
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Continuous-Time Reinforcement Learning Control:
A Review of Theoretical Results, Insights on

Performance, and Needs for New Designs
Brent A. Wallace and Jennie Si , Fellow, IEEE

Abstract— This exposition discusses continuous-time reinforce-
ment learning (CT-RL) for the control of affine nonlinear systems.
We review four seminal methods that are the centerpieces of the
most recent results on CT-RL control. We survey the theoretical
results of the four methods, highlighting their fundamental
importance and successes by including discussions on problem
formulation, key assumptions, algorithm procedures, and theo-
retical guarantees. Subsequently, we evaluate the performance
of the control designs to provide analyses and insights on the
feasibility of these design methods for applications from a control
designer’s point of view. Through systematic evaluations, we point
out when theory diverges from practical controller synthesis. We,
furthermore, introduce a new quantitative analytical framework
to diagnose the observed discrepancies. Based on the analyses and
the insights gained through quantitative evaluations, we point out
potential future research directions to unleash the potential of
CT-RL control algorithms in addressing the identified challenges.

Index Terms— Adaptive/approximate dynamic programming
(ADP), continuous-time (CT), optimal control, policy iteration
(PI), reinforcement learning (RL), value iteration (VI).

I. INTRODUCTION

THE origins of modern approaches to optimal control
problems are rooted in the 1960s with the inception of

dynamic programming (DP) by Bellman [1]. As the first con-
ceptualization of solving challenging nonlinear control prob-
lems using recursive methods readily implementable on digital
computers, DP has inspired influential works from numerous
authors [2], [3], [4], [5], [6]. While researchers recognize
the great potential of optimal control, the central “curse of
dimensionality” has plagued the field and limited applications.
Reinforcement learning (RL) emerged as a systematic method
in the early 1980s [4], [7] with the potential to combat the
curse of dimensionality. RL has since become a major break-
through for addressing key challenges in complex nonlinear
control problems. The two original solution approaches to
solving Bellman’s principle of optimality, namely, the policy
iteration (PI) and value iteration (VI) algorithms [4], [8],
were developed in the RL setting in the context of Markov
decision processes (MDPs), and as a result, many of the

Manuscript received 19 September 2022; revised 1 December
2022 and 7 February 2023; accepted 13 February 2023. This work
was supported in part by the NSF under Grant 1563921, Grant 1808752, and
Grant 2211740. The work of Brent A. Wallace was supported in part by the
NSF through the Graduate Research Fellowship under Grant 026257-001.

The authors are with the Department of Electrical, Computer and Energy
Engineering, Arizona State University, Tempe, AZ 85287 USA (e-mail:
bawalla2@asu.edu; si@asu.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3245980.

Digital Object Identifier 10.1109/TNNLS.2023.3245980

historic and current RL results have been developed for
MDP problems. The characteristic of these formulations is to
treat optimal decision and control problems stochastically in
discrete state/action spaces [9].

By contrast, the continuous state/action spaces involved
in continuous-time (CT) and discrete-time (DT) dynamical
control problems give rise to unique challenges. An important
branch of research work on RL for decision and control is cov-
ered under the scope of adaptive/approximate DP (ADP) [2],
[6], [10], [11], which focuses on using approximation and
learning to solve the optimal control problem. The works of
Werbos [11], [12], [13] represent some of the earliest and most
influential conceptualizations of RL in the controls setting.
As has become convention throughout the community, we will
henceforth use the terms RL and ADP interchangeably.

Classical approaches to solving optimal control
problems [14], [15], [16], [17], [18] developed in the
1960s to 1990s were largely model-based off-line methods.
With increasing computational capacity in the 2000s came
the transition to partially model-free or model-free RL
algorithms—a trend seen in both the DT-RL and CT-RL
literature. The survey of the field reveals that four main
CT-RL algorithm works are fundamentally central: 1) integral
RL (IRL) [19]; 2) synchronous PI (SPI) [20]; 3) robust ADP
(RADP) [21]; and 4) CT-VI [22]. We, thus, focus our CT-RL
study on these works.

II. MOTIVATION

A. DT-RL Theoretical and Application Successes

DT-RL algorithms (cf. [23], [24], [25] for review) have
demonstrated excellent stability, convergence, and approxi-
mation guarantees. They have also substantively addressed
a variety of control design requirements, such as stability
robustness [26], input saturation [27], and fault tolerance [28].
Additional representative theoretical works include [29], [30],
[31], [32], [33], [34] that are based on the PI framework
and [35], [36], [37], [38], [39] that are based on the VI
framework. Collectively, these results address important prop-
erties of learning convergence, solution optimality, and system
stability for DT nonlinear systems.

Successful applications of DT-RL algorithms have
provided further validation of RL as, perhaps, the most
promising and potentially powerful solution to complex
control problems. These include DT deep RL and policy
gradient methods [40], [41], [42], [43], [44], as well as
deep Q-networks (DQNs) [45]. Deep RL methods have

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8145-8539
https://orcid.org/0000-0002-0374-7404

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

successfully tackled problems in robotics applications [46],
Atari games [45], and the game of Go [47], [48], to name a
few. DT-RL methods have also demonstrated great success in
addressing complex continuous state and control problems.
These results include energy-efficient data centers [49],
aggressive ground robot position control [50], [51], power
system stability enhancement [52], [53], [54], industrial
process control [55], [56], Apache helicopter stabilization,
tracking, and reconfiguration control [57], [58], [59], waste
water treatment [60], and wearable robots to enable continuous
and stable walking [61], [62], [63], [64], [65], [66].

B. Relatively Few CT-RL Theoretical Results
and Fewer With Quantitative Evaluations

On the other hand, CT-RL algorithms [19], [20], [21], [22],
[67], [68], [69], [70] have seen fewer further theoretical devel-
opments compared to their DT-RL counterparts. A survey of
these leading CT-RL methods reveals that most address weight
convergence, uniform value/policy approximation, and closed-
loop stability. However, results in each of these three areas
are often developed at a high level and are only qualitative
in nature (e.g., results usually require “sufficiently many”
basis functions to approximate the value and policy functions),
which limits their practical utility.

A handful of recent works, however, have introduced some
ideas different from those discussed above. Kim et al. [71]
introduce a semidiscrete version of the Hamilton–Jacobi–
Bellman (HJB) equation, which allows for a Q-learning algo-
rithm to use data collected in discrete time without discretizing
or approximating the system dynamics. The proposed method
was tested on some relatively simple OpenAI GYM bench-
marks. The method may be promising, but the results still need
improvement to be comparable to the state of the art, especially
since hyperparameter tuning has a significant impact on the
results. Lee and Sutton [72] focus on developing PI-based
solutions to solve the HJB equation. Their theoretical results
may be comprehensive, but they are based on quite stringent
assumptions. A robust optimal control formulation is devel-
oped in [73], where it is shown applicable to cart-pole and real
pendulum control problems. However, even as a model-based
approach, it still faces state distribution mismatch challenges
and the associated issue when scaling up to high-dimensional
problems. Reference [74] is another model-based approach,
which is based on learning arbitrary time differentials of
environment dynamics in order to learn optimal policy. The
results are limited to when there is no environment noise.

Finally, the diverse performance measures that are vital
to the control systems’ community are seldom addressed
by CT-RL although there are occasional exceptions (e.g.,
stability robustness in RADP [21]). Typical CT-RL theoretical
works usually include only simple examples for demonstration
purposes (e.g., linear or second-order nonlinear systems with
exact solutions). The absence of partnering follow-up analyses
leaves a major gap between theory and application.

C. CT-RL Follow-Up Works Incrementally Revolve Around
Four Central Algorithms, Still Few Evaluation Studies

Upon survey of the state of the art in the CT-RL community,
we observe two main features.

1) The majority of CT-RL works draw heavily from at least
one of the four central works introduced above, includ-
ing their problem formulation, fundamental assumptions,
algorithm procedures, and theoretical results.

2) The majority of CT algorithm citations fall into the
following three categories.

The first, and the most numerous, comprises works that make
a brief citation to the major CT references without providing
a substantive connection to the work under development. For
instance, SPI [20] and RADP [21] are mentioned in passing
in [75] and [76], respectively.

The second category contains incremental works. For
instance, [77] is a result of combing the features of SPI
and IRL. The work in [78] develops a system identification
recurrent neural network (RNN), but the associated critic
and actor tuning laws used subsequent to the RNN learning
are taken directly from SPI [20], with the RNN features
substituting the usual system dynamics (f, g). Similarly, [79]
tunes its critic and actor networks simultaneously with gradient
descent-based tuning laws reminiscent of those of SPI [20] and
uses similar theoretical machinery. Reference [80] is largely a
reproduction of IRL [19] with adding a discount factor to the
cost functional.

The third, and least common, category consists of the works
that attempt to substantively implement CT-RL algorithms on
real-world systems. We observe that these works generally
fall short of implementing the CT-RL algorithms directly.
For example, Liu et al. [81] propose a model-free CT-RL
algorithm for attitude control of multiple quadrotors, but the
quadrotor model used neglects motor dynamics and assumes
an algebraic relationship between the rotor speeds and body
torques. Similarly, Cui et al. [82] implement a VI method for
wheeled ground robots, but the model has to be reduced to
that of a wheel inverted pendulum system and then linearized
in order to accommodate the VI algorithm. Finally, Jiang and
Jiang [83], [84] implement RADP [21] on power systems and
sensorimotor control, respectively, but the system dynamics
are assumed to be partially or fully linear so that the nonlinear
RADP algorithm [21] simplifies to solving a sequence of
linear equations.

D. Compelling CT Applications Demand CT Control
Solutions

There is no shortage of motivation to effectively tackle
the CT nonlinear optimal control problem. From an appli-
cations’ standpoint, there is a wealth of well-motivated real-
world systems that are inherently CT in nature. In the
central fields of robotics and autonomous vehicles, for
instance, systems are naturally modeled by the mechanics
of Euler–Lagrange, which are coupled second-order ordi-
nary differential equations (ODEs). In wastewater treatment,
influent and effluent flows are modeled as continuous fluid
dynamical processes. Bacteria and substrate concentration
models are based on the continuous decay regeneration the-
ory. Many chemical processes, such as distillation columns,
are also fundamentally continuous in nature and can be
modeled by PDEs or nonlinear ODEs under appropriate
assumptions.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

WALLACE AND SI: CONTINUOUS-TIME REINFORCEMENT LEARNING CONTROL 3

E. Heritage of CT Theoretical Results and Challenges in
Data-Driven Approaches

From a theoretical standpoint, historically, control systems’
literature has been developed with a focus on the CT set-
ting [3], [85], [86], [87]. Indeed, it was the CT applications
(specifically, the development of feedback amplifiers), which
inspired Bode [88] and Nyquist [89] to devise the field of
classical control, an analog discipline by inception. Subse-
quently, the optimal [3], adaptive [90], and robust [91] control
disciplines were conceptualized in the CT setting, alongside
the various CT works on feedback linearization [87], and
input-output stability and the small gain theorem [92]. Indeed,
many existing ADP approaches rely on classical adaptive
control techniques [3], [90] when solving optimal control prob-
lems, as both aim at learning to control unknown systems using
data measurements along system trajectories. Consequently,
many of the performance guarantees of ADP were derived
from the existing adaptive control results, such as [93], where
the first DT-RL performance analysis was introduced. To do
so, the neural network (NN) weights used in approximating
the value function and the control law are treated as adap-
tation parameters. Lyapunov-based techniques applied to the
weight tuning are used to guarantee convergence and closed-
loop stability. However, these theoretical approaches may be
inadequate. First, they have not been shown effectively solving
realistic application problems. Second, it is not clear how
to incorporate the diverse weight convergence or termination
criteria within a Lyapunov construct. These criteria have
become widely accepted common practice in training (deep)
NNs, and they have shown profound successes in applications.
Another fundamental issue of concern is how the Lyapunov-
based CT-RL algorithms may scale up, as NNs rely on a vast
number of weights to make approximations.

F. Fundamental Questions to be Addressed

The illustrated gaps in knowledge between theory and
application motivate the following fundamental questions:
1) why have CT-RL methodologies lagged so far behind their
DT-RL counterparts, both in terms of theoretical/algorithm
development and potential adoption by real-world applica-
tions? 2) why are substantial CT-RL applications works
yet to be demonstrated in spite of longstanding theoretical
results? and 3) what fundamental insights may be provided
to designers to make the existing CT-RL methods more capa-
ble/implementable in practical applications? It is, therefore,
pivotal to have a comprehensive analysis focusing on CT-RL
algorithm insights and inherent limitations.

III. SCOPE AND CONTRIBUTIONS

A. Scope

In this work, we have chosen to focus on CT-RL in the
optimal regulation context. Of course, CT-RL successfully
addresses many other control problems. Recent works in
event-based control [94], [95], [96] show promising theoretical
results, but, at this point, these algorithms have not matured
sufficiently to synthesize designs for meaningful real-world
systems. An even more substantial body of work has been

developed for multiagent dynamic game problems; see [97],
[98], [99]. However, multiagent control is fundamentally
different from single-agent control in terms of problem
structure, theoretical results, and implementation in the field,
so we believe that a separate, self-standing work devoted to
these algorithms is required. Similarly, we have decided not to
address CT-RL optimal tracking here although we realize that
several important CT-RL works have been developed [78],
[100], [101]. More fundamentally, we restrict the scope of
this work to the regulation problem because we need a
ground-up approach to diagnose the CT-RL theory/application
knowledge gap. Moving on to event-based control, game
problems, tracking, and so on, while eventually necessary,
would, at this point, convolute the underlying issues and,
thereby, detract from the analysis.

B. Contributions

The contributions of this work are threefold.
1) We provide a comprehensive review of four foundational

CT-RL control algorithms, deciphering key theoretical
assumptions/results, and highlighting their significance
to the following:

a) the development of RL solutions to optimal control
problems;

b) impact on related literature.
2) We conduct in-depth, designer-focused quantitative anal-

yses revealing gaps between CT-RL theoretical promises
and practical synthesis.

3) We outline the needs of future innovative research
in CT-RL, pointing out directions for potential new
results based on realistic assumptions and system
characteristics.

C. Organization

We first formally define the CT-RL optimal control problem
in Section IV. NNs, training, and theoretical results for each
of the four methods are discussed in Sections V–VII, respec-
tively. Sections VIII–X provide comprehensive and quanti-
tative performance evaluations of the four methods. Finally,
we conclude this study with a discussion and possible future
directions of research in Section XI.

IV. PROBLEM FORMULATION

A. Notation

Throughout this work, R, R+, Z, and N denote the sets of
reals, nonnegative reals, integers, and naturals, respectively.
For n ∈ N, we denote Rn as the n-dimensional Euclidean
space. ∥·∥ denotes the Euclidean norm on Rn or operator norm
for matrices, unless decorated otherwise. We refer the reader
to [86, p. 117] for the definition of positive (semi)definite
functions and [86, p. 144] for class K, K∞, and KL functions.
In this work, the set � ⊂ Rn is assumed to be compact and
contain the origin x = 0 in its interior.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

B. Problem Formulation: Optimal Control Problem

The background provided here follows largely from the
works [17], [18]. Consider the nonlinear time-invariant affine
system

ẋ = f (x)+ g(x)u (1)

where x ∈ Rn is the state vector, u :R+ → Rm is a
measurable locally essentially bounded control, f :Rn

→ Rn ,
and g :Rn

→ Rn×m . We make the following assumptions on
the system (1).

