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SUMMARY

Epigenetic mechanisms enable cells to develop novel adaptive phenotypes without altering their genetic
blueprint. Recent studies show histone modifications, such as heterochromatin-defining H3K9 methylation
(H3K9me), can be redistributed to establish adaptive phenotypes. We developed a precision-engineered ge-
netic approach to trigger heterochromatin misregulation on-demand in fission yeast. This enabled us to trace
genome-scale RNA and H3K9me changes over time in long-term, continuous cultures. Adaptive H3K9me es-
tablishes over remarkably slow timescales relative to the initiating stress. We captured dynamic H3K9me
redistribution events which depend on an RNA binding complex MTREC, ultimately leading to cells
converging on an optimal adaptive solution. Upon stress removal, cells relax to new transcriptional and chro-
matin states, establishing memory that is tunable and primed for future adaptive epigenetic responses.
Collectively, we identify the slow kinetics of epigenetic adaptation that allow cells to discover and heritably

encode novel adaptive solutions, with implications for drug resistance and response to infection.

INTRODUCTION

Adaptation enables cells to survive new or changing environments
by establishing novel phenotypes that enhance cell fitness.'?
These dynamic processes govern how organisms respond to a
wide range of physiological contexts, including how cells in our
body respond to infections, how cancer cells react to chemother-
apeutic agents, and how microbes develop antibiotic and anti-
fungal resistance.®® One major mechanism that cells leverage
toacquire new phenotypes is altering their DNA sequence through
genetic mutations.® Although beneficial mutations in populations
are rare, cells that acquire such mutations eventually outcompete
those that fail to adapt.”® However, genetic mutations represent
an inflexible commitment to a new environment that cannot be
reversed following a return to cellular homeostasis.®'° Further-
more, it is well known that genetic adaptation to one condition is
often associated with a fitness loss in other environments, and
hence such changes may represent sub-optimal and terminal so-
lutions amidst fluctuating environments. ™"

Alternatively, through epigenetic adaptation, cells acquire new
phenotypes without changing their genetic blueprint.'? While ge-
netic mutations are irreversible, epigenetic changes can buffer
against deleterious mutations without compromising overall
fitness of the cell.”"'® In principle, this strategy offers a dynamic,
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reversible, and flexible form of adaptation well-suited to rapidly
changing environmental conditions, especially when such condi-
tions persist only for a few generations.*~'® Moreover, due to the
flexibility of this mode of adaptation, epigenetic changes often
pose serious clinical challenges during the evolution of chemo-
therapy resistance in cancer cells or the widespread emergence
of antifungal resistance.’” 2" Thus, understanding how cells
leverage adaptive epigenetic mechanisms and targeting such
pathways can help us achieve improved clinical outcomes.

In one striking example of heritable and reversible epigenetic
adaptation, the yeast translation-termination factor Sup35 can
self-aggregate under stress to form the [PSI*] prion.?>%* [PSI*]
sequesters soluble (active) Sup35, promoting genome-wide
translation readthrough, and uncovering previously cryptic ge-
netic variation. The aggregated conformational state, when acti-
vated, rapidly unlocks novel and heritable phenotypes that may
be beneficial in unanticipated conditions. How can other epige-
netic pathways similarly unleash latent, heritable, and adaptive
phenotypes?

Considerable evidence suggests that cells can alter their tran-
scriptomes in response to stress through alterations in chro-
matin accessibility, rewiring existing regulatory networks, and
orchestrating wholesale changes in histone modification sta-
tes.'®242° Moreover, recent work has shown that diverse
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histone modifications with different canonical functions may
have adaptive potential by being dynamically redistributed to
new genomic loci under different stress conditions.’®*' How
cells exploit these heritable, chromatin-based epigenetic pro-
grams to discover genes that can be activated or repressed to
enhance fitness and survival remains mysterious.

In principle, the adaptive and dynamic redistribution of histone
modifications should meet three critical requirements. First,
modifications can spatially redistribute, either through spreading
from existing sites or the formation of new islands at novel loca-
tions in the genome. This allows cells to sample altered chro-
matin and transcriptional states. Next, the resulting histone
modification-dependent changes in gene expression must
benefit cells and their progeny in this new environment.®' This
enables cells that identify optimal adaptive solutions to persist
and become dominant in the population. Lastly, memory of the
new cell state can prepare cells to more rapidly respond to a
future instance of being exposed to the initiating stress.®>=°
Thus, to faithfully map epigenetic adaptation pathways, it is
necessary to reconstruct these highly dynamic processes and
be able to connect genome-wide changes at the RNA and chro-
matin levels with cell fitness prior to and following adaptation.

To reconstruct these dynamics, we developed an experi-
mental system based on the fission yeast, Schizosaccha-
romyces pombe (S. pombe). In S. pombe, H3K9 methylation
(H3K9me) specifies silent epigenetic states otherwise referred
to as heterochromatin.®” Although heterochromatin normally
resides at regulatory regions of the genome, such as centro-
meres and telomeres, H3K9me can also be deployed to down-
regulate novel targets.*®*® One example of an acute stress in
S. pombe that elicits an adaptive epigenetic response is so-
called “heterochromatin misregulation.” Deleting two major
H3K9me antagonists—the H3K14 histone acetyltransferase
Mst2 and the putative H3K9 demethylase Epe1—leads to the
adaptive silencing of the sole H3K9 methyltransferase, Cir4,
suppressing aberrant genome-wide H3K9me and restoring
fitness.*” We reasoned that this system would provide an ideal,
minimal, and genetically pliable framework to induce hetero-
chromatin misregulation and unveil the sequence of events
that occur prior to adaptation.

We developed a precision genetic approach to trigger and
reverse heterochromatin misregulation on-demand.*®“° Taking
inspiration from laboratory evolution experiments, which have
been powerful in defining genetic adaptations in microbial pop-
ulations grown under selective pressure, we coupled this ability
to induce heterochromatin misregulation with advanced contin-
uous culture methods that allow us to quantify cell fithess in real-
time and identify causal genome-wide transcriptional and chro-
matin-state changes.”® Our inducible experimental system is a
significant departure from previous studies that focused primar-
ily on beginning and end-state measurements.?’ By quantifying
cell fitness in yeast populations, we could precisely trace the
time evolution of the adaptive silencing program under multiple
cycles of heterochromatin stress and recovery. Our approach
uncovers how cells can redistribute H3K9me, records network-
level changes in transcription, and defines how this dynamic
interplay unlocks cryptic epigenetic variation to enable cell sur-
vival under conditions of acute stress. In summary, our study
captures key features of how cells turn an existing regulatory
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pathway that normally ensures H3K9me is deposited only at
constitutive sites into an adaptive mechanism with implications
for drug resistance and response to infection.

RESULTS

An inducible Epe1 depletion system to trigger
heterochromatin misregulation on-demand

Epe1, a putative H3K9 demethylase, and Mst2, an H3K14 acetyl-
transferase, have additive roles in regulating S. pombe hetero-
chromatin. Deleting both Epe1 and Mst2 leads to acute hetero-
chromatin misregulation, promoting an adaptive epigenetic
response.”” We first confirmed previously published results by
generating mst24epe14 cells, which successfully adapted by
silencing the H3K9 methyltransferase, Clr4. We measured an
approximately ~4-fold decrease in Clr4 mRNA levels and the
establishment of adaptive H3K9me2 at the clr4+ locus (Figures
S1A-S1C).

