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Mortality of tree species around the globe is increasingly driven by hotter drought
and heat waves. Tree juveniles are at risk, as well as adults, and this will have a
negative effect on forest dynamics and structure under climate change. Novel
management options are urgently needed to reduce this mortality and positively
affect forest dynamics and structure. Potential drought-ameliorating soil
amendments such as nanochitosan — a biopolymer upcycled from byproducts of
the seafood industry — may provide an additional set of useful tools for reducing
juvenile mortality during hotter droughts. Nanochitosan promotes water and
nutrient absorption in plants but has not been tested in the context of drought
and heat stress. We evaluated factors affecting mortality risk and rate for dryland
Pinus edulis juveniles (2-3years old) in a growth chamber using a factorial
experiment that included ambient and +4°C warmer base temperatures, with
and without a 10 day +8°C heat wave, and with and without a nanochitosan soil
amendment. The nanochitosan treatment reduced the relative risk of mortality,
emphasizing a protective function of this soil amendment, reducing the relative
risk of mortality by 37%. Importantly, the protective effects of nanochitosan soil
amendment in delaying tree mortality under hotter drought and heat waves
provides a new, potentially positive management treatment for tree juveniles
trying to survive in the climate of the Anthropocene.

KEYWORDS

hotter drought, forest management, nanochitosan, soil amendment, tree mortality,
climate change adaptation

Introduction

Drought accompanied by hotter temperatures is driving an increase in tree mortality
worldwide (Allen et al.,, 2010; Hammond et al., 2022; McDowell et al., 2022). Global tree
mortality (recorded from field observations) is being documented in response to a combination
of metrics related to the extent or severity of drought and to warmer temperatures, such as

01 frontiersin.org


https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2024.1215051&domain=pdf&date_stamp=2024-07-24
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1215051/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1215051/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1215051/full
mailto:jpfield@arizona.edu
https://doi.org/10.3389/ffgc.2024.1215051
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2024.1215051

Field et al.

maximum temperature of the hottest month (Hammond et al., 2022).
Although factors such as catastrophic wildfire and pathogen outbreaks
cause tree mortality (e.g., Hicke et al.,, 2016), earlier life stages—
juveniles as well as seedlings—are particularly vulnerable to extreme
heat and drought (e.g., Kolb and Robberecht, 1996). Tree species
distribution and population persistence are highly dependent on seed
dispersal and appropriate, favorable site conditions for germination,
seedling establishment and survival, and for established individuals to
develop as understory juveniles that can later become overstory adult
trees (Grubb, 1977; Dey et al., 2019).

As temperature increases during drought, at least up to +8°C
warming over base as evaluated in previous studies (e.g., Adams et al,
2017), juveniles of two widely distributed species of Pinus (P. edulis
and P, ponderosa) die at a linearly increasing rate (Adams et al., 2017).
When this relationship is combined with a drought frequency
distribution—for which there are many more short droughts than
long droughts—the frequency of lethal events for these tree species
increases nonlinearly with warming (Adams et al., 2017). Further, heat
waves can occur up to subcontinental scales (Ruthrof et al., 2018),
which can trigger widespread tree mortality (Matusick et al., 2012,
2013). Some tree species, such as shade-tolerant temperate broad-
leaved trees, are more sensitive to thermal stress from heat waves than
non-shade-tolerant species and are at greater risk of accelerated forest
mortality (Kunert and Hajek, 2022). Consequently, there is substantial
concern about the future of forests and their likelihood of transitioning
into shorter structural configurations (McDowell et al., 2020) due to
extreme climatic events such as hotter drought and heat waves. Heat
waves are projected to increase in frequency, intensity, and duration
over the next several decades (Meehl and Tebaldi, 2004; IPCC, 2013;
Perkins-Kirkpatrick and Gibson, 2017; Guerreiro et al., 2018; Oliver
et al., 2018). The spatial extent of land impacted by these events is
expected to quadruple by 2040 (Coumou and Robinson, 2013). As
heat waves become more frequent and widespread, model projections
indicate, with high confidence, increasing frequency of concurrent
heat waves and droughts, creating potential compound hazards
associated with simultaneous disturbances (e.g., fire, Enright et al.,
2015; Stevens-Rumann et al., 2018).