Assumption 1 (Dynamical Assumptions [18]): f and g
are Lipschitz on �, and f (0) = 0.

We denote x(t) as the solution at time t ≥ 0 to the ODE
(1) with initial condition x(0) = x0 ∈ Rn evolving under the
control u(t) = µ(x(t)) given by the feedback control law
µ : Rn

→ Rm . Define the infinite horizon performance index

J (x0, µ) =

∫
∞

0
r(x(τ), µ(x(τ)))dτ (2)

where r : Rn
× Rm

→ R+, r(x, u) = Q(x) + uT Ru is the
running cost and is assumed to satisfy the following:

Assumption 2 (Cost Structure Assumptions [18]): Q :

Rn
→ R+ is a positive definite, monotonically increasing

function, and the system (1) is zero-state observable through
Q. R ∈ Rm×m satisfies R = RT > 0.

Definition 1 (Admissible Policies [18]): A control policy
µ : Rn

→ Rm is admissible with respect to the cost (2) on
�, denoted µ ∈ A(�), if µ is continuous on �, µ(0) = 0, µ
stabilizes the system (1) on � (cf. [17, Definition 3.1.2]), and
J (x0, µ) in (2) is finite for all x0 ∈ �.

The optimal regulation problem is to find the optimal control
µ∗ ∈ A(�) and its associated optimal cost function V ∗ (if they
exist) such that

V ∗(x0) = min
µ∈A(�)

J (x0, µ)

µ∗(x0) = arg min
µ∈A(�)

J (x0, µ)

= −
1
2

R−1gT (x0)∇V ∗(x0) ∀x0 ∈ � (3)

subject to the dynamics (1). Define the Hamiltonian function
H : Rn

× Rm
× R1×n

→ R as

H(x, u, p) = p
[

f (x)+ g(x)u
]
+ r(x, u). (4)

Definition 2 (Generalized HJB (GHJB) Equation [18]): For
an admissible control µ ∈ A(�), the function V ∈ C1(�)

satisfies the GHJB equation, written GHJB(V, µ) = 0, if

H
(
x, µ(x), (∇V (x))T

)
= 0 ∀x ∈ �, V (0) = 0. (5)

In the affine case, (5) is given by

∇V T [
f + gµ

]
+ Q + µT Rµ = 0, V (0) = 0. (6)

We next list the key properties of the GHJB equation.
Lemma 1 (GHJB Equation Properties [18, Lemma 8]):

Suppose that the system (1) satisfies Assumption 1, and the
cost structure (2) satisfies Assumption 2. Then, for each
admissible policy µ ∈ A(�), there exists a unique C1 solution
V to the equation GHJB(V, µ) = 0 (5). V is a Lyapunov
function on � for the closed-loop system comprised of (1), and

u = µ(x) (in particular, V is positive definite). Furthermore,
GHJB(V, µ) = 0 if and only if V (x) = J (x, µ), where J is
the performance index given in (2).

We next discuss the HJB equation and its fundamental
importance to the optimal control problem.

Definition 3 (HJB Equation [18]): The function V ∗ ∈

C1(�) satisfies the HJB equation, written HJB(V ∗) = 0, if

HJB(V ∗) = GHJB
(

V ∗,−
1
2

R−1gT
∇V ∗

)
= 0, V ∗(0) = 0.

(7)

In the affine case, (7) is given by

(∇V ∗)T f −
1
4
(∇V ∗)TgR−1gT

∇V ∗ + Q = 0, V ∗(0) = 0.

(8)

The following theorem establishes sufficient conditions for
the existence and uniqueness of solutions to the HJB equation
(8). It also ties the solutions of the HJB equation to the optimal
control problem.

Theorem 1 (HJB Equation Properties [17]): Suppose that
Assumptions 1 and 2 hold. Then, there exists a unique positive
definite C1 solution V ∗ to the HJB equation (8), and V ∗ is
the optimal value function in (3), i.e., the associated control
µ∗ given by (3) is admissible and uniquely minimizes the
performance index (2) over the admissible controls A(�).

Through the classical PI Algorithm 1, the GHJB equation
(a first-order linear PDE) may be solved successively to
search for the solution of the HJB equation (a first-order
nonlinear PDE). Solving the GHJB PDE, although simpler
than the HJB PDE, is still a challenging problem. Subsequent
sections outline numerically tractable methods by means of
NN approximation and ADP.

Algorithm 1 PI Algorithm
1: Hyperparameters: Initial admissible policy µ0 ∈ A(�).
2: for i = 0, 1, . . . do
3: Policy Evaluation: Evaluate the performance index (2)

for the policy µi by solving GHJB(Vi , µi) = 0 (5).
4: Policy Improvement: Update the control by

µi+1(x) = arg min
v∈A(�)

{
H

(
x, v(x), (∇Vi (x))T

)}
= −

1
2

R−1gT (x)∇Vi (x). (9)

5: end for

Theorem 2 (PI Algorithm Properties [17]): Let all hypothe-
ses be as in Theorem 1. Suppose that µ0 ∈ A(�) is admissible,
and consider the sequences {µi }

∞

i=0 and {Vi }
∞

i=0 generated by
the PI Algorithm 1. Then, the following holds:

1) µi ∈ A(�) for all i ≥ 0.
2) Vi+1(x) ≤ Vi (x) for all x ∈ � and i ≥ 0.
3) Vi → V ∗ and µi → µ∗ uniformly on �.
4) If ϒi denotes the basin of attraction of policy µi (i =

0, 1, . . .), and if ϒ∗ denotes the basin of attraction of µ∗,
then, for each i ≥ 0, we have � ⊂ ϒi ⊂ ϒi+1 ⊂ ϒ

∗.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

WALLACE AND SI: CONTINUOUS-TIME REINFORCEMENT LEARNING CONTROL 5

V. NN STRUCTURES CONSIDERED

In what follows, let {φ j }
∞

j=1, {ψ j }
∞

j=1, {θ j }
∞

j=1, and {ψ̃ j }
∞

j=1
be sequences of linearly independent C1 basis functions that
vanish at the origin, with φ j , ψ j , θ j : Rn

→ R and ψ̃ j : Rn
→

R1×m for j ∈ N.

A. Critic Network

Consider the critic network

V ∗(x) = V̂ (x, c)+ ϵ1(x), V̂ (x, c) = cT8(x) (10)

where N1 ∈ N, 8 : Rn
→ RN1 , 8(x) =

[φ1(x) · · · φN1(x)]
T, c ∈ RN1 is the critic weight vector,

and ϵ1 : �→ R is the critic NN approximation error function.
For the sake of brevity, we shall whenever possible denote the
critic (10) by V̂ (x).

B. Actor Network

Consider the actor network

µ∗(x) = µ̂(x)+ ϵ2(x) (11)

where ϵ2 : � → Rm is the actor NN approximation error
function. The considered methodologies (IRL [19], SPI [20],
RADP [21], and CT-VI [22]) use three distinct actor networks
µ̂ (11). The first structure, used by RADP [21], is given by

µ̂(x,W) = W T9(x) (12)

where N2 ∈ N, 9 : Rn
→ RN2 , 9(x) =

[ψ1(x) · · · ψN2(x)]
T, and W ∈ RN2×m is a weight

matrix. The second structure, used by IRL [19] and SPI [20],
is motivated by the structural form of µ∗ assumed in (3)

µ̂(x, w) = −
1
2

R−1gT (x)∇8T (x)w (13)

where w ∈ RN2 is the actor weight vector. We note, for this
structure, that N2 ← N1 is imposed, and knowledge of the
input dynamics g is required. This is in contrast to the struc-
ture (12), which is model-free. The third structure, used by
CT-VI [22], is discussed next.

C. Hamiltonian Network

Consider the Hamiltonian network

H∗(x, u) ≜ H
(
x, u, (∇V ∗(x))T

)
= Ĥ(x, u, v)+ ϵ3(x, u) (14)

where the Hamiltonian function H is defined in (4), and ϵ3 :

� × Rm
→ R is the Hamiltonian NN approximation error

function. We consider the following approximation structure
for the Hamiltonian NN:

Ĥ(x, u, v) = vT6(x, u)+
(
Q(x)+ uT Ru

)
(15)

where N3 ∈ N, v ∈ RN3 , w ∈ RN2 , v ≜ [wT vT
]
T, 9̃ : �→

RN2×m , 9̃(x) = [ψ̃T
1 (x) · · · ψ̃

T
N2
(x)]T, and 6 : Rn

×Rm
→

RN2+N3 is defined as

6(x, u) =
[
9̃(x)u
2(x)

]
. (16)

Here, 2 : Rn
→ RN3 , 2(x) = [θ1(x) · · · θN3(x)]

T. We,
thus, choose the following basis for the Hamiltonian NN:

{σ j (x, u)}N2+N3+1
j=1 =

{
ψ̃ j (x)u

}N2

j=1 ∪
{
θ j (x)

}N3

j=1 ∪ {r(x, u)}.

(17)

The selection of the basis functions (17), together with the
definition of H∗(x, u) (14), that V ∗(x) satisfies the HJB
equation (8), and that, given x ∈ Rn , the approximation
(14) must hold for any u ∈ Rm , implies that the following
approximations are to be made:

wT 9̃(x) ≈ (∇V ∗(x))Tg(x) ∈ R1×m (18)
vT2(x) ≈ (∇V ∗(x))T f (x)

=
1
4
(∇V ∗(x))Tg(x)R−1gT (x)∇V ∗(x)− Q(x).

(19)

We are now ready to define the actor network adopted by
CT-VI [22], which is given by

µ̂(x, w) = −
1
2

R−1(wT 9̃(x)
)T
. (20)

Remark 1 (CT-VI Basis Selection): In [22, Sec. IV-B], the
authors include the control penalty function uT Ru in the
Hamiltonian network basis {σ j (x, u)}N2+N3+1

j=1 (17) instead of
the full running cost r(x, u). This basis selection, in turn,
makes the term −Q(x) in (19) disappear, which, in principle,
reduces the complexity of the required approximation. In spite
of this intuition, we find the selection of basis (17) to be more
numerically reliable in practice. Therefore, we employ (17) in
our evaluations of Sections IX and X.

Remark 2 (Notation): In the single-input (m = 1) case, the
RADP actor weight matrix W ∈ RN2×m (12) becomes a weight
vector, which we naturally denote w ∈ RN2 , as it is for the
other three methods. Comparison of the RADP and CT-VI
actor implementations (12) and (20), respectively, reveals these
two structures to be identical modulo multiplication by the
scalar term −1/2R. Thus, for CT-VI, we use the RADP acti-
vation functions {ψ j }

N2
j=1 in place of the activation functions

{ψ̃ j }
N2
j=1. We adopt these conventions in the evaluations of

Sections IX and X, which focuses on single-input systems.

VI. ALGORITHMS AND TRAINING

We begin by defining some common notation. Each of
these algorithms requires a CT-RL learning time tf > 0 and
associated learning window t ∈ [0, tf] over which to collect
state-action data. For the two PI-based algorithms (IRL and
RADP), we denote i as the iteration index and i∗ ∈ N as the
final iteration. The PI-based algorithms require the collection
of l ∈ N data samples per iteration. RADP reuses the same
data for each iteration, so we denote its sample times as {tk}lk=0
(i.e., 0 = t0 < t1 < · · · < tl = tf). IRL requires new data at
each iteration 0 ≤ i ≤ i∗, so we denote its sample instants
as {{t i

k}
l
k=0}

i∗
i=0 (i.e., 0 = t0

0 < t0
1 < · · · < t0

l = t1
0 < · · · <

t i∗
l = tf). The algorithms have various termination criteria,

so, to unify notation, we use the subscript “ f ” to denote an
algorithm’s final output value of the respective parameter (e.g.,
final critic weights cf and final critic network output V̂f).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

A. Integral Reinforcement Learning [19]
Given a state trajectory {x(t)}t∈R+ of the system (1), define

1φ j : R2
+
→ R (j = 1, . . . , N1) as 1φ j (t0, t1) = φ j (x(t1))−

φ j (x(t0)). Next, define 18 : R2
+
→ RN1 by

18(t0, t1) =

 1φ1(t0, t1)
...

1φN1(t0, t1)

. (21)

For a strictly increasing sequence {tk}lk=0, define Aφ : Rl+1
+ →

Rl×N1 by

Aφ(t0, . . . , tl) =

 18T (t0, t1)
...

18T (tl−1, tl)

. (22)

Next, for an admissible policy µ ∈ A(�), define the integral
reinforcement function ξ : R2

+
×A(�)→ R+ by

ξ(t0, t1, µ) =
∫ t1

t0

(
Q(x)+ µT (x)Rµ(x)

)
dτ. (23)

Similarly, define the function 4 : Rl+1
+ ×A(�)→ Rl

+
by

4(t0, . . . , tl , µ) =

 ξ(t0, t1, µ)
...

ξ(tl−1, tl , µ)

. (24)

At iteration i (i = 0, 1, . . .), IRL collects state trajectory
data {x(t i

k)}
l
k=0 at the time instants {t i

k}
l
k=0 under the control

u = µ̂i (x). At t = t i
l , it updates its weights by solving the

least-squares solution ci ∈ RN1 to the system of equations

Ai
IRL ci = −4

(
t i
0, . . . , t i

l , µ̂i
)

Ai
IRL ≜ Aφ

(
t i
0, . . . , t i

l

)
∈ Rl×N1 (25)

where Aφ and 4 are defined in (22) and (24), respectively.

Algorithm 2 IRL Algorithm [19]

1: Hyperparameters: tf , i∗, l, sample times {{t i
k}

l
k=0}

i∗
i=0,

µ0 ∈ A(�), and IC x0 ∈ �.
Initialization: Let µ̂0 ← µ0.

2: for i = 0 : i∗ do
3: Apply control u = µ̂i (x) to system (1), collecting data
{x(t i

k)}
l
k=0 and {ξ(t i

k, t i
k+1, µ̂i)}

l−1
k=0 (23).

4: Perform weight update ci (25) and policy update
µ̂i+1(x)← µ̂(x, ci) (13).

5: end for
6: Apply final policy µ̂f = µ̂i∗+1.

B. Synchronous Policy Iteration [20]
SPI updates its critic weights {c(t)}t∈[0,tf] over the learning

window [0, tf] dynamically via the tuning law

ċ = −α1
σ2

m2
s

[
σ T

2 c + r(x, µ̂(x, w))
]

(26)

where α1 > 0 is a tuning gain, µ̂(x, w) is given by the
actor network (13), σ2(x) = ∇8(x)[f (x)+g(x)µ̂(x, w)], and
ms(x) = (σ T

2 (x)σ2(x)+ 1) is a normalization term.