We designed a system to trigger heterochromatin misregula-
tion on-demand by inducibly, rapidly, and completely depleting
Epe1. This enables us to induce acute heterochromatin misre-
gulation and subsequently trace the ensuing adaptive response
circumventing the limitations associated with endpoint genetic
measurements. Our system controls Epel1 at (1) the trans-
criptional level, through the thiamine-repressible promoter
(nmt81), and (2) the protein level, by fusing an auxin-inducible
degron tag to the C terminus of Epe1 to trigger ubiquitination-
mediated degradation. We refer to this inducibly degradable
Epel allele as epe?19%9 (Figure 1A).***° Thiamine addition
caused an 8-fold reduction in Epe1 mRNA levels which, when
combined with napthaleneacetic acid (NAA) supplementation,
led to the absence of any detectable Epel protein within
30 min (Figures 1B and 1C). Thus, epe19®9 leads to rapid and
negligible protein and transcript levels after addition of NAA
and thiamine to cells.

We quantified the mean and standard deviation for colony
sizes grown with and without Epe1 (Figure 1D). We observed
generally smaller colonies and substantial colony size hetero-
geneity when we depleted Epel in an mst24 background, re-
flecting a fitness loss associated with stress (Figures 1D and
1E). Furthermore, mst24epe1®9 cells exhibited a 4-fold
decrease in Clr4 mRNA levels after 5 days of Epe1 depletion,
recapitulating the adaptation we noted in mst24epe14 cells
(Figures 1F and S1C). By contrast, depleting Epel in an
mst2+ background caused a less-pronounced growth defect
and no detectable adaptive Clr4 silencing, consistent with pre-
vious studies.*’

To test if adaptation was dependent on the order in which the
two heterochromatin regulators were depleted, we developed a
strain to deplete Mst2 (mst29¢9) in an epeld background
(Figures S1D-S1G). While there was still some decrease in col-
ony size upon Mst2 depletion, this strain did not produce the
same degree of heterogeneity in colony size (Figures S1E and
S1F). Additionally, we observed that CIr4 was silenced to a lesser
degree compared with mst24epe1%9 cells (Figure S1G). We
also developed strains where both Mst2 and Epel could
be simultaneously depleted in an inducible manner (mst29¢9
epe1®9), which allowed us to test whether pre-deleting
Epe1 or Mst2 produces differences in adaptive phenotypes
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Figure 1. An inducible Epe1 depletion system to trigger heterochromatin misregulation on-demand

(A) (Left) Epe1 and Mst2 prevent uncontrolled H3K9me spreading. The absence of Mst2 and Epe1 triggers heterochromatin misregulation. (Right) Construction of
a precision-engineered genetic approach to toggle Epe1 availability in cells (Epe19°9). Epe1 transcription is regulated by a thiamine inducible nmt81 promoter,
and protein levels are regulated by an auxin-inducible degron tag (AID). Adding auxin and thiamine promotes the on-demand, inducible depletion of Epe1.

(B) RT-gPCR measuring epe 1+ RNA levels following Epe1 depletion, relative to +Epel. n = 3.

(C) Western blot for Epe1-3xFLAG-AID in Epe19®9 strains.
(D) S. pombe colonies on solid media after 3 days of growth.

(E) Colony size distribution in indicated genetic backgrounds and growth conditions, quantified after 5 days of growth. Mean and standard deviation of distri-
butions in pixels?: mst2 + epe1%9 no treatment (240.4 + 64.2), thiamine and NAA (151.2 + 46.6); mst24epe19%9 no treatment (246.2 + 74.6), thiamine and NAA

(109.4 + 64.0).

(F) RT-gPCR measuring clr4+ RNA levels following 5 days of Epe1 depletion, relative to +Epel1. n = 3.
Depletion is pictorially indicated with either a white box for no treatment or an orange box for treatment. Error bars represent standard deviation.

(Figure S1H). mst29®9epe19%9 exhibited comparable levels of
colony size variegation and more robust clr4+ mRNA suppres-
sion compared with mst24epe1%9 (compare Figures 1C-1E to
Figures S1I-S1K). Nevertheless, we noted residual levels of
Mst2 protein in mst29¢9 strains that remained refractory to deple-
tion, which we reasoned could potentially have unintended con-
sequences on our adaptation measurements (Figures S1D and
S1H). Collectively, our results establish a system for the induc-
ible, rapid, and complete depletion of Epe1 and demonstrate
that the epe19°9 allele recapitulates how S. pombe cells adapt
in response to acute heterochromatin misregulation.*”

2224 Developmental Cell 59, 2222-2238, August 19, 2024

Time evolution of adaptive silencing during
heterochromatin misregulation

To trace adaptation following Epe1 depletion, we deployed
the automated eVOLVER continuous culture platform (Fig-
ure 2A).°52 eVOLVER enables long-term maintenance of inde-
pendent S. pombe cultures in miniature bioreactors using a
continuous turbidostat routine with real-time growth rate quanti-
fication.>**° The eVOLVER system also features the ability to
schedule media changes, including switching between non-
inducer and inducer media. As a result, we can precisely quantify
changes in growth resulting from Epe1 depletion and sample
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Figure 2. Time evolution of adaptive silencing during heterochromatin misregulation

(A) We used the eVOLVER system to control growth of cells using a continuous turbidostat routine, with real-time quantification of growth rate and scheduled
media changes.

(B) Real-time monitoring of mst24epe19e9 growth rates in eVOLVER. Lines represent moving averages. Epel depletion was initiated at t = 0 h. Individual
trendlines indicate replicates (N = 2).

(C) RT-gPCR measuring clr4+ RNA levels following 5 days of Epe1 depletion, relative to +Epel. n = 3.

(D) H3K9me2 ChIP-gPCR measured at the clr4+ locus as a function of time following Epe1 depletion. n = 2.

(E) H3K9me3 ChIP-gPCR measured at the clr4+ locus as a function of time following Epe1 depletion. n = 2.

(F) Heatmap of significant differentially expressed genes following Epe1 depletion relative to untreated cells. Transcripts shown n = 3,896, significance cutoff of
Adjpval < 0.01.

(G) PCA of indicated RNA-seq samples. n = 3, ellipse level = 0.9.

Orange shaded portion represents the Epe1 depletion period. Error bars represent standard deviation.
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Figure 3. Heterochromatin misregulation triggers the targeted expansion of pre-existing H3K9me3 islands
(A) H3K9me3 ChlIP-seq over S. pombe chromosome Il. Enrichment is in log, fold change of immunoprecipitation (IP) normalized to input. Time of Epe1 depletion is
indicated on the left side of each track. Peaks identified are denoted in red below each track.

(legend continued on next page)
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cells as a function of time for molecular measurements to recon-
struct the dynamics of Clr4 silencing and concomitant changes
in transcription.

We grew mst24epe19¢ populations in eVOLVER for 48 h at
32°C before switching to inducer media to trigger Epe1 depletion
(STAR Methods). Upon induction, we observed a substantial
growth rate reduction over 48 h, followed by growth recovery
corresponding to successful adaptation (Figure 2B). Based on
the eVOLVER time traces, we posited that cells transit through
three primary phases upon experiencing heterochromatin misre-
gulation: (1) untreated (before inducing Epe1 depletion) (2),
stress (post-induction, characterized by poor growth), and (3)
adapted (growth recovery). Replicate eVOLVER populations of
mst2%9epe 1989 closely followed these same growth trends (Fig-
ure S2A). By contrast, we observed little change in the growth
rate in mst24epe1%9cir4 A populations upon induction of Epe1
depletion, supporting that the growth rate changes in mst2 de-
pe199 strains were dependent on H3K9me (Figure S2B).

