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Mortality of tree species around the globe is increasingly driven by hotter drought 
and heat waves. Tree juveniles are at risk, as well as adults, and this will have a 
negative effect on forest dynamics and structure under climate change. Novel 
management options are urgently needed to reduce this mortality and positively 
affect forest dynamics and structure. Potential drought-ameliorating soil 
amendments such as nanochitosan – a biopolymer upcycled from byproducts of 
the seafood industry – may provide an additional set of useful tools for reducing 
juvenile mortality during hotter droughts. Nanochitosan promotes water and 
nutrient absorption in plants but has not been tested in the context of drought 
and heat stress. We evaluated factors affecting mortality risk and rate for dryland 
Pinus edulis juveniles (2–3  years old) in a growth chamber using a factorial 
experiment that included ambient and +4°C warmer base temperatures, with 
and without a 10  day +8°C heat wave, and with and without a nanochitosan soil 
amendment. The nanochitosan treatment reduced the relative risk of mortality, 
emphasizing a protective function of this soil amendment, reducing the relative 
risk of mortality by 37%. Importantly, the protective effects of nanochitosan soil 
amendment in delaying tree mortality under hotter drought and heat waves 
provides a new, potentially positive management treatment for tree juveniles 
trying to survive in the climate of the Anthropocene.

KEYWORDS

hotter drought, forest management, nanochitosan, soil amendment, tree mortality, 
climate change adaptation

Introduction

Drought accompanied by hotter temperatures is driving an increase in tree mortality 
worldwide (Allen et al., 2010; Hammond et al., 2022; McDowell et al., 2022). Global tree 
mortality (recorded from field observations) is being documented in response to a combination 
of metrics related to the extent or severity of drought and to warmer temperatures, such as 
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maximum temperature of the hottest month (Hammond et al., 2022). 
Although factors such as catastrophic wildfire and pathogen outbreaks 
cause tree mortality (e.g., Hicke et  al., 2016), earlier life stages—
juveniles as well as seedlings—are particularly vulnerable to extreme 
heat and drought (e.g., Kolb and Robberecht, 1996). Tree species 
distribution and population persistence are highly dependent on seed 
dispersal and appropriate, favorable site conditions for germination, 
seedling establishment and survival, and for established individuals to 
develop as understory juveniles that can later become overstory adult 
trees (Grubb, 1977; Dey et al., 2019).

As temperature increases during drought, at least up to +8°C 
warming over base as evaluated in previous studies (e.g., Adams et al., 
2017), juveniles of two widely distributed species of Pinus (P. edulis 
and P. ponderosa) die at a linearly increasing rate (Adams et al., 2017). 
When this relationship is combined with a drought frequency 
distribution—for which there are many more short droughts than 
long droughts—the frequency of lethal events for these tree species 
increases nonlinearly with warming (Adams et al., 2017). Further, heat 
waves can occur up to subcontinental scales (Ruthrof et al., 2018), 
which can trigger widespread tree mortality (Matusick et al., 2012, 
2013). Some tree species, such as shade-tolerant temperate broad-
leaved trees, are more sensitive to thermal stress from heat waves than 
non-shade-tolerant species and are at greater risk of accelerated forest 
mortality (Kunert and Hajek, 2022). Consequently, there is substantial 
concern about the future of forests and their likelihood of transitioning 
into shorter structural configurations (McDowell et al., 2020) due to 
extreme climatic events such as hotter drought and heat waves. Heat 
waves are projected to increase in frequency, intensity, and duration 
over the next several decades (Meehl and Tebaldi, 2004; IPCC, 2013; 
Perkins-Kirkpatrick and Gibson, 2017; Guerreiro et al., 2018; Oliver 
et al., 2018). The spatial extent of land impacted by these events is 
expected to quadruple by 2040 (Coumou and Robinson, 2013). As 
heat waves become more frequent and widespread, model projections 
indicate, with high confidence, increasing frequency of concurrent 
heat waves and droughts, creating potential compound hazards 
associated with simultaneous disturbances (e.g., fire, Enright et al., 
2015; Stevens-Rumann et al., 2018).