Remark 3 (SPI Actor Tuning): Vamvoudakis and Lewis
[20] prescribe the following actor tuning law:

ẇ = −α2

[(
F2w − F1

σ T
2

ms
c
)
−

1
4

D(x)w
σ T

2

m2
s

c
]

(27)

where α2 > 0, F1 ∈ RN1 > 0, F2 ∈ RN1×N1 ,
F2 = F T

2 > 0 are tuning parameters, and D(x) =
∇8(x)g(x)R−1gT (x)∇8T (x). After extensive exploration,
we were unable to find parameter values α2, F1, and F2,
which yield stable state trajectory and weight responses for
the examples studied in this work. In the code (found at [102])
for a previous rendition [103] of the SPI algorithm [20], the
authors implement the following modified tuning law, which
we observe to function properly and hence use throughout this
work instead of (27):

ẇ = −α2

[
(F2w − F2c)−

1
4

D(x)w
σ T

2

m2
s

c
]
. (28)

We note that, after adopting the modified tuning law (28), the
closed-loop stability and convergence results for SPI [20] (cf.
Theorems 5 and 6, respectively) are no longer guaranteed.
Examining the update (28) qualitatively, we note that the
rightmost terms in (28) vanish as ∥x∥ → 0 and ∥x∥ → ∞.
Thus, in these regimes, (28) can be approximated by ẇ ≈

−α2 F2(w− c), which resembles a linear tracking control law,
whereby the actor weights w(t) track the critic weights c(t).

Algorithm 3 SPI Algorithm [20]
1: Hyperparameters: tf , tuning gains α1, α2 > 0, F1 > 0,

F2 = F T
2 > 0 (26), e, µ0 ∈ A(�) (cf. Assumption 3),

IC x0 ∈ �, c0 ∈ RN1 (cf. Remark 9), and w0 ∈ RN1 such
that µ̂(x, w0) ∈ A(�) (13).
Initialization: Let c(0)← c0, w(0)← w0.

2: for t ∈ [0, tf] do
3: Apply control u(t) = µ̂(x(t), w(t)) + e(t) (13) to

system (1), tuning critic weights c(t) via (26) and actor
weights w(t) via (27) (or (28), cf. Remark 3).

4: end for
5: Terminate e. Apply final policy µ̂f (x) = µ̂(x, w(tf)) (13).

C. Robust Adaptive Dynamic Programming [21]

In what follows, suppose that the system (1) evolves under
the control u = µ0(x) + e (cf. Assumption 4), generating
the trajectory {x(t)}t∈R+ . For an admissible policy µ ∈ A(�),
define the function 1ψ : R2

+
×A(�)→ Rm N2 by

1ψ (t0, t1, µ) =
∫ t1

t0
[R(u − µ(x))]⊗9(x) dτ (29)

where⊗ denotes the Kronecker tensor product. Given a strictly
increasing sequence {tk}lk=0 and a policy µ ∈ A(�), define
Aψ : Rl+1

+ ×A(�)→ Rl×m N2 by

Aψ (t0, . . . , tl , µ) = 2

 1T
ψ (t0, t1, µ)

...

1T
ψ (tl−1, tl , µ)

. (30)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

WALLACE AND SI: CONTINUOUS-TIME REINFORCEMENT LEARNING CONTROL 7

At iteration i (i = 0, 1, . . .) of the RADP algorithm, the
weights ci ∈ RN1 and Wi ∈ RN2×m are solved for as the
least-squares solution to the system of equations

Ai
RADP

[
ci

vec(Wi)

]
= −4

(
t0, . . . , tl , µ̂i

)
Ai

RADP ≜
[

Aφ(t0, . . . , tl) Aψ
(
t0, . . . , tl , µ̂i

)]
∈ Rl×(N1+m N2)

(31)

where vec(W) ∈ RN2m denotes the vectorization of the matrix
W ∈ RN2×m , and the functions Aφ , 4, and Aψ are as defined
in (22), (24), and (30), respectively.

Algorithm 4 RADP Algorithm [21]
1: Hyperparameters: tf , i∗, l, sample times {tk}lk=0, e, µ0 ∈

A(�) (cf. Assumption 4), IC x0 ∈ �, and W0 = 0.
Initialization: Let µ̂0(x)← µ̂(x,W0) (12).

2: Apply control u = µ0(x) + e to system (1), collecting
state-action data {(x(t), u(t))}t∈[0,tf].

3: for i = 0 : i∗ do
4: Calculate for policy µ̂i the data {ξ(tk, tk+1, µ̂i)}

l−1
k=0

(23) and {1ψ (tk, tk+1, µ̂i)}
l−1
k=0 (29).

5: Perform weight update ci , Wi (31) and policy update
µ̂i+1(x)← µ̂(x,Wi) (12).

6: end for
7: Terminate e. Apply final policy µ̂f = µ̂i∗+1.

Remark 4 (RADP Robustness Results): The RADP algo-
rithm, as presented in [21, Algorithm 1], adds a robustifying
term to the final policy µ̂f = µ̂i∗+1 produced by Algorithm 4
for its stability robustness results (cf. [21, Sec. III-B]). Yet,
our initial attempts to implement this robustness term were
thwarted by closed-loop stability issues that we observe from
Algorithm 4 in practice (cf. Sections IX and X). As noted by
Jiang and Jiang [21, Remark 3.2], in the absence of dynamic
uncertainties, the RADP algorithm may be run entirely with-
out the developed robustifying term, which is the procedure
followed in this article.

D. Continuous-Time Value Iteration [22]
For CT-VI, a measurable essentially bounded input u (cf.

Assumption 6) is applied to the system (1) over the window
[0, tf], generating the trajectory {x(t)}t∈[0,tf]. After data have
been collected, CT-VI then tunes its weights dynamically over
a learning time scale s ∈ [0, sf], which is independent of the
system time scale t ∈ [0, tf]. CT-VI updates its critic weights
{c(s)}s∈[0,sf] via the tuning law

d
ds

c(s) = K−1
φ

(
tf

) ∫ tf

0
8(x)Ĥ

(
x, µ̂(x, w(s)), v(s)

)
dτ (32)

where

Kφ

(
tf

)
=

∫ tf

0
8(x)8T (x)dτ ∈ RN1×N1 . (33)

CT-VI updates its actor weights {w(s)}s∈[0,sf] and Hamiltonian
weights {v(s)}s∈[0,sf] via the tuning law

v(s) = K−1
σ

(
tf

) ∫ tf

0
6(x, u)

(
d

dτ
V̂ (x, c(s))+ r(x, u)

)
dτ

(34)

TABLE I
RELEVANT TERMS AND DEFINITIONS

where v = [wT vT
]
T (cf. Section V), and

Kσ

(
tf

)
=

∫ tf

0
6(x)6T (x)dτ ∈ R(N2+N3)×(N2+N3). (35)

Algorithm 5 CT-VI Algorithm [22]
1: Hyperparameters: tf , sf , control u (cf. Assumption 6),

IC x0 ∈ �, c0 ∈ RN1 such that V̂ (x, c0) (10) is positive
definite and radially unbounded, w0 = 0, v0 = 0.
Initialization: Let c(0)← c0, w(0)← w0, v(0)← v0.

2: Apply control u to system (1), collecting state-action data
{(x(t), u(t))}t∈[0,tf].

3: for s ∈ [0, sf] do
4: Tune critic weights c(s) via (32) and the actor, Hamil-

tonian weights w(s), v(s) via (34).
5: end for
6: Apply final policy µ̂f (x) = µ̂(x, w(sf)) (20).

VII. THEORETICAL RESULTS

This section discusses the key assumptions and proper-
ties of the four algorithms studied in this work. Through-
out this section, we assume that the baseline hypotheses of
Section IV hold, which ensures that the optimal control prob-
lem is well-posed. Table I lists the terms needed to understand
subsequent analysis and provides specific references to their
definitions.

A. IRL
For IRL, the main convergence and stability results rely

upon the following technical lemma, which is a restatement
of [19, Lemma 3].

Lemma 2: Suppose, for admissible µ ∈ A(�), that the
system (1) is simulated under the control u = µ(x), generating
the state trajectory {x(t)}t∈R+ . Given that the set {φ j }

N1
j=1 is

linearly independent, for each t0 ≥ 0 and l ≥ N1, there exists
a strictly increasing sequence {tk}lk=1 such that the matrix
Aφ(t0, . . . , tl) ∈ Rl×N1 (22) has full column rank N1.

We next move on to the key stability/convergence results.
Theorem 3 (IRL—Admissibility of Policies µ̂i): Suppose

that µ0 ∈ A(�) is admissible. There exists N1,0 ∈ N such
that, whenever N1 ≥ N1,0, the policies {µ̂i }

∞

i=1 generated by
Algorithm 2 are each admissible.

Theorem 4 (IRL—Uniform Approximation): For each ϵ >

0, there exist N1,0, i0 ∈ N such that, whenever N1 ≥ N1,0 and
i∗ ≥ i0, we have∥∥V̂f − V ∗

∥∥
∞
< ϵ,

∥∥µ̂f − µ
∗
∥∥
∞
< ϵ (36)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

where V̂f = V̂ i∗ = V̂ (x, ci∗) (10) and µ̂f = µ̂i∗+1 = µ̂(x, ci∗)

(13) are as generated by Algorithm 2. Here, ∥·∥∞ denotes the
uniform norm on C(�).

B. SPI
As with many ADP algorithms, SPI [20] has a persistence

of excitation (PE) requirement.
Assumption 3 (SPI—PE Assumption): The signals σ 1 =

σ1/(σ
T
1 σ1 + 1) and σ1 = ∇8(x)[f (x)+ g(x)µ∗(x)] are PE.

We also require the use of the following lemma.
Lemma 3 [20, Lemma 1]: The solution ĉ∗ to the

least-squares minimization (37) exists and is unique, where

ĉ∗ = min
c∈RN1

∥∥H
(
x, µ∗(x),∇ V̂ T (x, c)

)∥∥
L2(�)

= min
c∈RN1

∥∥cT
∇8

[
f + gµ∗

]
+ r(x, µ∗)

∥∥
L2(�)

. (37)

Before presenting the key stability and approximation
results for SPI [20], we make the note that they require the
application of original actor tuning law (27), which we had to
modify to (28) (cf. Remark 3 for discussion).

Theorem 5 (SPI—UUB Stability): Let tuning for the critic
network (10) be provided by (26) and tuning for the actor net-
work (13) be provided by (27). Suppose that tuning parameters
are selected according to [20, Appendix]. Finally, consider the
system (1) simulated under the control u(t) = µ̂(x(t), w(t))+
e(t) (13), and assume that the PE Assumption 3 is satisfied.
Then, there exists N1,0 ∈ N such that, whenever N1 ≥ N1,0,
the closed-loop system state x(t), the critic error c̃ = ĉ∗ − c
(37), and the actor error w̃ = ĉ∗ − w are UUB.

Theorem 6 (SPI—Uniform Approximation): Let all hypot-
heses be as in Theorem 5. Then, for each ϵ > 0, there
exists N1,0 ∈ N such that, whenever N1 ≥ N1,0, there exists
tf,0 = tf,0(N1) such that tf ≥ tf,0 implies that the uniform
approximation result (36) holds for V̂f (x) = V̂ (x, c(tf)) (10)
and µ̂f (x) = µ̂(x, w(tf)) (13).

C. RADP
For RADP [21], we require that the initial policy µ0 ∈ A(�)

is admissible and satisfies the following assumption.
Assumption 4: The policy µ0 ∈ A(�) is admissible and is

such that, for the exploration noise e, there exists a compact set
�0 ⊂ � containing the origin in its interior for which, given
any initial condition x0 ∈ �0, � is an invariant set for the
trajectory x(t) generated by the closed-loop system composed
of (1) and u = µ0(x)+ e.

Assumption 5 (RADP—PE-Like Assumption): There exist
l0 ∈ N and δ > 0 such that, for all l ≥ l0, we have

δ IN1+m N2 ≤
1
l

l−1∑
k=0

ζi,kζ
T
i,k ∀ i ≥ 0 (38)

where for k = 0, . . . , l − 1

ζi,k =

[
18(tk, tk+1)

21ψ (tk, tk+1, µ̂i)

]
∈ RN1+m N2 (39)

and the functions 18 and 1ψ are defined in (22) and (30),
respectively.

We are now ready to present the key stability and approxi-
mation results for RADP [21].

Theorem 7 (RADP—Admissibility of Policies µ̂i): Suppose
that Assumptions 4 and 5 hold. There exist N1,0, N2,0 ∈ N
such that, whenever N1 ≥ N1,0 and N2 ≥ N2,0, the policies
{µ̂i }

∞

i=1 generated by Algorithm 4 are each admissible.
Theorem 8 (RADP—Uniform Approximation): Suppose

that Assumptions 4 and 5 hold. For each ϵ > 0, there exist
N1,0, N2,0, i0 ∈ N such that, whenever N1 ≥ N1,0, N2 ≥ N2,0,
and i∗ ≥ i0, the uniform approximation result (36) holds for
V̂f = V̂ i∗ = V̂ (x, ci∗) (10) and µ̂f = µ̂i∗+1 = µ̂(x,Wi∗) (12),
as generated by Algorithm 4.

D. CT-VI
CT-VI [22] has a PE-like assumption that we outline here.
Assumption 6 (CT-VI—PE-Like Assumption): The measur-

able essentially bounded input u is such that there exist
δ > 0 and t0 > 0 such that, for all tf ≥ t0, the trajectory
{x(t)}t∈[0,tf] under u remains in �, and

δ IN1 <
1
tf

Kφ

(
tf

)
, δ IN2+N3 <

1
tf

Kσ

(
tf

)
(40)

where the matrices Kφ(tf) and Kσ (tf) are defined in (33) and
(35), respectively.

We are now ready to move on to the key results.
Theorem 9 [CT-VI—Regional Practical Stabilization

(RPS)]: Suppose that Assumption 6 holds. For each
ϵ > 0 such that Bϵ(0) ⊂ �, there exist tf , sf > 0, N1, N2,
N3 ∈ N such that

∇V ∗(x)T
[

f (x)+ g(x)µ̂(x, c(sf))
]
< 0 ∀x ∈ �\Bϵ(0)

(41)

the weights c(s), w(s), and v(s) being tuned by Algorithm 5.
Remark 5: The results of Theorem 9 provided in the orig-

inal CT-VI work (cf. [22, Theroem 3]) actually guarantee
semiglobal PS; i.e., the compact set � ⊂ Rn in Theorem 9
may be made arbitrarily large. However, the definition of
admissibility in [22] requires policies to be GAS. In our
context, admissible policies µ ∈ A(�) only guarantee RAS
on a fixed compact set � ⊂ Rn , so the associated stability
results for CT-VI are only regional when applied here. This
subtlety is addressed by Bian and Jiang [22, Remark 6].