We then harvested mst24epe 199 cells grown in 24-h time in-
tervals for quantification of clr4+ mRNA and H3K9me2/me3
levels. In the initial stress phase (during the first 48 h post-induc-
tion), we observed no changes in clr4+ mRNA and very minimal
increases to H3K9me2/me3 levels (Figures 2C-2E). However, af-
ter 48 h, we observed a substantial decrease in clr4+ mRNA
expression, coinciding with H3K9me2/3 enrichment (Figures
2C—-2E and S2C-S2D). Thus, the transition between the stress
and adapted phases is closely aligned with Clr4 repression.
These results demonstrate that growth rate and Cir4 silencing
dynamics are closely coordinated as cells respond to stress
arising from heterochromatin misregulation.

To assess transcriptome-wide changes during Epe1 deplet-
ion, we performed RNA sequencing (RNA-seq) on mst2 depe19%9
samples, collected at 24-h intervals. In the stress phase, we
observed acute changes to the transcriptome relative to un-
treated mst24epe199 cells (Figure 2F). Principal-component
analysis (PCA) clearly captured time-dependent transitions be-
tween different growth phases following Epe1 depletion, sho-
wing these gene expression changes gradually vanished by
the time adaptation was completed (Figures 2G and S2E).

We additionally performed RNA-seq analysis on mst24epe1 4
cells to compare with mst24epe19? cells. Most strikingly, the
transcriptomes of these cells most closely resembled untreated
mst24epe199 cells (0 h) (Figures 2G and S2E). Importantly, inde-
pendent mst24epe14 clones have few differences in their tran-
scriptomes, implying that different isolates make similar adaptive
choices (Figures S2F and S2G). Since mst24epel4 silences
clr4+ and has been grown well beyond 120 h, their convergence
toward the untreated transcriptome implies that there are addi-
tional RNA level changes that occur beyond our 120-h adapta-
tion time course. For example, we found that, in Epe1-depleted
cells at 120 h, genes associated with iron homeostasis are upre-
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gulated while genes associated with ATP synthesis and cellu-
lar respiration are downregulated (Figure S2H; Table S4). In
mst24epeild cells, these genes returned to expression levels
equivalent to untreated mst2 4epe19%9 cells (Figure S21).°° Taken
together, our system reveals distinct population-level cell states
during the adaptation process.

Heterochromatin misregulation triggers the targeted
expansion of pre-existing H3K9me3 islands

To investigate how heterochromatin misregulation drives
changes in the H3K9 methylome over time, we grew mst24e-
pe19®9 batch cultures over 120 h. chromatin immunoprecipita-
tion sequencing (ChlIP-seq) revealed expansion of specific het-
erochromatin domains, with very little enrichment for H3K9me3
peaks outside these regions. These domains were primarily at
constitutive heterochromatin (pericentromeres, telomeres, and
the ribosomal DNA locus) and several heterochromatin islands
centered around meiotic genes and ncRNAs (Figures 3A and
S3A; Table S5).“%7°6 We clustered H3K9me3 island peaks
into four groups, where three clusters show a pattern of
H3K9me3 spreading up to the end of stress phase (48 h) followed
by a steady decay of H3K9me3 in the adapted phase (Figures 3B
and 3C). In contrast to other islands, H3K9me3 is deposited de
novo at the clr4+ locus and accumulates over time (Figures 3D,
3E, and S3B). Subsequent ChIP-seq in mst2%9epe19¢9 also
confirmed that pre-deletion of Mst2 does not drive pre-adapta-
tion, wherein the islands that expand during adaptation are iden-
tical to mst24epe199 cells (Figures S4A and S4B).

We cross-referenced our H3K9me3 ChIP-seq and RNA-seq
time course data to measure transcriptomic changes caused
by aberrant H3K9me spreading during heterochromatin misre-
gulation. We found a total of 753 genes under expanded
H3K9me3 peaks during stress phase (48 h) that were previously
not marked by H3K9me3 in the untreated population (Fig-
ure S4C). Surprisingly, of these 753 genes, a subset of only
113 genes were significantly downregulated (Figure 3F). This
subset of genes notably included a collection of 21 essential
genes, including the mitochondrial LYR (leucine-tyrosine-argi-
nine motif) protein cup?+.>'*" These essential genes are
repressed up until the end of stress phase (48 h) after which
clr4+ silencing and growth rate recovery coincides with their
de-repression (Figure 3G). This observation suggests that the
downregulation of cup7+ and other essential genes proximal to
expanding H3K9me3 islands may correlate with poor cell growth
during early heterochromatin misregulation. By contrast, during
the adapted phase, the only genes both marked by novel
H3K9me3 and significantly downregulated were those proximal
to the clr4+ locus (Figures S4D-S4F). Together, these results
indicate that heterochromatin misregulation drives targeted exp-
ansion of existing H3K9me domains, leading to aberrant sile-
ncing of neighboring essential genes. Additionally, development

B) H3K9me3 ChIP-seq enrichment centered on ncRNA.394. Genomic tracks below show coding transcripts in black, non-coding transcripts in red.

C) H3K9me3 ChlIP-seq enrichment centered on mei4+.

E) K-means clustered heatmap (k = 4, 24 kb windows) of H3K9me3 islands during Epe1 depletion at 0, 48, and 120 h in mst2 4epe19%.
F) Venn diagram depicting downregulated genes by 48 h after Epe1 depletion and genes marked by H3K9me3 selectively at 48 h.
G) Heatmap depicting downregulated essential genes selectively marked by H3K9me3 at 48 h. Changes in expression are log, fold change relative to untreated

(
(
(D) H3K9me3 ChlIP-seq enrichment centered on clr4+.
(
(
(

mst24 epe199 cells.
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of facultative heterochromatin over the clr4+ locus occurs de
novo and represents rare ectopic nucleation of H3K9me.

Activation of the cellular stress response pathway is
required for survival but not adaptive choice

To identify gene pathways relevant to the stress phase of hetero-
chromatin misregulation, we analyzed the set of differentially ex-
pressed genes within the stress phase of mst24epe19®9 cells,
predicting that it is most likely to contain the most critical popu-
lation-level transcriptomic features required for adaptation. En-
riched GO terms in this set included genes involved in ribosome
biogenesis, translation, caffeine and rapamycin treatment, nitro-
gen depletion, and the core environmental stress response
(CESR) (Figures 4A and S5A).°%°° These results indicate that
distinct environmental stress responses overlap significantly
with the cellular response to heterochromatin misregulation.
Mapping time-dependent changes across these GO categories
reveals that the differential expression of cell proliferation and
stress response genes subsides following adaptive Clr4 sile-
ncing (Figures 4B and S5B—-S5F). Considering this apparent rela-
tionship, we wanted to interrogate the role that the stress
response pathway plays in cell survival during heterochromatin
misregulation and adaptive Clr4 silencing.

To interrogate the functional role of CESR during heterochro-
matin misregulation, we deleted the mitogen-activated protein
(MAP) kinase Sty1 in an mst2 4epe19%9 background. Sty1 regu-
lates the stress response pathway in S. pombe by phosphory-
lating transcription factors that activate the expression of stress
response genes, including a majority of CESR genes (Fig-
ure 4C).%® In our original mst2 4epe19®9 plate assay, when equal
numbers of cells were plated, colony numbers were approxi-
mately equivalent regardless of Epel1 expression, indicating a
high survival rate (Figure 4D). To test how stress response plays
into this survival, we similarly plated mst24epe1%9sty14.
mst24epe1%9sty14 colonies were on average smaller than
mst24epe1%®9 cells, both pre- and post-Epel depletion (Fig-
ure 4E). We observed only half as many colonies formed upon
plating mst24epe1%9sty14 cells upon Epel depletion comp-
ared with mst24epe1%9 cells (Figure 4F). However, despite
lower rates of survival, Epe1-depleted mst2depe19%9sty14 col-
onies showed equally strong adaptive silencing of CIr4 transcrip-
tion compared with mst24epe199 (Figure 4G). This suggests
that the activation of stress response pathways is an on-pathway
intermediate prior to adaptation but not responsible for driving
redistribution of H3K9me.®® Altogether, these results support
Sty1 activity as primarily beneficial for survival during hetero-
chromatin misregulation.