Understanding the influence of environmental stressors such as
concurrent heat waves and drought on rates of juvenile survival and
mortality is critical to predicting future forest dynamics. Seedling
recruitment is particularly important in the face of rapid
anthropogenic warming, where range shifts upslope or poleward will
be necessary for some species persistence. The survival and mortality
of juveniles also influences the structure (Smith et al., 2009) and
function (Bansal and Germino, 2010) of forests and their composition
(Suarez and Kitzberger, 2008). Thus, forest resilience to global-change
induced disturbances, including droughts and heat waves, as well as
wildfires, depends on juvenile survival (Davis et al., 2019). Healthy
adult individuals from many species can withstand multiple years of
drought and heat without suffering mortality (e.g., Adams et al., 2015).
Yet, drought under hotter conditions during the juvenile stage hastens
mortality (Adams et al., 2017) at what is likely the most sensitive and
vulnerable stage. Interactions between ontogeny and drought are
expected (Niinemets, 2010), and some projections, based on results of
juvenile experiments, have been consistent with those projections for
overall tree species mortality (Adams et al., 2017). Moreover, relative
responses among juveniles to adverse conditions are similar to those
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for adult trees (McDowell et al., 2013). Controlled experiments using
juveniles offer great promise to rapidly advance understanding of heat
wave-induced mortality and aid predictions of future forest dynamics.

Management options are needed to help increase juvenile survival
under the harsher conditions of the Anthropocene, both for naturally
recruited juveniles as well as planted ones. In addition to traditional
forest management practices of selective thinning, contouring,
mulching, pest, and wildfire control (Millar et al., 2007; Millar and
Stephenson, 2015; Andrews et al, 2020), recent advances in
nanoscience and nanotechnology may provide an additional set of
useful tools for forest managers to reduce the risk of tree mortality
during extreme drought and heat waves (Field et al, 2020).
Nanochitosan is a biopolymer plant elicitor derived by the
deacetylation of chitin—a commercially produced byproduct acquired
by upcycling waste from the seafood industry. Unlike chitosan, which
has been used for decades in agricultural and horticultural applications
(e.g., Sharp, 2013; Sharif et al., 2018), nanochitosan has unique
physicochemical properties and is highly water soluble, making it
more biologically reactive and effective than chitosan (e.g., Sabbour
and Solieman, 2016; Li et al, 2019) and more sustainable.
Nanochitosan enhances the organic carbon of the soil and stabilizes
the micro and macro aggregates (Aminiyan et al, 2015). A growing
number of studies, particularly in the agricultural literature, have
demonstrated the effectiveness of nanochitosan applications to soil for
significantly improving plant responses including growth and yield,
drought tolerance, establishment, resistance to diseases and pathogens,
and production of secondary metabolites to help mitigate stressors
including temperature extremes and phytophagous insect attacks such
as bark beetles (e.g., Sharp, 2013; Katiyar et al., 2015; Pichyangkura
and Chadchawan, 2015; Zayed et al., 2017; Behboudi et al., 2018;
Kumaraswamy et al., 2018; Alaghmand et al., 2020).