Theorem 10 (CT-VI—Uniform Approximation): Suppose
that Assumption 6 holds, and Q is continuous. For each ϵ > 0,
there exist N1,0, N2,0, N3,0 ∈ N, tf , sf > 0, and compact
�u ⊂ Rm containing u = 0 in its interior sufficiently large
such that, whenever N1 ≥ N1,0, N2 ≥ N2,0, and N3 ≥ N3,0,
we have that the uniform approximation result (36) holds
for V̂f (x) = V̂ (x, c(sf)) (10) and µ̂f = µ̂(x, w(sf)) (20),
as generated by Algorithm 5, and∥∥Ĥ f − H∗

∥∥
∞
< ϵ (42)

where Ĥ f (x, u) = Ĥ(x, u, v(sf)) (15), as generated by Algo-
rithm 5, and ∥·∥∞ in (42) is the uniform norm on C(� × �u).

E. Summary and Discussion of Methodologies
Table II provides an overview of the essential features of

the four methodologies considered.
Remark 6 (Initial Admissible Policy): IRL, SPI, and RADP

require an initial admissible policy µ0 ∈ A(�). In contrast to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

WALLACE AND SI: CONTINUOUS-TIME REINFORCEMENT LEARNING CONTROL 9

TABLE II
SUMMARY OF CT–RL METHODOLOGIES

IRL and RADP, which (modulo Assumption 4 for RADP) are
structurally unconstrained in their selection of µ0 ∈ A(�),
SPI requires that the initial policy µ0 is implementable in
the actor network (13) as µ0(x) = µ̂(x, w0) for some
w0 ∈ RN1 . This is comparatively quite restrictive and depends
on the input dynamics g and critic basis functions {φ j }

N1
j=1

available.
Meanwhile, as is the case in the DT setting, strictly speak-

ing, CT-VI does not require an initial stabilizing policy [22].
Bian and Jiang [22] suggest reinitializing the trajectory x(t)
whenever it leaves � in the learning interval [0, tf] (cf. [22,
Remark 3]). However, this is not a luxury afforded in a
real-world online learning scenario, so, realistically speaking,
a designer will likely require an initial policy µ0 ∈ A(�) to
run CT-VI.

Remark 7 (Pseudoinversion, Conditioning): Three of the
four algorithms studied here (IRL, RADP, and CT-VI) require
the use of the Moore–Penrose pseudoinverse, for which condi-
tion number plays a fundamental role in solution accuracy and
sensitivity [105]. In the case of IRL and RADP, at iteration
i , the matrices Ai

IRL (25) and Ai
RADP (31) are pseudoinverted

to yield the least-squares solutions for their respective weight
updates. For CT-VI, in this work, we implement the matrix
inverses K−1

φ (tf) (32) and K−1
σ (tf) (34) via pseudoinversion

for improved computation speed and accuracy.
Remark 8 (PE Assumptions): SPI relies on the PE Assump-

tion 3, while RADP and CT-VI rely on the PE-like Assump-
tions 5 and 6, respectively. As has long been understood,
for nonlinear systems, there do not exist systematic frame-
works for verifying PE or for selecting a probing noise to
ensure PE [20]. As we will illustrate in Sections IX and
X, in practice, it is a challenge to excite the system to
yield quality state trajectory data, even for simple academic
examples.

IRL, strictly speaking, does not have a PE requirement.
However, the performance of this algorithm is still deeply
tied to the quality of state trajectory data, as full column
rank of Ai

IRLRl×N1 is required at each iteration i for the
least-squares weight update (25). Lemma 2 furnishes the
existence of sample instances to meet the rank condition, but,
as will be seen in Sections IX and X, lack of ability to insert a
probing noise e makes it difficult to systematically ensure good
conditioning.

VIII. PERFORMANCE EVALUATION SETUP

In this section, we offer four sets of fundamental evalua-
tions of the studied CT-RL algorithms. Throughout, we keep

our focus from the perspective of a designer, working from
a ground-up assessment that illustrates performance effec-
tiveness, efficiency, limitations, and insights. The first three
evaluations examine a second-order academic system (43)
to establish performance baselines and insights. The fourth
evaluation examines a cart inverted pendulum system (58) to
assess the potential of real-world implementability.

These studies were performed in MATLAB R2021a, on an
NVIDIA RTX 2060, and Intel i7 (9th Gen) processor. All
numerical integrations in this work are performed in MAT-
LAB’s adaptive ode45 solver to ensure solution accuracy.
The complete MATLAB software suite used to produce the
data in this article is available at [106].

A. Setup—Second-Order System
The first three evaluations consider the following

second-order academic system from [19, Sec. 6.2]:

f (x) =

[
−x1 + x2 + 2x3

2

−
1
2
(x1 + x2)+

1
2

x2
(
1+ 2x2

2

)
sin2(x1)

]

g(x) =
[

0
sin(x1)

]
. (43)

Linearization reveals that the origin of this system is an
unstable equilibrium point. We run each algorithm over the
IC sweep x(0) = [−1:0.25:1]2\{(0, 0)}. In the first three
evaluations, a “trial” corresponds to each of the ICs. We define
the running cost as Q(x) = x2

1 + x2
2 + 2x4

2 , and R = 1.
This example was constructed such that the optimal value V ∗

and policy µ∗ are available in the closed form and are given
by

V ∗(x) =
1
2

x2
1 + x2

2 + x4
2 (44)

µ∗(x) = − sin(x1)
(
x2 + 2x3

2

)
. (45)

1) Basis Functions: Examining the optimal value V ∗ (44)
and policy µ∗ (45), for the first evaluation, we select the
following minimum-dimension critic basis (10)

8(x) =

 x2
1

x2
2

x4
2

, ∇8(x) =
 2x1 0

0 2x2
0 4x3

2

. (46)

By inspection of (44) and (46), the optimal critic weights are
c∗ = [(1/2), 1, 1]T. For the second evaluation, we increment
the problem dimension by adding the nonessential basis func-
tion φ4(x) = x1x2, i.e.,

8(x) =
[

x2
1 x2

2 x4
2 x1x2

]T (47)

which, by inspection, has optimal weights c∗ =

[(1/2), 1, 1, 0]T. In the third evaluation, for the sake of
comparison, we choose the critic basis as identical to that of
the example it was originally studied in [19, Sec. 6.2], with
the essential basis function x4

2 removed, i.e.,

8(x) =
[

x2
1 x2

2 x1x2 x4
1 x3

1 x2 x2
1 x2

2 x1x3
2

]T
. (48)

With the removal of this term, the optimal value function V ∗

(44) and policy µ∗ (45) can no longer be approximated exactly.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

This is a more realistic scenario than the previous set of exact
basis functions. Since it is well-known that, in general, there
is no closed-form solution to the HJB equation, a designer
would naturally bias their selection toward such lower order
terms.

Recall that, since the system (43) is single-input (i.e., m =
1), the same basis functions may be used for the RADP actor
basis (12) and the CT-VI actor basis (20) (cf. Remark 2).
Throughout the first three evaluations, we use the minimum-
dimension basis

9(x) = sin(x1)

[
x2
x3

2

]
. (49)

The optimal actor weights w∗ are given by w∗ = [−1,−2]T

in the network (12), w∗ = c∗ in the network (13), and w∗ =
[2, 4]T in the network (20). After working out the algebra,
it can be checked that

1
4
(∇V ∗)TgR−1gT

∇V ∗ = sin2(x1)
[
x2

2 + 4x4
2 + 4x6

2

]
. (50)

Examination of (50) and (19) motivates the minimal choice of
Hamiltonian basis

2(x) =



sin2(x1)x2
2

sin2(x1)x4
2

sin2(x1)x6
2

x2
1

x2
2

x4
2


, v∗ =


1
4
4
−1
−1
−2

. (51)

The first three terms in 2(x) compose (50), while the last three
terms compose −Q(x) in (19) (cf. Remark 1 for discussion).

2) Initial Stabilizing Policy µ0: Vrabie and Lewis [19] use
the initial stabilizing policy

µ0(x) = −
1
2

sin(x1)
(
3x2 − 0.2x2

1 x2 + 12x3
2

)
. (52)

However, examining the minimal critic basis 8(x) and its
Jacobian ∇8(x) (46), we see that we do not have access to
the x2

1 x2 cross term for implementation of (52) in the actor
network (13). Thus, in the spirit of continuity and maintaining
a consistent comparison across the methodologies, we choose
the similar stabilizing policy

µ0(x) = −
1
2

sin(x1)
(
3x2 + 12x3

2

)
(53)

for the first two evaluations. For similar reasons, the critic
basis (48) in the third evaluation necessitates that modify the
policy (53). We choose for the third evaluation

µ0(x) = −5 sin(x1)x2. (54)

3) Exploration Noise e: We consider the following three
default low-, medium-, and high-excitation noises:

e1(t) = 5 cos(t), e2(t) = 10 cos(t), e3(t) = 20 cos(t).
(55)

In the first evaluation, we further perturb e3 as

e3(t) = 20 cos(t)+ cos(0.1t) (56)

TABLE III
EXPLORATION NOISES FOR THE FIRST THREE EVALUATIONS

TABLE IV
HYPERPARAMETERS FOR THE FIRST THREE EVALUATIONS

because CT-VI exhibits convergence issues without the addi-
tion of the small low-frequency term. Similarly, in the second
evaluation, we further perturb e1 as

e1(t) = 5 cos(t)+ 0.25 cos(0.1t) (57)

because CT-VI fails to converge for a few of the initial condi-
tions in the sweep with the default exploration noise e1 (55).
Furthermore, by our search, no small-amplitude perturbation
of the exploration noise e3 (55) is able to make CT-VI converge
for all initial conditions in the second evaluation. As a result,
in the second evaluation, we choose the default exploration
noise e3 (55), and CT-VI is not run for this noise. These
selections are summarized in Table III.

4) Hyperparameter and Weight Initialization: Hyperparam-
eter selections are listed in Table IV. We use a default learning
time tf = 10 s. IRL’s lack of probing noise necessitates
a shorter learning time (cf. Section IX-A), whereas SPI’s
dynamic tuning laws require a longer learning time. For
IRL, we collect l = 10 samples per iteration, while, for
RADP, we collect l = 50 samples (all at equally spaced
time instants). We collect more points for RADP because its
associated least-squares minimization is higher dimensional
[N1 + N2; cf. (31)] than that of IRL [N1; cf. (25)].

Additional hyperparameters and initial weights are given as
follows. For SPI, we use α1 = 10 in the critic tuning law
(26), and α2 = 10 and F2 = 5 IN1 in the actor tuning law
(28). For IRL, we initialize the critic weights c0 to implement
the policy µ0 (53) in the actor structure (13) for the first two
evaluations and the policy µ0 (54) in the third evaluation. The
actor weights w0 for SPI are set to identical values as the IRL
critic weights c0 for all evaluations. This initializes IRL and
SPI with the same policy µ0 in their shared actor network
structure (13).

Remark 9 (SPI—Critic Weight Initialization): Technically
speaking, the initial critic weights c0 for SPI may be selected
independently of the initial actor weights w0. However,
as noted in Remark 3, the modified actor tuning law (28)
implemented resembles a tracking control law, which makes
the actor weights track the critic weights. Thus, if the initial

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

WALLACE AND SI: CONTINUOUS-TIME REINFORCEMENT LEARNING CONTROL 11

critic weights c0 do not correspond to a stabilizing policy in
the actor network (13), we observe that closed-loop instability
results as the actor weights w(t) converge to the destabilizing
critic weights c(t). Thus, in this work, we initialize critic and
actor weights to the same values.

For RADP, we initialize the actor weights w0 = 0 as
per Algorithm 4. Finally, for CT-VI as per Algorithm 5, we
initialize the actor weights w0 = 0, Hamiltonian weights
v0 = 0, and critic weights c0 such that the initial critic network
is given by V̂ (x, c0) = x2

1 + x2
2 .

B. Setup—Cart Inverted Pendulum System

The fourth and final evaluation considers the cart inverted
pendulum system [107]

ẍ =
m pl θ̇2 sin θ − m pg sin θ cos θ + u

mc + m p sin2 θ

θ̈ =
−ẍ
l

cos θ +
g
l

sin θ (58)

where x is the cart position (measured in meters), θ is the
pendulum angular displacement (measured in radians relative
to the upright position, clockwise positive), u is the horizontal
force applied to the cart, mc is the mass of the cart, m p is the
mass of the pendulum, l is the length of the pendulum, and g
is the gravitational field constant. We use the standard values
mc = 1 kg, m p = 0.1 kg, l = 0.5 m, and g = 9.81 m/s2.
This simplified model assumes no cart or pendulum friction,
and the mass of the pendulum is concentrated at a point at its
end. With state variables [x1 x2 x3 x4]

T
= [x ẋ θ θ̇]T,

the dynamical equations (58) may be expressed in state-space
form (1) as

f (x) =



x2
m p sin x3

(
lx2

4−g cos x3
)

mc + m p sin2 x3
x4

sin x3

(g
l
(mc + m p)− m px2

4 cos x3

)
mc + m p sin2 x3



g(x) =
1

mc + m p sin2 x3


0
1
0

−
cos x3

l

. (59)

We use the standard Q-R cost structure r(x, u) = xT Qx +
uT Ru and the natural choice Q = I4 and R = 1.

1) Basis Functions: We note, for this example, that the
running cost r(x, u) is an even function of (x, u), and the
state dynamics f (x) + g(x)u is an odd function of (x, u).
It can be checked that this implies the optimal value function
V ∗ is even, and the optimal policy µ∗ is odd. With this insight,
we select as our critic basis {φ j }

N1
j=1 the even monomials of

total degree two (i.e., N1 = 10). We select for the actor basis
{ψ j }

N2
j=1 the odd monomials of total degree less than or equal

to three (i.e., N2 = 24). Finally, we select the Hamiltonian
basis functions {θ j }

N3
j=1 also as the even monomials of total

degree two (i.e., N3 = N1 = 10). We believe these selections

to be the natural first-choice for a designer beginning their
analysis of this system.

2) Initial Stabilizing Policy µ0: For the initial stabilizing
policy µ0, we examine the linearization (A, B) about the
origin and design for it the linear quadratic regulator (LQR)
full-state feedback control law u(x) = K x , where K =

R−1 BT P ∈ Rm×n , P ∈ Rn×n , and P = PT > 0 is the unique
positive definite solution of the Riccati equation

0 = AT P + P A−P B R−1 BT P + Q. (60)

We use the locally stabilizing nonlinear control law

µ0(x) = −R−1gT (x)Px . (61)

3) Exploration Noise e: We default to the exploration noise
e(t) = e1(t) = 5 cos(t) (55). With the policy µ0 (61) and
initial condition x0 = [1, 0, 15◦, 0]T, this exploration noise
yields stable cart position oscillations on the order of 3 m and
pendulum oscillations on the order of 20◦, so, qualitatively,
the noise allows the four algorithms to collect rich trajectory
data under the initial stabilizing policy without exciting the
pendulum instability. We observe the initial policy to achieve
stability for exploration noise amplitudes of up to ∼7.5.

4) Hyperparameter and Weight Initialization: For IRL,
we choose a learning time tf = 5 s. Since we have increased
the number of critic basis functions to N1 = 10, we increase
the number of data points per iteration from l = 10 to l = 15.
The number of iterations i∗ for IRL is changed experimentally,
so we leave the discussion to Section X. For SPI, we choose a
shorter collection window of tf = 100 s for reasons explained
in Section X. We choose all SPI tuning gains/matrices identical
to those of Section VIII-A (modulo dimension increases). For
RADP, we use i∗ = 20 iterations; otherwise, all hyperparam-
eters for RADP and CT-VI are chosen identically to those of
the first three evaluations. Finally, all weight initializations are
performed identically to Section VIII-A, now corresponding to
the policy µ0 (61).