Loss of the RNA-binding protein Red1 attenuates stress
and delays adaptive clr4+ silencing

We hypothesized that cells must leverage existing heterochro-
matin nucleation pathways to establish adaptive heterochromat-
in. Since ChIP-seq identified heterochromatin islands at meiotic
genes and ncRNA, we focused on two major heterochromatin
nucleation pathways—RNAi (Ago1, Dcr1) and MTREC (Mtl1-
Red1 core).*5°6:61:52 Surprisingly, we observed a lesser degree
of clr4+ silencing in the adapted phase in red74 cells but not
ago14 ordcr14 (Figures 5A and S6A).*” To determine if changes
in clr4+ silencing correlate with any change in stress and adap-
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tation, we plated cells on solid induction media and also trac-
ked growth rates under continuous culture conditions using
eVOLVER (Figures 5B, S6B, and S6C). These approaches
confirmed a fitness increase during the stress phase compared
with red7+ cells, further confirming a distinctive role for Red1
during the stress and subsequent adaptive growth phases. To
further quantify and compare loss of fitness during the stress
phase, we calculated the mean minimum decrease in growth
rates for each eVOLVER experiment (STAR Methods). red14 cul-
tures displayed a significantly smaller decrease in growth rate,
like mst24epe19®9cird4, compared with mst24epe1?®9 or
RNAi deletions (Figure 5B). We also compared CIr4 mRNA be-
tween untreated red74 and red7+ and identified that this lesser
degree of clr4+ silencing was not due to pre-adaptation in un-
treated red14 cells (Figure S6D). Hence, these results suggest
that MTREC-mediated Clr4 recruitment may nucleate aberrant
heterochromatin during the stress phase to drive downstream
adaptation.®*=%°

To determine how H3K9me changes in mst24epe19e9
red14 cells lead to reduced stress and delayed clr4+ silencing,
we acquired batch cultures over a 120-h period. ChlP-seq re-
vealed the expansion of H3K9me3 over the clr4+ locus appeared
restricted relative to mst24epe19®9red1+ cells (Figures 5C and
S6E). Additionally, during the stress period, mst2 depe19*9red1 4
cells lost several H3K9me3 islands at meiotic genes, consistent
with a role for Red1 in nucleating these islands in cycling cells
(Figure 5D).°® Furthermore, these remaining islands in red74
have less H3K9me3 enrichment at 48 h compared with red7+.
These H3K9me3 peaks also show slower decay by 120 h,
possibly due to weaker clr4+ silencing. These observations led
us to test if any specific Red1-dependent H3K9me island expan-
sions were primary drivers of the stress phase. For this, we noted
an expansion of H3K9me3 from the mei4+ locus to a proximal
gene, cdk9+. Cdk9 is an essential kinase that regulates various
aspects of RNA polymerase |l transcription including initiation,
elongation, and termination.®®°® Specifically, cdk9+ is silenced
during the stress phase (24-48 h) but is derepressed once adap-
tation is complete (120 h) (Figures 3E and 3G). To compensate
for Red1 mediated cdk9+ silencing, we inserted a second copy
of cdk9+ at the leuT+ locus in mst24epe19%9 (“2x cdk9+") (Fig-
ure 5E). Our rationale was that the second copy of cdk9+ would
not be subject to transient silencing in a Red1-dependent
manner during the stress phase. Indeed, we observed a weaker
growth defect in colony size upon depletion of Epe1, compared
with the original strain with one copy of cdk9+ (Figure S6F). This
was complemented by reduced clr4+ silencing similar to
mst2Aepe1%9red1 4. These observations suggest that aberrant
cdk9+ silencing is a critical downstream event that promotes
stress and subsequent adaptation (Figure 5F). Taken together,
these results show which critical heterochromatin island expan-
sions promote epigenetic adaptation.

Adaptive heterochromatin exhibits memory upon re-
induction of stress

The epe19®9 allele enables us to rapidly and reversibly cycle be-
tween Epe1 depletion and expression. To test whether cells that
had adapted to Epe1 loss also exhibited memory, we restored
Epe1 expression in adapted cells for different recovery periods.
We refer to these recovery periods as short (24 h), medium (48 h),
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Figure 4. Activation of the cellular stress response pathway is required for survival but not adaptive choice
(A) Selected GO terms for genes differentially expressed within stress phase (48 h of Epe1 depletion).
(B) Heatmap showing average fold change for differentially expressed genes in selected GO categories, relative to untreated mst2 4epe19°9 cells.

(C) Environmental stresses trigger a stress-activated MAPK cascade that phosphorylates Sty1, which drives a global transcriptional response that includes the
core environmental stress response.

(D) Examples of mst2Aepe1degsty1A S. pombe colonies on solid media after 3 days of growth.

(E) Colony size distribution, in pixel area, under different growth conditions, and quantified after 5 days of growth. Mean and standard deviation of distributions in
pixels?: mst2 Aepe199sty14 no treatment (123.0 + 61.9), treated (39.1 = 43.2); mst24epe19°9 no treatment (246.2 + 74.6), treated (109.4 + 64.0).

(F) Percentage of cells that survive following Epe1 depletion for 5 days. Error bars represent standard deviation, n = 3.

(G) RT-gPCR measuring clr4+ RNA levels following 5 days of Epe1 depletion, relative to +Epe1. Error bars represent standard deviation, n = 3.

Depletion is pictorially indicated with either a white box for no treatment or an orange box for treatment.

and long (72 h). Following the recovery period, we re-initiated As controls, untreated mst24epe19®9 cells exhibited smaller-
Epe1 depletion to generate a second stress phase (Figures 6A  sized colonies with substantial heterogeneity upon Epe1 deple-
and 6B). If Clr4 silencing is faster during the second stress phase, tion, and adapted cells formed uniformly sized colonies upon
this would imply that cells have the potential for adaptive mem-  sustained Epe1 depletion (Figure 6C). Interestingly, adapted
ory, where the original adaptation can be recalled more quickly  cells that had experienced short 24 h re-expression of Epe1 pro-
compared to initial adaptive response. duced a bimodal distribution of small and large colonies. This
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suggests that a proportion of short recovery cells had reverted to
the untreated state, while others preserved the adapted state
during the 2" stress phase. Medium and long recovery cell pop-
ulations produced colony size phenotypes that matched un-
treated cells, suggesting that a prolonged recovery phase (>24
h) led to the complete loss of adaptive memory. Hence, our re-
sults reveal that a memory associated with heterochromatin mis-
regulation can persist for about 24 h (~6-8 cell generations)
following the removal of the initiating stress.

To measure memory at the chromatin level, we performed
H3K9me2 and H3K9me3 ChIP-seq on recovering mst2 4epe 199
cells. Short recovery led to a reduction of H3K9me2 and
H3K9me3, and by medium recovery, adaptive heterochromatin
had decayed to undetectable levels (Figures 6D and S7A). To
test if cells in short recovery could re-establish silencing at the
clrd4+ locus, we reintroduced heterochromatin stress to short re-
covery cells by depleting Epe1 a second time. After stress rein-
troduction, short recovery cells re-established H3K9me3 within
24 h, compared with 72 h in untreated cells (Figure 6D). These
changes in CIr4 adaptive heterochromatin are mirrored in clr4+
transcription; recovering cells expressed clr4+ at unstressed
levels, while cells that have had a prior experience of stress
quickly re-established clr4+ adaptive silencing (Figure G6E).
These results show that novel adaptive H3K9me is maintained
for several cell divisions during stress recovery, and this residual
methylation can encode epigenetic memory to more rapidly re-
establish adaptive silencing.