Understanding the influence of environmental stressors such as 
concurrent heat waves and drought on rates of juvenile survival and 
mortality is critical to predicting future forest dynamics. Seedling 
recruitment is particularly important in the face of rapid 
anthropogenic warming, where range shifts upslope or poleward will 
be necessary for some species persistence. The survival and mortality 
of juveniles also influences the structure (Smith et  al., 2009) and 
function (Bansal and Germino, 2010) of forests and their composition 
(Suarez and Kitzberger, 2008). Thus, forest resilience to global-change 
induced disturbances, including droughts and heat waves, as well as 
wildfires, depends on juvenile survival (Davis et al., 2019). Healthy 
adult individuals from many species can withstand multiple years of 
drought and heat without suffering mortality (e.g., Adams et al., 2015). 
Yet, drought under hotter conditions during the juvenile stage hastens 
mortality (Adams et al., 2017) at what is likely the most sensitive and 
vulnerable stage. Interactions between ontogeny and drought are 
expected (Niinemets, 2010), and some projections, based on results of 
juvenile experiments, have been consistent with those projections for 
overall tree species mortality (Adams et al., 2017). Moreover, relative 
responses among juveniles to adverse conditions are similar to those 

for adult trees (McDowell et al., 2013). Controlled experiments using 
juveniles offer great promise to rapidly advance understanding of heat 
wave-induced mortality and aid predictions of future forest dynamics.

Management options are needed to help increase juvenile survival 
under the harsher conditions of the Anthropocene, both for naturally 
recruited juveniles as well as planted ones. In addition to traditional 
forest management practices of selective thinning, contouring, 
mulching, pest, and wildfire control (Millar et al., 2007; Millar and 
Stephenson, 2015; Andrews et  al., 2020), recent advances in 
nanoscience and nanotechnology may provide an additional set of 
useful tools for forest managers to reduce the risk of tree mortality 
during extreme drought and heat waves (Field et  al., 2020). 
Nanochitosan is a biopolymer plant elicitor derived by the 
deacetylation of chitin—a commercially produced byproduct acquired 
by upcycling waste from the seafood industry. Unlike chitosan, which 
has been used for decades in agricultural and horticultural applications 
(e.g., Sharp, 2013; Sharif et  al., 2018), nanochitosan has unique 
physicochemical properties and is highly water soluble, making it 
more biologically reactive and effective than chitosan (e.g., Sabbour 
and Solieman, 2016; Li et  al., 2019) and more sustainable. 
Nanochitosan enhances the organic carbon of the soil and stabilizes 
the micro and macro aggregates (Aminiyan et al., 2015). A growing 
number of studies, particularly in the agricultural literature, have 
demonstrated the effectiveness of nanochitosan applications to soil for 
significantly improving plant responses including growth and yield, 
drought tolerance, establishment, resistance to diseases and pathogens, 
and production of secondary metabolites to help mitigate stressors 
including temperature extremes and phytophagous insect attacks such 
as bark beetles (e.g., Sharp, 2013; Katiyar et al., 2015; Pichyangkura 
and Chadchawan, 2015; Zayed et al., 2017; Behboudi et al., 2018; 
Kumaraswamy et al., 2018; Alaghmand et al., 2020).

Our primary focus was on testing whether or not a nanochitosan 
soil amendment would have a protective effect overall reducing both 
drought- and heat-related juvenile mortality. This study evaluates the 
combined effects of drought and heat on mortality of tree juveniles 
and does not focus on drought or heat in isolation, as these stressors 
often occur in tandem throughout many dryland forests. In this 
context, we also evaluated whether or not hotter drought (i.e., warmer 
mean temperature and dry conditions) combined with a heat wave 
synergistically affects tree juvenile mortality, as suggested by adult tree 
mortality under field conditions (Matusick et al., 2018; Lawal et al., 
2024). For this, we tested the previously hypothesized relationship that 
tree juvenile mortality increased progressively from ambient base 
temperature, to ambient temperature with a heat wave, to hotter base 
temperature, and hotter temperature with a heat wave (Breshears et al., 
2021). We focused on the piñon pine, Pinus edulis, one of the most 
intensively studied species regarding drought- and heat-related tree 
mortality (Breshears et al., 2018) and widespread across the dryland 
western USA. One approach for studying drought and heat wave 
effects has been to focus on short-term physiological responses that 
may include mortality of sensitive individuals but does not follow 
plants through protracted drought to quantify population-level 
mortality. Here we  focus on population-level mortality of tree 
juveniles under controlled climate and growth media conditions 
rather than on intermediate physiological measures; this precludes us 
inferring direct mechanistic responses but is germane to assessing 
population-level mortality that is relevant to recruitment dynamics.
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Methods