Our primary focus was on testing whether or not a nanochitosan
soil amendment would have a protective effect overall reducing both
drought- and heat-related juvenile mortality. This study evaluates the
combined effects of drought and heat on mortality of tree juveniles
and does not focus on drought or heat in isolation, as these stressors
often occur in tandem throughout many dryland forests. In this
context, we also evaluated whether or not hotter drought (i.e., warmer
mean temperature and dry conditions) combined with a heat wave
synergistically affects tree juvenile mortality, as suggested by adult tree
mortality under field conditions (Matusick et al., 2018; Lawal et al.,
2024). For this, we tested the previously hypothesized relationship that
tree juvenile mortality increased progressively from ambient base
temperature, to ambient temperature with a heat wave, to hotter base
temperature, and hotter temperature with a heat wave (Breshears et al.,
2021). We focused on the pifion pine, Pinus edulis, one of the most
intensively studied species regarding drought- and heat-related tree
mortality (Breshears et al., 2018) and widespread across the dryland
western USA. One approach for studying drought and heat wave
effects has been to focus on short-term physiological responses that
may include mortality of sensitive individuals but does not follow
plants through protracted drought to quantify population-level
mortality. Here we focus on population-level mortality of tree
juveniles under controlled climate and growth media conditions
rather than on intermediate physiological measures; this precludes us
inferring direct mechanistic responses but is germane to assessing
population-level mortality that is relevant to recruitment dynamics.
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Methods
Experimental design and measurements

We conducted a multifactorial growth chamber experiment to
investigate the impacts of temperature, heat waves, and nanochitosan
soil amendment treatments on survival of potted P. edulis juveniles
(2-3years old) during drought. The plants were repotted into
7.5%7.5x30cm pots. Soil mixture was prepared to approximate an
intermediate soil texture using a sieved sandy loam soil with less than
2 mm gravel size (Acme Sand and Gravel, Tucson, AZ, United States).
The mineral soil was amended with 30% fine sand and 25% sphagnum
peat moss based potting soil (Sunshine Mix #4, Sungro Horticulture,
Agawam, MA, United States). To simulate a drought, juveniles were
given a one-time watering at the beginning of the study period and
did not receive additional water throughout the rest of the study
period. The experiment included two base temperature treatments:
‘Ambient’ (ambient temperatures), and ‘Hotter’ (+4° C temperatures).
Ambient diurnal temperatures were set to mimic ambient summer
(June) conditions comparable to a relatively low elevation P. edulis
ecotone (near White Rock, New Mexico, USA), with mean minimum
and mean maximum diurnal temperature of ~15° C and~30° C,
respectively (30-year mean from 1991 to 2020, PRISM Climate Group,
Oregon State University', data created and accessed April 2018). A
12-h photoperiod was maintained in the growth chambers with
ambient CO, concentrations. Hotter treatments followed the same
diurnal temperature cycle but with elevated temperatures. The
temperature treatments were further subdivided into juveniles
experiencing a 10-day heat wave (‘(HW’) and those without a heat
wave (‘No HW’). The heat wave was +8° C warmer than the base
temperature (Ambient’ or ‘Hotter’). Finally, each of the four base
temperature by heat wave treatments were further split into juveniles
whose soil was treated with nanochitosan (‘Nano’) and those that were
not (‘No Nano’). We implemented this design in four growth
chambers: an ambient temperature chamber, a~4° C ‘Hotter’ than
ambient chamber, an ambient plus a 10-day heat wave (~8° C warmer
than ambient) chamber, and a ‘Hotter’ plus 10-day heat wave (~12° C
warmer than ambient) chamber.

Following 3 months of acclimation (Supplemental Material S1), 96
juveniles were randomly divided (April 30, 2018) among the growth
chambers assigned to one of four base temperature by heatwave
treatments (n=24 each for Ambient, Ambient+HW, Hotter and
Hotter + HW), split further into a nanochitosan treatment within each
temperature treatment (‘No Nano’ n=12; ‘Nano’ n=12). Larger sample
sizes were precluded by growth chamber space limitations; also,
ideally it would be best to have replicate chambers for each treatment.
Juveniles in nanochitosan treatments received a soil surface drenching
using approximately 50 mL of nanochitosan solution (4% by weight)
twice before starting the experiment and were not given water once
the experiment started.