IX. PERFORMANCE EVALUATION AND
ANALYSIS—SECOND-ORDER SYSTEM

A. Evaluation 1—Exact Minimal Bases

1) Results: IRL behaves well in regard to approximation
and weight convergence. To illustrate this point, Table V
displays the mean, max, and standard deviation critic weight
errors ∥c∗ − cf ∥ observed across the initial condition sweep
for the exploration noise e3 (56) in the first column, and the last
three columns correspond to the three respective weights in the
basis (46). IRL exhibits a final critic weight error ∥c∗ − cf ∥ of
less than 10−9 for all trials. It also has a short average run time
of around 0.15 s per trial, as seen in Table VI, which shows
the average run time of each algorithm over the IC sweep for
the first evaluation.

Next, we discuss conditioning. Table VII shows the IC
sweep average condition number of the matrices pseudoin-
verted for IRL, RADP, and CT-VI for the first three evalu-
ations. In the case of IRL and RADP, the respective matri-
ces Ai

IRL (25) and Ai
RADP (31) change numerically with an

iteration count i , so we have taken the IC sweep average

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V
EVAL. 1: CRITIC WEIGHT ERROR FOR NOISE e3 (56)

TABLE VI
EVAL. 1: AVERAGE RUN TIME (s)

over the final-iteration matrices Ai∗
IRL and Ai∗

RADP. IRL strug-
gles with significant conditioning issues, having an average
final-iteration condition number on the order of 105.

SPI also exhibits good convergence properties (see
Table V). We note that conditioning analyses do not apply to
SPI, which is an adaptive/gradient-descent-based method and
does not require regression in its weight updates. However,
these dynamic weight updates require a significantly longer
collection window tf = 500 s to converge, and thus, SPI takes
a much longer 3 s on average to run (see Table VI).

RADP achieves good approximation performance for the
two smaller noises e1 and e2 (55) (comparable numerically
with that of IRL and SPI), but, as seen in Table V, this
degrades for the large exploration noise e3 (56). Its mean
critic weight error ∥c∗ − cf ∥ is 6.77 with a standard
deviation of only 0.348, suggesting that the error is large
across the sweep. RADP fares quite well with conditioning
(see Table VII), which remains on the order of 10 for all
exploration noises. It also has a short average run time
of around 0.2 s per trial (see Table VI).

CT-VI converges consistently overall for the smaller explo-
ration noises e1 and e2 (55), with max final critic weight
error ∥c∗ − cf ∥ of less than 0.01 and max actor weight error
∥w∗−wf ∥ of 0.238. The maximum Hamiltonian weight error
∥v∗−vf ∥ is higher at 2.08 (observed for e2), but CT-VI exhibits
a mean error ∥v∗ − vf ∥ of only 0.0672 for this exploration
noise, so the peak of 2.08 is an outlier. For the large excitation
e3 (56), CT-VI performs well overall, with a mean critic weight
error ∥c∗ − cf ∥ of only 0.0169 (see Table V), but there are
outliers in which the error gets as large as 0.471 at maximum.

Like IRL, CT-VI struggles with conditioning. In Table VII,
conditioning of the matrix κ(Kφ(tf)) averages on the order of
102 for all exploration noises and κ(Kσ (tf)) averages on the
order of 106 for e1 and on the order of 104 for e2 and e3. Since
Kφ(tf) ∈ RN1×N1 with N1 = 3 and Kσ (tf) ∈ R(N2+N3)×(N2+N3)

with N2 + N3 = 8, it is expected that, in general, the
conditioning of Kσ (tf) will fare worse than that of Kφ(tf).
Evidence of the demanding computational requirements of

CT-VI is further witnessed in Table VI. CT-VI requires by far
the longest run time at 10–20 s per trial. We note, in addition,
that run time for CT-VI increases substantially with increasing
exploration noise amplitude, more than doubling on average
over the exploration noises tested.

2) Insights:
a) Algorithms perform well for lower excitations in

baseline example: For the lower excitations e1 and e2 (55),
all algorithms successfully converge to the optimal weights
regardless of the initial condition selected (with the exception
of a few outliers). Since this example is low-order, and we
have chosen exact bases, the alignment between theoretical
guarantees and observed synthesis is to be expected.

b) Algorithm structure significantly impacts conditioning
and numerical performance: We point the reader to Fig. 1(a),
which displays the state trajectory x1(t) corresponding to
exploration noise e1 (55) and IC x0 = [1, 1]T. RADP and
CT-VI use the same trajectory data to perform their learn-
ing, yet CT-VI’s conditioning is three orders of magnitude
worse than RADP’s (cf. Table VII). This simple example
illustrates the stark impact of algorithm structure on inherent
conditioning and numerical properties. For this reason, con-
ditioning should be considered in the design process using
similar approaches presented in this study, not just in post-
hoc analysis.

c) Avoid large excitation for RADP: We offer design-
ers this general observation of RADP: across all evalua-
tions conducted, RADP exhibits convergence issues for large
exploration noises. This is of practical concern to real-world
designers who are, in general, concerned with achieving suf-
ficient excitation to meet PE requirements. We caution that
overexcitation is a significant phenomenon, which occurs even
for low-order academic examples.

3) Limitations:
a) CT-VI numerical complexity issues associated with

tuning structure: In this simple example, we have already
experienced divergence issues with CT-VI for the large
exploration noise e3, which necessitates the addition of the
low-frequency perturbation cos(0.1 t) in (56). We believe
that these issues can be explained by examining the tuning
procedure of CT-VI in (32) and (34). The Hamiltonian weights
v(s) yielded by the pseudoinversion of Kσ (tf) in (34) are
nested in the integral (32) involved in the pseudoinversion of
Kφ(tf). The pseudoinversion of Kφ(tf) yields the derivative
d/(ds)c(s) in the critic weight tuning law (32), which itself
must be integrated with respect to the weight tuning time s.
In sum, the CT-VI algorithm comprises an alternating chain
of two pseudoinversions sandwiched between three nested
(vector-valued) integrations. When combined with the high
condition numbers seen in Table VII, we conclude that the
weight convergence issues stem from these numerical con-
siderations. The run time of CT-VI exceeds that of IRL and
RADP by a factor of 100 (see Table VI), a further empirical
indication of numerical complexity issues.

b) IRL’s lack of probing noise causes data quality degra-
dation as the state is regulated to origin: The two PI-based
algorithms (IRL and RADP) exhibit vastly different condition-
ing properties (cf. Table VII). Returning to Fig. 1(a) offers
clear explanation. Recall that IRL does not allow for the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

WALLACE AND SI: CONTINUOUS-TIME REINFORCEMENT LEARNING CONTROL 13

TABLE VII
EVALS. 1–3: MEAN CONDITION NUMBER

Fig. 1. Eval. 1: data for exploration noise e1 (55) and IC x0 = [1, 1]T. (a) Learning-phase state trajectory x1(t). (b) Condition number versus iteration count.

insertion of a probing noise. As the system is simulated
under the initial stabilizing policy µ0 (53) and successive
stabilizing policies µ̂1, . . . , µ̂i∗ , the state is regulated to the
origin. Meanwhile, examining the form of the i th iteration
weight update matrix Ai

IRL ∈ Rl×N1 (25) (i = 0, . . . , i∗),
we see that continuity of the state trajectory x(t) and continuity
of the critic basis functions 8(x) imply that Ai

IRL vanishes
as variations in the state trajectory samples {x(t i

k)}
l
k=0 vanish.

This explains the steep upward trend in IRL’s iterationwise
condition number plotted in Fig. 1(b), beginning at around
10 for i = 1 and increasing to almost 104 for i = 5. It is
for this reason that a shorter collection window tf = 5 s is
necessary for IRL. If the default tf = 10 s used for the other
methods is chosen, the condition number κ(Ai∗

IRL) regularly
exceeds 108 for this example. We, hence, observe the lack of
probing noise insertion as a fundamental limitation of the IRL
methodology, even though, strictly speaking, it does not have
a PE requirement (cf. Table II and Remark 8). As a result of
probing noise insertion, RADP has access to richer trajectory
data, and its conditioning remains low.

For the same reasons, we make note that the conditioning
of IRL fares is significantly worse for ICs chosen nearer the
origin. Thus, Fig. 1(b) with the IC x0 = [1, 1]T is a best-case
across the sweep. In order to combat this conditioning issue,
for each iteration i , Vrabie and Lewis [19, Sec. 6.2] collect
data from multiple trajectories with randomized initial con-
ditions. While this is a legitimate learning procedure, strictly
speaking, it is not permissible in an online learning scenario.

Remark 10 (Concluding Remarks for Evaluation 1:
The Curse of Conditioning in CT-RL): After considering
Table VII, Fig. 1(b), and the subsequent analysis, we wish
to characterize whether the observed conditioning issues are

emergent phenomena or if they are inherent to the CT-RL
methodologies themselves.

Certainly, this is not an issue of dimensionality. The system
(43) is second-order and single-input, and the basis dimensions
N1 = 3, N2 = 2, and N3 = 6 are chosen to be minimal for
this problem. Real-world applications will inevitably be higher
dimensional than this one.

Neither is this an issue of approximation. Indeed, the
example was constructed such that the optimal value V ∗ and
policy µ∗ are available in closed form, and the bases chosen
can achieve exact approximation.

Having ruled out the usual culprits of problem dimension
and approximation error, we consider that the fundamental
conditioning issues illustrated here are intrinsic to the algo-
rithms themselves. In many respects, the problem structure
of this evaluation represents the best-case performance that
could be hoped for from these algorithms. Unfortunately,
we shall soon see that the underlying numerics compound sub-
sequent issues of dimensionality and approximation, altogether
severely limiting the applicability of these CT-RL methods to
real-world design problems.

B. Evaluation 2—Critic Basis With N1 = 4 Terms

1) Results: IRL achieves good approximation performance
comparable with that of the first evaluation for all probing
noises. We present critic weight error data for the exploration
noise e3 (55) in Table VIII. IRL achieves a critic weight error
∥c∗ − cf ∥ of less than 10−9 at max. Meanwhile, examination
of Table VII shows that the addition of one critic basis function
has increased IRL’s average conditioning by a factor of five to
5.6 × 105. For the sake of comparison, we have again plotted

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Eval. 2: condition number versus iteration count for exploration noise
e1 (57) and IC x0 = [1, 1]T.

TABLE VIII
EVAL. 2: CRITIC WEIGHT ERROR FOR NOISE e3 (55)

condition number versus iteration count for the exploration
noise e1 (57) and IC x0 = [1, 1]T in Fig. 2. Comparison with
Fig. 1(b) corroborates the trend in Table VII that conditioning
has degraded across the board. In particular, the conditioning
of IRL now approaches the 105 mark for this trial, almost a
tenfold increase from the previous evaluation. This illustrates
that IRL suffers from scalability issues.

Finally, the addition of one basis function has not increased
the run time of any of the algorithms significantly, so we
have omitted run time data here for the sake of brevity.
Note, however, that we wished to carry out more thorough
analyses of run time performance, but, for all algorithms,
weight convergence issues halted these evaluations before
we could introduce sufficient dimensional scaling. Given that
these algorithms repeatedly use pseudoinversion, which scales
as ∼O(l3), in principle, run time scaling will likely present
significant challenges in the future.

SPI achieves a max critic weight error ∥c∗ − cf ∥

of 0.0465 for exploration noises e1 (57) and e2 (55), and
0.0176 for e3 (see Table VIII). For all exploration noises, its
actor weight error ∥w∗−wf ∥ remains less than 0.001 at max.

RADP: We again observe the pattern that RADP performs
comparably to IRL and SPI for small excitations but struggles
for the large excitation e3 (55), with an average critic weight
error ∥c∗ − cf ∥ of 2.87, max of 6.73, and standard deviation
of 2.76 (see Table VIII). Comparison of these numbers with
those of Table V shows that the max error is comparable
for the two evaluations. Meanwhile, the mean error for this
evaluation (2.87) is smaller than that of the previous evaluation
(6.77). However, the present evaluation standard deviation
(2.76) is a factor of ten higher than previous (0.348). This
anecdotally suggests that the addition of a basis function to
the critic (47) has made the weight convergence of RADP
more volatile for large exploration noises. In spite of these

issues, RADP does zero the redundant basis function φ4(x) =
x1x2 (47) for e3 quite well overall (see Table VIII). Finally,
RADP’s conditioning has remained low at approximately 20
(see Table VII).

CT-VI is not run for the exploration noise e3 (55) due to
convergence issues (cf. Section VIII-A for discussion), so its
data are absent in Table VIII. It does achieve good convergence
properties for the smaller two excitations, for which its critic,
actor, and Hamiltonian weight errors remain less than 0.01 at
max. Examining Table VII, the conditioning of Kσ (tf) is
nearly identical to the previous evaluation, which is expected
since the bases 9(x) (49) and 2(x) (51) composing this
matrix have remained unchanged. On the other hand, the
condition number κ(Kφ(tf)) has increased from 208 in the
previous evaluation to 366 for the exploration noise e1 (+76%)
and from 632 to 866 for e2 (+37%).

2) Limitations: Convergence and Conditioning Degrada-
tion With Addition of One Critic Basis Function: Dimensional
Scalability Concerns: IRL still performs well in terms of
convergence, but its conditioning has degraded significantly as
a result of the addition. SPI, the gradient-descent algorithm for
which conditioning issues do not apply, fares the best overall;
its convergence properties remain largely unchanged. RADP
displays a slight degradation in conditioning and substantial
increases in weight volatility. Finally, CT-VI exhibits weight
divergence on both the low- and high-amplitude ends of the
exploration noise spectrum, due, in large part, to condition
number increase of the matrix Kφ(tf) (33) structurally affected
by the additional critic basis function. Now, all that remains
is a central band of amplitudes around e2(t) = 10 cos(t) for
which this algorithm can run properly.

C. Evaluation 3—Realistic Choice of Critic Basis

Now that the optimal value function V ∗ (44) cannot be
approximated exactly by our choice of critic basis (48),
we first establish that good approximation is still achievable.
We perform a linear regression (LR) of the optimal value
function V ∗ (44) in the basis functions (48) over the box
[−1, 1]2, yielding the L2([−1, 1]2)-optimal weights

clr =
[

0.2140 1.7436 0 0.2 0 0.1905 0
]T
. (62)

The associated LR critic V̂ lr(x) = V̂ (x, clr) is plotted along-
side the optimal value function V ∗ (44) in Fig. 3(a). The
approximation achieved is quite accurate by visual inspection.