The timescale of adaptive memory can be tuned by
histone acetylation

To identify other chromatin-based mechanisms that could tune or
enhance adaptive memory duration, we considered the interde-
pendence of H3K9me with other histone modifications. Histone
hyperacetylation (H3K9Ac, H3K14Ac, H3K18Ac) and histone turn-
over are characteristic features of actively transcribed genes,
and loss of histone acetylation can promote heterochromatin in-
heritance.®®’® Although Mst2 has been deleted in our strains
(mst24epe1989), it is possible that other histone acetyltrans-
ferases could have additive roles in tuning the duration of adaptive
memory.”" We deleted a second acetyltransferase, Gen5, in a
mst24epe199 background (mst24gcn54epel®®d). Cells with
the mst24gcn5 4epe 1989 genotype grew comparably to mst2 de-
pe19 prior to Epe1 depletion and had a slightly stronger stress
phenotype after loss of Epel (Figure S7B). Furthermore, during
Epe1 reintroduction and re-depletion, mst24gcn5depe199 re-
tained large colony sizes even during the long recovery period,
implying that these cells may exhibit prolonged, adaptive memory
compared with mst24gcn5+ cells (Figure 7A).

¢? CellPress

Next, we measured other molecular correlates of memory-
clr4+ mRNA levels and H3K9me3 levels at the clr4+ locus. Dur-
ing each recovery phase, clr4+ mRNA levels reverted to high
levels of transcription, matching what we typically observed in
untreated cells. Supporting our model that H3K9me3 is required
for epigenetic adaptive memory, all recovering mst24gcnb de-
pe199 cells retained H3K9me2/3 at the clrd+ locus, correlating
with loss of H3K14Ac (Figures 7B, S7C, and S7D). These results
suggest that enhanced H3K9me, arising from the absence of
H3K14Ac, can tune the length of adaptive memory. This interde-
pendence on post-translational modifications may allow for cells
to rapidly toggle adaptive silencing states, enabling them to
extend (or erase) memory of past stress events.

Importantly, although H3K9me3 levels are higher in gcn54
than in gcn5+ cells, the modification itself was not sufficient to
repress clr4+ during the recovery phase. Instead, clr4+ adaptive
silencing was reinstated only after Epe1 depletion. When recov-
ering mst24gcn5 depe 1969 was re-exposed to a 2™ stress, cells
re-established Clr4 silencing even though adaptive H3K9me3
maintained a similar distribution compared with the recovering
population (Figures 7B and 7C). Our results imply that, while
H3K9me has an important role in preserving memory associated
with Clr4 silencing, it may not be the only factor that contributes
to the silencing process (Figures 6D, 6E, and S7A-S7C). There-
fore, we tested whether short recovery cells exhibited unique
transcriptional changes that could account for adaptive memory
and silencing by performing RNA-seq analysis on short and
medium recovery mst24epe19®9 cell populations. Indeed, PCA
reveals recovering cells mostly converge to the untreated tran-
scriptome, with some differential expression that is still pre-
served in short recovery samples (Figure S7E). Importantly,
when Epe1 is re-expressed during short recovery, the transcrip-
tional state does not instantaneously revert to the initial un-
treated state and exhibits differential expression enriched in
stress response and metabolic processes (Figure S7F). Since
we have previously implicated MTREC in adaptive Clr4 silencing,
we examined known Red1 targets.”>”® We observed significant
transcriptional changes in ncRNAs and Red1 targets during the
2" stress phase, reinforcing the causal role that MTREC has in
adaptive silencing (Figures S7G and S7H).

DISCUSSION

Cells can leverage epigenetic pathways to modulate gene
expression states in response to environmental change. In
fission yeast, H3K9me exhibits adaptive potential when cells
encounter various environmental stressors, including anti-fun-
gals, caffeine, or nutrient restriction.?'*%:°"-"475 These stressors

Figure 5. Loss of the RNA-binding protein Red1 attenuates stress and delays adaptive clr4+ silencing

(A) RT-gPCR measuring clr4+ RNA levels following 5 days of Epe1 depletion, relative to +Epe1. n = 3,6. Asterisk indicates p < 0.05.

(B) (Left) Real-time monitoring of population growth rates of mst24epe19®9red14 eVOLVER cultures. Lines represent moving averages. Orange shaded portion
represents Epe1 depletion. (Right) Plot showing mean minimum decrease in growth rate for eVOLVER experiments of the indicated genotypes. n = 3.

(C) H3K9me3 ChlP-seq tracks centered on clr4+ after 5 days of Epe1 depletion in indicated genotypes. Identified peaks denoted in red, enrichment is IP

normalized to input (logy).

(D) Heatmap showing clustered H3K9me3 islands (k = 4 from Figure 3E, 24 kb window), in mst24epe1%9red1 4.
(E) Schematic for adding an ectopic copy of cdk9+ at the leu7+ locus to bypass heterochromatin spreading from mei4+.
(F) RT-gPCR measuring clr4+ RNA levels following 5 days of Epe1 depletion, relative to +Epe1. n = 3,6. Asterisk indicates p < 0.05.

Error bars represent standard deviation.
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Figure 6. Adaptive heterochromatin exhibits memory upon re-induction of stress

(A) Schematic indicating cycling of Epe1 availability in mst24epe19e9 to measure epigenetic memory at the phenotype, transcription, and chromatin level.

(B) Western blot for Epe1-3xFLAG-AID in mst2depe19®9 cells. Adapted and re-induced adapted cells were treated for Epe1 depletion for a minimum of 24 h.
(C) (Bottom) Colony size distribution of mst24epe19°9 cells after 3 days of growth with Epe1 depletion. (Top) Epe1 expression and snapshots of culture plates.
Mean and standard deviation of distributions in pixels?: 0 h (34.5 + 27.3), 120 h (118.9 + 37.6), 144 h (87.3 + 59.4), 168 h (26.3 + 25.9).

(D) H3K9me3 ChlP-seq tracks centered on clrd+ after 5 days of Epe1 depletion. Identified peaks denoted in grayscale, and enrichment is IP normalized to
input (logy).

(E) RT-gPCR measuring clr4+ RNA levels following 5 days of Epe1 depletion, relative to +Epe1. Error bars represent standard deviation, n = 3.
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(legend continued on next page)

Developmental Cell 59, 2222-2238, August 19, 2024 2233



¢ CellP’ress

impact two major H3K9me regulators, Epe1 and Mst2, at RNA
and protein levels. Our ability to rapidly and reversibly control
Epel and Mst2 levels enables us to mimic the natural stress
response of fission yeast cells, independent of environmental
factors. We propose the following model for epigenetic adapta-
tion. Exposure to stress causes Epe1 to undergo proteosome-
mediated degradation while Mst2 produces a MYST-domain-
deficient isoform.?'>” This manifests a slow-growth phenotype
that allows for an adaptive silencing pathway to redistribute
H3K9me. While our inducible depletion system has several
controlled variables that separate it from a natural system, it un-
deniably provides a window into the earliest transcriptomic
changes that cells undergo prior to adaptation.

