data (non-safety-critical data) contributes little. To be more
specific, we can define normal events AcQ and critical but rare events
BcQ, where ANB=@ and AUB=Q). We can also define the corresponding
indicator function 1,(X), where I,(X)=1 if X belongs to the set A and
otherwise [[,(X) = 0. [3(X) can be defined similarly. Then, we can obtain
a new estimator of the gradient that only utilizes the samples asso-
ciated with the events B as

BEIST (v, 1,(0x0), )

where iz(k’ denotes the kth component of ft and the variance of fz(k) can
be denoted as a2(i™").

Then we have the following theorem, and the proof can be found
at the end of Methods.
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Theorem 1:
If the set A satisfies the following condition:

Ep[¥ - 1,X)] =0, (©)

we have the following properties:
) Ep(p)=Ep(f) =H
@ 03"z o3@"); and
@) o2@®)=10" - g2@™), with the assumption

Ep (Yﬁ - 1,,()()) = EP(Yi) Ep (X)), k=1,....d,  (6)

where r € —log,q [Ep (Tp(X))] is defined as the rarity of the events B in
all samples with the sampling distribution P.

Remark 1. The condition in Eq. (5) indicates that the non-safety-
critical data (I,(X)=1) contributes little to the gradient. Taking the AV
safety testing task as an example (see ref. 5 for details), the key is to
learn a deep model to control background vehicles to conduct
adversarial maneuvers. In this case, the non-safety-critical data that
could be identified by safety metrics usually contains no information
for learning such adversarial maneuvers, so the condition could be
satisfied. We note that the condition is primarily for the theoretical
analysis to be clean and is not strictly required in practice. For exam-
ple, if Ep[¥ - 1,(X)] is a near-zero value and dramatically smaller than
Ep[Y - 15(X)], we can still find that the variance of gt increases dra-
matically with the rarity of safety-critical events.

Remark 2. Defining and identifying the events A and B are non-
trivial and dependent on specific deep learning tasks. An important
aspect of these definitions is the approximate fulfillment of the con-
dition stated in Eq. (5), as explained in Remark 1. To illustrate, in the
context of AV safety testing, we have chosen safety-critical states as
events B and non-safety-critical states as events A (see ref. 5 for details).
The definitions will vary across different AV tasks, warranting further
exploration.

Remark 3. The assumption in Eq. (6) can be satisfied if all
Y2,k=1,...,d are independent of the events B. For deep learning
approaches, the gradient Y= Vyfy(X) is mainly determined by the
parameters 6 of neural networks. As the parameters are usually ran-
domly initiated, ¥ could have an uncertainty that is approximately
independent of the events A and B, particularly at the beginning of the
learning process. Therefore, the assumption could be approximately
satisfied particularly at the beginning of the learning process, so the
CoR hinders the effectiveness of learning from the very beginning.
Again, we note that the assumption is primarily for the theoretical
analysis to be clean and is not strictly required in practice.

Remark 4. The third property suggests that the variance o3(u
will grow exponentially with the rarity of the events B, provided that
0,2,([1(")) does not decrease exponentially with the rarity. As the esti-
mator ji is primarily focused on estimating the gradient using safety-
critical events, its variance o,z,(ﬂ(k)) will not be affected significantly by
the rarity.

Proof of Theorem 1.

(k))

(1) Proof of Ep (i) =Ep(ft) =p:

Ep(p) = EP(%Z?:I(Y(Xi) : I[B(Xi))) =Ep(Y(Xp) - HB(XI)) =H
=Ep(n).

End of proof.

@ Proof of a2(i®) = o2 ®):
oﬁ(ﬂ(k)) =Varp[Yy - 1pX)] =Ep {Yﬁ . HB(X)] — B2[Y, - I5X)]
= [V 1500] — F3(Y,) <Ep[Y2 - 1500] + F, V2 - 1,000]
~E3(Yy) =B [Y2] - B3 (v,) = a3 @®).
End of proof.

() Proof of a3(*) 210" - a2 (™)

B =Ep[YE - 1500] — B3 (Vi) = Ep(¥]) - Ep(100) — 57
(Vo) <Ep(¥V2) - Ep(15000) = B3 (Y) - Ep (1500) = Ep (150X0)-

[En(¥2) = ER (V)| =107 0",
End of proof.
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