Experimental design and measurements

We conducted a multifactorial growth chamber experiment to 
investigate the impacts of temperature, heat waves, and nanochitosan 
soil amendment treatments on survival of potted P. edulis juveniles 
(2–3 years old) during drought. The plants were repotted into 
7.5 × 7.5 × 30 cm pots. Soil mixture was prepared to approximate an 
intermediate soil texture using a sieved sandy loam soil with less than 
2 mm gravel size (Acme Sand and Gravel, Tucson, AZ, United States). 
The mineral soil was amended with 30% fine sand and 25% sphagnum 
peat moss based potting soil (Sunshine Mix #4, Sungro Horticulture, 
Agawam, MA, United States). To simulate a drought, juveniles were 
given a one-time watering at the beginning of the study period and 
did not receive additional water throughout the rest of the study 
period. The experiment included two base temperature treatments: 
‘Ambient’ (ambient temperatures), and ‘Hotter’ (+4° C temperatures). 
Ambient diurnal temperatures were set to mimic ambient summer 
(June) conditions comparable to a relatively low elevation P. edulis 
ecotone (near White Rock, New Mexico, USA), with mean minimum 
and mean maximum diurnal temperature of ~15° C and ~ 30° C, 
respectively (30-year mean from 1991 to 2020, PRISM Climate Group, 
Oregon State University1, data created and accessed April 2018). A 
12-h photoperiod was maintained in the growth chambers with 
ambient CO2 concentrations. Hotter treatments followed the same 
diurnal temperature cycle but with elevated temperatures. The 
temperature treatments were further subdivided into juveniles 
experiencing a 10-day heat wave (‘HW’) and those without a heat 
wave (‘No HW’). The heat wave was +8° C warmer than the base 
temperature (‘Ambient’ or ‘Hotter’). Finally, each of the four base 
temperature by heat wave treatments were further split into juveniles 
whose soil was treated with nanochitosan (‘Nano’) and those that were 
not (‘No Nano’). We  implemented this design in four growth 
chambers: an ambient temperature chamber, a ~ 4° C ‘Hotter’ than 
ambient chamber, an ambient plus a 10-day heat wave (~8° C warmer 
than ambient) chamber, and a ‘Hotter’ plus 10-day heat wave (~12° C 
warmer than ambient) chamber.

Following 3 months of acclimation (Supplemental Material S1), 96 
juveniles were randomly divided (April 30, 2018) among the growth 
chambers assigned to one of four base temperature by heatwave 
treatments (n = 24 each for Ambient, Ambient + HW, Hotter and 
Hotter + HW), split further into a nanochitosan treatment within each 
temperature treatment (‘No Nano’ n = 12; ‘Nano’ n = 12). Larger sample 
sizes were precluded by growth chamber space limitations; also, 
ideally it would be best to have replicate chambers for each treatment. 
Juveniles in nanochitosan treatments received a soil surface drenching 
using approximately 50 mL of nanochitosan solution (4% by weight) 
twice before starting the experiment and were not given water once 
the experiment started.

Soil water loss was measured via gravimetric analysis on a weekly 
time schedule. A soil water release curve (Supplementary Figure S1) 
was created using a WP4 dewpoint water potential meter (METER 
Group, Inc. Pullman, Washington, USA). The 10-day heat wave period 

1  https://prism.oregonstate.edu

was started in the heat wave chambers when plant available soil water 
reached approximately 50% (estimated based on gravimetric soil water 
content), such that water was becoming limiting when the soil water 
potential was roughly −1.0 MPa. Juveniles were visually monitored for 
percent brown foliage (assessed at days since start = 9, 33, 40, 47, 68, 
86, 110, 121, 135, 147, 160, 172, 190, 213) and were declared dead 
when foliage reached 90% brown, consistent with prior studies 
(Adams et al., 2009, 2017; Law et al., 2019).