1) Results: IRL and RADP: We begin our study with
the two PI-based algorithms. Comparison of the conditioning
data in Table VII to the previous evaluation shows that the
conditioning for IRL has increased six orders of magnitude
from 5.6 × 105 to 5.8 × 1011. RADP conditioning has
fared better, but it still has increased by a factor of eight
from 20 to 155. To analyze convergence properties, we plot the
critic weights ci versus iteration count i for IRL and RADP
in Fig. 4(c) and (d), respectively. These responses correspond
to the exploration noise e1 (55) and IC x0 = [1, 1]T, which
we observe as qualitatively representative.

One observes two distinct regimes of behavior for IRL in
Fig. 4(c): an initial phase from i = 1 to i = 10 iterations
where the weights oscillate and drift, and a second phase

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

WALLACE AND SI: CONTINUOUS-TIME REINFORCEMENT LEARNING CONTROL 15

Fig. 3. Eval. 3. (a) Optimal value V ∗ and LR critic V̂ lr. (b) Optimal value V ∗ and final critic V̂f for exploration noise e1 (55), IC x0 = [1, 1]T.

Fig. 4. Eval. 3: data for exploration noise e1 (55) and IC x0 = [1, 1]T. Top: (a) state trajectory x1(t) and (b) condition number versus iteration count. Bottom:
critic weights ci versus iteration count for (c) IRL and (d) RADP.

from i = 10 to i = 15 iterations where the weights begin
to diverge. The reason for the latter weight divergence is
clear upon viewing the corresponding x0 = [1, 1]T state
trajectory data in Fig. 4(a). For IRL’s learning on t = [0, 5],
the latter third of the trajectory is near zero. We have, thus,
encountered the same scenario as in Section IX-A, where IRL
struggles with conditioning in latter iterations as the state
trajectory approaches the origin. Now that the basis order
has increased and the basis functions can no longer achieve
exact approximation, IRL cannot perform its learning quickly
enough to outpace data quality degradation.

The observed weight oscillations/drifting in the first i =
10 iterations of Fig. 4(c) are readily explained by the itera-
tionwise condition number of Ai

IRL plotted in Fig. 4(b). Here,

we observe that, even for early iterations (when the quality
of trajectory data is relatively high), the conditioning of the
IRL problem exceeds 104 across the board. By comparison to
the previous evaluation (for which conditioning begins on the
order of 102), this is a 100-fold increase.

Table IX displays the mean and standard deviation of each
of the final critic weights cf, j , j = 1, . . . , 7. As a result of
poor conditioning, IRL exhibits large standard deviations for
the latter four weights. However, we do note that the weights
cf,1, cf,2, and cf,3 exhibit mean values of 0.5, 1, and ∼0,
respectively, with near-zero standard deviation. These mean
values agree with the respective values of the optimal weights
c∗ for the exact basis (47). The critic weights for RADP,
by contrast, have converged in Fig. 4(d). Unfortunately, the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

16 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

values to which the weights converge are not consistent across
the IC sweep (see Table IX).

Having rounded off the weight convergence analysis of IRL
and RADP, it now remains to examine the approximation
errors of the final critics V̂f (x) = V̂ (x, cf) (10); they produce
in relation to the optimal value function V ∗ (44). We display
these functions in Fig. 3(b) for exploration noise e1 (55) and
IC x0 = [1, 1]T. Unfortunately, both algorithms exhibit wide
variation. Indeed, neither critic V̂f is even positive definite.

SPI and CT-VI: Unfortunately, the tuning of both
of these algorithms breaks down for this example.
We run SPI for the IC x0 = [1, 1]T. After t = 35 s
of tuning, the weights are c(35) ≈ w(35) =

[0.771, 1.972, 0.345,−0.234,−0.154,−0.0826,−0.179]T.
If the simulation is continued beyond t = 35 s, the state
trajectory diverges. A similar phenomenon prevails regardless
of the IC x0 in the sweep, the eventual divergence occurring
within the first couple dozen seconds of simulation. We test
the policy µ̂(x, w(35)) (13) corresponding to the actor
weights w(35) without any exploration noise to find that it is
indeed stabilizing on [−1, 1]2. Thus, although the SPI tuning
has kept the actor weights w(t) stabilizing from t = 0 to
t = 35, the actor network shortly after µ̂(x, w(35)) is unable
to reject the exploration noise e1 (55), amidst the unstable
dynamics of the system (43). This is discouraging, given
that the exploration noise e1 (55) chosen has the smallest
amplitude of any tested in this work. Indeed, SPI performs
quite well for this exploration noise in previous evaluations.

For CT-VI, regardless of our choice of hyperparameters (i.e.,
probing noise e and learning time tf), the weight tuning laws
(32) and (34) diverge. We present CT-VI’s average condition
number data for the standard choices e = e1 (55) and tf = 10 s
in Table VII. Compared to the previous evaluation, the average
condition number of Kσ (tf) for the exploration noise e1 has
nearly doubled from 6.9 × 106 to 10.6 × 106. Due to the
increase in critic basis dimension from N1 = 4 to N1 = 7,
the condition number of Kφ(tf) has increased two orders of
magnitude from 366 to 6.2 × 104. Unfortunately, we conclude
that these sheer condition numbers render CT-VI unusable for
this example.

2) Limitations:
a) IRL lack of probing noise results in hyperparameter

deadlock: A designer assessing the performance of IRL in
Fig. 4(c) might be tempted to reduce the learning time tf in
hopes of restricting to higher quality trajectory data, thereby
improving weight convergence. Alas, these efforts are not
fruitful. Recall in Section IX-A that we deduced that the
regression matrix Ai

IRL (25) vanishes as variations in the state
trajectory samples {x(t i

k)}
l
k=0 vanish. This condition occurs as

the differences in sample time instants {t i
k}

l
k=0 converge to

zero, i.e., as learning time tf → 0, final iteration i∗ → ∞,
or the number of samples l → ∞. On the one hand, the
increase in final iteration count from i∗ = 5 previously
to i∗ = 15 here is unavoidable: generally speaking, higher
order problems require more iterations to converge, and we
observe this example as no exception. On the other hand,
there is little room to reduce the number of samples from
l = 10 since l ≥ N1 = 7 is needed for full column rank in
the weight update (25). Thus, both of these hyperparameters
have been virtually minimized to ensure the best conditioning

possible. It is perhaps of no surprise then that we observe
reducing the learning time tf (or increasing sample count
l and/or final iteration i∗, all of which we tried), which
only exacerbates the poor early iteration conditioning seen
in Fig. 4(b), which, in turn, magnifies the early iteration
weight oscillations in Fig. 4(c). With all options exhausted,
we, unfortunately, conclude that the designer is deadlocked
in an effort to balance IRL hyperparameter selection with the
underlying numerics.

b) Conditioning ceiling causes the discrepancy between
theoretical approximation results and observed approximation
performance: Both IRL and RADP guarantee uniform approx-
imation of the optimal value function V ∗ on compact subsets
(cf. Theorems 4 and 8, respectively). We note the subtlety
that these approximation results are sufficient conditions that
are not constructive; i.e., they do not furnish estimates of
the number of basis functions N1 required to achieve a
desired approximation ϵ > 0. The critic approximation issues
observed in Fig. 3(b) reveal that, when increasing the critic
basis dimension N1, a practical conditioning ceiling incapac-
itates approximation performance long before the theoretical
threshold can be attained.

c) SPI excitation requirements exceed closed-loop stabil-
ity thresholds: Unfortunately, the SPI instability issue cannot
be remedied by decreasing the exploration noise amplitude.
For amplitudes ∼3.5 and above, the state eventually diverges.
For amplitudes below this threshold, the weight tuning freezes
due to insufficient excitation. We further tried modulating
the exploration noise by a decaying exponential term; i.e.,
e(t) = 5 cos(t)e−at for decay rate a > 0. Unfortunately, these
efforts yield much the same qualitative behavior as varying
the exploration noise amplitude. Thus, for SPI, we are unable
to find a balance between stability and sufficient excitation.
We believe these issues to be, in part, due to the modified
actor tuning law (28), which we had to adopt in this work (cf.
Remark 3). Due to the actor tuning modifications, the original
stability guarantees provided in [20] no longer apply.

Remark 11: Concluding Remarks for Evaluations 1–3,
Performance Limitations: For this third evaluation, the two
PI-based algorithms, IRL and RADP, can be successfully run
across the IC sweep. However, underlying conditioning issues
either render weight convergence inconsistent (RADP) or
prevent convergence entirely (IRL). The two dynamic tuning
algorithms, SPI and CT-VI, cannot execute to termination due
to either closed-loop instability (SPI) or weight divergence
(CT-VI). In the case of SPI, our probing noise selection
has to meet the conflicting demands of disturbance rejection
and sufficient excitation, for which a suitable balance cannot
be sought. In the case of CT-VI, conditioning degradation
associated with increased problem complexity has rendered
its tuning laws numerically intractable. The new phenomena
observed that, for SPI aside, all of the key issues witnessed
here are direct outgrowths of the novel diagnosis that we
performed in our first evaluation, now compounded by the
long-understood curses of dimensionality and approximation.

X. PERFORMANCE EVALUATION AND ANALYSIS—CART
INVERTED PENDULUM SYSTEM

Having thoroughly analyzed the second-order academic
example (43), we now apply the fundamental design insights

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

WALLACE AND SI: CONTINUOUS-TIME REINFORCEMENT LEARNING CONTROL 17

TABLE IX
EVAL. 3: CRITIC WEIGHT MEAN AND STANDARD DEVIATION

Fig. 5. Eval. 4: IRL state trajectory x(t) for IC x0 = [1, 0, 15◦, 0]T.

gained to the cart inverted pendulum system (58), a benchmark
control problem that has direct implications in real-world
applications. We, at first, ran tests over the initial cart positions
x0 = [−1:0.1:1] m, pendulum angles θ0 = [−30:1:30] deg,
zero initial translational/rotational velocities ẋ0 = 0 m/s, and
θ̇0 = 0 deg/s. However, in our analyses, we encountered
algorithm performance issues of similar nature regardless of
the IC chosen. Thus, for the purposes of illustration, here,
we examine the initial condition x0 = [1 m, 0, 15◦, 0]T.

Results: IRL We recall from the analysis presented in
Section IX-C that, in general, IRL conditioning degrades with
an increasing number of iterations i∗. Running IRL for this
example at i∗ = 2 is not problematic (although, of course,
i∗ = 2 is insufficiently many iterations for convergence).
Running IRL for i∗ ≥ 3, on the other hand, yields a new issue,
which has not been observed previously. We examine the state
trajectory data in Fig. 5. Eventually, after i = 2 iterations, the
critic weights are no longer stabilizing, and state trajectory
diverges. Due to poor conditioning (observed on the order of
106 for this example), the critic weights ci oscillate drastically,
which, in turn, makes the policies µ̂i update abruptly and
excite natural inverted pendulum instability. Corroborated by
our insights gained in Section IX-C, decreasing the collection
time tf or increasing the number of samples l or the number of
iterations i∗ only worsens the conditioning for this example.

SPI It exhibits new behavior in this example as well. The
weight tuning is observed to freeze (i.e., the weights c(t) and
w(t) remain virtually constant over [0, tf]). After diagnosis,
we find the culprit to be the term σ2/m2

s = σ2/(σ
T
2 σ2 +

1)2 ∈ RN1 in the critic tuning law (26) vanishing across
the state trajectory x(t). The critic tuning law (26) is a
Levenberg–Marquardt algorithm modified by Vamvoudakis
and Lewis [20], where (σ T

2 σ2 + 1)2 is used for normalization
instead of the usual (σ T

2 σ2 + 1) (cf. [20, below eq. (23)]).
Unfortunately, it is the squaring of this normalization term
(alongside σ2 ∈ RN1 having a large norm across the trajectory),
which has caused the vanishing.

Naturally, a designer will increase the amplitude of the
probing noise e or the critic tuning gain α1 > 0 in an
attempt to unfreeze the critic weight learning. Unfortunately,
increasing the amplitude of e from 5 to 7.5 does not fix
the issue, and as we have noted in Section VIII-B, increas-
ing the amplitude beyond this point makes the closed-loop
system unstable. Meanwhile, the critic weights still freeze
when increasing the tuning gain by a factor of 100 from
α1 = 10 to α1 = 1000 (and, for any intermediate selections,
we tried). This analysis suggests that the modifications made
to the Levenberg–Marquardt algorithm by Vamvoudakis and
Lewis [20] in the tuning law (26) have frozen the critic weight
learning for this higher order example.

RADP Regardless of the IC or hyperparameters chosen,
we were unable to yield a stabilizing controller µ̂f = µ̂i∗+1
from RADP for this system. Similar to the third evaluation
(cf. Table IX), RADP’s final weight values are observed to
be highly sensitive to IC x0. Furthermore, for some ICs
(e.g., x0 = [1, 0, 30◦, 0]T), the weights oscillate indefinitely
and fail to converge. These convergence and stability issues
are likely a result of conditioning. For x0 = [1, 0, 15◦, 0]T,
we observed the condition number of Ai

RADP ∈ Rl×(N1+N2)

(31) to exceed 108 for each iteration i (an increase of six
orders of magnitude from the previous evaluation). Given that
the increment in critic basis dimension is relatively minor
(N1 = 7 in Section IX-C to N1 = 10 here), we attribute this
drastic conditioning degradation to the increase in actor basis
dimension (from the minimal N2 = 2 actor basis in previous
evaluations to the realistic N2 = 24 here).

CT-VI Previously identified numerical issues persist as we
transition toward a real-world design problem. Regardless
of hyperparameter selections, the weight responses diverge.
For the natural choices listed in Section VIII-B, running the
algorithm for the initial condition x0 = [1, 0, 15◦, 0]T yields
condition numbers of 7.8 × 105 for Kφ(tf) and 5.2 × 1013

for Kσ (tf). Unfortunately, conditioning has claimed its last
victim, concluding our analysis of this example.

XI. CONCLUSION AND DISCUSSION

This work provides an extensive review of four seminal
CT-RL control methods (IRL [19], SPI [20], RADP [21], and
CT-VI [22]), discussing the key theoretical assumptions and
results. Our review shows these methods to be well-principled
in approach, each offering an impressive suite of theoretical
guarantees. All algorithms guarantee uniform convergence
to the optimal value and policy, which extends beyond the
baseline weight convergence results seen in the RL literature.
Furthermore, each ensures closed-loop stability in one of its
various notions. RADP even provides stability and robustness
results.

These theoretical successes aside, our first-of-its-kind ana-
lytical framework illustrates through comprehensive evaluation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

18 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

studies a fundamental divergence between CT-RL theoretical
guarantees and controller synthesis performance. Our in-depth
evaluations lead us to posit that it is ultimately this anal-
ysis/synthesis discrepancy, which underpins the fundamental
CT/DT gap in the RL control literature. As we experienced dif-
ficulties in achieving realistic control performance goals when
implementing these algorithms on small-scale systems, we fur-
ther analyzed step by step what hinders their performance and
why. Our observations are summarized in the following.

Challenges Facing the CT-RL Optimal Control Problem:
To the credit of the existing CT-RL algorithms, the CT-RL
optimal control problem is considerably more difficult than its
DT-RL counterpart. Altogether, combating the multitude of
structural challenges in the continuous state, action, and time,
and alongside the usual dimensionality, approximation, and
PE issues, while rigorously proving convergence, closed-loop
stability, and other control-centric performance guarantees,
proves to be a three-pronged challenge perhaps unparalleled
by any other problem in control systems.