Soil water loss was measured via gravimetric analysis on a weekly
time schedule. A soil water release curve (Supplementary Figure S1)
was created using a WP4 dewpoint water potential meter (METER
Group, Inc. Pullman, Washington, USA). The 10-day heat wave period

1 https://prism.oregonstate.edu
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was started in the heat wave chambers when plant available soil water
reached approximately 50% (estimated based on gravimetric soil water
content), such that water was becoming limiting when the soil water
potential was roughly —1.0 MPa. Juveniles were visually monitored for
percent brown foliage (assessed at days since start=9, 33, 40, 47, 68,
86, 110, 121, 135, 147, 160, 172, 190, 213) and were declared dead
when foliage reached 90% brown, consistent with prior studies
(Adams et al., 2009, 2017; Law et al., 2019).

Analyses

The study aimed to assess the impact of warming, heat waves, and
treatment with nanochitosan on time to mortality. One approach to
assess mortality is through aggregated mortality rates, calculated as
the number of deaths divided by number of juveniles in each
treatment. These data can be analyzed using contingency tables or
logistic regression (Harrell, 2001) with fixed effects for randomized
treatment factors and other seedling characteristics that might put
some seedlings at greater risk of mortality. However, if mortality rates
are high and follow-up is long enough, most trees will die in all
treatments, resulting in small differences between treatments. An
alternative approach to assess mortality is through individual survival
times, which allow for analysis and visualization of the course of
mortality over the study period.

Two methods were used to analyze individual survival times:
Kaplan-Meier estimation of survival functions and Proportional
Hazards Cox model regression (Cox, 1972; Cox and Oakes, 1984).
Kaplan-Meier analyses were used to evaluate the progression of
mortality over the study period, and the Cox proportional hazard
regression modeled the hypothesized ordinal effects of chronic
warming and heat wave treatments, as well as effects of the
nanochitosan soil amendment. The study followed all seedlings
up to 213 days and determined survival times, which were defined
as the length of time from the start of the study until death or the
end of the study period. Survival times that were only partially
observed, when a seedling was still alive at the end of the study,
were labeled as censored survival times, while known survival
times were labeled as event times. In standard survival analysis
(Landes et al., 2020), “censored” means that the event of interest
(in this case, mortality) has not occurred for that individual at the
time of the last observation.

Kaplan—Meier estimation of survival functions

To evaluate the effect of nanochitosan application, we compared
it across the four temperature treatments: Ambient, Ambient+HW,
Hotter, and Hotter + HW. Kaplan-Meier analyses (Kleinbaum and
Klein, 2012) were used to estimate survival functions that show the
timing of mortality over the study. The time (in days) from when
juveniles were first placed in their treatments until declared dead was
used in the estimation of survival functions. Juveniles that did not die
had a survival time set to the last observation date and were treated as
censored in the analysis. Log-rank tests were used to test for
differences in survival distributions among the treatment groups.
When more than two survival curves were compared, we also report
the Dunnett-Hsu adjusted p-values. We chose not to display 95%
confidence intervals for survival curves, because with our sample size
they were very wide, which made graphs difficult to interpret.
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Proportional hazards Cox model regression

The Cox model allows us to estimate the effects of our individual
factors (Nano, Hotter, HW) and their interactions; as well as test our
hypothesized ordinal ranking of the relative risk of mortality. Base
warming (Hotter), HW, and the Nano treatment were modeled as
single factors and in multivariable models using Cox proportional
hazards regression (Cox, 1972; SAS v9,4), in a similar manner to using
ANOVA or regression for a continuous dependent variable. The Cox
models estimate the log(hazard) rate, where the hazard rate represents
the risk of mortality given a juvenile has survived up to a specific time.
Regression coefficients from the Cox models estimate the effect of a
one unit change in the covariate relative to an arbitrary baseline
hazard function. The hazard ratios, which are exponentiated
coeflicients, estimated the effect size of covariates relative to baseline
(e.g., heat wave vs. no heat wave; Cox and Oakes, 1984). We also
present 95% confidence intervals for hazard ratios to represent
their uncertainty.

Hazard ratios greater than 1 indicate factors that increase the risk
of mortality; those less than 1 indicate factors that reduce the risk of
mortality. We created an ordinal variable to test our a priori ranking
for relative risk: Ambient <Ambient+HW <Hotter < Hotter + HW
(Breshears et al., 2021). This ordinal variable was coded as Ambient =0,
Ambient+ HW =1, Hotter =2 and Hotter + HW =3 and entered into
models as a continuous covariate.

