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Abstract

Background: While there is increasing recognition of numerous environmental
contributions to the spread of antibiotic resistance, quantifying the relative con-
tributions of various sources remains a fundamental challenge. Similarly, there
is a need to differentiate acute human health risks corresponding to exposure
to a given environment, versus broader ecological risk of evolution and spread
of antibiotic resistance genes (ARGs) across microbial taxa. Recent studies have
proposed various methods of harnessing the rich information housed by metage-
nomic data for achieving such aims. Here, we introduce MetaCompare 2.0, which
improves upon the original MetaCompare pipeline by differentiating indicators
of human health resistome risk (i.e., potential for human pathogens to acquire
ARGs) from ecological resistome risk (i.e., overall mobility of ARGs across a
given microbiome).
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Results: To demonstrate the sensitivity of the MetaCompare 2.0 pipeline, we
analyzed publicly available metagenomes representing a broad array of environ-
ments, including wastewater, surface water, soil, sediment, and human gut. We
also assessed the effect of sequence assembly methods on the risk scores. We fur-
ther evaluated the robustness of the pipeline to sequencing depth, contig count,
and metagenomic library coverage bias through comparative analysis of a range
of subsamples extracted from a set of deeply sequenced wastewater metagenomes.
The analysis utilizing samples from different environments demonstrated that
MetaCompare 2.0 consistently produces lower risk scores for environments with
little human influence and higher risk scores for human contaminated environ-
ments affected by pollution or other stressors. We found that the ranks of risk
scores were not measurably affected by different assemblers employed. The Meta-
Compare 2.0 risk scores were remarkably consistent despite varying sequencing
depth, contig count, and coverage.
Conclusion: MetaCompare 2.0 successfully ranked a wide array of environments
according to both human health and ecological resistome risks, with both scores
being strongly impacted by anthropogenic stress. We packaged the improved
pipeline into a publicly-available web service that provides an easy-to-use inter-
face for computing resistome risk scores and visualizing results. The web service
is available at http://metacompare.cs.vt.edu/

Keywords: Antibiotic resistance gene, resistome risk, ecological resistome risk, human
health resistome risk, sequencing depth, assembly method

1 Introduction

Antibiotic resistance is a global public health threat, resulting in an increasing rate of
human morbidity and mortality worldwide [1]. There are numerous sources, pathways,
and factors that contribute to the evolution and spread of antibiotic resistance, which
makes it difficult to pinpoint precise interventions that can help attenuate the carriage
of antibiotic resistance genes (ARGs) by human pathogens. It is increasingly being
recognized that mitigation efforts must move beyond a myopic focus on clinical settings
and must address environmental sources and ecological processes that contribute to
the spread of resistance [2, 3]. Environmental sources of concern include untreated
sewage, wastewater treatment plant (WWTP) effluent, livestock waste, surface water
runoff, landfill leachate, and pharmaceutical manufacturing waste [4].

To effectively inform strategies to mitigate the spread of antibiotic resistance, a
systematic and quantitative means of comparing putative sources of ARGs and their
potential to be acquired by pathogens is required [5, 6]. For this purpose, MetaCompare
[7], herein referred to as MetaCompare 1.0, was introduced as the first computational
pipeline to quantify and rank the “resistome risk” of various environments. “Resistome
risk” refers to the conceptual framework introduced by Mart́ınez et al. [6], in which
it is assumed that ARGs that 1) confer resistance to antibiotics currently used for
therapeutic purposes, 2) are associated with mobile genetic elements (MGEs), and 3)
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are carried by human pathogens represent the greatest public health risk. MetaCom-
pare 1.0 was developed as a pipeline to put this concept into practice and introduced
a reified resistome risk metric [7]. Comparing the resistome risk metric across envi-
ronments can serve as a means to identify potential “hot spots” for mobilization of
antibiotic resistance to pathogens, which can then be prioritized for targeted miti-
gation. A proof-of-concept experiment using publicly-available metagenomic datasets
demonstrated that MetaCompare 1.0 provided a ranking of resistome risk consistent
with expectations. Specifically, the pipeline ranked resistomes in order of hospital
sewage as having the highest risk scores, dairy lagoons as having moderate risk scores,
and WWTP effluent as having the lowest risk scores [7]. MetaCompare 1.0 has now
been widely applied, providing insight into potential critical control points for ARG
transmission to pathogens across a wide variety of agricultural, wastewater, and other
environmental systems e.g., [8–14].