A. Design Challenges and Performance Limitations Facing
Current CT-RL Algorithms

1) Systematically Achieving PE Proves Difficult: As noted
in Remark 8, there does not exist a systematic way to
ensure the PE condition for nonlinear systems. The evalua-
tions conducted here reaffirm the severity of this challenge.
Indeed, as manifested empirically by the conditioning data
seen in Table VII, collecting quality state trajectory data
proves difficult, even for low-order systems and bases. The
challenge becomes especially acute for open-loop unstable
systems, where the designer must balance excitation within
the confines of the disturbance rejection capabilities of the
controller. Here, we note that SPI, which tunes its weights
via gradient descent and, hence, does not face conditioning
concerns, still exhibits significant PE issues, and its weights
either freeze due to insufficient excitation or fail to stabilize
when the excitation is increased.

2) Underlying Complexity of Existing Algorithms Causes
Performance Limitations: This work showcases the promising
theoretical guarantees offered by existing CT-RL algorithms.
However, significant algorithm complexity is required in order
to prove these guarantees, resulting in numerical problems
(e.g., CT-VI’s nested pseudoinversion/integration tuning struc-
ture). Indeed, we pose conditioning issues as central—and
intrinsic—to these algorithms and their performance shortcom-
ings. In reality, the overly complex nature of these algorithms
makes them intractable.

3) Large Number of Hyperparameters Hinders Systematic
Design: Another side effect of the observed algorithm com-
plexity is the large number of hyperparameters required by
each. For example, SPI requires the designer to choose the
learning time tf , probing noise e, tuning parameters α1, α2 >

0, F1 > 0, F2 = F T
2 > 0, and initial weights c0, w0—finding a

selection that yields convergent weights is a challenge in and
of itself. We attempt to systematically select hyperparameters
in Section VIII and justify our rationale (e.g., selecting smaller
learning time tf for IRL to avoid data quality degradation
and choosing a larger learning time tf for SPI to allow
its gradient-descent tuning laws to converge), but, as we
encounter performance issues, these efforts inevitably give way

to haphazard algorithm-specific troubleshooting. Ultimately,
not being able to systematically select hyperparameters to
achieve good performance for these design algorithms defeats
the purpose of their theoretical guarantees.

4) Dimensional Scalability Issues Limit Real-World Appli-
cability: Bellman’s curse of dimensionality has long explained
scalability issues, but these algorithms exhibit severe numeri-
cal breakdowns to even small increments in problem dimen-
sion (e.g., the addition of one basis function to the critic).
Each eventually experiences weight convergence issues and
resultantly large approximation errors. Solutions are found to
be highly sensitive to initial conditions, signaling difficulty for
generalizability.

B. Directions of Future Research

The limitations of CT-RL algorithms illustrated by this work
motivate several potentially fruitful and compelling directions
for future research.

1) Leveraging Established Classical Results: CT-RL is at
the very early stages of development. Practically useful RL
design methods validated by systematic performance evalua-
tions are needed. To this end, in the near future, RL algorithm
development may benefit from adapting/incorporating classical
and model-based architectural features. Such innovations will
allow RL algorithm designers to draw from well-established
and practically tested classical theory to provide much-needed
insights on RL controller synthesis and shed light on perfor-
mance guarantees/limitations. Conducting transparent “apples-
to-apples” performance comparisons with classical techniques
is necessary to formalize CT-RL as a control method.

2) Taking Advantage of Modeling or Models: By virtue of
capturing the interacting dynamics between the agent and the
environment, a well-developed model may allow the learning
controller to more efficiently explore the state space and,
thereby, improve value function approximation. Such models
can be obtained from an effective and efficient system iden-
tification process or from a first-principles physical model of
the environment such as a kinematic model in the case of
mechanical/robotic systems.

Modeling may bring several additional benefits: 1) modeling
may reduce the learning controller’s demand for training data
and/or reduce the stringency of PE requirements, thereby
mitigating data deficiencies that commonly arise and hinder
learning control performance; 2) incorporating a well-defined
model structure directly in the algorithm design may alleviate
the numerical complexity issues illustrated in this work to
some extent; 3) an off-line controller may be designed first to
be used before the online learning controller adapts to the spe-
cific task needs; and 4) the learning controller may take advan-
tage of system dynamics by rolling-out or planning ahead in
solving certain sequential decision and control problems.

Yet, it is important to note that a poorly constructed
model may defeat these purposes and may even introduce
additional adverse effects to the resulting controller. Unfor-
tunately, few systematic evaluations have been conducted on
the effect of modeling errors due to approximation by an
NN or other modeling methods. Instead, often, the exist-
ing neural-network dynamical approximation works simply
assume that the approximation error is within an ϵ bound,
after which control results are obtained by illustrating small,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

WALLACE AND SI: CONTINUOUS-TIME REINFORCEMENT LEARNING CONTROL 19

handcrafted examples. Oftentimes, these works use simple
NNs with radial basis functions, which have rarely been
associated with the most recent successes of NN applica-
tions. Systematic approaches and evaluations are called for to
examine the tradeoffs between the advantages of incorporating
a model versus the adversities induced by inevitable model
inaccuracy. These issues are out of the scope of this work,
as few results have been developed to directly account for
them in a realistic problem-solving context.

3) Exploring Nonlinear Network Structures for Improved
Approximation/Scaling Performance: Each of the four meth-
ods studied here requires a linearly independent basis, which
is by comparison a strong requirement, since almost none
of the successful demonstrations of RL control relies on
linearly independent bases. Furthermore, CT-RL methods for
control almost universally employ single-layer, linear NN
approximation structures (such as polynomial basis functions),
which again is not representative in comparison to the approx-
imation capabilities of deep networks. Future works that relax
such assumptions and take advantage of deep networks could
perhaps improve the dimensional scaling and approximation
issues exhibited by current CT-RL algorithms. Along this
vein, a fruitful future area of study may try to explain why
computation-based methods, such as (deep) NNs, are effective,
at least in case studies and benchmark problems.

4) Performing Systematic Comparative Studies of CT-RL
and DT-RL Algorithms: As illustrated in Section II, DT-RL
methods have achieved great successes in a variety of controls
applications. Having now examined their CT counterparts,
a future study that delves into their inherent differences could
perhaps shed light on the CT/DT gap and, thereby, uncover
new insights for future CT-RL algorithm development. There
is a need to investigate at the fundamental level what causes
a loss of learning efficiency in CT-RL methods and how to
flexibly collect data, reuse data, and remove various theoretical
constraints posed as assumptions in developing the major
control results.

C. Future Applications Prospects

These four CT-RL works are instrumental and have
inspired an ever-increasing number of follow-up results.
Unfortunately, even the most recent follow-up publications
usually only present incremental improvements, or they use
similar techniques on a slightly varied control problem.
As such, they fail to substantiate the proofs with systematic,
not to mention realistic, design evaluations. The essential
limitations discussed in this study still exist. New practices
and innovative approaches to the analysis and synthesis of
CT-RL algorithms are much needed.

To this end, we call on future algorithm works to go beyond
proving similar theoretical results by substantiating them with
systematic numerical studies. Though perhaps beyond the
current scope of the developed methods, we should, in the
future, consider benchmarking on well-motivated, realistic
problems and providing comparisons to other potential solu-
tions. We hope that the novel quantitative analytical framework
developed here may be of reference for future studies.

REFERENCES
[1] R. E. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton

Univ. Press, 1957.
[2] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.

Belmont, MA, USA: Athena Scientific, 2005.
[3] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control, 3rd ed.

Hoboken, NJ, USA: Wiley, 2012.
[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 1998.
[5] M. L. Puterman, Markov Decision Processes: Discrete Stochastic

Dynamic Programming. New York, NY, USA: Wiley, 1994.
[6] J. Si, A. G. Barto, W. B. Powell, and D. C. Wunsch, Handbook of

Learning and Approximate Dynamic Programming. Piscataway, NJ,
USA: Wiley, 2004.

[7] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adap-
tive elements that can solve difficult learning control problems,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-13, no. 5, pp. 834–846,
Sep./Oct. 1983.

[8] R. Howard, Dynamic Programming and Markov Processes. Cambridge,
MA, USA: MIT Press, 1960.

[9] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA, USA: Athena Scientific, 1996.

[10] F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming:
An introduction,” IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39–47,
May 2009.

[11] P. J. Werbos, “Neural networks for control and system identification,”
in Proc. 28th IEEE Conf. Decis. Control, Dec. 1989, pp. 260–265.

[12] P. J. Webros, A Menu of Designs for Reinforcement Learning Over
Time. Cambridge, MA, USA: MIT Press, 1991.

[13] P. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control: Neural,
Fuzzy, and Adaptive Approaches, D. A. White and D. A. Sofge, Eds.
New York, NY, USA: Van Nostrand, 1992.

[14] A. E. Bryson and W. F. Denham, “A steepest-ascent method for solving
optimum programming problems,” J. Appl. Mech., vol. 29, no. 2,
pp. 247–257, Jun. 1962.

[15] J. Huang and C.-F. Lin, “Numerical approach to computing nonlinear
H∞ control laws,” J. Guid., Control, Dyn., vol. 18, pp. 989–994,
May 1995.

[16] H. J. Kushner, “Numerical methods for stochastic control prob-
lems in continuous time,” SIMA J. Control Optim., vol. 28, no. 5,
pp. 999–1048, 1990.

[17] R. W. Beard, “Improving the closed-loop performance of nonlinear
systems,” Ph.D. thesis, Dept. Elect. Eng., Rensselaer Polytech. Inst.,
Troy, NY, USA, Oct. 1995.

[18] R. W. Beard, G. N. Saridis, and J. T. Wen, “Galerkin approximations
of the generalized Hamilton–Jacobi-Bellman equation,” Automatica,
vol. 33, no. 12, pp. 2159–2177, Dec. 1997.

[19] D. Vrabie and F. Lewis, “Neural network approach to continuous-
time direct adaptive optimal control for partially unknown nonlinear
systems,” Neural Netw., vol. 22, no. 3, pp. 237–246, 2009.

[20] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to
solve the continuous-time infinite horizon optimal control problem,”
Automatica, vol. 46, no. 5, pp. 878–888, May 2010.

[21] Y. Jiang and Z.-P. Jiang, “Robust adaptive dynamic programming and
feedback stabilization of nonlinear systems,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 5, pp. 882–893, May 2014.

[22] T. Bian and Z.-P. Jiang, “Reinforcement learning and adaptive opti-
mal control for continuous-time nonlinear systems: A value iteration
approach,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 7,
pp. 2781–2790, Jul. 2022.

[23] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to
design optimal adaptive controllers,” IEEE Control Syst., vol. 32, no. 6,
pp. 76–105, Dec. 2012.

[24] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Opti-
mal and autonomous control using reinforcement learning: A survey,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2042–2062,
Jun. 2018.

[25] B. Recht, “A tour of reinforcement learning: The view from continuous
control,” Annu. Rev. Control, Robot., Auton. Syst., vol. 2, no. 1,
pp. 253–279, 2019.

[26] D. Wang, D. Liu, H. Li, B. Luo, and H. Ma, “An approximate optimal
control approach for robust stabilization of a class of discrete-time
nonlinear systems with uncertainties,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 46, no. 5, pp. 713–717, May 2016.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

20 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[27] P. He and S. Jagannathan, “Reinforcement learning neural-network-
based controller for nonlinear discrete-time systems with input con-
straints,” IEEE Trans. Syst., Man, Cybern., B (Cybern.), vol. 37, no. 2,
pp. 425–436, Apr. 2007.

[28] P. Zhang, Y. Yuan, and L. Guo, “Fault-tolerant optimal control
for discrete-time nonlinear system subjected to input saturation: A
dynamic event-triggered approach,” IEEE Trans. Cybern., vol. 51,
no. 6, pp. 2956–2968, Jun. 2021.

[29] C. Mu, D. Wang, and H. He, “Novel iterative neural dynamic program-
ming for data-based approximate optimal control design,” Automatica,
vol. 81, pp. 240–252, Jul. 2017.

[30] D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 3, pp. 621–634, Mar. 2014.

[31] Q. Wei, D. Liu, Q. Lin, and R. Song, “Discrete-time optimal control
via local policy iteration adaptive dynamic programming,” IEEE Trans.
Cybern., vol. 47, no. 10, pp. 3367–3379, Oct. 2017.

[32] W. Guo, J. Si, F. Liu, and S. Mei, “Policy approximation in policy
iteration approximate dynamic programming for discrete-time nonlin-
ear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7,
pp. 2794–2807, Jul. 2018.

[33] D. Liu, Q. Wei, and P. Yan, “Generalized policy iteration adaptive
dynamic programming for discrete-time nonlinear systems,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 45, no. 12, pp. 1577–1591,
Dec. 2015.

[34] X. Gao, J. Si, Y. Wen, M. Li, and H. Huang, “Reinforcement learning
control of robotic knee with human-in-the-loop by flexible policy
iteration,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 10,
pp. 5873–5887, Oct. 2022.

[35] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time
nonlinear HJB solution using approximate dynamic programming:
Convergence proof,” IEEE Trans. Syst., Man, Cybern., B (Cybern.),
vol. 38, no. 4, pp. 943–949, Jun. 2008.

[36] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of
unknown nonaffine nonlinear discrete-time systems based on adaptive
dynamic programming,” Automatica, vol. 48, no. 8, pp. 1825–1832,
2012.

[37] F. Liu, J. Sun, J. Si, W. Guo, and S. Mei, “A boundedness result
for the direct heuristic dynamic programming,” Neural Netw., vol. 32,
pp. 229–235, Aug. 2012.

[38] D. Liu and Q. Wei, “Finite-approximation-error-based optimal control
approach for discrete-time nonlinear systems,” IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 779–789, Apr. 2013.

[39] Q. Wei, F.-Y. Wang, D. Liu, and X. Yang, “Finite-approximation-
error-based discrete-time iterative adaptive dynamic programming,”
IEEE Trans. Cybern., vol. 44, no. 12, pp. 2820–2833,
Dec. 2014.

[40] J. Si and Y.-T. Wang, “Online learning control by association and
reinforcement,” IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 264–276,
Mar. 2001.

[41] R. Hafner and M. Riedmiller, “Reinforcement learning in feedback
control: Challenges and benchmarks from technical process control,”
Mach. Learn., vol. 84, nos. 1–2, pp. 137–169, Jul. 2011.

[42] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. Riedmiller, “Deterministic policy gradient algorithms,” in Proc. 31st
Int. Conf. Mach. Learn., Jan. 2014, pp. 387–395.

[43] R. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” 2015, arXiv:1509.02971.

[44] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, “A novel DDPG method
with prioritized experience replay,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern. (SMC), Oct. 2017, pp. 316–321.

[45] V. Minh et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[46] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” J. Mach. Learn. Res., vol. 17, no. 1,
pp. 1334–1373, 2016.

[47] D. Silver et al., “Mastering the game of Go with deep neural net-
works and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
Jan. 2016.