We fitted three models to test effects of experimental treatments
on the relative risk of mortality: a four-category Hotter & HW model,
a multivariable with Hotter and HW + Nano as categorical factors
(Model A) and a multivariable model with Hotter and HW as an
ordinal covariate + Nano (Model B). Cox proportional hazards models
assume that hazards for different treatments have the same
proportionality over the duration of the study. We tested this
assumption using the approach of adding time interactions with
treatment factors. We used the AIC (Akaike information criterion;
Akaike, 1974) to compare strength of evidence for models.

Results

Mortality progression and Kaplan—Meier
estimates of survival functions

Plant available soil water content reached ~50% by day 23, which
initiated the start of the 10-day HW treatment. The first mortalities
were recorded on day 40, which was 7 days after the heat wave ended.
Experimental conditions simulating hotter drought and heat waves led
to more extreme mortality, and 100% of juveniles without Nano in all
temperature by heatwave treatments, and those in Hotter or HW
treatments, died by day 213 (Supplementary Table S1). When juveniles
were treated with nanochitosan, mortality rates were 92% for
Ambient+HW, 92% for Hotter and 100% for Hotter + HW. Mortality
rates for Ambient juveniles were 83% for No Nano and 79% for Nano.
Opverall, there was no significant difference in the relative frequency
of mortality among the eight treatment combinations (Fisher exact
test, p=0.130).

Mortality rate for all experimental conditions was highest between
days 40 and 47 (large steps, Figure 1), followed by a more gradual
decline in mortality. Log-rank tests for overall main effect comparisons
(Figure 1) show a small effect for Nano (p=0.045). We next assessed
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FIGURE 1

Survival probability curves of Pinus edulis juveniles by Nanochitosan
(Nano) treatment pooling over all Hotter and Heat Wave (Hotter &
HW) treatments combined. Vertical dashed lines indicate periods
with experimental heat waves. Homogeneity of the curves were
tested using log-rank tests; Censored indicates juveniles that
survived to the end of the study.

Nano effects stratified by the four Hotter x HW combinations
(Figure 2). Survival curves showed the biggest distinction between
Nano and No Nano for juveniles in the Hotter treatment, but with
only n=12 per group, the curves were not significantly different
(p=0.078). Survival curves for the one-way combination of
Hotter x HW treatments were not significantly different
(Supplementary Figure 52, p=0.279). The greatest separation between
Nano and No-Nano survival curves was for Hotter + HW compared
to Ambient (Supplementary Figure S2, p=0.060, Dunnett-Hsu
adjusted p=0.143). In each comparison, the condition with less overall
temperature stress (assumed a priori to be Ambient
<Ambient + HW < Hotter < Hotter + HW; Breshears et al., 2021) had
lower mortality compared to the condition with more overall
temperature stress, as shown in the survival curves where lower
overall temperature stress cases lie above conditions with more overall
temperature stress. We did not detect overall effects for Hotter/
Ambient (p=0.200) HW/No HW (p=0.150,
Supplementary Figure S3).

and

Proportional hazards Cox model regression

When a heat wave was superimposed on hotter chronic
temperatures, there was a significantly increased risk of mortality, as
evidenced by the elevated hazard ratio in the unadjusted Cox
regression model for Hotter and HW Unadjusted (Table 1; HR=1.85
95% CI 1.00-3.41, p=0.049). The model that additionally incorporated
Nano vs. No Nano, Model A (Hotter and HW + Nano), also shows a
significant effect of Hotter + HW (p=0.036). This model also shows a
37% reduction in relative risk of mortality with nanochitosan
treatment based on its low hazard ratio (0.63 95% CI 0.41-0.96,
p=0.037). Our third model, Model B (Hotter and HW,,4i, + Nano)
included both the nanochitosan treatment, and the four temperature
by heatwave treatment combinations as an ordinal variable. Taken
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FIGURE 2