Similar methods have been proposed to assess and rank the risks of individual
ARGs in various environments. For example, Slizovskiy et al. [15] proposed a metric
called the ‘mobility index’ which considers ARGs being carried by MGEs in a sample,
but does not take into account the presence of pathogens. Zhang A.N. et al. [16] devel-
oped a method to rank ARGs in terms of their anthropogenic enrichment, association
with MGEs (mobility), and human pathogens (host pathogenicity) into four categories,
with Rank I being the highest risk category and Rank IV being the lowest. Subse-
quently, Zhang Z. et al. [17] defined a “risk index” to categorize ARGs prevalent only
in human-associated environments considering the clinical availability of antibiotics,
mobility, host pathogenicity, and potential of transmission of ARGs from environ-
ment to humans. A key distinction relative to other such ARG risk ranking systems is
that MetaCompare resistome risk scores are defined for the entire collection of ARGs
detected in a sample, whereas the latter provides a ranking system only for individual
ARGs. Incorporation of individual ARG risks into the broader resistome risk of the
environment represented by a sample remains a distinct computational endeavor.

While it is widely recognized that a risk assessment framework is needed to address
environmental dimensions of antibiotic resistance [3], a challenge is that it does not fit
the mold of conventional microbial risk assessment [18]. Specifically, there are multiple
bacterial pathogens of concern and thousands of ARGs. Considering exposures to indi-
vidual resistant pathogens can inform quantitative microbial risk assessment [19, 20],
but evolution and horizontal gene transfer of ARGs moving across microbial commu-
nities, including both pathogens and non-pathogens, is arguably of equal concern if
the aim is to mitigate the acquisition of ARGs by pathogens in the first place. Here we
use the term “risk” broadly as a general relative comparison, as frameworks remain to
be adapted to move towards estimating probabilities of resistant infections from dose-
response of various resistome exposures. From a human health risk standpoint, the
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneu-
moniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.),
have been recognized as World Health Organization (WHO) priority pathogens that
tend to be highly virulent and antibiotic resistant [21]. ESKAPE pathogens have also
been shown to be enriched with a specific subset of acquired (i.e., not belonging to their
core genome), mobile ARGs in anthropogenically-impacted environments [16]. From
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an ecological standpoint, a major limitation has been a lack of a suitable database
for accurate annotation of MGEs. Inclusion of accessory or cargo sequences, includ-
ing ARGs, in public MGE databases, such as ACLAME [22], has undoubtedly led to
false positives (e.g., an ARG being annotated as an MGE) [15]. Finally, it is not clear
how differing sequencing and analysis approaches affect the risk scores. In the case
of MetaCompare 1.0, de novo assembly of contigs is required, the representativeness
of which is directly affected by sequencing depth, chosen assembler, and microbial
diversity associated with the sample complexity.

Here we introduce MetaCompare 2.0, which incorporates several improvements to
address the above-noted limitations of MetaCompare 1.0 and other ARG risk ranking
approaches. Specifically, we introduce two distinct resistome risk scores, one corre-
sponding to the ecological resistome risk (ERR) and the other to the human health
resistome risk (HHRR). The ERR score factors in a wide-ranging array of pathogens
and ARGs in order to broadly represent the potential for ARGs to mobilize in a given
environment. The HHRR, on the other hand, focuses more specifically on pathogens
that are of most acute concern with regard to antibiotic resistant infections in humans
(i.e., ESKAPE pathogens) and Rank I ARGs [16]. For both indices, the annotation
methodology for the taxonomic assignment of potential pathogens was improved by
using ‘many-against-many’ sequence searching (MMseqs2), a tool designed specifically
for taxonomy assignment [23]. Inaccuracies in MGE annotation were addressed by
incorporating an updated MGE database (mobileOG-DB) [24]. To provide a more intu-
itive output for comparison, the range of possible values for risk scores was set using
a 0-100 scale. In the case of the ERR specifically, DeepARG database (DeepARG-
DB) [25], a database built specifically to capture environmental ARGs, was applied to
broadly consider the potential for antibiotic resistance to evolve and spread. To assess
an expanded range of feasible output resistome risk values, the updated pipeline was
applied to publicly-available metagenomes representing a wide range of environments,
including wastewater, surface water, soil, sediment, and gut microbiomes. MetaCom-
pare 2.0 was further validated by applying on samples having varying sequencing
depths, assembler methods, and assembly sizes. Lastly, the pipeline was made more
accessible through a web service that allows users to compute the risk scores of
their metagenomic data and visualize annotations of assembled sequences in various
dimensions.