Analyses

The study aimed to assess the impact of warming, heat waves, and 
treatment with nanochitosan on time to mortality. One approach to 
assess mortality is through aggregated mortality rates, calculated as 
the number of deaths divided by number of juveniles in each 
treatment. These data can be analyzed using contingency tables or 
logistic regression (Harrell, 2001) with fixed effects for randomized 
treatment factors and other seedling characteristics that might put 
some seedlings at greater risk of mortality. However, if mortality rates 
are high and follow-up is long enough, most trees will die in all 
treatments, resulting in small differences between treatments. An 
alternative approach to assess mortality is through individual survival 
times, which allow for analysis and visualization of the course of 
mortality over the study period.

Two methods were used to analyze individual survival times: 
Kaplan–Meier estimation of survival functions and Proportional 
Hazards Cox model regression (Cox, 1972; Cox and Oakes, 1984). 
Kaplan–Meier analyses were used to evaluate the progression of 
mortality over the study period, and the Cox proportional hazard 
regression modeled the hypothesized ordinal effects of chronic 
warming and heat wave treatments, as well as effects of the 
nanochitosan soil amendment. The study followed all seedlings 
up to 213 days and determined survival times, which were defined 
as the length of time from the start of the study until death or the 
end of the study period. Survival times that were only partially 
observed, when a seedling was still alive at the end of the study, 
were labeled as censored survival times, while known survival 
times were labeled as event times. In standard survival analysis 
(Landes et al., 2020), “censored” means that the event of interest 
(in this case, mortality) has not occurred for that individual at the 
time of the last observation.

Kaplan–Meier estimation of survival functions
To evaluate the effect of nanochitosan application, we compared 

it across the four temperature treatments: Ambient, Ambient + HW, 
Hotter, and Hotter + HW. Kaplan–Meier analyses (Kleinbaum and 
Klein, 2012) were used to estimate survival functions that show the 
timing of mortality over the study. The time (in days) from when 
juveniles were first placed in their treatments until declared dead was 
used in the estimation of survival functions. Juveniles that did not die 
had a survival time set to the last observation date and were treated as 
censored in the analysis. Log-rank tests were used to test for 
differences in survival distributions among the treatment groups. 
When more than two survival curves were compared, we also report 
the Dunnett-Hsu adjusted p-values. We chose not to display 95% 
confidence intervals for survival curves, because with our sample size 
they were very wide, which made graphs difficult to interpret.
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Proportional hazards Cox model regression
The Cox model allows us to estimate the effects of our individual 

factors (Nano, Hotter, HW) and their interactions; as well as test our 
hypothesized ordinal ranking of the relative risk of mortality. Base 
warming (Hotter), HW, and the Nano treatment were modeled as 
single factors and in multivariable models using Cox proportional 
hazards regression (Cox, 1972; SAS v9,4), in a similar manner to using 
ANOVA or regression for a continuous dependent variable. The Cox 
models estimate the log(hazard) rate, where the hazard rate represents 
the risk of mortality given a juvenile has survived up to a specific time. 
Regression coefficients from the Cox models estimate the effect of a 
one unit change in the covariate relative to an arbitrary baseline 
hazard function. The hazard ratios, which are exponentiated 
coefficients, estimated the effect size of covariates relative to baseline 
(e.g., heat wave vs. no heat wave; Cox and Oakes, 1984). We also 
present 95% confidence intervals for hazard ratios to represent 
their uncertainty.

Hazard ratios greater than 1 indicate factors that increase the risk 
of mortality; those less than 1 indicate factors that reduce the risk of 
mortality. We created an ordinal variable to test our a priori ranking 
for relative risk: Ambient <Ambient + HW < Hotter < Hotter + HW 
(Breshears et al., 2021). This ordinal variable was coded as Ambient = 0, 
Ambient + HW = 1, Hotter = 2 and Hotter + HW = 3 and entered into 
models as a continuous covariate.