[48] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[49] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual
machines consolidation in cloud data centers using reinforcement
learning,” in Proc. 22nd Euromicro Int. Conf. Parallel, Distrib., Netw.-
Based Process., Feb. 2014, pp. 500–507.

[50] K. Mondal, A. A. Rodriguez, S. S. Manne, N. Das, and B. A. Wallace,
“Comparison of kinematic and dynamic model based linear model
predictive control of non-holonomic robot for trajectory tracking:
Critical trade-offs addressed,” in Proc. IASTED Int. Conf. Mechatronics
Control, Dec. 2019, pp. 9–17.

[51] K. Mondal, B. A. Wallace, and A. A. Rodriguez, “Stability versus
maneuverability of non-holonomic differential drive mobile robot:
Focus on aggressive position control applications,” in Proc. IEEE Conf.
Control Technol. Appl. (CCTA), Aug. 2020, pp. 388–395.

[52] C. Lu, J. Si, and X. Xie, “Direct heuristic dynamic programming for
damping oscillations in a large power system,” IEEE Trans. Syst., Man,
Cybern., B (Cybern.), vol. 38, no. 4, pp. 1008–1013, Aug. 2008.

[53] W. Guo, F. Liu, J. Si, D. He, R. Harley, and S. Mei, “Approximate
dynamic programming based supplementary reactive power control for
DFIG wind farm to enhance power system stability,” Neurocomputing,
vol. 170, pp. 417–427, Dec. 2015.

[54] W. Guo, F. Liu, J. Si, D. He, R. Harley, and S. Mei, “Online
supplementary ADP learning controller design and application to power
system frequency control with large-scale wind energy integration,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 8, pp. 1748–1761,
Aug. 2016.

[55] Q. Wei and D. Liu, “Data-driven neuro-optimal temperature control
of water–gas shift reaction using stable iterative adaptive dynamic pro-
gramming,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6399–6408,
Nov. 2014.

[56] Y. Jiang, J. Fan, T. Chai, and F. L. Lewis, “Dual-rate operational opti-
mal control for flotation industrial process with unknown operational
model,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4587–4599,
Jun. 2019.

[57] R. Enns and J. Si, “Apache helicopter stabilization using neural
dynamic programming,” J. Guid., Control, Dyn., vol. 25, no. 1,
pp. 19–25, 2002.

[58] R. Enns and J. Si, “Helicopter trimming and tracking control using
direct neural dynamic programming,” IEEE Trans. Neural Netw.,
vol. 14, no. 4, pp. 929–939, Aug. 2003.

[59] R. Enns and J. Si, “Helicopter flight-control reconfiguration for main
rotor actuator failures,” J. Guid., Control, Dyn., vol. 26, no. 4,
pp. 572–584, 2003.

[60] Q. Yang, W. Cao, W. Meng, and J. Si, “Reinforcement-learning-based
tracking control of waste water treatment process under realistic system
conditions and control performance requirements,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 52, no. 8, pp. 5284–5294, Aug. 2022.

[61] Y. Wen, M. Liu, J. Si, and H. Huang, “Adaptive control of powered
transfemoral prostheses based on adaptive dynamic programming,”
in Proc. 38th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC),
Aug. 2016, pp. 500–507.

[62] Y. Wen, J. Si, X. Gao, S. Huang, and H. H. Huang, “A new powered
lower limb prosthesis control framework based on adaptive dynamic
programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 9,
pp. 2215–2220, Sep. 2017.

[63] Y. Wen, J. Si, A. Brandt, X. Gao, and H. Huang, “Online reinforcement
learning control for the personalization of a robotic knee prosthesis,”
IEEE Trans. Cybern., vol. 50, no. 6, pp. 2346–2356, Jun. 2019.

[64] R. Wu, M. Li, Z. Yao, W. Liu, J. Si, and H. Huang, “Reinforcement
learning impedance control of a robotic prosthesis to coordinate with
human intact knee motion,” IEEE Robot. Autom. Lett., vol. 7, no. 3,
pp. 7014–7020, Jul. 2022.

[65] M. Li, Y. Wen, X. Gao, J. Si, and H. Huang, “Toward expedited
impedance tuning of a robotic prosthesis for personalized gait assis-
tance by reinforcement learning control,” IEEE Trans. Robot., vol. 38,
no. 1, pp. 407–420, Feb. 2022.

[66] R. Wu, J. Zhong, B. A. Wallace, X. Gao, H. Huang, and J. Si, “Human-
robotic prosthesis as collaborating agents for symmetrical walking,” in
NeurIPS, vol. 36, Nov. 2022, pp. 1–15.

[67] Y. Zhu and D. Zhao, “Comprehensive comparison of online ADP
algorithms for continuous-time optimal control,” Artif. Intell. Rev.,
vol. 49, no. 4, pp. 531–547, 2017.

[68] D. Liu, S. Xue, B. Zhao, B. Luo, and Q. Wei, “Adaptive dynamic
programming for control: A survey and recent advances,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 51, no. 1, pp. 142–160, Jan. 2021.

[69] D. Wang, H. He, and D. Liu, “Adaptive critic nonlinear robust control:
A survey,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3429–3451,
Oct. 2017.

[70] B. Song, J.-J. Slotine, and Q.-C. Pham, “Stability guarantees for
continuous RL control,” 2022, arXiv:2209.07324.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

WALLACE AND SI: CONTINUOUS-TIME REINFORCEMENT LEARNING CONTROL 21

[71] J. Kim, J. Shin, and I. Yang, “Hamilton–Jacobi deep Q-learning for
deterministic continuous-time systems with Lipschitz continuous con-
trols,” J. Mach. Learn. Res., vol. 22, no. 1, pp. 9363–9396, Sep. 2021.

[72] J. Lee and R. S. Sutton, “Policy iterations for reinforcement learning
problems in continuous time and space—Fundamental theory and
methods,” Automatica, vol. 126, Apr. 2021, Art. no. 109421.

[73] M. Lutter, B. Belousov, S. Mannor, D. Fox, A. Garg, and J. Peters,
“Continuous-time fitted value iteration for robust policies,” IEEE
Trans. Pattern Anal. Mach. Intell., early access, Oct. 19, 2022, doi:
10.1109/TPAMI.2022.3215769.

[74] C. Yildiz, M. Heinonen, and H. Lähdesmäki, “Continuous-time model-
based reinforcement learning,” in Proc. 38th Int. Conf. Mach. Learn.,
Jul. 2021, pp. 12009–12018.

[75] Y. Jiang, J. Fan, T. Chai, J. Li, and F. L. Lewis, “Data-driven flotation
industrial process operational optimal control based on reinforcement
learning,” IEEE Trans. Ind. Informat., vol. 14, no. 5, pp. 1974–1989,
May 2018.

[76] Y. Li, K. Sun, and S. Tong, “Observer-based adaptive fuzzy fault-
tolerant optimal control for SISO nonlinear systems,” IEEE Trans.
Cybern., vol. 49, no. 2, pp. 649–661, Feb. 2019.

[77] K. G. Vamvoudakis, D. Vrabie, and F. L. Lewis, “Online adaptive
algorithm for optimal control with integral reinforcement learning,”
Int. J. Robust Nonlinear Control, vol. 24, no. 17, pp. 2686–2710,
Nov. 2014.

[78] H. Zhang, L. Cui, X. Zhang, and Y. Luo, “Data-driven robust approx-
imate optimal tracking control for unknown general nonlinear systems
using adaptive dynamic programming method,” IEEE Trans. Neural
Netw., vol. 22, no. 12, pp. 2226–2236, Dec. 2011.

[79] X. Yang, D. Liu, and D. Wang, “Reinforcement learning for adap-
tive optimal control of unknown continuous-time nonlinear systems
with input constraints,” Int. J. Control, vol. 87, no. 3, pp. 553–566,
Mar. 2014.

[80] D. Liu, X. Yang, and H. Li, “Adaptive optimal control for a class
of continuous-time affine nonlinear systems with unknown internal
dynamics,” Neural Comput. Appl., vol. 23, nos. 7–8, pp. 1843–1850,
Dec. 2013.

[81] H. Liu, W. Zhao, F. L. Lewis, Z.-P. Jiang, and H. Modares, “Attitude
synchronization for multiple quadrotors using reinforcement learning,”
in Proc. Chin. Control Conf. (CCC), Jul. 2019, pp. 2480–2483.

[82] L. Cui et al., “Learning-based balance control of wheel-legged robots,”
IEEE Robot. Automat. Lett., vol. 6, no. 4, pp. 7667–7674, Oct. 2021.

[83] Y. Jiang and Z.-P. Jiang, “Robust adaptive dynamic programming with
an application to power systems,” IEEE Trans. Neural Netw., vol. 24,
no. 7, pp. 1150–1156, Jul. 2013.

[84] Y. Jiang and Z. P. Jiang, “Adaptive dynamic programming as a theory
of sensorimotor control,” Biol. Cybern., vol. 108, no. 4, pp. 459–473,
2014.

[85] A. A. Rodriguez, Analysis and Design of Feedback Control Systems.
Tempe, AZ, USA: CONTROL3D, 2003.

[86] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[87] A. Isidori, Nonlinear Control Systems: An Introduction. Berlin,
Germany: Springer-Verlag, 1985.

[88] H. W. Bode, Network Analysis and Feedback Amplifier Design.
New York, NY, USA: D. Van Nostrand, 1945.

[89] H. Nyquist, “Regeneration theory,” Bell Syst. Tech. J., vol. 11, no. 1,
pp. 126–147, Jan. 1932.

[90] P. A. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River,
NJ, USA: Prentice-Hall, 1995.

[91] F. Lin, Robust Control Design: An Optimal Control Approach.
West Sussex, U.K.: John Wiley & Sons, 2007.

[92] Z. P. Jiang, A. R. Teel, and L. Praly, “Small-gain theorem for ISS
systems and applications,” Math. Control, Signals, Syst., vol. 7, no. 2,
pp. 95–120, 1994.

[93] S. J. Bradtke, B. E. Ydstie, and A. G. Barto, “Adaptive linear quadratic
control using policy iteration,” in Proc. Amer. Control Conf. (ACC),
vol. 3, Jun./Jul. 1994, pp. 3475–3479.

[94] T. Liu and Z. P. Jiang, “A small-gain approach to robust event-triggered
control of nonlinear systems,” IEEE Trans. Autom. Control, vol. 60,
no. 8, pp. 2072–2085, Aug. 2015.

[95] X. Zhong and H. He, “An event-triggered ADP control approach for
continuous-time system with unknown internal states,” IEEE Trans.
Cybern., vol. 47, no. 3, pp. 683–694, Mar. 2017.

[96] Q. Zhao, J. Si, and J. Sun, “Online reinforcement learning control
by direct heuristic dynamic programming: From time-driven to event-
driven,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8,
pp. 4139–4144, Aug. 2022.

[97] M. Abu-Khalaf, F. L. Lewis, and J. Huang, “Neurodynamic program-
ming and zero-sum games for constrained control systems,” IEEE
Trans. Neural Netw., vol. 19, no. 7, pp. 1243–1252, Jul. 2008.

[98] K. G. Vamvoudakis and F. L. Lewis, “Multi-player non-zero-sum
games: Online adaptive learning solution of coupled Hamilton–Jacobi
equations,” Automatica, vol. 47, no. 8, pp. 1556–1569, Aug. 2011.

[99] A. Odekunle, W. Gao, M. Davari, and Z.-P. Jiang, “Reinforce-
ment learning and non-zero-sum game output regulation for multi-
player linear uncertain systems,” Automatica, vol. 12, Feb. 2020,
Art. no. 108672.

[100] C. Chen, L. Xie, K. Xie, F. L. Lewis, and S. Xie, “Adaptive opti-
mal output tracking of continuous-time systems via output-feedback-
based reinforcement learning,” Automatica, vol. 146, Dec. 2022,
Art. no. 110581.

[101] H. Modares, F. L. Lewis, and Z.-P. Jiang, “H∞ tracking control of
completely unknown continuous-time systems via off-policy reinforce-
ment learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10,
pp. 2550–2562, Oct. 2015.

[102] Software Related to Funded Research of F.L. Lewis. Accessed:
Apr. 8, 2022. [Online]. Available: https://lewisgroup.uta.
edu/code/Software%20from%20Research.htm

[103] K. Vamvoudakis, D. Vrabie, and F. Lewis, “Online policy iteration
based algorithms to solve the continuous-time infinite horizon optimal
control problem,” in Proc. IEEE Symp. Adapt. Dyn. Program. Rein-
forcement Learn., Mar. 2009, pp. 36–41.

[104] V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Practical Stability
of Nonlinear Systems. Singapore: World Scientific, 1990.

[105] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Philadelphia, PA, USA: SIAM, 2002.

[106] TNNLS 2022—CT-RL Optimal Control. Accessed: Dec. 1, 2022.
[Online]. Available: https://github.com/bawalla2/TNNLS-2022–CT-
RL-Optimal-Control.git

[107] K. Ogata, Modern Control Engineering, 3rd ed. Upper Saddle River,
NJ, USA: Prentice-Hall, 1997.

Brent A. Wallace received the B.S. degree from
Arizona State University, Tempe, AZ, USA, in 2019,
where he is currently pursuing the Ph.D. degree
with the School of Electrical, Computer and Energy
Engineering.

He was a Research Intern with The Aerospace
Corporation Microelectronics Group, El Segundo,
CA, USA. His research interests include adaptive
dynamic programming, nonlinear optimal control,
and control applications in aerospace systems.

Mr. Wallace received the NSF Graduate Research
Fellowship in 2020.

Jennie Si (Fellow, IEEE) received the B.S. and M.S.
degrees from Tsinghua University, Beijing, China, in
1985 and 1988, respectively, and the Ph.D. degree
from the University of Notre Dame, Notre Dame,
IN, USA, in 1992.

She consulted for Intel, Arizona Public Service,
and Medtronic, all in Phoenix, AZ, USA. She has
been a Faculty Member with the School of Elec-
trical, Computer and Energy Engineering, Arizona
State University, Tempe, AZ, USA, since 1991. Her
research focuses on reinforcement learning control

utilizing tools from optimal control theory, reinforcement learning, and neural
networks. Her recent work also involves optimal adaptive control of wearable
robots.

Dr. Si was a recipient of the NSF/White House Presidential Faculty Fellow
Award in 1995 and the Motorola Engineering Excellence Award in 1995. She
is a Distinguished Lecturer of the IEEE Computational Intelligence Society.
She has served on several professional organizations’ executive boards and
international conference committees. She was an Advisor to the NSF Social
Behavioral and Economical Directory. She has served on several proposal
review panels. She was an Associate Editor of the IEEE TRANSACTIONS ON
AUTOMATIC CONTROL, the IEEE TRANSACTIONS ON SEMICONDUCTOR
MANUFACTURING, and the IEEE TRANSACTIONS ON NEURAL NETWORKS
AND LEARNING SYSTEMS, and an Action Editor of Neural Networks. She is
a Senior Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND
LEARNING SYSTEMS.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ASU Library. Downloaded on March 19,2024 at 17:02:26 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TPAMI.2022.3215769