2 Methods

2.1 Overview of pipeline

MetaCompare 2.0 employs two computational branches that can be selected by the
user (Figure 1). One branch assesses the ERR and the other assesses the HHRR. The
ERR evaluates a broad array of both known and putative ARGs, their co-occurrence
with MGEs, and a full range of human bacterial pathogens to capture their probable
contribution to the proliferation of antibiotic resistance in corresponding environ-
ments. The HHRR focuses on a narrower set of ARGs, defined by [16] as Rank I
ARGs, that are: 1) demonstrated to be enriched in “human-associated” environments,
2) mobile (carried by MGE), and 3) can be carried by ESKAPE pathogens. The range
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of pathogens used in HHRR was confined to the ESKAPE pathogens as well as any
contig annotated as Enterobacteraciae. This was done to include Escherichia coli (as
in the “ESKAPEE”) [26, 27] as well as to ensure that contigs without complete taxo-
nomic annotations but which are likely derived from the ESKAPE organisms would be
captured. This is common for contigs originating from ESKAPE-associated plasmids
and MGEs [28, 29].

Fig. 1 Modifications of the MetaCompare 2.0 pipeline relative to the MetaCompare 1.0 pipeline

MetaCompare 2.0 follows the computational approach adopted in MetaCompare
1.0, with some modifications. MetaCompare 1.0 pipeline takes assembled contigs as
input and annotates them in terms of ARGs, MGEs, and taxonomic similarity to
known human pathogens. Subsequently, these contigs are classified into three cate-
gories: 1) those containing one or more ARGs, 2) those containing one or more ARGs
and one or more MGEs, or 3) those containing one or more ARGs, MGEs, and align-
ment to known human pathogens. The numbers of contigs belonging to these three
categories are subsequently normalized by the total number of contigs using Equations
1-3. The normalization is unweighted in terms of the number of ARGs or MGEs co-
occurring on a contig. Since a pathogen with an ARG is still a human health concern,
even if it cannot be demonstrated mobile, a new category has been added in Meta-
Compare 2.0 for contigs containing one or more ARGs and alignment to known human
pathogens (Equation 4).

QARG = NARG/NContigs (1)
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QARG,MGE = NARG,MGE/NContigs (2)

QARG,MGE,PAT = NARG,MGE,PAT /NContigs (3)

QARG,PAT = NARG,PAT /NContigs (4)

whereNContigs is the total number of contigs in the sample and NARG,NARG,MGE ,
NARG,MGE,PAT , NARG,PAT are the numbers of contigs that contain regions annotated
as ARGs only, contain annotated regions indicating that ARGs are proximal to MGEs,
contain annotated regions indicating that MGE-associated ARGs are carried within
a pathogen, and contain annotated regions indicating that an ARG is carried by a
pathogen, respectively.

Additional modifications were introduced to make the risk score output more
intuitive. MetaCompare 1.0 calculates the risk score by projecting the samples in a
3-dimensional space termed as ‘hazard space,’ each dimension corresponding to the
proportions of contigs annotated as carrying ARGs, carrying ARGs and MGEs, and
carrying ARGs, MGEs, and having alignment to known human pathogens, respec-
tively. An empirical theoretical maximum point, indicating the highest value any Q
in Equation 1-3 can reach, was set to (0.01, 0.01, 0.01) based on the result of a
simulation utilizing the prevalence data in the Comprehensive Antibiotic Resistance
Database (CARD) [30]. However, subsequent studies obtained values exceeding this
maximum threshold [31]. Therefore we reset the maximum point to (1.0, 1.0, 1.0) to
calculate ds, the Euclidean distance of the sample to the maximal point in the 3D haz-
ard space with dimensions QARG, QARG,MGE , QARG,MGE,PAT . We also calculated
dw, the Euclidean distance of a sample containing no ARGs (i.e., QARG, QARG,MGE ,
QARG,MGE,PAT are all 0) and used dw to normalize ds. The basic framework of the
3D hazard space was maintained in the calculation of ERR in MetaCompare 2.0. How-
ever, a 4th dimension, QARG,PAT , was added for HHRR calculation. The risk score is
simplified as follows:

Risk Score = (1− ds/dw)× 104 (5)

By removing the distance inversion and logarithmic scaling used in MetaCompare
1.0, we have alleviated the problem of producing a theoretically infinite score. Instead,
we have set the minimum score to 0, where it was originally 17.57. The maximum
score is now set at 100, by incorporating a multiplication factor of 104 (Equation 5).