We fitted three models to test effects of experimental treatments 
on the relative risk of mortality: a four-category Hotter & HW model, 
a multivariable with Hotter and HW + Nano as categorical factors 
(Model A) and a multivariable model with Hotter and HW as an 
ordinal covariate + Nano (Model B). Cox proportional hazards models 
assume that hazards for different treatments have the same 
proportionality over the duration of the study. We  tested this 
assumption using the approach of adding time interactions with 
treatment factors. We used the AIC (Akaike information criterion; 
Akaike, 1974) to compare strength of evidence for models.

Results

Mortality progression and Kaplan–Meier 
estimates of survival functions

Plant available soil water content reached ~50% by day 23, which 
initiated the start of the 10-day HW treatment. The first mortalities 
were recorded on day 40, which was 7 days after the heat wave ended. 
Experimental conditions simulating hotter drought and heat waves led 
to more extreme mortality, and 100% of juveniles without Nano in all 
temperature by heatwave treatments, and those in Hotter or HW 
treatments, died by day 213 (Supplementary Table S1). When juveniles 
were treated with nanochitosan, mortality rates were 92% for 
Ambient + HW, 92% for Hotter and 100% for Hotter + HW. Mortality 
rates for Ambient juveniles were 83% for No Nano and 79% for Nano. 
Overall, there was no significant difference in the relative frequency 
of mortality among the eight treatment combinations (Fisher exact 
test, p = 0.130).

Mortality rate for all experimental conditions was highest between 
days 40 and 47 (large steps, Figure 1), followed by a more gradual 
decline in mortality. Log-rank tests for overall main effect comparisons 
(Figure 1) show a small effect for Nano (p = 0.045). We next assessed 

Nano effects stratified by the four Hotter  ×  HW combinations 
(Figure 2). Survival curves showed the biggest distinction between 
Nano and No Nano for juveniles in the Hotter treatment, but with 
only n = 12 per group, the curves were not significantly different 
(p = 0.078). Survival curves for the one-way combination of 
Hotter  ×  HW treatments were not significantly different 
(Supplementary Figure S2, p = 0.279). The greatest separation between 
Nano and No-Nano survival curves was for Hotter + HW compared 
to Ambient (Supplementary Figure S2, p = 0.060, Dunnett-Hsu 
adjusted p = 0.143). In each comparison, the condition with less overall 
temperature stress (assumed a priori to be  Ambient 
<Ambient + HW < Hotter < Hotter + HW; Breshears et al., 2021) had 
lower mortality compared to the condition with more overall 
temperature stress, as shown in the survival curves where lower 
overall temperature stress cases lie above conditions with more overall 
temperature stress. We  did not detect overall effects for Hotter/
Ambient (p = 0.200) and HW/No HW (p = 0.150, 
Supplementary Figure S3).

Proportional hazards Cox model regression

When a heat wave was superimposed on hotter chronic 
temperatures, there was a significantly increased risk of mortality, as 
evidenced by the elevated hazard ratio in the unadjusted Cox 
regression model for Hotter and HW Unadjusted (Table 1; HR = 1.85 
95% CI 1.00–3.41, p = 0.049). The model that additionally incorporated 
Nano vs. No Nano, Model A (Hotter and HW + Nano), also shows a 
significant effect of Hotter + HW (p = 0.036). This model also shows a 
37% reduction in relative risk of mortality with nanochitosan 
treatment based on its low hazard ratio (0.63 95% CI 0.41–0.96, 
p = 0.037). Our third model, Model B (Hotter and HWordinal + Nano) 
included both the nanochitosan treatment, and the four temperature 
by heatwave treatment combinations as an ordinal variable. Taken 

FIGURE 1

Survival probability curves of Pinus edulis juveniles by Nanochitosan 
(Nano) treatment pooling over all Hotter and Heat Wave (Hotter & 
HW) treatments combined. Vertical dashed lines indicate periods 
with experimental heat waves. Homogeneity of the curves were 
tested using log-rank tests; Censored indicates juveniles that 
survived to the end of the study.
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together, progression of ordinal overall temperature stress levels 
(Ambient, Ambient + HW, Hotter, Hotter + HW) was associated with 
a significant increase in mortality (p = 0.045, HR = 1.21 for each added 
treatment level), and the nanochitosan treatment had an additional 
positive effect on survival (p = 0.036). We  found no significant 
evidence of non-proportional hazards.