Survival probability curves of Pinus edulis juveniles by Nanochitosan (Nano) treatments stratified by the four Hotter and Heat Wave (Hotter & HW)
combinations. Vertical dashed lines indicate periods with experimental heat waves. Homogeneity of the curves were tested using log-rank tests.
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together, progression of ordinal overall temperature stress levels
(Ambient, Ambient + HW, Hotter, Hotter + HW) was associated with
a significant increase in mortality (p=0.045, HR =1.21 for each added
treatment level), and the nanochitosan treatment had an additional
positive effect on survival (p=0.036). We found no significant
evidence of non-proportional hazards.

Discussion

Opverall, our results suggest that the addition of a soil amendment
nanochitosan can aid in increasing juvenile survival under extreme
heat and drought. In addition, our results highlight that warming and
heat waves accelerated juvenile P edulis mortality during
protracted drought.

Nanochitosan had a significant protective effect (Table 1) in
delaying juvenile mortality under heat waves and hotter drought,
reflected in the reduced hazard ratio (Table 1; although nanochitosan
detectable in  the
(Supplementary Figure S2), likely due to small sample size). Thus,

effect was not survival  curves
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nanochitosan addition may provide a new potential management
treatment for juvenile tree survival in the climate of the Anthropocene.
This builds on other research showing protective effects of
nanochitosan under other conditions. For example, nanochitosan,
applied as a soil amendment or a foliar application, has been shown to
increase drought and heat tolerance by enhancing natural defense
responses such as increased cell wall synthesis, generation of reactive
oxygen species, and accumulation of phenolic compounds (Katiyar
etal, 2015; Kumaraswamy et al., 2018), which have been shown as
effective allelochemicals against bark beetle-associated fungi and
other pathogens (Nagy et al., 2000; Klepzig and Walkinshaw, 2003).
Nanochitosan has been shown to increase plant nutrient extraction
from soil (Ashraf et al., 2022); however, we added fertilizer to all
treatments prior to starting the experiment to ensure nutrient
limitation was not a factor. Our treatment was a soil amendment only,
so we do not attribute any of the responses to foliar effects
of nanochitosan.

In addition, our results highlight that warming and heat waves
accelerated juvenile mortality during protracted drought. These results
build on prior research showing that heat waves in combination with
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TABLE 1 Cox model regression results for Hotter, heat wave (HW) and nanochitosan (Nano) effects on juvenile Pinus edulis mortality: a four-category
Hotter and Heat Wave (Hotter & HW) model, a multivariable with Hotter & HW + Nano as categorical factors (Model A) and a multivariable model with

Hotter & HW as an ordinal covariate + Nano (Model B).

Hotter & HW Unadjusted

HR
(95% CI)

Model predictor p-value

(95% ClI)

Model A
Hotter & HW + Nano

Model B
Hotter & HW ginat
+ Nano

HR HR

(95% ClI)

p-value p-value

Ambient (reference) 1.00 1.00 1.00

Ambient + HW 1.56 0.156 1.63 0.121 1.21 0.045
(0.84, 2.89) (0.88,3.03) (1.00, 1.47)

Hotter 1.50 0.197 1.61 0.135 1.47
(0.81,2.79) (0.86, 3.01) (1.01,2.15)

Hotter + HW 1.85 0.049 1.93 0.036 1.79
(1.00, 3.41) (1.04, 3.58) (1.01, 3.16)