2.2 Updates in tools and databases

Updates incorporated into MetaCompare 2.0 are summarized in Table 1.
While MetaCompare 1.0 used the standard Basic Local Alignment Search Tool

(BLAST)) [32]), MetaCompare 2.0 incorporates DIAMOND BLASTx [33] for ARG
and MGE annotation. DIAMOND dramatically improves processing time compared to
BLAST through its employment of double indexing for search and alignment, which is
more efficient for large environmental microbiome datasets. Prior studies have demon-
strated highly comparable consistent results of DIAMOND and BLAST alignment
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[33, 34]. For pathogen annotation, MMseqs2 [23] replaces BLAST in MetaCompare
2.0. MMseqs2 uses k-mer searches based on similarity instead of exact matches which
enables it to use long k-mers without losing sensitivity. Elimination of random mem-
ory access and parallelization on multiple levels makes the runtime of MMseq2 highly
scalable and thus it has become a popular tool for species/taxonomy annotation [23].

The sensitivity and relevance of annotations have also been improved by updating
the associated databases queried by MetaCompare 2.0. DeepARG-DB was employed
for ARG annotation because it was constructed using a deep learning algorithm to
capture all known and putative ARGs in a metagenome, including ones that may
not yet be reported in public databases [25]. DeepARG-DB was built by integrating
multiple databases (CARD, Antibiotic Resistance Genes Database [35] and Univer-
sal Protein Resource [36]) in a non-redundant fashion. Expanded ARG detection is
especially important for the calculation of ERR, where the aim is to assess the poten-
tial of antibiotic resistance to evolve and mobilize in a given environment. For MGEs,
the mobile orthologous groups database (mobileOG-DB) was incorporated. Extensive
manual curation was employed in mobileOG-DB to comprehensively include multi-
ple MGE types (i.e., plasmids, transposons, integrons, etc.) while excluding accessory
and cargo genes to avoid false positive annotations [24]. Genome taxonomy database
(GTDB) [37] was used to annotate contigs for pathogens. Pathogens were classified
against GTDB and filtered from MMseqs2 output using a predetermined list of 538
known, emerging, and re-emerging bacterial pathogens [38]. We selected genus, species,
and strain level annotations of MMseqs2 for pathogen filtration. The list of included
pathogens is presented in supplementary Table S1. To expand the capabilities of Meta-
Compare 2.0, we downloaded the list of 122 Rank I ARG references from [16] and
aligned them to the protein homolog model database of CARD (v3.2.0) [30] using
BLASTp [33]. The alignments were then filtered at ≥ 97% identity to expand the list
of Rank I ARGs to include the original set plus their closest homologs, resulting in
803 total ARGs. The expanded list of ARGs included in HHRS calculation is reported
in Supplementary Table S2.

Table 1 Summary of updates in MetaCompare 2.0 relative to MetaCompare 1.0

Databases MetaCompare 1.0 MetaCompare 2.0
ERR HHRR

ARG annotation CARD [30] DeepARG-DB [25] 803 genes from CARD
(Rank I ARGs and
their 97% similar
homologs)

MGE annotation ACLAME [22] MobileOG-DB (all reference proteins) [24]
Pathogen annotation 24 human bacterial

pathogens in PATRIC
[39]

GTDB [37] to 538
human bacterial
pathogens [38]

ESKAPEE

Alignment algorithm BLAST [32] DIAMOND [33] + MMseqs2 [23]
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2.3 Web Service

MetaCompare 2.0 has been made publicly-available as a web service to increase acces-
sibility and ease of use (http://metacompare.cs.vt.edu/). Users can upload assembled
metagenomic FASTA files associated with samples of interest and can process the
pipeline directly from the web server using a user-friendly graphical interface. A back-
end server performs all necessary computational analysis while the front-end service
presents the results in tabular format, which can be downloaded as a CSV file. In
the command-line interface of MetaCompare 1.0, users were required to provide two
FASTA input files: one containing the assembled contigs and the other containing their
predicted protein coding regions. In the web platform, users only need to upload the
assembled contigs and the burden of computing gene prediction is taken care of in the
back-end. Finally, to provide informative output and allow users to inspect further and
investigate annotated contigs, a new visualization functionality has been incorporated.
Specifically, the visual output allows users to inspect which specific ARGs, MGEs,
and pathogens are annotated and their relative positions on the contigs. Researchers
can zoom in/out and extract corresponding ARG/MGE/pathogen DNA sequences for
further analysis (Figure 2).