Discussion

Overall, our results suggest that the addition of a soil amendment 
nanochitosan can aid in increasing juvenile survival under extreme 
heat and drought. In addition, our results highlight that warming and 
heat waves accelerated juvenile P. edulis mortality during 
protracted drought.

Nanochitosan had a significant protective effect (Table  1) in 
delaying juvenile mortality under heat waves and hotter drought, 
reflected in the reduced hazard ratio (Table 1; although nanochitosan 
effect was not detectable in the survival curves 
(Supplementary Figure S2), likely due to small sample size). Thus, 

nanochitosan addition may provide a new potential management 
treatment for juvenile tree survival in the climate of the Anthropocene. 
This builds on other research showing protective effects of 
nanochitosan under other conditions. For example, nanochitosan, 
applied as a soil amendment or a foliar application, has been shown to 
increase drought and heat tolerance by enhancing natural defense 
responses such as increased cell wall synthesis, generation of reactive 
oxygen species, and accumulation of phenolic compounds (Katiyar 
et al., 2015; Kumaraswamy et al., 2018), which have been shown as 
effective allelochemicals against bark beetle-associated fungi and 
other pathogens (Nagy et al., 2000; Klepzig and WaIkinshaw, 2003). 
Nanochitosan has been shown to increase plant nutrient extraction 
from soil (Ashraf et  al., 2022); however, we added fertilizer to all 
treatments prior to starting the experiment to ensure nutrient 
limitation was not a factor. Our treatment was a soil amendment only, 
so we  do not attribute any of the responses to foliar effects 
of nanochitosan.

In addition, our results highlight that warming and heat waves 
accelerated juvenile mortality during protracted drought. These results 
build on prior research showing that heat waves in combination with 

FIGURE 2

Survival probability curves of Pinus edulis juveniles by Nanochitosan (Nano) treatments stratified by the four Hotter and Heat Wave (Hotter & HW) 
combinations. Vertical dashed lines indicate periods with experimental heat waves. Homogeneity of the curves were tested using log-rank tests.
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moderate drought can increase tree mortality in Pinus (Birami et al., 
2018), and in other genera (Marchin et  al., 2022), as well as other 
research showing hotter drought accelerates tree mortality in Pinus 
(Adams et al., 2017). Our results also demonstrate that warming and 
HW both increase mortality (HR = 1.6 for each), but the combined 
Hotter + HW effect (HR = 1.93) was less than the expected combination 
of individual Hotter and HW effects (1.63*1.61 = 2.62). With a 
synergistic HW effect we  would expect the Hotter + HW effect to 
be greater than 2.62, suggesting that there is not any evidence for a 
synergistic HW effect. Despite small sample sizes (n = 12), which limited 
our statistical power to detect differences, these results highlight the 
negative effects of combined hotter drought and heat waves on juvenile 
tree mortality, consistent with observed adult tree mortality occurring 
in response to these two factors (Matusick et  al., 2018). Although 
additional work is needed to evaluate functional traits associated with 
intermediate physiological responses prior to mortality, such as 
conducted on Eucalyptus juveniles (Drake et al., 2018; Aspinwall et al., 
2019) and on P. halepensis (Birami et al., 2018), our results nonetheless 
provide complimentary insights on the consequences of hotter drought 
combined with heat waves on tree juvenile mortality. Future work needs 
to further evaluate the relative influences of different magnitudes and 
durations of heatwaves in conjunction with different levels of baseline 
warming (Breshears et al., 2021). The future survival trajectories of 
forests following extreme events of hotter drought combined with heat 
waves depend on successful juvenile recruitment, which will be altered 
by the extreme events.