Nano vs. No Nano n/a 0.63 0.037 0.63 0.036

(0.41, 0.96) (0.41,0.97)
Model AIC 399.49 396.94 393.92
AAIC 5.57 3.02 0

moderate drought can increase tree mortality in Pinus (Birami et al.,
2018), and in other genera (Marchin et al., 2022), as well as other
research showing hotter drought accelerates tree mortality in Pinus
(Adams et al,, 2017). Our results also demonstrate that warming and
HW both increase mortality (HR=1.6 for each), but the combined
Hotter + HW effect (HR=1.93) was less than the expected combination
of individual Hotter and HW effects (1.63¥1.61=2.62). With a
synergistic HW effect we would expect the Hotter + HW effect to
be greater than 2.62, suggesting that there is not any evidence for a
synergistic HW effect. Despite small sample sizes (r=12), which limited
our statistical power to detect differences, these results highlight the
negative effects of combined hotter drought and heat waves on juvenile
tree mortality, consistent with observed adult tree mortality occurring
in response to these two factors (Matusick et al., 2018). Although
additional work is needed to evaluate functional traits associated with
intermediate physiological responses prior to mortality, such as
conducted on Eucalyptus juveniles (Drake et al., 2018; Aspinwall et al.,
2019) and on P, halepensis (Birami et al., 2018), our results nonetheless
provide complimentary insights on the consequences of hotter drought
combined with heat waves on tree juvenile mortality. Future work needs
to further evaluate the relative influences of different magnitudes and
durations of heatwaves in conjunction with different levels of baseline
warming (Breshears et al,, 2021). The future survival trajectories of
forests following extreme events of hotter drought combined with heat
waves depend on successful juvenile recruitment, which will be altered
by the extreme events.

Our results provide a first step in developing a potential soil
amendment treatment to mitigate the effects of hotter drought and
heat waves on dryland juvenile trees. Future additional tests are
needed to further assess protective effects under field conditions for
both naturally recruited and planted juveniles, as well as tests of the
amount, timing, and repetition of the application. Planting of juveniles
(“outplanting”) is a common forestry practice following wildfire
(Stevens et al., 2021) and could also be applied following large scale
tree die-off events, as managers deal with rapid disturbance-induced
ecosystem changes. The juveniles we used are typical size for those
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used in outplanting. Nanochitosan could be readily applied to such
juveniles to increase their chances of surviving drought and
accompanying warmer baseline temperatures, along with potential
heat waves. Nanochitosan can be applied directly to the plant foliage
or to the soil as a broadcast application for forest stands. It can also
be utilized as a soil drench treatment at the base of individuals, from
seedlings to adults. The application of nanaochitosan could potentially
provide other beneficial effects to trees in addition to enhancing
drought and heat tolerance, such as enhancing seedling establishment,
nutrient use efficiency, resin production, and resistance to diseases
and pathogens (Sharp, 2013; Katiyar et al., 2015; Kumaraswamy et al.,
2018). Nanochitosan is commercially available with an approximate
application cost per hectare comparable to the cost of standard
fertilizer applications (Li et al., 2019).

As climate conditions become more stressful to plants,
including the potential for multi-year to multi-decadal
“megadroughts,” management actions will need to become more
intensive and focused finer spatial scales (Field et al., 2020). The
potential utility of nanochitosan proposed previously (Field et al.,
2020) is supported by this study. Nanochitosan is produced by
upcycling marine waste byproducts that contain chitin, a
biopolymer commonly found in the shells of crustaceans. The
application of nanochitosan not only helps in waste management
and environmental sustainability but also serves as a potential tool
for forest managers to reduce the risk of tree mortality during
extreme heat and drought. Although the scope of our experimental
design was not broad enough in scale or sample size to assess the
expected range of reduction and delay of mortality in field
conditions, our results nonetheless provide encouraging insights
suggesting that significant reductions in mortality can be achieved
with only one application of nanochitosan. Our study focuses on
mortality of tree juveniles and supports the need for additional
studies to evaluate intermediate physiological responses that could
provide insights into the mechanisms behind mortality and enhance
our understanding of how nanochitosan influences tree responses.
Further research is needed to help provide useful data to
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practitioners to assess the cost/benefit of using nanochitosan as a
potential forest management tool. In conclusion, our results build
on prior results highlighting risk from hotter drought to illustrate
synergies with heat wave extremes. In a management context,
we show protective effects of nanochitosan soil amendment in
delaying tree mortality under heat waves and hotter drought,
thereby providing a new potential management treatment for
juvenile trees in the climate of the Anthropocene.
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