Our system enables the capture of early and intermediate tran-
scriptional states that lead to adaptive silencing of clr4+, which
would be impossible to visualize using conventional genetic
methods.*” We found that adaptive clr4+ silencing takes up to
120 h, which is two orders of magnitude slower than the time-
scale of Epe1 depletion (~30 min). We propose these dynamics
may represent a bet-hedging strategy, where cells reversibly
sample transcriptional states that enhance fithess before
converging on an optimal solution.”® Our findings parallel sto-
chastic tuning models in budding yeast, which posit that tran-
scriptional noise is positively selected to promote cell survival
in novel environmental conditions.?*2°

We observed transient activation of genes associated with the
CESR, which serve as an on-pathway intermediate preceding
adaptation.®® These dynamics strikingly resemble how cancer
cells develop resistance, resulting in poor prognosis and treat-
ment outcomes. For example, glioblastoma cells transiently
exit the cell cycle, exhibit slow growth, misregulate H3K27
methylation-dependent epigenetic pathways, and ultimately
adapt by entering a state that is refractory to chemotherapeutic
interventions.'® Bacteria also enter slow-growing persister
states through the activation of a stress-induced SOS pathway,
leading to genetic changes and antibiotic resistance.®”” In both
instances, slow growth is a common denominator that is trig-
gered by the activation of the stress response pathway. Thus,
the activation of stress response pathways may represent a gen-
eral principle that cells leverage to explore adaptive phenotypes
when exposed to novel environments.°

It is possible that the unregulated expansion of H3K9me dur-
ing early heterochromatin misregulation leads to the silencing
of essential genes that disrupts fitness and cell survival. This
could represent a temporary switch from rapid growth to a
slow proliferation state until beneficial adaptations can be ac-
quired. The expansion of heterochromatin domains over essen-
tial genes could also act as a filter for stress and adaptive re-
sponses. Since the spatial expansion of heterochromatin must
build over time, cells would need to experience sustained expo-
sure to a stressor before committing to adaptive H3K9me redis-
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tribution, preventing premature adaptive responses to transient
environmental perturbations.

Establishing adaptive heterochromatin at the cir4+ locus
follows unique dynamics that are distinct from H3K9me-
spreading at other regions during heterochromatin misregula-
tion. These dynamics suggest active recruitment of heterochro-
matin initiation and maintenance factors that have adaptive
potential, which partially depends on the MTREC subunit,
Red1. This raises the possibility that adaptive silencing is medi-
ated by co-transcriptional or post-transcriptional processes
that involve non-coding RNA recognition.®®:¢":62.78 The expan-
sion of Red1-dependent H3K9me islands during the initial
stress phase contributes to activating stress response path-
ways, thus explaining why deleting Red1 alleviates stress and
leads to slower cir4+ silencing. How this RNA elimination ma-
chinery affects the formation of de novo adaptive heterochro-
matin in other stress contexts, and the extent to which it can
be repurposed when cells encounter novel environments, re-
quires further investigation. Our results from relocating cdk9+
also support this model and reveal how the arrangement of
genes on chromosomes could confer unforeseen advantages
during adaptation. This is particularly intriguing given that the
mei4+ and cdk9+ preserve synteny even in the highly diverged
Schizosaccharomyces japonicus, suggesting how the potential
for organisms to adapt could be an emergent property that
shapes genome organization.”® Additionally, our results mirror
recent work where inhibition of the human CDK9 ortholog pro-
duces transcriptional reprogramming, supporting a model
where the inhibition or transient repression of essential genes
encourages epigenetic adaptations.®°

Our unique ability to toggle Epel1 expression enabled us to
identify how cells retain adaptive epigenetic memory. This
memory is dependent on residual H3K9me that qualitatively re-
sembles earlier work, where adding back Epel permanently
poises cells in a novel, fixed epigenetic state.®’ By contrast,
re-expressing Epel in our inducible system leads to total
clr4+ de-repression, despite significant H3K9me3 being pre-
sent during recovery. This suggests that H3K9me3 is required
for memory, but silencing requires other factors involved in
different tiers of transcriptional, co-transcriptional, and post-
transcriptional regulation.®>®° Additionally, Epe1-expressing
short recovery cells exhibit unique gene expression signatures,
supporting our speculation that memory and adaptive silencing
may depend on these novel network-level gene expression
changes.?’°*®® We propose that these features encode a
form of cellular hysteresis (Figure 7E).%” It remains to be seen
whether other epigenetic regulators also exhibit hysteresis
given the slow kinetics of establishing novel epigenetic states
de novo.®®

In conclusion, our inducible system uniquely allowed us to
capture highly dynamic changes in gene expression and

(B) H3K9me3 ChlP-seq tracks centered on clr4+ after 5 days of Epe1 depletion. Identified peaks denoted in grayscale, and enrichment is IP normalized to

input (logy).

(C) RT-gPCR measuring clr4+ RNA levels following 5 days of Epe1 depletion, relative to +Epe1. Error bars represent standard deviation, n = 3.

(D) Heterochromatin-defining H3K9 methylation (H3K9me) can be redistributed across the genome to establish new and potentially adaptive phenotypes. Es-
tablishing adaptive H3K9me patterns slowly builds relative to the initiating stress and may serve as a bet-hedging strategy for cells to decipher optimal survival
solutions. Upon removal of stress, cells relax to new states rather than revert to the initial ground state. This establishes a tunable memory for future adaptive
responses. Cells exhibit history dependence, wherein a prior exposure to stress locks cells in a new transcriptional state that encodes adaptive memory.
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chromatin states following acute heterochromatin misregulation,
changes that would be otherwise obscured in conventional ge-
netic assays. Using this approach, we reconstructed pathways
that cells undertake through adaptation and investigated how
the adapted state is preserved across multiple generations.
Our findings reveal several distinguishing features of adaptation
through epigenetic mechanisms and illuminate strategies by
which cells stabilize new gene expression programs to endure
acute changes in their environment. Ultimately, we demonstrate
a powerful experimental framework to probe adaptation medi-
ated by chromatin regulation, which represents an exciting fron-
tier offering insights into phenotypic plasticity.

Limitations of the study

Our work utilizes an inducible, on-demand system to initiate and
track an adaptive epigenetic response upon removing or adding
back key heterochromatin regulators in S. pombe. Natural
stressors would likely elicit additional interspersed transcrip-
tomic changes beyond what we observed. For example, caffeine
affects DNA replication, so cells would experience both an adap-
tive response and replication stress. Nevertheless, understand-
ing how entangled transcriptomic changes enable successful
adaptation to stress will be an important area for future investiga-
tion. We also noted that cdk9+ downregulation is part of the initial
stress phase leading up to adaptation. Given its widespread
roles in transcription, future studies should explore whether
downregulating cdk9+ in response to stress could serve as an
initiation signal to trigger epigenetic adaptation. Although we
have used Epe1 depletion to trigger heterochromatin misregula-
tion, our studies raise the possibility that other ways of inducing
H3K9me deposition at ectopic sites could also contribute to
adaptation. One possibility is that non-coding RNA transcription
leads to MTREC recruitment causing ectopic H3K9me deposi-
tion. This pathway could allow cells to sample the epigenome
prior to adaptation. Our current population-level studies do not
capture cell-to-cell heterogeneity in the specific choice of clr4+
as the primary locus enabling the observed epigenetic adapta-
tion. By profiling transcriptomic changes at the single-cell level
over time, future work could delineate the diversity of molecular
paths individual cells take before converging on an apparent
optimal solution.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-H3K9me2 Abcam ab1220; RRID: AB_449854
anti-H3K9me3 Active Motif CatNo.39161; RRID: AB_2532132
anti-H3K14ac Abcam ab52946; RRID: AB_880442
anti-H3 Abcam ab1791; RRID: AB_302613
Chemicals, peptides, and recombinant proteins