Fig. 2 Visualization of ARG, MGE and Pathogen annotation of a representative contig via Meta-
Compare 2.0 web service.

3 MetaCompare 2.0 Validation

Several areas of uncertainty in model robustness were raised during the development of
the MetaCompare 1.0 pipeline. Specifically, it was uncertain whether different sample
types (i.e., sample complexity), assemblers, library coverage, and the total number of
contigs have an effect on the computed risk scores [40, 41]. To challenge both ERR and
HHRR models, we collected publicly-available Illumina short reads from NCBI, along
with an internal archive of deeply sequenced wastewater metagenomes. The criteria for
collection are explained in more detail in section 3.1. All samples were initially cleaned
using fastp [42] with default parameters and assembled using MEGAHIT [43], unless
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otherwise specified. Prodigal [44], a prokaryotic gene recognition tool, was applied for
predicting protein-coding genes in contigs.

3.1 Survey of diverse environments

The original MetaCompare 1.0 pipeline was tested using three contrasting cate-
gories of human influenced aquatic environments: hospital sewage, WWTP effluent,
and agricultural lagoon water. Here we used the same dataset for benchmarking
MetaCompare 2.0 for initial comparison between the new and old versions. Addi-
tionally, we aimed to establish the range of scores encountered when MetaCompare
2.0 was applied to a much wider range of environments, namely: soil, sediment, sur-
face water, gut microbiome, WWTP, as well as mock microbial communities, and
deionized water (categorized as “Lab generated” in latter sections) samples. For each
environment, we identified contrasting sub-sets of samples based on available SRA
metadata and contextual evidence from their accompanying research articles. For
each sub-set, we sought to identify 10 samples. We defined the sub-set coming from
human influenced environments as a “polluted” set and the sub-set coming from
less human influenced environments as “unpolluted”. For example, we refer to sam-
ples collected from Arctic soil [45] as “unpolluted” and soil collected from dairy
farms (PRJNA379303) as “polluted”. We contrasted sediment samples collected from
the river bed of a mountain stream [46] (unpolluted) with river sediments contami-
nated by pharmaceutical discharge (PRJEB28019) (polluted). For surface water, we
compared freshwater samples (PRJNA626373) (unpolluted) with water from ditches
(polluted) in densely populated regions (PRJEB13833). For the gut microbiome,
we compared samples collected from healthy people and samples from COVID-19
patients [47] since it was found that COVID-19 significantly alters gut microbiome
composition [48]. We also tested edge cases (samples with a high probability of gen-
erating extremely low/high risk scores) using deionized water (i.e., negative controls)
which have a near zero probability of ARG presence and Zymo mock microbial com-
munities (catalog number D6300, zymoresearch.com) which contain mixtures of 10
organisms, 7 of which are bacterial pathogens (Listeria monocytogenes, Pseudomonas
aeruginosa, Bacillus subtilis, Escherichia coli, Salmonella enterica, Enterococcus fae-
calis, Staphylococcus aureus). For WWTPs, we contrasted influent (PRJEB13831)
and effluent samples (PRJNA438174, PRJNA490743, PRJNA904380, PRJNA505617,
PRJEB14051, PRJNA532678, PRJEB15519). For WWTPs, we contrasted raw influ-
ent (PRJEB13831) and treated effluent samples (PRJNA438174, PRJNA490743,
PRJNA904380, PRJNA505617, PRJEB14051, PRJNA532678, PRJEB15519). All
samples, their BioProjects and SRA accessions used in model validation are provided
in Supplementary Table S3. MetaCompare 2.0 was applied to determine risk scores of
these samples. Wilcoxon rank-sum tests were performed to examine whether the dif-
ferences between the ERR and HHRR scores of the paired categories were statistically
significant.
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3.2 Evaluation of the Effect of Assembly Method on Resulting
Risk Scores

The original MetaCompare 1.0 pipeline used IDBA-UD [49] for short-read assembly.
However, it has been demonstrated that assemblers can vary in their accuracy [41],
which could potentially affect downstream risk scores. To examine the effect of assem-
bler choices on the risk scores, we applied three commonly used assemblers: IDBA-UD
[49], MEGAHIT [43], and metaSpades [50] to five samples from five different envi-
ronments. The detailed metadata for these samples are provided in Supplementary
Table S4. All samples were quality filtered using fastp [42] prior to assembly. For each
sample, three sets of contigs were analyzed, one for each assembly approach, prior to
MetaCompare 2.0 analysis.