Our results provide a first step in developing a potential soil 
amendment treatment to mitigate the effects of hotter drought and 
heat waves on dryland juvenile trees. Future additional tests are 
needed to further assess protective effects under field conditions for 
both naturally recruited and planted juveniles, as well as tests of the 
amount, timing, and repetition of the application. Planting of juveniles 
(“outplanting”) is a common forestry practice following wildfire 
(Stevens et al., 2021) and could also be applied following large scale 
tree die-off events, as managers deal with rapid disturbance-induced 
ecosystem changes. The juveniles we used are typical size for those 

used in outplanting. Nanochitosan could be readily applied to such 
juveniles to increase their chances of surviving drought and 
accompanying warmer baseline temperatures, along with potential 
heat waves. Nanochitosan can be applied directly to the plant foliage 
or to the soil as a broadcast application for forest stands. It can also 
be utilized as a soil drench treatment at the base of individuals, from 
seedlings to adults. The application of nanaochitosan could potentially 
provide other beneficial effects to trees in addition to enhancing 
drought and heat tolerance, such as enhancing seedling establishment, 
nutrient use efficiency, resin production, and resistance to diseases 
and pathogens (Sharp, 2013; Katiyar et al., 2015; Kumaraswamy et al., 
2018). Nanochitosan is commercially available with an approximate 
application cost per hectare comparable to the cost of standard 
fertilizer applications (Li et al., 2019).

As climate conditions become more stressful to plants, 
including the potential for multi-year to multi-decadal 
“megadroughts,” management actions will need to become more 
intensive and focused finer spatial scales (Field et al., 2020). The 
potential utility of nanochitosan proposed previously (Field et al., 
2020) is supported by this study. Nanochitosan is produced by 
upcycling marine waste byproducts that contain chitin, a 
biopolymer commonly found in the shells of crustaceans. The 
application of nanochitosan not only helps in waste management 
and environmental sustainability but also serves as a potential tool 
for forest managers to reduce the risk of tree mortality during 
extreme heat and drought. Although the scope of our experimental 
design was not broad enough in scale or sample size to assess the 
expected range of reduction and delay of mortality in field 
conditions, our results nonetheless provide encouraging insights 
suggesting that significant reductions in mortality can be achieved 
with only one application of nanochitosan. Our study focuses on 
mortality of tree juveniles and supports the need for additional 
studies to evaluate intermediate physiological responses that could 
provide insights into the mechanisms behind mortality and enhance 
our understanding of how nanochitosan influences tree responses. 
Further research is needed to help provide useful data to 

TABLE 1  Cox model regression results for Hotter, heat wave (HW) and nanochitosan (Nano) effects on juvenile Pinus edulis mortality: a four-category 
Hotter and Heat Wave (Hotter & HW) model, a multivariable with Hotter & HW  +  Nano as categorical factors (Model A) and a multivariable model with 
Hotter & HW as an ordinal covariate + Nano (Model B).

Hotter & HW Unadjusted Model A
Hotter & HW  +  Nano

Model B
Hotter & HWordinal

+  Nano

Model predictor HR
(95% CI)

p-value HR
(95% CI)

p-value HR
(95% CI)

p-value

Ambient (reference) 1.00 1.00 1.00

Ambient + HW 1.56

(0.84, 2.89)

0.156 1.63

(0.88, 3.03)

0.121 1.21

(1.00, 1.47)

0.045

Hotter 1.50

(0.81, 2.79)

0.197 1.61

(0.86, 3.01)

0.135 1.47

(1.01,2.15)

Hotter + HW 1.85

(1.00, 3.41)

0.049 1.93

(1.04, 3.58)

0.036 1.79

(1.01, 3.16)

Nano vs. No Nano n/a 0.63

(0.41, 0.96)

0.037 0.63

(0.41, 0.97)

0.036

Model AIC 399.49 396.94 393.92

ΔAIC 5.57 3.02 0
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practitioners to assess the cost/benefit of using nanochitosan as a 
potential forest management tool. In conclusion, our results build 
on prior results highlighting risk from hotter drought to illustrate 
synergies with heat wave extremes. In a management context, 
we  show protective effects of nanochitosan soil amendment in 
delaying tree mortality under heat waves and hotter drought, 
thereby providing a new potential management treatment for 
juvenile trees in the climate of the Anthropocene.
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