Dynabeads Protein A Invitrogen 10002D

Formaldehyde Electron Microscopy Sciences 15680

HygromycinB GoldBio H-270

ProteinaseK Invitrogen 25530049

Phenol chloroform isoamyl alcohol Sigma-Aldrich 77617

G-418 Sulfate GoldBio G-418

Mag-Bind Total Pure NGS Omega M1378

PVDF Blotting Membrane GE Healthcare 10600022

EMM powder Formedium PMDO0402

Yeast extract Gibco 2911929

DNasel NEB MO0303

Phenol chloroform,acidic VWR E277

Nourseothricin Sulfate GoldBio 96736-11-7

Blasticidin S Hydrochloride Powder Research Products International B12200-0.5
1-naphthaleneacetic acid Sigma-Aldrich NO0640

Thiamine hydrochloride Thermo Fisher 148990100

Critical commercial assays

Superscript Il Reverse Transcriptase Invitrogen 18080085

SYBR Green BioRad 172-5120

NEBNext Ultra Il FS DNA NEB E7805

Library Prep Kit for lllumina

NEB Next Multiplex Oligos NEB E6609

Quibit dsDNA HS assay kit Thermo Fisher Q32854

RNeasy Mini Kit Qiagen 74104

Deposited data

H3K9me2/H3K9me3ChIP-seq This study GEO: GSE235806
RNA-seq This study GEO: GSE235807
S.pombe strains This study Table S1
Oligonucleotides

qRT-PCR,ChIP-gPCR This study Table S2

Software and algorithms

Prism v9.4.1 GraphPad Software Inc.

bwa v0.7.17-r1188 Wellcome Trust Sanger Institute
R (version 4.0.2) Cran.R

ggplot2 Cran.R

Max Planck Institute of
Molecular Plant Physiology

RStudio (version 1.4.1106) RStudio

Trimmomatic v 0.39

https://www.graphpad.com/scientific-software/prism/
http://bio-bwa.sourceforge.net
https://cran.r-project.org/
https://ggplot2.tidyverse.org/
http://www.usadellab.org/cms/? page=trimmomatic

https://www.rstudio.com/
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REAGENT or RESOURCE SOURCE IDENTIFIER
USeq v9.2.9 Utah Bioinformatics Shared https://useq.sourceforge.net
Resource Center
deeptools v3.5.1 Max Planck Institute https://github.com/deeptools/deepTools/
blob/ master/docs/content/about.rst
IGV v11.0.13 Broad Institute and the Regents https://software.broadinstitute.org/software/igv/
of the University of California
MACS2 N/A https://github.com/macs3-project/MACS
samtools v1.6 Wellcome Trust Sanger Institute http://samtools.sourceforge.net/
bedtools v2.27.1 University of Utah https://bedtools.readthedocs.io/en/latest/
STAR Dobin et al. 2013%° https://github.com/alexdobin/STAR

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Kaushik
Ragunathan (kaushikr@brandeis.edu).

Materials availability
All unique/stable reagents generated in this study are available from the lead contact without restriction.

Data and code availability
o ChIP-seq and RNA-seq data have been deposited at GEO and are publicly available as of the date of publication. ChIP-Seq
accession number is GEO: GSE235806. RNA-Seq accession number is GEO: GSE235807.
® This paper does not report original code.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All S. pombe yeast strains used in this study are listed in Table S1. Strains were generated using either established methods for
lithium acetate or electroporation transformations, or by meiotic crossing followed by tetrad dissection. All strains were genotyped
using a colony PCR protocol. Plasmid constructs to create modified nmt81-Epe1-3xFlag-AlD and nmt81-Mst2-3xFlag-AlD inserts
were constructed by modifying an existing pFA6a 3xflag AID IAA-17 degron kanMX6 plasmid. Full plasmids were made using ligation
methods following Pacl digestion to insert the nmt81 promoter. This insert repaired the Pacl site, allowing for a second Pacl digestion
to insert the CDS for Epe1 or Mst2. EMMC was used as the base media for all cell culturing experiments, and all cultures were grown
at 32C. For experiments involving sampling cultures over a time-course, a small volume of cells from each timepoint culture was used
to nucleate the culture for the next timepoint in the appropriate media.

METHOD DETAILS

Cell culturing and growth quantification

For colony size quantification, seed cultures were grown overnight at 32C in EMMC in liquid media. Seed cultures were then used to
nucleate fresh liquid cultures at a low starting OD (< 0.3 OD) and allowed to grow for about 6-8 hours. An equivalent number of cells
were then diluted and plated on solid media, either EMMC or EMMC media supplemented with 15uM thiamine and 500uM NAA and
spread with sterile glass beads. Plated cultures were grown at 32C, and pictures were taken at 3 and 5 days from plating on a Biorad
ChemiDoc with white epifluorescence. For individual plate pictures, image colors are inverted to highlight cell colonies. Images were
further analyzed in FIJI for trimming plate edges, identifying individual cell colonies, and quantifying colony number and size. To
calculate percentage survival, we calculated colony count ratios between EMMC and EMMC media supplemented with 15uM thia-
mine and 500uM NAA after five days of growth.

Western blotting

To test time-dependent depletion of Epe1, cultures were seeded at a low OD (~0.3) in liquid media EMMC or EMMC supplemented
with 15uM thiamine and 500uM NAA. For later memory experiments that switched Epe1 expression, cells cultured for five days in
15uM thiamine and 500uM NAA were harvested and a portion of the culture was used to start a new overnight culture in EMMC.
This EMMC culture was then both harvested after 24 hours and used to inoculate a new culture in 15uM thiamine and 500uM
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NAA for a second time. That culture was then sampled after an additional 24 hours. All cultures were harvested by centrifuging 3-5
OD, decanting supernatant, and storing harvested pellets at -80C.

To extract protein for immunoblotting, cell pellets were processed using a standard TCA precipitation protocol. Pellets were
washed with 1mL of ice cold water, then resuspended in 150uL of YEX buffer (1.85 M NaOH, 7.5% beta-mercaptoethanol). Resus-
pended pellets were incubated on ice for ten minutes, then 150uL of 50% TCA was mixed into each sample and incubated for ten
minutes on ice. Samples were then centrifuged for 5 minutes at 13000 rpm at 4C, after which the supernatant was decanted. Pellets
were then resuspended in SDS sample buffer (125mM TRB pH 6.8, 8M urea, 5% SDS, 20% glycerol, 5% BME) and centrifuged for
5 minutes at 13000 rpm at 4C. Samples were then run on an SDS page gel at 45 minutes at 200V. Stain-free imaging was performed
on a Biorad ChemiDoc. Gel transfer was then performed on a Trans-Blot Turbo Transfer to a nitrocellulose membrane. Immunoblot-
ting was performed by blocking the nitrocellulose membrane with 5% non-fat dry milk in Tris-buffered saline pH 7.5 with 0.1%
Tween-20 (TBST) for about an hour. Blots were then incubated overnight with primary antibody at 4C, then washed with TBST three
times and incubated with secondary antibody for an hour. Incubated blots were imaged using enhanced chemiluminescence on a
Biorad ChemiDoc.

eVOLVER growth assay

Continuous culture experiments were performed in eVOLVER, designed and set up as previously described.®® Two replicate
cultures of each strain were grown in 25 mL of EMMC media at 32C. Growth was maintained in log phase using “turbidostat”
mode to constrain optical density between 0.1 and 0.6. When cultures rise beyond the maximum OD, a dilution event is triggered,
and growth rate is calculated for the duration since the previous dilution by fitting OD measurements to the exponential equation:
OD600 = (initial density)  el9rowth rate) «(time) Media condition changes were executed by spiking individual culture vials as well
as the input EMMC media with a 1000x concentrated solution of thiamine + NAA in DMSO. Influx and efflux operations were manually
triggered to flush untreated media from the lines.