3.3 Evaluation of the Effect of Sequencing Depth and
Assembly Size

To assess the effect of sequencing depth, coverage, and assembly size on risk scores, we
subsampled both short-reads and assembled contigs from deeply sequenced Illumina
datasets for this purpose using Seqtk [51]. Short-reads were subsampled from three
deeply sequenced wastewater samples that we generated internally from influent, efflu-
ent, and activated sludge, each containing ∼ 4 billion reads (∼ 1TB) sequenced on
an Illumina NovaSeq6000. The samples were subsampled at discrete intervals of 1M
(million), 10M, 50M, 100M, 125M, and 250M, then assembled with MEGAHIT [43]
and scored. Additionally, Nonpareil3 [52] was used on the pre-assembled short-read
data to estimate library coverage for each sample using options -T kmer. For contig
simulation, we assembled the largest activated sludge sample (250M reads resulting
in 6,645,925 contigs) and subsampled sets of contigs containing 2.5k (1k = 1000), 5k,
10k, 50k, 100k, 500k, and 1M contigs, which were then annotated and scored. For each
subsampling, we generated 50 sets of contigs.

4 Results

The test dataset used to demonstrate the performance of MetaCompare 1.0 was re-
analyzed to assess differences in output using MetaCompare 2.0 (Table 2). We assessed
normality using the Shapiro-Wilk test and then calculated Pearson’s correlation coef-
ficient between risk scores from MetaCompare 1.0 and MetaCompare 2.0 for this
dataset. The Pearson correlation coefficients of ERR and HHRR scores with MetaCom-
pare 1.0 scores were 0.98 (p-value 2.318e−9) and 0.95 (p-value 1.371e−7), respectively.
MetaCompare 2.0 more clearly separated dairy lagoon and WWTP effluent samples,
relative to MetaCompare 1.0, as highlighted in Table 2.

4.1 Range of risk scores encountered across diverse
environments

Figure 3 illustrates the range of risk scores encountered across a broad range of environ-
mental metagenomes (e.g., wastewater, surface water, soil, sediment, gut microbiome,
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Table 2 MetaCompare 2.0 risk scores obtained from the original MetaCompare
1.0 validation study

ENA accession Sample type MetaCompare 1.0 MetaCompare 2.0
ERR HHRR

ERS1019924 Hospital sewage 43.00 23.19 1.8
ERS1019927 Hospital sewage 39.47 18.58 1.22
ERS1019928 Hospital sewage 39.24 20.25 1.42
ERS1019923 Hospital sewage 36.23 19.24 1.52
ERS1019925 Hospital sewage 34.62 17.05 1.03
ERS1019926 Hospital sewage 34.47 16.88 1.34
ERS1019959 Dairy lagoon 29.02 10.27 1.01
ERS1019958 Dairy lagoon 26.84 11.15 0.5
ERS1019922 Dairy lagoon 24.82 6.79 0.74
ERS1019955 Dairy lagoon 24.20 6.6 0.44
ERS1019956 Dairy lagoon 22.71 7.59 0.36
ERS1019920 WWTP effluent 22.77 6.5 0.34
ERS1019947 WWTP effluent 21.59 3.96 0.17
ERS1019948 WWTP effluent 18.42 5.87 0.22

and lab generated water). The highest risk score was 63.52, generated by a sample
in the Zymo Mock Microbial Community and the lowest score was 0, generated by
a deionized water sample. For each environment, the average ERR score and HHRR
scores were higher in the “polluted” dataset compared to the “unpolluted” (Wilcoxon
rank sum test; p-value < 0.0003).

4.2 Effect of Different Assembly Programs

The effect of assembly methodology on resistome risk score was tested by applying
the MetaCompare 2.0 pipeline on contig sets obtained from the same samples using
three different assemblers. This test was performed on influent wastewater, effluent
wastewater, polluted soil, sediment, and surface water samples. Although the resistome
risk scores differed for a given sample as a function of the assembler used to generate
the contigs, the same general trend in the ranks of the resulting resistome risk scores
was produced 4. This analysis indicates that overall trends in resistome risk scores are
likely to hold true, even if different assemblers are applied. However, because the scores
themselves differ, we recommend that users make resistome risk score comparisons
among samples computed from contigs generated by the same assemblers.

4.3 Effect of Sequencing Depth and coverage

Given the complexity of environmental metagenomes, we further assessed the effect of
sequencing depth and coverage on resistome risk scores and estimated the “saturation
point” for converging scores. Simulated samples containing short reads at different
depths of 1M, 10M, 50M, 100M, 125M, and 250M reads were assembled and then run
through the pipeline. Figure 5(A and B) demonstrates that, although the ERR and
HHRR scores vary with sequencing depth for the same environment, MetaCompare
2.0 was able to distinguish and produce the correct ranking of resistome risks among
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Fig. 3 Range of ERR (A) and HHRR(B) for six different environments. Here, “polluted”/ “unpol-
luted” were generally defined to indicate higher/lower human contamination or other known impact
and thus expected to be more enriched with ARGs, MGEs and pathogens. * p< 0.05; ** p< 0.01,
*** p< 0.001, **** p< 0.0001 according to Wilcoxon rank-sum test comparing scores between the
paired categories.

influent, effluent, and activated sludge environments over the broad range of sequenc-
ing depths. As expected, risk scores tend to vary more with low sequencing depth,
e.g., 1M, 10M with coverage ≥ 50%, but become stable at 50M depth and ≤ 60%
coverage. This suggests that samples of similar sequencing depths are still comparable
via MetaCompare 2.0, even with relatively shallow sequencing of 10M (Figure 5C).
However, to be able to compare metagenomes of different depths, they should ideally
be sequenced at > 60% coverage.

Noticing high variability of scores generated using MetaCompare 1.0 among air
samples reported in a recent study [31], we ran another experiment where multi-
ple samples containing different numbers of contigs were generated from the largest
activated sludge sample assembled in the previous experiment. We generated 50 sub-
samples for each n, where n is the number of contigs. Figure 6(A and B)shows that
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Fig. 4 Effect of the assembler on the resistome risk score. Ranking of the resistome risk scores of
the samples remain the same irrespective of the assembly method used.

the range of scores can trend higher for samples generating fewer contings (≥ 10k)
and the scores converge for samples with a higher number of contigs (≤ 50k).

5 Discussion

MetaCompare 2.0 provides several improvements over MetaCompare 1.0, including
a revamped algorithm, faster annotation tools, updated databases, and a publicly-
available and user-friendly interface. The determination of two distinct risk scores,
ERR and HHRR, provides greater resolution in comparing the relative resistome risks
across various environments of interest. The HHRR score is more closely aligned with
conventional microbial risk assessment methodologies in a way that it focuses more
on specific pathogens of concern (i.e., ESKAPE pathogens) and the acute human
health hazards that they represent. The ERR, on the other hand, can be applied in
scenarios where the concern is much broader in terms of assessing the potential for
antibiotic resistance to evolve and spread, e.g., during microbial treatment of industrial
wastewater or application of biosolids to soil. In sum, both the ERR and HRR can
provide a comparative metric across a system, environment, or environments of interest
to identify potential “hot-spots” worthy of additional attention from a mitigation
standpoint. MetaCompare can also be used to assess trends with time, e.g., in response
to a targeted intervention.

We tested MetaCompare 2.0 over a wide range of sample types in order to charac-
terize the distribution of risk scores encountered. Consistent with expectation, sample
sets with greater anthropogenic contamination/impact (i.e., “pollution”) yielded cor-
respondingly higher resistome risk scores. We noticed higher risk scores in aquatic
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Fig. 5 Effect of sequencing depth and library coverage on resistome risk scores of a subset of activated
sludge samples. A) ERR for samples with different numbers of short reads. B) HHRR for samples
with different numbers of short reads. C) Coverage of all samples in panel A/B. Risk scores reach a
saturation level at 50M depth and ≥ 60%coverage.

environments (e.g., wastewater, surface water) compared to terrestrial environments
(e.g., soil, sediment). Interestingly, the gut microbiome samples exhibited the highest
risk scores. Even the resistome risk scores for healthy humans produced higher scores
than raw Influent wastewater (i.e., sewage) samples. This is consistent with the well-
established understanding that human feces is enriched in pathogens, while here we
see that these pathogen markers essentially become diluted with other microbes in the
sewage collection network [53]. According to Zhang Z. et al. [17], human-associated
environments (e.g., skin, gut) tend to have higher ARG abundances compared to other
environments. A cross-environmental study can provide more insights into the com-
position of ARGs, MGEs, pathogens and their association with risk scores in such
environments.