To calculate the time derivative decrease in growth rate post-Epe1 depletion, first 60 hrs (2.5 days) after addition of thiamine and
NAA were considered. Time derivatives of growth rate were calculated at each pair of consecutive growth rates with MATLAB’s
gradient function. A moving average with a sliding window of length 3 was applied to the time derivative of the growth rate, and
the minimum of this moving average was found to be the minimum change in growth rate for each experiment vial. Subsequently,
the average and standard deviation of the minimum change in growth rate was calculated across triplicate experiment vials.

qRT-PCR and RNA sequencing analysis

Cultures were grown in liquid culture containing either EMMC media or EMMC media supplemented with 15uM thiamine and 500pM
NAA. For mst24 epe19®? time points 0-120hrs, cells were cultured and harvested from eVOLVER. For memory RNA experiments,
mst24 epe19%9 cells were grown in manually maintained incubated cultures. Cells were grown to 0.3-1.0 OD and harvested by centri-
fuging ~10mL of culture at 2000 rpm for 2 minutes. Cell pellets were washed once in distilled water, centrifuged at 5000 rpm for 30
seconds, and stored at -80C.

Stored pellets were thawed on ice for 5 minutes, then resuspended in 750uL TES buffer (0.01M Tris pH7.5, 0.01M EDTA, 0.5%
SDS). 750uL acidic phenol chloroform was immediately added afterwards, samples were vortexed, and then incubated on a heat
block at 65C. Samples were incubated for a total of 40 minutes, with 20 seconds of vortexing every 10 minutes. Afterwards, heated
samples were placed on ice for 1 minute, shaken, and transferred to phase lock tubes. Phase lock tubes were centrifuged for 5 mi-
nutes at 13,000 rpm at 4C, and the aqueous phase was transferred to a clean Eppendorf tube and ethanol precipitated. Isolated nu-
cleic acids were then treated with DNAse | at 37C for 10 minutes and cleaned up on Qiagen RNeasy Clean-Up columns. Purified total
RNA was converted to cDNA by annealing reverse primers complementary to target genes and reverse transcribing with SuperScript
Ill Reverse Transcriptase (Invitrogen). qRT-PCR was performed with SYBR Green dye on a CFX Opus 384 Real-Time PCR System. All
gRT experiments were reproduced for at least three independently growth replicates.

Libraries were prepared and sequencing was performed commercially. Raw fastq files were evaluated using FastQC (v0.11.9) and
trimmed using Trimmomatic (v0.39) and aligned to the ASM294v2 S. pombe reference genome using STAR (v2.7.8a) then indexed
using samtools (v1.10).°°"%> Bam files were grouped by genotype replicate and differential expression analysis was performed
through Defined Region Differential Seq in the open source USEQ program suite (v9.2.9) (http://useq.sourceforge.net).®® The cutoff
for significant differential expression of pairwise gene comparisons was defined as a P value of <0.01 (prior to phred transformation)
after Benjamini and Hochberg multiple testing corrections. For principal component analysis, rlog counts were used to perform MDS
analysis, and custom ggplot2 R scripts were used to generate scatterplot figures. Volcano plots were drawn using the ggplot2 library,
and heatmaps were drawn using the pheatmap library, as well as the standard R library and functions. RNAseq heatmaps consist of
genes that are differentially expressed for at least one indicated time point. Gene Ontology analysis was performed using the web-
based tool AnGeLi with a p-value cutoff of < 0.01 with FDR correction for multiple testing and default settings Britton et al.”> Raw and
processed data are deposited in GEO under the accession number GEO: GSE235808.

Chromatin immunoprecipitation, ChiP-seq library preparation and analysis

Cultures were grown in liquid culture containing either EMMC media or EMMC media supplemented with 15uM thiamine and 500pM
NAA in manually maintained incubated cultures. Cells were grown to mid-log phase (0.9-1.6 OD) and then harvested by fixation with
1% formaldehyde for 15 minutes then quenched with glycine for 5 minutes. Fixed cultures were then centrifugated, washed twice
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with 1XTBS, and stored at -80C. To process samples, frozen pellets were thawed at RT for 5 minutes, then resuspended in 300 uL
chip lysis buffer (50 mM HEPES-KOH, pH 7.5, 100 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, and protease inhibitors).
Glass beads (500uL, 0.5mm) were added to each tube and cells were lysed by bead beating in an Omni Bead Ruptor at
3000 rpm x 30 s x 10 cycles. Ruptured cells were then collected by using a heated sterile needle to pierce the bottom of each
tube, then collecting the lysate in a fresh tube via centrifugation. Lysate was then sonicated in a Q800R3 Sonicator to fragment sizes
ranging from 100-500 base pairs. Sonicated lysate was then centrifuged at 13,000 rpm for 15 minutes at 4C, and the liquid portion
was transferred to a new tube. Protein content was normalized using a Bradford assay. 25uL of each sample was reserved as input, to
which 225uL 1XTE/1%SDS was added. Protein A Magnetic Dynabeads were preincubated with either Anti-H3K9me2 [Abcam,
ab1220] or Anti-H3K9me3 [Active Motif, 39161] antibody. 30uL beads preincubated with 2ug antibody was added to 500uL cell lysate
and incubated for 3 hours at 4C. Beads were held on a magnetic stand for subsequent washing cycles. For each wash cycle, cells
were centrifuged at 1000 rpm for 1 minute at 4C, placed on the magnetic stand and allowed to settle, then liquid was removed by
vacuum pipette. Then 1mL wash buffer was added and samples were rotated for 5 minutes per wash. Samples were washed three
times with chip lysis buffer, then once with 1XTE. Samples were then eluted by suspending the beads in 100uL 1xTE/1%SDS for
5 minutes at 65C, then extracting liquid. A second elution was performed with 150uL 1xTE/0.67%SDS. Input and immunoprecipi-
tated samples were then incubated overnight at 65C. We then added 60ug glycogen, 100ug proteinase K, 44uL of 5M LiCl, and
250uL of 1XTE was added to each sample and incubated at 55C for 1 hour. DNA was then extracted using phenol chloroform extrac-
tion, followed by ethanol precipitation. Ethanol precipitated pellets were resuspended in 100uL 10mM Tris pH 7.5 and 50mM NaCl.
qPCR was performed with SYBR Green dye on a CFX Opus 384 Real-Time PCR System. All ChIP experiments were reproduced for at
least two independently grown replicates.

Libraries were prepared following the standard protocol for the NEBNext Ultra Il DNA Library Prep kit. Libraries of mst24 epe19¢9
genb A cells were sequenced on an lllumina Miseq, and all other libraries were sequenced on an lllumina Nextseq instrument. Raw
fastq reads were evaluated using FastQC (v0.11.9) and trimmed using Trimmomatic (v0.39).°*-°" Trimmed reads were aligned to the
ASM294v2 S.pombe reference genome using the Burrows-Wheeler Aligner (v0.7.17) and bam files were further processed using
samtools (v1.10).°>°* Bedgraph coverage files were generated using deepTools (v3.5.1) and normalized IP against input in SES
mode.®>"?° ChlP-seq H3K9me3 peaks were called using MACS2 with -g 12.57e6 in broad mode with a cutoff of 0.05.° Bedtools inter-
sect (v2.27.1) was used to identify genes overlapping with identified peaks. Heatmaps were generated using deepTools (v3.5.1).°
Specific peak histograms were generated using the SushiR package and custom R scripts. Raw and processed data are deposited in
GEO under the accession number GSE235808.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data quantification and statistical analysis was performed in Prism. Replicate number is indicated in corresponding figure legends.
Error bars of qRT-PCR and ChIP-gPCR represent standard deviation.
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