While we established a theoretical range of resistome risk scores between 0-100,
empirically the general range of ERR scores was observed to be < 40 for “polluted”
samples, and < 10 for “unpolluted” samples. The corresponding range of HHRR scores
would be < 10 and ≈ 0, respectively. Such thresholds may prove helpful in identifying
potential hotspots of concern for the dissemination of antibiotic resistance that warrant
further attention in terms of further assessment or mitigation efforts.
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Fig. 6 Range of risk scores for samples having different sizes of contig sets, A) ERR, B)HHRR. A
higher variation of risk scores is observed for smaller (< 50k) contig sets.

In recent work, there have been multiple attempts in ranking risks associated
with environmental aspects antibiotic resistance. Even though similar aspects have
been considered in corresponding risk score computation, such as the mobility and
pathogenicity of ARGs, there remains an important distinction between the Meta-
Compare framework and that proposed by others, that is, MetaCompare computes
a “resistome risk” score for the full range of ARGs identified across a metagenome,
whereas other approaches [16, 17] assign a risk score or rank for individual ARGs.
Both frameworks have pros and cons, depending on the aim of the application. If one
wants to compare samples derived from different environments in terms of aggregate
risk of antibiotic resistance evolution and spread, having a single metric that captures
the full range of ARGs is more relevant than focusing in on individual ARGs. How-
ever, if one is interested in zooming in on a specific subset of ARGs of concern, then
ranking and scoring individual ARGs may be more useful. Arguably, ARGs with high
“risks” in a sample should be more of the focal point for evaluating the risk score of
the sample than those with low “risks”. Towards incorporating this aspect into the
MetaCompare framework, MetaCompare 2.0 introduced the HHRS calculation, focus-
ing specifically on ARGs and pathogens of most acute human health concern in the
context of antibiotic resistance.

We further evaluated the effect of assemblers on the risk score calculation. For
that purpose, we employed three assemblers, namely IDBA-UD [49], MEGAHIT [43],
and MetaSPAdes [50], all of which are widely used in publicly-available pipelines.
We observed in our experiment that the final scores were different for the contig
sets generated by different assemblers, but the ranking of risk scores of the samples
remained the same (Figure 4). Considering the required computing resources, speed
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and the tendency to produce more accurate assemblies [41, 54], we used MEGAHIT
as the default assembler for all other experiments in this project. Though users are
free to choose any assembly pipeline based on their requirements and preferences,
we recommend use of a single assembler when comparing and ranking risk scores of
samples.

We assessed how differences in sequencing depth might affect the scores. Theoret-
ically, MetaCompare 2.0 can be applied on any sample irrespective of coverage and
sequencing depth. However, it is noted that the risk scores for samples with either lower
coverage or sequencing depth tended to have higher variance (Figure 5). This result
is not surprising due to the highly stochastic nature of the set of genes or sequences
that happen to be generated in the sequencing experiment. In fact, low coverage or
sequencing depth can adversely affect contig assembly and thus downstream analyses
resulting from the assembly [55]. Based on our experiments, we suggest that applying
our pipeline on samples with ≥ 60% coverage would be the best practice.

Finally, we note that our evaluation of MetaCompare 2.0 was limited to samples
sequenced on Illumina platform. Although long read data such as nanopore sequences
were not evaluated in this study, theoretically MetaCompare 2.0 can also be applied to
such data. One point of caution may be higher sequencing error rates associated with
long-read technologies [56]. In such cases, the downstream pipeline could be adversely
affected in terms of accuracy of annotation and may generate false negatives, although
the trends would be expected to still be consistent. Still, the lower coverage that is
typical when long-read sequening is applied for shotgun metagenomics could also be
an issue, as it would not likely be feasible to achieve ≥ 60% coverage recommended
here. Further validation of MetaCompare 2.0 for long-read metagenomics and bench-
marking to Illumina sequencing would be recommended. At present, we advise that
comparison of risk scores should be conducted amongst samples generated by the same
sequencing platform rather than cross platforms.

Supplementary information. Table S1: List of pathogens included used in eco-
logical resistome risk calculation. Table S2: Rank 1 ARGs and their homologs used
in human health resistome risk calculation. Table S3: Samples used to evaluate range
of risk scores in different environments. Table S4: Samples used to evaluate the effect
of Assembly methods.
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